DAC60004IPWR [TI]

具有 1LSB INL/DNL 的超小型、真正 12 位四路电压输出 DAC | PW | 14 | -40 to 125;
DAC60004IPWR
型号: DAC60004IPWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1LSB INL/DNL 的超小型、真正 12 位四路电压输出 DAC | PW | 14 | -40 to 125

光电二极管 转换器
文件: 总43页 (文件大小:2371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DAC80004, DAC70004, DAC60004  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
DACx0004 四通道 16 位、14 位、12 1LSB INL 缓冲电压输出数模转换  
1 特性  
3 说明  
1
真正的 16 位性能:1 LSB 积分非线性 (INL)/微分  
DAC80004/70004/60004 (DACx0004) 分别为 16 位、  
14 位和 12 位高精度、低功耗、电压输出、四通道数  
模转换器 (DAC)DACx0004 器件通过设计可保证单  
调性,拥有低于 1 LSB(最大值)的出色线性度。  
DAC 的基准输入在内部通过专用基准缓冲器进行缓  
冲。  
非线性 (DNL)(最大值)  
超低毛刺脉冲能量:1nV-s  
宽电源电压范围:2.7V 5.5V  
支持轨到轨运行的输出缓冲器  
电流消耗:1mA/通道  
50Mhz、四线制或三线制串行外设接口 (SPI) 兼容  
接口  
DACx0004 器件配有上电复位电路,用于确保 DAC 输  
出在零量程或量程中点处上电(具体取决于 POR 引脚  
的状态)并保持该状态直到器件中写入有效编码为止。  
这些器件的电流消耗非常低(1mA/通道),是便携  
式、电池供电类设备的理想选择。这些器件还包含一种  
掉电特性。该特性可将 5V 电压下的流耗降至 3µA(典  
型值)。  
用于回读和菊花链连接的 SDO 引脚  
上电复位至零量程或量程中点  
温度范围:-40°C +125°C  
多种封装:  
微型 14 引脚超薄小外形尺寸无引线 (VSON) 封  
14 引脚薄型小外形尺寸 (TSSOP) 封装  
DACx0004 器件使用一个运行时钟速率高达 50MHz 的  
通用三线制串口。DACx0004 器件还包含一个 SDO 引  
脚,该引脚能够以菊花链形式连接多个器件。此接口与  
标准 SPI™QSPI™Microwire 以及数字信号处理  
(DSP) 接口兼容。DACx0004 器件采用易于装配的  
14 引脚 TSSOP 封装或超小型 14 引脚 VSON 封装,  
-40°C +125°C 的扩展工业级温度范围内完全额  
定运行.  
2 应用  
便携式仪表  
可编程逻辑控制器 (PLC) 模拟输出模块(4mA-  
20mA)  
闭环伺服器控制  
数据采集系统  
器件信息(1)  
器件型号  
DACx0004  
DACx0004  
封装  
VSON (14)  
TSSOP (14)  
封装尺寸(标称值)  
3.00mm x 4.00mm  
5.00mm x 4.40mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
DACx0004 框图  
线性误差与数字输入编码间的关系  
VDD  
REFIN  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
REF  
BUF  
SCLK  
SDIN  
DAC  
Buffer  
DAC  
Register  
DAC  
BUF  
VOUT  
A
SYNC  
SDO  
CLR  
LDAC  
POR  
Channel A  
Channel B  
Channel C  
Channel D  
VOUT  
VOUT  
VOUT  
B
C
D
-0.50  
-0.75  
-1.00  
Channel A  
Channel B  
Channel C  
Channel D  
tower 5own [ogic  
ꢀesisꢁive beꢁwork  
tower hn ꢀeseꢁ  
DACx0004  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
GND  
D001  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLASED6  
 
 
 
 
DAC80004, DAC70004, DAC60004  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 19  
8.4 Device Functional Modes........................................ 20  
Application and Implementation ........................ 26  
9.1 Application Information............................................ 26  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings ............................................................ 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 DACx0004 Timing Requirements ............................. 8  
7.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 18  
8.1 Overview ................................................................. 18  
8.2 Functional Block Diagram ....................................... 18  
9
9.2 Typical Application - Digitally Controlled Asymmetric  
Bipolar Output .......................................................... 26  
10 Power Supply Recommendations ..................... 28  
11 Layout................................................................... 29  
11.1 Layout Guidelines ................................................. 29  
11.2 Layout Example .................................................... 29  
12 器件和文档支持 ..................................................... 30  
12.1 接收文档更新通知 ................................................. 30  
12.2 相关链接................................................................ 30  
12.3 社区资源................................................................ 30  
12.4 ....................................................................... 30  
12.5 静电放电警告......................................................... 30  
12.6 Glossary................................................................ 30  
13 机械、封装和可订购信息....................................... 31  
8
4 修订历史记录  
Changes from Revision C (August 2016) to Revision D  
Page  
Changed 2.4 µs From MAX to MIN value for t20 in the DACx0004 Timing Requirements table............................................ 8  
Changed From: t19 To: t20 in Figure 1 .................................................................................................................................... 8  
Changes from Revision B (June 2016) to Revision C  
Page  
Deleted thermal pad from PW-TSSOP pin configuration ....................................................................................................... 3  
Changes from Revision A (June 2016) to Revision B  
Page  
已添加 将 DAC80004IPW 器件标识附录添加到了机械、封装和可订购信息 ........................................................................ 31  
Changes from Original (April 2016) to Revision A  
Page  
已更改 产品预览至量产数据 ................................................................................................................................................... 1  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
DAC80004, DAC70004, DAC60004  
www.ti.com.cn  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
5 Device Comparison Table  
DEVICE  
RESOLUTION  
DAC80004  
DAC70004  
DAC60004  
16  
14  
12  
6 Pin Configuration and Functions  
14-Pin VSON  
DMD Package  
Top View  
14-Pin TSSOP  
PW Package  
Top View  
LDAC  
SYNC  
VDD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
SCLK  
SDIN  
GND  
LDAC  
SYNC  
VDD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
SCLK  
SDIN  
GND  
V
A
V
V
B
D
OUT  
OUT  
OUT  
Thermal  
Pad  
V
A
V
V
B
D
OUT  
OUT  
OUT  
V
C
OUT  
POR  
REFIN  
V
C
OUT  
POR  
REFIN  
CLR  
SDO  
CLR  
SDO  
8
8
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
CLR  
NUMBER  
9
12  
1
Digital Input  
Power  
Clear DAC pin, falling edge sensitive  
Ground  
GND  
LDAC  
Digital Input  
Load DAC pin, active low  
Power-on-reset configuration, Connecting the POR pin to GND powers up all four DACs  
to zero scale. Connecting this pin to VDD powers up all four DACs to midscale.  
POR  
6
Digital Input  
REFIN  
SCLK  
SDIN  
SDO  
7
14  
13  
8
Analog Input  
Digital Input  
Digital Input  
Digital Output  
Digital Input  
Power  
Voltage reference input for all channels  
Serial interface shift clock  
Serial interface digital input  
Serial interface digital output for readback and daisy chaining  
Serial interface synchronization, active low  
Positive power supply (2.7 V to 5.5 V)  
DAC A output  
SYNC  
VDD  
2
3
VOUT  
VOUT  
VOUT  
VOUT  
A
B
C
D
4
Analog Output  
Analog Output  
Analog Output  
Analog Output  
11  
5
DAC B output  
DAC C output  
10  
DAC D output  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
 
DAC80004, DAC70004, DAC60004  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–10  
MAX  
UNIT  
Voltage, VDD to GND  
7
V
Voltage, digital input or output to GND  
Voltage, analog input (REFIN) or output (VOUTx) to GND  
Input current to any pin except supply pins  
Maximum junction temperature  
VDD + 0.3  
VDD + 0.3  
10  
V
V
mA  
°C  
°C  
150  
Storage temperature range, Tstg  
-60  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
2.2  
2.2  
-40  
NOM  
MAX  
5.5  
UNIT  
V
Voltage, VDD to GND  
2.7 V VDD 4.5 V  
4.5 V VDD 5.5 V  
VDD – 0.2  
VDD  
V
Voltage, analog input (REFIN) or output  
(VOUTx) to GND  
V
Ambient Operating Temperature, TA  
125  
°C  
7.4 Thermal Information  
DACx0004  
THERMAL METRIC(1)  
DMD (VSON)  
PW (TSSOP)  
14 PINS  
99.1  
UNIT  
14 PINS  
39.6  
27.3  
9.0  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
23.4  
42.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
0.9  
ψJB  
8.9  
42.0  
RθJC(bot)  
6.5  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
DAC80004, DAC70004, DAC60004  
www.ti.com.cn  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
7.5 Electrical Characteristics  
All minimum/maximum specifications at TA = -40°C to +125°C, 2.7 V VDD 5.5 V, 2.5 V REFIN(1) VDD, Rload = 5 kto  
GND, Cload = 200 pF to GND (unless otherwise noted), Digital inputs held at 0 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
STATIC PERFORMANCE(2)  
DAC80004  
16  
14  
12  
Resolution  
DAC70004  
DAC60004  
Bits  
INL  
Relative accuracy(3)  
Differential nonlinearity(3)  
±1  
±1  
1.5  
2
LSB  
LSB  
DNL  
Ensured monotonic  
TA = +20°C to +40°C  
TA = –40°C to +125°C  
TUE  
Total unadjusted error(3)  
Zero code error  
mV  
TA = –40°C to +125°C, Code 0d into  
DAC  
±0.2  
±2  
ZCE  
mV  
TA = +25°C, Code 0d into DAC  
TA = –40°C to +125°C  
TA = +20°C to +40°C  
TA = –40°C to +125°C  
TA = +25°C  
±0.1  
±5  
ZCE-TC Zero code error TC  
µV/°C  
±1.2  
±1.8  
OE  
Offset error(3)  
±0.2  
±0.2  
±4  
mV  
OE-TC  
Offset error drift  
TA = –40°C to +125°C  
µV/°C  
%FSR  
TA = +20°C to +40°C, Code 65535d  
into DAC  
±0.05  
±0.07  
FSE  
Full-scale error(4)  
TA = –40°C to +125°C, Code  
65535d into DAC  
±0.01  
±0.01  
±2  
%FSR  
TA = +25°C  
TA = –40°C to +125°C  
ppm  
FSR/°C  
FSE-TC Full-scale error drift(4)  
TA = –40°C to +125°C  
TA = +25°C  
±0.005  
±0.005  
±2  
±0.05  
GE  
Gain error(3)  
%FSR  
TA = –40°C to +125°C  
ppm  
FSR/°C  
GE-TC  
Gain drift  
TA = +25°C, Vout = ¾ of full scale,  
1900 hr  
Output voltage drift vs.Time  
20  
ppm FSR  
dB  
Load Regulation  
DC Power supply rejection ratio(4)  
TA = +25°C, Vout =Mid Scale  
TA = +25°C, Vout = full scale  
0.003%  
–92  
PSRR  
(1) 200 mV headroom is required between REFIN and VDD when 2.7 V VDD 4.5 V.  
(2) Output unloaded  
(3) End point fit between codes Code 512 to Code 65,024 - DAC80004, Code 128 to Code 16,256 - DAC70004, Code 32 to Code 4064 -  
DAC60004, Output unloaded.  
(4) With 100 mV headroom between DAC output and VDD.  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
 
DAC80004, DAC70004, DAC60004  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
All minimum/maximum specifications at TA = -40°C to +125°C, 2.7 V VDD 5.5 V, 2.5 V REFIN(1) VDD, Rload = 5 kto  
GND, Cload = 200 pF to GND (unless otherwise noted), Digital inputs held at 0 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC PERFORMANCE  
¼ to ¾ scale and ¾ to ¼ scale  
settling to ±1 LSB, RL = 5 kΩ, Cload  
= 200 pF to GND  
Output voltage settling time  
5.8  
8
µs  
Slew rate  
Power-up time(5)  
1.5  
100  
8
V/µs  
µs  
Power-on glitch energy  
Supply slew rate <5 V/msec  
mV  
DAC in power down mode (1 kΩ-  
GND), Supply slew rate <5 V/msec  
Power-off glitch energy  
Output noise  
7
mV  
0.1 Hz to 10 Hz  
100 kHz BW  
5
100  
60  
µVpp  
µVRMS  
Measured at 1 kHz  
Measured at 10 kHz  
Output noise density  
nV/Hz  
55  
REFIN = 3 V ± 0.2 Vpp, Frequency =  
10 kHz, DAC at mid scale, specified  
by design  
THD  
Total harmonic distortion  
–80  
dB  
200 mV 50 Hz and 60 Hz sine wave  
superimposed on power supply  
voltage (AC analysis)  
PSRR  
AC power supply rejection ratio  
Code change glitch impulse  
-90  
1
dB  
1 LSB change around major carry,  
Software LDAC mode  
nV-s  
nV-s  
Channel-to-channel AC (analog)  
crosstalk  
Full-scale swing on adjacent  
channel, Hardware LDAC mode  
1
1
Full-scale swing on adjacent  
channels, Measured channel at zero  
scale  
Channel-to-channel DC crosstalk  
Digital crosstalk  
LSB  
Full-scale swing on all channel,  
Measured channel at zero scale  
1
DAC code mid scale, Adjacent input  
buffer change from 0000h to FFFFh  
or vice versa  
0.2  
nV-S  
REFIN = 3 V ± 0.86 Vpp, Frequency  
= 100 Hz to 100 kHz, DAC at zero  
scale  
Reference feedthrough  
Digital feedthrough  
–85  
0.2  
dB  
At SCLK = 1 MHz, DAC output static  
at mid scale  
nV-s  
OUTPUT CHARACTERISTICS  
Voltage range  
0
VDD  
V
V
Output loaded 5 kΩ, DAC code  
FFFFh  
0.1  
10  
Headroom  
Output loaded 0.5 kΩ, DAC code  
FFFFh  
%FSR  
RL  
CL  
Resistive load  
Capacitive load  
0.5  
kΩ  
RL = ∞  
1
2
nF  
RL = 5 kΩ  
Normal mode  
0.5  
100  
1
Ω
RO  
DC output impedance  
Short circuit current  
Power down with 100 knetwork  
Power down with 1 knetwork  
kΩ  
kΩ  
mA  
36  
(5) Time to exit power-down mode into normal mode. Measured from 32nd falling edge SCLK to 90% of DAC final value, Characterized at  
mid scale.  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
DAC80004, DAC70004, DAC60004  
www.ti.com.cn  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
Electrical Characteristics (continued)  
All minimum/maximum specifications at TA = -40°C to +125°C, 2.7 V VDD 5.5 V, 2.5 V REFIN(1) VDD, Rload = 5 kto  
GND, Cload = 200 pF to GND (unless otherwise noted), Digital inputs held at 0 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOLTAGE REFERENCE INPUT  
2.7 V VDD 4.5 V  
2.2  
2.2  
VDD – 0.2  
VDD  
Reference input range  
V
4.5 V VDD 5.5 V  
Reference input current  
450  
µA  
kΩ  
Reference input impedance  
Reference input capacitance  
15  
10  
pF  
MBW  
Multiplying bandwidth  
340  
kHz  
DIGITAL INPUTS  
VIH  
VIL  
High-level input voltage  
2.3  
V
V
Low-level input voltage  
Input leakage  
0.7  
±1  
0 < VDIGITAL INPUT < VDD  
µA  
pF  
Pin capacitance  
4
7
DIGITAL OUTPUTS  
VOH  
VOL  
High-level output voltage  
IOH = 2 mA  
IOL = 2 mA  
VDD – 1  
V
V
Low-level output voltage  
Pin capacitance  
0.7  
pF  
POWER SUPPLY REQUIREMENTS  
VDD  
Supply voltage  
Supply current  
2.7  
5.5  
5.5  
V
TA = –40°C to +125°C, Normal  
mode  
4
3
mA  
IVDD  
TA = –40°C to +125°C, Power-down  
mode  
7
µA  
TA = –40°C to +125°C, Normal  
mode  
Power dissipation  
20  
mW  
TEMPERATURE RANGE  
TA  
Specified performance  
–40  
125  
°C  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
 
DAC80004, DAC70004, DAC60004  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
www.ti.com.cn  
7.6 DACx0004 Timing Requirements  
At TA = -40°C to +125°C, Trise = Tfall = 1 nV/sec (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2, SDO pin  
loaded with 10 pF  
4.5 V VDD 5.5 V  
2.7 V VDD 4.5 V  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
SERIAL WRITE and READ  
tc  
SCLK cycle time  
20  
10  
10  
15  
5
40  
20  
20  
30  
10  
10  
10  
35  
20  
30  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw1  
tw2  
tsu  
tsu1  
th1  
td1  
tw3  
td2  
tw4  
td3  
tw5  
td4  
tv  
SCLK high pulse duration  
SCLK low pulse duration  
SYNC to SCLK falling edge setup time  
Data setup time  
Data hold time  
5
SCLK falling edge to SYNC rising edge delay time  
Minimum SYNC high pulse duration(1)  
SYNC rising edge to SCLK fall ignore delay time  
LDAC pulse duration low  
5
25  
15  
20  
10  
10  
10  
SCLK falling edge to LDAC rising edge delay time  
CLR minimum pulse duration low  
SCLK falling edge to LDAC falling edge delay time  
SCLK rising edge to SDO valid time  
SCLK falling edge to SYNC rising edge delay time  
SYNC rising edge to SCLK rising edge delay time  
18  
18  
td5  
td6  
5
5
10  
10  
SYNC rising edge to LDAC or CLR falling edge  
delay time  
td7  
20  
40  
ns  
t19  
t20  
CLR pulse activation time  
Successive DAC Update  
20  
20  
ns  
µs  
2.4  
2.4  
(1) Does not include output settling tiime  
td2  
tc  
SCLK  
1
2
32  
tw3  
tw2  
tw1  
td1  
tsu  
SYNC  
SDIN  
th1  
t20  
tsu1  
DB31  
DB0  
td3  
LDAC2  
LDAC1  
CLR  
tw4  
td4  
tw5  
t19  
VOUTX  
(1) Asynchronous LDAC update  
(2) Synchronous LDAC update  
Figure 1. Stand-Alone Timing  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
 
DAC80004, DAC70004, DAC60004  
www.ti.com.cn  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
td6  
SCLK  
1
2
32  
33  
34  
64  
td5  
SYNC  
SDIN  
Input Word for DAC-N  
Input Word for DAC-N-1  
DB0  
DB31  
DB0  
DB31  
DB31  
Input Word for DAC-N  
X
DB0  
td7  
SDO  
tv  
LDAC1  
CLR  
td7  
(1) Asynchronous LDAC update  
Figure 2. Daisy-Chain Timing  
Copyright © 2016–2017, Texas Instruments Incorporated  
9
 
DAC80004, DAC70004, DAC60004  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
www.ti.com.cn  
7.7 Typical Characteristics  
At TA = 25°C, VDD = 5.5 V, REFIN = 5.45 V, DAC outputs unloaded, unless otherwise noted.  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
Channel A  
Channel B  
Channel C  
Channel D  
Channel A  
Channel B  
Channel C  
Channel D  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Digital Input Code  
D001  
D001  
Figure 3. Linearity Error vs Digital Input Code  
Figure 4. Differential Linearity Error vs Digital Input Code  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
Channel A  
Channel B  
Channel C  
Channel D  
Channel A  
Channel B  
Channel C  
Channel D  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Digital Input Code  
D001  
D001  
DAC load 5 kΩ//200 pF  
DAC load 5 kΩ//200 pF  
Figure 5. Linearity Error vs Digital Input Code  
Figure 6. Differential Linearity Error vs Digital Input Code  
2.0  
1.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-1.0  
-1.5  
-2.0  
Channel A  
Channel B  
Channel C  
Channel D  
Channel A  
Channel B  
Channel C  
Channel D  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Digital Input Code  
D001  
D001  
DAC load 5 kΩ//200 pF  
Figure 8. Total Unadjusted Error vs Digital Input Code  
Figure 7. Total Unadjusted Error vs Digital Input Code  
10  
Copyright © 2016–2017, Texas Instruments Incorporated  
DAC80004, DAC70004, DAC60004  
www.ti.com.cn  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
Typical Characteristics (continued)  
At TA = 25°C, VDD = 5.5 V, REFIN = 5.45 V, DAC outputs unloaded, unless otherwise noted.  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
Ch-A DNL Max  
Ch-B DNL Max  
Ch-C DNL Max  
Ch-D DNL Max  
Ch-A DNL Min  
Ch-B DNL Min  
Ch-C DNL Min  
Ch-D DNL Min  
Ch-A Max  
Ch-B Max  
Ch-C Max  
Ch-D Max  
Ch-A Min  
Ch-B Min  
Ch-C Min  
Ch-D Min  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D001  
D001  
DAC load 5 kΩ//200 pF  
Figure 9. Linearity Error (Max-Min) vs Temperature  
DAC load 5 kΩ//200 pF  
Figure 10. Differential Linearity Error (Max-Min) vs  
Temperature  
2.00  
1.50  
1.00  
0.50  
0.00  
-0.50  
-1.00  
-1.50  
-2.00  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
-1.8  
Ch-A TUE Max  
Ch-B TUE Max  
Ch-C TUE Max  
Ch-D TUE Max  
Ch-A TUE Min  
Ch-B TUE Min  
Ch-C TUE Min  
Ch-D TUE Min  
Channel A (5 kW//200 pF)  
Channel B (5 kW//200 pF)  
Channel C (5 kW//200 pF)  
Channel D (5 kW//200 pF)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D001  
D001  
DAC load 5 kΩ//200 pF  
Figure 11. Total Unadjusted Error Max/Min vs Temperature  
Figure 12. Offset Error vs Temperature  
0.05  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-0.07  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
-0.02  
Channel A (5 kW//200 pF)  
Channel B (5 kW//200 pF)  
Channel C (5 kW//200 pF)  
Channel D (5 kW//200 pF)  
Channel A (no load)  
Channel B (no load)  
Channel C (no load)  
Channel D (no load)  
Channel A (5 kW//200 pF)  
Channel B (5 kW//200 pF)  
Channel C (5 kW//200 pF)  
Channel D (5 kW//200 pF)  
Channel A (no load)  
-0.03  
-0.04  
-0.05  
Channel B (no load)  
Channel C (no load)  
Channel D (no load)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D001  
D001  
Figure 13. Gain Error vs Temperature  
Figure 14. Full Scale Error vs Temperature  
Copyright © 2016–2017, Texas Instruments Incorporated  
11  
DAC80004, DAC70004, DAC60004  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VDD = 2.7 V, REFIN = 2.5 V, DAC outputs unloaded, unless otherwise noted.  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
Channel A  
Channel B  
Channel C  
Channel D  
Channel A  
Channel B  
Channel C  
Channel D  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Digital Input Code  
D001  
D001  
Figure 15. Linearity Error vs Digital Input Code  
Figure 16. Differential Linearity Error vs Digital Input Code  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
Channel A  
Channel B  
Channel C  
Channel D  
Channel A  
Channel B  
Channel C  
Channel D  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Digital Input Code  
D001  
D001  
DAC load 5 kΩ//200 pF  
DAC load 5 kΩ//200 pF  
Figure 17. Linearity Error vs Digital Input Code  
Figure 18. Differential Linearity Error vs Digital Input Code  
2.0  
1.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-1.0  
-1.5  
-2.0  
Channel A  
Channel B  
Channel C  
Channel D  
Channel A  
Channel B  
Channel C  
Channel D  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Digital Input Code  
D001  
D001  
DAC load 5 kΩ//200 pF  
Figure 20. Total Unadjusted Error vs Digital Input Code  
Figure 19. Total Unadjusted Error vs Digital Input Code  
12  
Copyright © 2016–2017, Texas Instruments Incorporated  
DAC80004, DAC70004, DAC60004  
www.ti.com.cn  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
Typical Characteristics (continued)  
At TA = 25°C, VDD = 2.7 V, REFIN = 2.5 V, DAC output unloaded, unless otherwise noted.  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
1.8  
1.5  
Channel A (5 kW//200 pF)  
Channel B (5 kW//200 pF)  
Channel C (5 kW//200 pF)  
Channel D (5 kW//200 pF)  
Channel A (no load)  
Channel B (no load)  
Channel C (no load)  
Channel D (no load)  
1.2  
0.9  
0.6  
0.3  
0.0  
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
-1.8  
Channel A (5 kW//200 pF)  
Channel B (5 kW//200 pF)  
Channel C (5 kW//200 pF)  
Channel D (5 kW//200 pF)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D001  
D001  
Figure 21. Offset Error vs Temperature  
Figure 22. Gain Error vs Temperature  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-0.07  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
Channel A (5 kW//200 pF)  
Channel B (5 kW//200 pF)  
Channel C (5 kW//200 pF)  
Channel D (5 kW//200 pF)  
Channel A (no load)  
Ch-A Max  
Ch-B Max  
Ch-C Max  
Ch-D Max  
Ch-A Min  
Ch-B Min  
Ch-C Min  
Ch-D Min  
Channel B (no load)  
Channel C (no load)  
Channel D (no load)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
2.7  
3.1  
3.5  
3.9  
VDD (V)  
4.3  
4.7  
5.1  
5.5  
D001  
D001  
DAC load 5 kΩ//200 pF  
Figure 23. Full Scale Error vs Temperature  
Figure 24. Linearity Error (Max-Min) vs Power Supply  
Voltage  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
-1.8  
Ch-A DNL Max  
Ch-B DNL Max  
Ch-C DNL Max  
Ch-D DNL Max  
Ch-A DNL Min  
Ch-B DNL Min  
Ch-C DNL Min  
Ch-D DNL Min  
Channel A (5 kW//200 pF)  
Channel B (5 kW//200 pF)  
Channel C (5 kW//200 pF)  
Channel D (5 kW//200 pF)  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
VDD (V)  
VDD (V)  
D001  
D001  
DAC load 5 kΩ//200 pF  
Figure 25. Differential Linearity Error (Max-Min) vs Power  
Supply Voltage  
Figure 26. Offset Error vs Power Supply Voltage  
Copyright © 2016–2017, Texas Instruments Incorporated  
13  
DAC80004, DAC70004, DAC60004  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VDD = 5.5 V, REFIN = 2.5 V, DAC output load = 5 kΩ||200 pF, unless otherwise noted.  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-0.07  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-0.07  
Channel A (5 kW//200 pF)  
Channel B (5 kW//200 pF)  
Channel C (5 kW//200 pF)  
Channel D (5 kW//200 pF)  
Channel A (5 kW//200 pF)  
Channel B (5 kW//200 pF)  
Channel C (5 kW//200 pF)  
Channel D (5 kW//200 pF)  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
VDD (V)  
VDD (V)  
D001  
D001  
Figure 27. Gain Error vs Power Supply Voltage  
Figure 28. Full Scale Error vs Power Supply Voltage  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
Ch-A DNL Max  
Ch-B DNL Max  
Ch-C DNL Max  
Ch-D DNL Max  
Ch-A DNL Min  
Ch-B DNL Min  
Ch-C DNL Min  
Ch-D DNL Min  
Ch-A Max  
Ch-B Max  
Ch-C Max  
Ch-D Max  
Ch-A Min  
Ch-B Min  
Ch-C Min  
Ch-D Min  
2.5  
2.9  
3.3  
3.7  
4.1  
4.5  
4.9  
5.3  
2.5  
2.9  
3.3  
3.7  
4.1  
4.5  
4.9  
5.3  
REFIN (V)  
REFIN (V)  
D001  
D001  
Figure 29. Linearity Error (Max-Min) vs Reference Voltage  
Figure 30. Differential Linearity Error (Max-Min) vs  
Reference Voltage  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
-0.01  
0.07  
0.05  
0.03  
0.01  
-0.01  
-0.03  
-0.05  
-0.07  
-0.02  
Ch-A GE Max  
Ch-B GE Max  
Ch-C GE Max  
Ch-D GE Max  
5.0 5.5  
Ch-A FSE Max  
Ch-B FSE Max  
Ch-C FSE Max  
Ch-D FSE Max  
-0.03  
-0.04  
-0.05  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
REFIN (V)  
REFIN (V)  
D001  
D001  
Figure 31. Gain Error (Max) vs Reference Voltage  
Figure 32. Full Scale Error (Max) vs Reference Voltage  
14  
Copyright © 2016–2017, Texas Instruments Incorporated  
DAC80004, DAC70004, DAC60004  
www.ti.com.cn  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
Typical Characteristics (continued)  
At TA = 25°C, VDD = 5.5 V, REFIN = 5.45 V, DAC outputs unloaded, All channels active, unless otherwise noted.  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Digital Input Code  
D001  
D001  
VDD = 2.7 V, REFIN = 2.5 V  
Figure 33. Power Supply Current vs Digital Input Code  
Figure 34. Power Supply Current vs Digital Input Code  
5.5  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.5  
Unit #1  
1.0  
0.5  
0.0  
Unit #2  
Unit #3  
Unit #4  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
2.7  
3.1  
3.5  
3.9  
VDD (V)  
4.3  
4.7  
5.1  
5.5  
D001  
D001  
DAC code = mid-scale code  
REFIN = 2.5 V, DAC code = mid-scale code  
Figure 35. Power Supply Current vs Temperature  
Figure 36. Power Supply Current vs Power Supply Voltage  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.7  
2.4  
2.1  
DAC Code - Full Scale  
1.8  
DAC Code - Full Scale  
1.5  
1.2  
0.9  
Ch-A  
Ch-B  
Ch-C  
Ch-D  
Ch-A  
0.6  
0.3  
0.0  
DAC Code - Zero Scale  
DAC Code - Zero Scale  
Ch-B  
Ch-C  
Ch-D  
-20 -16 -12  
-8  
-4  
0
4
8
12  
16  
20  
-20 -16 -12  
-8  
-4  
0
4
8
12  
16  
20  
Load Current (mA)  
Load Current (mA)  
D001  
D001  
VDD = 2.7 V, REFIN = 2.5 V  
Figure 37. DAC Output Voltage vs Load Current  
Figure 38. DAC Output Voltage vs Load Current  
Copyright © 2016–2017, Texas Instruments Incorporated  
15  
DAC80004, DAC70004, DAC60004  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VDD = 5.5 V, REFIN = 5.45 V, DAC output load = 5 kΩ||200 pF, unless otherwise noted.  
7
6
5
4
3
2
1
0
2.49960  
2.49955  
2.49950  
2.49945  
2.49940  
2.49935  
2.49930  
2.49925  
2.49920  
Ch-A  
Ch-B  
Ch-C  
Ch-D  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Power Supply Voltage (V)  
Digital Input Pins Logic Level (V)  
D001  
D001  
REFIN = 2.5 V, All channels active with full-scale code, DAC  
unloaded  
DAC unloaded, All channels to mid-scale  
Figure 39. DAC Output Voltage vs Power Supply Voltage  
Figure 40. Power Supply Current vs Digital Input Pins Logic  
Level  
0.020  
5
0.020  
5
0.015  
0.010  
0.005  
0.000  
-0.005  
-0.010  
-0.015  
-0.020  
0
0.015  
0.010  
0.005  
0.000  
-0.005  
-0.010  
-0.015  
-0.020  
0
LDAC Feedthrough  
Glitch Impulse (1nV-sec)  
LDAC Feedthrough  
Glitch Impulse (1nV-sec)  
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
-25  
-30  
-35  
VOUT (5 mV/div)  
LDAC Trigger (5 V/div)  
VOUT (5 mV/div)  
LDAC Trigger (5 V/div)  
0
1E-6  
2E-6 3E-6  
Time (0.5 msec/div)  
4E-6  
5E-6  
0
1E-6  
2E-6 3E-6  
Time (0.5 msec/div)  
4E-6  
5E-6  
D001  
D001  
DAC code transition from 8000h to 7FFFh  
DAC code transition from 7FFFh to 8000h  
Figure 41. Glitch Impulse, Falling Edge, 1LSB Step  
Figure 42. Glitch Impulse, Rising Edge, 1LSB Step  
[5!/ Trigger (5 V/div)  
[5!/ Trigger (5 V/div)  
Large Signal VOUT (2 V/div)  
Small Signal VOUT  
Large Signal VOUT (2 V/div)  
Small Signal VOUT  
Settling  
Band  
(±1 LSB)  
(160 µV/div = 2 LSB)  
(160 µV/div = 2 LSB)  
Settling  
Band  
(±1 LSB)  
Time (2 µsec/div)  
Time (2 µsec/div)  
From code 512d to 65024d, Typical channel shown  
From code 65024d to 512d, Typical channel shown  
Figure 43. Full-Scale Settling Time, Rising Edge  
Figure 44. Full-Scale Settling Time, Falling Edge  
16  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
DAC80004, DAC70004, DAC60004  
www.ti.com.cn  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
Typical Characteristics (continued)  
At TA = 25°C, VDD = 5.5 V, REFIN = 5.45 V, DAC output load = 5 kΩ||200 pF, unless otherwise noted.  
Ch-A (20 mV/div)  
Ch-B (20 mV/div)  
Ch-C (20 mV/div)  
Ch-D (20 mV/div)  
Ch-A (1 mV/div)  
Ch-B (1 mV/div)  
Ch-C (1 mV/div)  
Ch-D (1 mV/div)  
VDD (5 V/div)  
VDD (5 V/div)  
Time (0.2 ms/div)  
Time (2 ms/div)  
D001  
D001  
DAC unloaded  
DAC in power down mode (1 kΩ-GND)  
Figure 45. Power-On Glitch, Reset to Zero Scale  
Figure 46. Power-Off Glitch, Reset to Zero Scale  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
SCLK (5 V/div)  
Clock Feedthrough Impulse  
VOUT (2 mV/div)  
Time (0.5 µsec/div)  
10  
100  
1000  
Frequency (Hz)  
10000  
100000  
1000000  
DAC unloaded, DAC code mid-scale, Typical channel shown  
D001  
VDD = 5.0 + 1 VPP (Sinusoid), REFIN = 2.5 V, DAC code full-  
scale, Typical channel shown  
Figure 47. Clock Feedthrough, 1MHz Midscale  
Figure 48. DAC Output AC PSRR vs VDD  
450.0  
DAC Code = 32768  
DAC Code = 512  
DAC Code = 65024  
400.0  
350.0  
300.0  
250.0  
200.0  
150.0  
100.0  
50.0  
= 4 µVPP  
0.0  
100  
DAC unloaded, DAC code mid-scale, Typical channel shown  
1000  
10000  
100000  
Frequency (Hz)  
D001  
DAC unloaded, Typical channel shown  
Figure 49. DAC Output Noise Density vs Frequency  
Figure 50. DAC Output Noise, 0.1 Hz to 10 Hz  
Copyright © 2016–2017, Texas Instruments Incorporated  
17  
DAC80004, DAC70004, DAC60004  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The DAC80004, DAC70004, and DAC60004 are quad-channel, 16-bit, voltage-output DACs with internal  
reference buffers and output buffers. Each channel consists of an R-2R ladder configuration with the 4 MSBs  
segmented, followed by an operational amplifier, as shown in Figure 51. The DACx0004 devices have a constant  
impedance (30 kΩ typical), buffered reference input. The output of the reference buffers drives the R-2R ladders.  
With the production trim process these devices have excellent dc accuracy and ac performance.  
w
w
ëhÜÇ  
.uffer  
2w  
2w  
2w  
2w  
2w  
2w  
2w  
{0  
{11  
{1  
{12  
{13  
{15  
w9CLb  
.uffer  
Figure 51. DACx0004 Architecture  
The input coding to the DACx0004 is straight binary, so the ideal output voltage is given by Equation 1:  
D
æ
IN ö  
VOUT  
=
x REFIN  
ç
÷
2N  
è
ø
(1)  
Where:  
N = resolution in bits; either 16 (DAC80004), 14 (DAC70004) or 12 (DAC60004)  
DIN = decimal equivalent of the binary code that is loaded to the DAC register. DIN ranges from 0 to 2N –1  
REFIN = DAC reference voltage  
8.2 Functional Block Diagram  
VDD  
REFIN  
REF  
BUF  
SCLK  
SDIN  
DAC  
Buffer  
DAC  
Register  
DAC  
BUF  
VOUTA  
SYNC  
SDO  
CLR  
LDAC  
POR  
Channel A  
Channel B  
Channel C  
Channel D  
VOUT  
VOUT  
VOUT  
B
C
D
tower 5own [ogic  
ꢀesisꢁive beꢁwork  
tower hn ꢀeseꢁ  
DACx0004  
GND  
Copyright © 2016, Texas Instruments Incorporated  
18  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
DAC80004, DAC70004, DAC60004  
www.ti.com.cn  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
8.3 Feature Description  
8.3.1 Output Amplifier  
The DACx0004 output buffer amplifier is capable of generating near rail-to-rail voltages on its output, giving a  
maximum output range of 0 V to REFIN. It is capable of driving a load of 5 kΩ in parallel with 2 nF to GND. The  
typical slew rate of this amplifier while driving no load is 1.5 V/µs, with a full-scale settling time of 8 µs to 1 LSB  
of the final value as shown in Figure 43 and Figure 44. The current consumption of the amplifier (unloaded) is 1  
mA/channel (typical). The DACx0004 output amplifier also implements a short circuit current limiting circuit. The  
default value of short circuit limit is 40 mA, however this can be reduced to 30 mA using dedicated bits (1 per  
channel) via SPI command 1010 (see Table 2).  
8.3.2 Reference Buffer  
The DACx0004 requires an external reference to operate. The reference input pin has the following input range:  
2.2 V to (VDD – 0.2) for 2.7 V VDD 4.5 V  
2.2 V to VDD for 4.5 V VDD 5.5 V  
The DACx0004 contains a dedicated reference buffer for each DAC channel. The REFIN pin drives the input of  
these buffers. The integrated reference buffers offers constant impedance of 30 kΩ (typical) at the REFIN pin.  
This simplifies the external reference drive circuit for the device.  
8.3.3 Power-On Reset  
The DACx0004 contain a power-on-reset circuit that controls the output voltage during power up. The power-on  
reset is useful in applications where it is important to know the state of the output of each DAC while the device  
is in the process of powering up. At power up all DAC registers are filled with power-on reset code (see Table 1).  
8.3.3.1 POR Pin Feature  
The DAC power-on reset code for all of the channels depends on the state of the POR pin at power up (see Pin  
Configuration and Functions).  
Each DAC channel remains that way until a valid load command is written to it. All device registers are reset at  
power up as shown in Table 1.  
Table 1. DACx0004 Power-On Reset Values  
DACx0004 - POWER-ON RESET VALUE  
REGISTER NAME  
TSSOP-/VSON-14  
DAC latches (per channel)  
DAC buffers (per channel)  
Power down (per channel)  
Clear mode  
If POR pin = '0' then Zero Scale else Mid scale  
If POR pin= '0' then Zero Scale else Mid scale  
00 – Normal mode  
00 – Clear to Zero  
Ignore LDAC (per channel)  
Daisy chain  
0000 – Do not ignore  
0 – Daisy chain disabled, DAC update at 32nd SCLK falling edge  
0000 – all DACs 40 mA  
Short circuit limit (per channel)  
8.3.3.2 Internal Power-On Reset (IPOR) Levels  
When the device powers up, an IPOR circuit sets the device in default mode as shown in Table 1. The IPOR  
circuit requires specific VDD levels, as indicated in Figure 52, to ensure discharging of internal capacitors and to  
reset the device on power up. In order to ensure a power-on reset, VDD must be below 0.7 V for at least 1 ms.  
When VDD drops below 2.4 V but remains above 0.7 V (shown as the undefined region), the device may or may  
not reset under all specified temperature and power supply conditions. In this case, In this case a power-down  
reset is recommended. When VDD remains above 2.4 V, a power-on reset does not occur.  
Copyright © 2016–2017, Texas Instruments Incorporated  
19  
 
DAC80004, DAC70004, DAC60004  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
www.ti.com.cn  
VDD (V)  
5.5 V  
Specified Supply  
Voltage Range  
No Power-On Reset  
2.7 V  
2.4 V  
Undefined  
0.7 V  
0.0 V  
Power-On Reset  
Figure 52. Relevant Voltage Levels for IPOR Circuit  
8.4 Device Functional Modes  
8.4.1 Serial Interface  
The DACx0004 devices have a 4-wire serial interface: SYNC, SCLK, SDIN, and SDO (see Pin Configuration and  
Functions). The serial interface (3-wire and 4-wire) is compatible with SPI, QSPI, and Microwire interface  
standards, as well as most DSPs and it operates up to 50 MHz. See the Write Mode Stand-Alone Timing and  
Write Mode Daisy-Chain Timing diagrams (see Figure 1 and Figure 2) for examples of typical write and read  
sequences. The input shift register is 32 bits wide.  
8.4.1.1 Stand-Alone Mode  
The serial clock SCLK can be a continuous or a gated clock. The first falling edge of SYNC starts the operation  
cycle. When SYNC is high, the SCLK and SDIN signals are blocked and the SDO pin (TSSOP-14 and VSON-14  
packages) is in a Hi-Z state. The device internal registers are updated from the shift register on the 32nd falling  
edge of SCLK.  
8.4.1.1.1 SYNC Interrupt – Stand-Alone Mode  
For stand-alone operation, the SYNC line stays low for at least 32 falling edges of SCLK and the addressed DAC  
register updates on the 32nd SCLK falling edge. However, if SYNC is brought high before the 32nd SCLK falling  
edge, it acts as an interrupt to the write sequence; the shift register resets and the write sequence is discarded.  
Neither an update of the data buffer contents, DAC register contents, nor a change in the operating mode occurs  
(as shown in Figure 53).  
SCLK  
1
2
32  
32  
SYNC  
SDIN  
DB31  
DB0  
DB31  
DB0  
Invalid/Interrupted Write Sequence  
Valid Write Sequence  
Output/Mode Update on 32nd SCLK Falling Edge  
Output/Mode Does Not Update on 32nd SCLK Falling Edge  
Figure 53. SYNC Interrupt – Stand Alone Operation  
20  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
DAC80004, DAC70004, DAC60004  
www.ti.com.cn  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
Device Functional Modes (continued)  
8.4.1.1.2 Read-Back Mode  
The READ command is used to start read-back operation. However, before read-back operation can be initiated,  
the SDO pin must be enabled by setting the DSDO bit to '1'; this bit is disabled by default. Read-back operation  
is then started by executing a READ command (R/W bit = '1', see Table 3). Bits C3 to C0 select the register to  
be read. The remaining data in the command are don’t care bits. During the next SPI operation, the data  
appearing on the SDO output are from the previously addressed register. For a read of a single register, a NOP  
(No Operation) command (1110) can be used to clock out the data from the selected register on SDO. Multiple  
registers can be read if multiple READ commands are issued (see Figure 54).  
SCLK  
1
2
32  
1
2
32  
SYNC  
SDIN  
Read Command  
X
NOP Command  
Readback Data  
DB31  
DB0  
DB31  
DB31  
DB0  
DB0  
SDO  
t
v
Figure 54. Read-Back Operation  
8.4.1.2 Daisy-Chain Mode  
For systems that contain more than one device, the SDO pin can be used to daisy-chain multiple devices  
together (see Figure 55). Daisy-chain operation can be useful in system diagnostics and in reducing the number  
of serial interface lines. The daisy-chain feature can be enabled by writing a logic '1' to the DSDO bit (see  
Table 3); the SDO pin is set to HIZ when the DSDO bit is set to 0.  
The first falling edge of SYNC starts the operating cycle. SCLK is continuously applied to the SPI shift register  
when SYNC is low. If more than 32 clock pulses are applied, the data ripples out of the shift register and appear  
on the SDO line. The data bits are clocked out on the rising edge of SCLK and are valid on the falling edge. By  
connecting the SDO pin of the first device to the SDI input of the next device in the chain, a multiple-device  
interface is constructed (see Figure 2). Each device in the system requires 32 clock pulses. Therefore, the total  
number of clock cycles must equal 32 × N, where N is the total number of DACx0004s in the chain. When the  
serial transfer to all devices is complete, SYNC is taken high. This action latches the data from the SPI shift  
registers to the device internal registers for each device in the daisy-chain and prevents any further data from  
being clocked in. The serial clock can be a continuous or a gated clock. Note that a continuous SCLK source can  
only be used if SYNC is held low for the correct number of clock cycles. For gated clock mode, a burst clock  
containing the exact number of clock cycles must be used and SYNC must be taken high after the final clock in  
order to latch the data.  
C
B
A
DACx0004  
DACx0004  
DACx0004  
SDIN  
SDIN  
SDIN  
SDO  
SDO  
SDO  
SCLK  
SYNC  
SCLK  
SYNC  
SCLK  
SYNC  
Figure 55. DACx0004 in Daisy Chain Mode  
8.4.1.2.1 SYNC Interrupt – Daisy-Chain Mode  
For daisy-chain operation, the SYNC line stays low for at least 32 × N SCLK cycles, where N is the number of  
DACx0004s in the daisy chain. If SYNC is brought high before a multiple 32 SCLKs, it acts as an interrupt to the  
write sequence; the shift register resets and the write sequence is discarded. Neither an update of the data buffer  
contents, DAC register contents, nor a change in the operating mode occurs (see Figure 56).  
Copyright © 2016–2017, Texas Instruments Incorporated  
21  
 
 
DAC80004, DAC70004, DAC60004  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Device Functional Modes (continued)  
SCLK  
32XN  
32XN  
1
2
SYNC  
SDIN  
Invalid/Interrupted Write Sequence  
Output/Mode Does Not Update on the Rising SYNC  
Valid Write Sequence  
Output/Mode Does Update on the Rising SYNC  
Figure 56. SYNC Interrupt – Daisy-Chain Operation  
8.4.2 SPI Shift Register  
The SPI shift register is 32 bits wide, as shown in Table 2. The shift register command mapping is shown in  
Table 3. The DACx0004 accepts DAC code in straight binary format. Note that, the DAC data is left alligned from  
MSB (D19) to LSB (D4 - 16 bits, D6 - 14 bits, D8 - 12 bits).  
Table 2. DACx0004 SPI Shift Register Format  
D31  
D30  
D29  
D28  
D27-D24  
D23-D20  
D19-D04  
D03-D00  
Channel Address  
Bits  
16/14/12-Bit DAC Data left alligned/Power  
Down Bits/Device Ready bit  
Don't Cares  
R/W  
Command Bits  
Mode Bits  
Table 3. DAC Commands  
D31 - D28  
D27 - D24  
D23 - D20  
D19 - D16  
D15 - D12  
D11 - D08  
D07 - D04  
D03 - D00  
Commands  
Write to buffer n  
Channel  
Address  
X
X
X
X
W/R  
W
0
0
0
0
0
0
0
0
0
0
1
1
0
DAC Data  
DAC Data  
DAC Data  
DAC Data  
X
Channel  
Address  
1
0
1
X
X
X
X
X
X
X
Update DAC n  
Channel  
Address  
Write to buffer n and update all  
DACs (Software LDAC)  
W
DAC Data  
DAC Data  
DAC Data  
DAC Data  
DAC Data  
DAC Data  
DAC Data  
DAC Data  
Channel  
Address  
Write to buffer and update DAC  
n
W
X
X
X
X
W/R  
W/R  
W/R  
W
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
PD1 PD0  
Ch-D Ch-C Ch-B Ch-A Power up/down DAC n  
CM1 CM0 Clear mode register  
Ch-D Ch-C Ch-B Ch-A LDAC register  
X
X
X
X
X
X
X
X
X
Software reset  
Disable SDO register  
Reserved  
DSD  
0
X
W/R  
1
0
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
W/R  
W
X
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Ch-D Ch-C Ch-B Ch-A Short circuit limit register  
X
X
X
X
X
Software clear  
Reserved  
R
X
DRDY  
Status register  
No operation (NOP)  
Reserved  
W
X
X
X
Table 4. Channel Address Bits  
CHANNEL ADDRESS BITS  
DESCRIPTION  
D23  
0
D22  
0
D21  
0
D20  
0
Select channel A  
Select channel B  
Select channel C  
Select channel D  
Select all channel  
0
0
0
1
0
0
1
0
0
0
1
1
1
1
1
1
22  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
DAC80004, DAC70004, DAC60004  
www.ti.com.cn  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
8.4.3 DAC Power-Down Modes  
The DACx0004 use four modes of operation. These modes are accessed by setting command bits D28 – D24  
and power-down register bits D09 and D08. The command bits must be set to 0100 (see Table 3). Once the  
command bits are set correctly, the four different power-down modes are software programmable by setting bits  
D09 and D08 in the shift register. Table 5 shows how to control the operating mode with data bits PD1 (D09),  
PD0 (D08).  
Table 5. Power-Down Bits  
POWER DOWN BITS  
DESCRIPTION  
D09  
0
D08  
0
Normal operation/power up selected channel(s) (Default)  
Power down selected channel(s) 1 kΩ-GND  
Power down selected channel(s) 100 kΩ-GND  
Power down selected channel(s) Hi-Z  
0
1
1
0
1
1
It is possible to write to the DAC register/buffer of the DAC channel that is powered down. When the DAC  
channel is then powered up, it powers up to this new value.  
The advantage of the available power-down modes is that the output impedance of the device is known while it is  
in power-down mode. As described in Table 5, there are three different power-down options. VOUTX can be  
connected internally to GND through a 1 kresistor, a 100 kresistor, or open-circuited (Hi-Z). The DAC power-  
down circuitry is shown in Figure 57.  
R2R Ladder  
Amplifier  
VOUTX  
Power-Down  
Circuitry  
Resistor  
Network  
Figure 57. DACx0004 Power Down  
8.4.4 CLR Pin Functionality and Software CLEAR Mode  
The CLR pin is an asynchronous input pin to the DAC. When activated, this falling edge sensitive pin clears the  
DAC buffers and the DAC latches to zero, mid, full or user programmed code depending on the clear mode  
register (see Table 6). The default setting for clear operation is clear to 0 V. The device exits clear mode on the  
32nd falling edge of the next write to the device. If the CLR pin receives a falling edge signal during a write  
sequence in normal operation, the clear mode is activated and changes the input and DAC registers  
immediately. Additionally, all DAC registers can also be cleared via SPI command 1011. Note that the clear  
mode bits determine the clear code for all the DACs upon clear operation.  
8.4.4.1 DAC Clear Mode Registers  
The DACx0004 implement four different clear modes. These modes are accessed by setting command bits  
D28 – D24 and clear mode register bits D01 and D00. The command bits must be set to 0101 (see Table 3).  
Based on the value of clear mode register (see Table 6), all of the DAC and the buffers are cleared to zero, mid,  
or full-scale code, when the CLR pin sees a falling edge or after a software clear command is issued.  
The user defined clear scale can be set by writing 16-/14-/12- data to 1001 to bits D28 – D24.  
Copyright © 2016–2017, Texas Instruments Incorporated  
23  
 
 
DAC80004, DAC70004, DAC60004  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
www.ti.com.cn  
Table 6. Clear Mode Bits  
CLEAR MODE BITS  
DESCRIPTION  
D01  
0
D00  
0
All DACs clear to zero scale (default)  
All DACs clear to mid scale  
0
1
1
0
All DACs clear to full scale  
8.4.5 LDAC Pin Functionality  
The DACx0004 devices offer both a software and hardware simultaneous update and control function. The DAC  
double-buffered architecture has been designed so that new data can be entered for each DAC without  
disturbing the analog outputs. Data updates can be performed either in synchronous or in asynchronous mode.  
In asynchronous mode, the LDAC pin is used as an active low signal for simultaneous DAC updates. Multiple  
single-channel writes can be done in order to set different channel buffers to desired values and then pulse the  
LDAC pin low to simultaneously update the DAC output registers. Data buffers of all channels must be loaded  
with desired data before an LDAC low pulse. After a LDAC low pulse, all DACs are simultaneously updated with  
the last contents of the corresponding data buffers. If the content of a data buffer is not changed, the  
corresponding DAC output remains unchanged after the LDAC pin is pulsed low.  
In synchronous mode, data are updated with the falling edge of the 32nd SCLK cycle, which follows a falling  
edge of SYNC. For such synchronous updates, the LDAC pin is not required, and it must be connected to GND  
permanently or asserted and held low before sending commands to the device.  
8.4.5.1 Software LDAC Mode Registers  
Alternatively, all DAC outputs can be updated simultaneously using the built-in software function of LDAC. The  
LDAC register offers additional flexibility and control by allowing the selection of which DAC channel(s) should be  
updated simultaneously when the LDAC pin is being brought low. The LDAC register is loaded with a 4-bit word  
(D03 and D00) using command bits D28 – D24 (see Table 3). The default value for each bit, and therefore for  
each DAC channel, is zero. If the LDAC register bit is set to 1, it overrides the LDAC pin (the LDAC pin is  
internally tied low for that particular DAC channel), and this DAC channel updates synchronously after the falling  
edge of the 32nd SCLK cycle. However, if the LDAC register bit is set to 0, the DAC channel is controlled by the  
LDAC pin.  
See Table 7 for more information.  
Table 7. LDAC Register  
LDAC REGISTER BITS (D03 – D00)  
DAC UPDATE  
0
Determined by LDAC pin (Default)  
DAC channel ignores LDAC pin, DAC updates on 32nd falling edge of SCLK, DAC channels  
see LDAC as 0  
1
8.4.6 Software Reset Mode  
The DACx0004 implements a software reset feature. The software reset function uses command bits D28 – D24  
(see Table 3). Table 1 shows the reset values for different registers.  
24  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
DAC80004, DAC70004, DAC60004  
www.ti.com.cn  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
8.4.7 Output Short Circuit Limit Register  
The DACx0004 output amplifier has a default short circuit limit of 40 mA. However, this limit can be reduced to  
30 mA by using command 1010 on bits D28 – D24 and selecting channel(s) (D03 – D00). Please note that  
DACx0004 has a dedicated bit per channel, this allows the user to set different short circuit limit for different DAC  
output channels.  
Table 8. Short Circuit Limit Register  
SHORT CIRCUIT LIMIT REGISTER BITS  
DAC SHORT CIRCUIT LIMIT  
(D03 – D00)  
0
1
DAC output short circuit limit = 40 mA (Default)  
DAC output short circuit limit = 30 mA  
8.4.8 Status Register  
The DACx0004 implements a read-only status register (see Table 3). This register can be read by using  
command 1101 on bits D28 – D24, followed by a NOP command.  
Logic ‘1’ on bit D04 indicates that the device is ready to be used. This feature is useful to check if the device is  
ready to accept commands after power up.  
Copyright © 2016–2017, Texas Instruments Incorporated  
25  
DAC80004, DAC70004, DAC60004  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.2 Typical Application - Digitally Controlled Asymmetric Bipolar Output  
RNEG  
RFB  
DACNEG  
VOUT  
DACx0004  
VOUT  
A
OPA277  
RPOS  
VOUT  
+
B
DACPOS  
RA  
Figure 58. Asymmetric Bipolar Output Block Diagram  
9.2.1 Design Requirements  
This design requires two channels of the DACx0004 to generate a bipolar output. The design is very flexible and  
allows for many different configurations. Typically, one channel is used to finely control the output, while the other  
is used to offset the output. The direction of the offset depends on which channel is used as an offset. DACPOS  
provides a positive offset and DACNEG has a negative offset.  
9.2.2 Detailed Design Procedure  
The output of each DAC can be modified via the digital interface and the gain of each output can be modified  
independently by changing the external resistors. In order for the gain of each offset to be independent,  
Equation 2 must be true.  
æ
ç
è
ö-1  
1
1
1
RA  
=
+
-
÷
RFB RNEG RPOS ø  
(2)  
The output voltage range, VOUT, is adjusted according to Equation 3. Keep in mind that Equation 3 is only true  
when Equation 2 is true.  
RFB  
RFB  
VOUT = DACPOS  
´
- DACNEG  
´
RPOS  
RNEG  
(3)  
=
Each DAC outputs a voltage from 0 to REFIN. As an example, if DACPOS gain is 1, DACNEG gain is 2 and RFB  
2 kΩ, then RPOS = 2 kΩ, RNEG = 1 kΩ and RA = 1 kΩ. With the correct digital implementation it gives the output  
an effective output range of ±15 V, with discrete 16-bit steps.  
26  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
DAC80004, DAC70004, DAC60004  
www.ti.com.cn  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
Typical Application - Digitally Controlled Asymmetric Bipolar Output (continued)  
9.2.3 Application Curve  
Figure 59 displays two different modes of operation. Mode 1 gains the output of DACNeg by a factor of 2 and  
maintains DACPOS at unity gain. Mode 2 reverses the gains of each stage to invert the system. These are just  
two examples of the types of outputs that can be achieved using this configuration.  
15  
Mode 1  
Mode 2  
10  
5
0
-5  
-10  
512  
11264  
22016  
32768  
43520  
54272  
65024  
Fine DAC Input Code  
D001  
Figure 59. Output Voltage vs Fine DAC Input Code  
Copyright © 2016–2017, Texas Instruments Incorporated  
27  
 
DAC80004, DAC70004, DAC60004  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
www.ti.com.cn  
10 Power Supply Recommendations  
The DACx0004 can operate within the specified supply voltage range of 2.7 V to 5.5 V. The power applied to  
VDD should be well-regulated and have low-noise. Switching power supplies and DC-DC converters often have  
high frequency glitches or spikes riding on the output voltage. In addition, digital components can create similar  
high frequency spikes. This noise can easily couple into the DAC output voltage through various paths between  
the power connections and analog output. A 1 µF to 10 µF capacitor and 0.1 µF bypass capacitor is  
recommended in order to further minimize noise from the power supply. The current consumption on the VDD  
pin, the short-circuit current limit, and the load current for the device are listed in the Electrical Characteristics.  
The power supply must meet the aforementioned current requirements.  
28  
Copyright © 2016–2017, Texas Instruments Incorporated  
DAC80004, DAC70004, DAC60004  
www.ti.com.cn  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
11 Layout  
11.1 Layout Guidelines  
A precision analog component requires careful layout, adequate bypassing, and clean, well-regulated power  
supplies. As a general rule it is important to keep digital traces as far away from analog traces when possible.  
The DACx0004 is often used in close proximity with digital logic, microcontrollers, microprocessors, and digital  
signal processors. The more digital logic present in the design and the higher the switching speed, the more  
difficult it is to keep digital noise from appearing at the output.  
Due to the single ground pin of the DACx0004, all return currents, including digital and analog return currents for  
the DAC, must flow through a single point. Ideally, GND must be connected directly to an analog ground plane.  
This plane must be separate from the ground connection for the digital components until they were connected at  
the power-entry point of the system.  
As with the GND connection, VDD should be connected to a 5 V power-supply plane or trace that is separate  
from the connection for digital logic until they are connected at the power-entry point. It is recommended to have  
an additional 1 μF to 10 μF capacitor and 0.1 μF bypass capacitor. In some situations, additional bypassing may  
be required, such as a 100 μF electrolytic capacitor or even a Pi filter made up of inductors and capacitors—all  
designed to essentially low-pass filter the 5 V supply, removing the high-frequency noise. In general it is always a  
good idea to maintain the digital signals away from analog signals.  
11.2 Layout Example  
Figure 60. Layout Diagram  
版权 © 2016–2017, Texas Instruments Incorporated  
29  
DAC80004, DAC70004, DAC60004  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 接收文档更新通知  
如需接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 相关链接  
下面的表格列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的  
快速链接。  
9. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
DAC60004  
DAC70004  
DAC80004  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
SPI, QSPI are trademarks of Motorola.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
30  
版权 © 2016–2017, Texas Instruments Incorporated  
DAC80004, DAC70004, DAC60004  
www.ti.com.cn  
ZHCSF34D APRIL 2016REVISED DECEMBER 2017  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
DAC80004IPW 器件标识附录:注意,DA80004 XDC84 均为 DAC80004IPW 可订购器件的有效器件标识  
版权 © 2016–2017, Texas Instruments Incorporated  
31  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC60004IDMDR  
DAC60004IDMDT  
DAC60004IPW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSON  
VSON  
DMD  
DMD  
PW  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
DA60004  
250  
90  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
DA60004  
DA60004  
DA60004  
DA70004  
DA70004  
DA70004  
DA70004  
DA80004  
DA80004  
DA80004  
DA80004  
TSSOP  
TSSOP  
VSON  
DAC60004IPWR  
DAC70004IDMDR  
DAC70004IDMDT  
DAC70004IPW  
PW  
2000 RoHS & Green  
3000 RoHS & Green  
DMD  
DMD  
PW  
VSON  
250  
90  
RoHS & Green  
RoHS & Green  
TSSOP  
TSSOP  
VSON  
DAC70004IPWR  
DAC80004IDMDR  
DAC80004IDMDT  
DAC80004IPW  
PW  
2000 RoHS & Green  
3000 RoHS & Green  
DMD  
DMD  
PW  
VSON  
250  
90  
RoHS & Green  
RoHS & Green  
TSSOP  
TSSOP  
DAC80004IPWR  
PW  
2000 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC60004IDMDR  
DAC60004IDMDT  
DAC60004IPWR  
DAC70004IDMDR  
DAC70004IDMDT  
DAC70004IPWR  
DAC80004IDMDR  
DAC80004IDMDT  
DAC80004IPWR  
VSON  
VSON  
TSSOP  
VSON  
VSON  
TSSOP  
VSON  
VSON  
TSSOP  
DMD  
DMD  
PW  
14  
14  
14  
14  
14  
14  
14  
14  
14  
3000  
250  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
6.9  
3.3  
3.3  
6.9  
3.3  
3.3  
6.9  
4.3  
4.3  
5.6  
4.3  
4.3  
5.6  
4.3  
4.3  
5.6  
1.1  
1.1  
1.6  
1.1  
1.1  
1.6  
1.1  
1.1  
1.6  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
2000  
3000  
250  
DMD  
DMD  
PW  
2000  
3000  
250  
DMD  
DMD  
PW  
2000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC60004IDMDR  
DAC60004IDMDT  
DAC60004IPWR  
DAC70004IDMDR  
DAC70004IDMDT  
DAC70004IPWR  
DAC80004IDMDR  
DAC80004IDMDT  
DAC80004IPWR  
VSON  
VSON  
TSSOP  
VSON  
VSON  
TSSOP  
VSON  
VSON  
TSSOP  
DMD  
DMD  
PW  
14  
14  
14  
14  
14  
14  
14  
14  
14  
3000  
250  
367.0  
213.0  
356.0  
367.0  
213.0  
356.0  
367.0  
213.0  
356.0  
367.0  
191.0  
356.0  
367.0  
191.0  
356.0  
367.0  
191.0  
356.0  
38.0  
35.0  
35.0  
38.0  
35.0  
35.0  
38.0  
35.0  
35.0  
2000  
3000  
250  
DMD  
DMD  
PW  
2000  
3000  
250  
DMD  
DMD  
PW  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DAC60004IPW  
DAC70004IPW  
DAC80004IPW  
PW  
PW  
PW  
TSSOP  
TSSOP  
TSSOP  
14  
14  
14  
90  
90  
90  
530  
530  
530  
10.2  
10.2  
10.2  
3600  
3600  
3600  
3.5  
3.5  
3.5  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DMD0014A  
VSON - 1 mm max height  
SCALE 3.500  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
0.55  
0.35  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
(0.2) TYP  
1.6  
1.4  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
SEE TERMINAL  
DETAIL  
7
8
3.5  
3.3  
2X  
3
1
14  
12X 0.5  
0.3  
14X  
0.2  
0.55  
0.35  
PIN 1 ID  
14X  
0.1  
C A  
C
B
(OPTIONAL)  
0.05  
4221688/A 09/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DMD0014A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.5)  
14X (0.65)  
14X (0.25)  
SYMM  
1
14  
12X (0.5)  
SYMM  
(3.4)  
(1.2)  
TYP  
8
7
(1) TYP  
(2.75)  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221688/A 09/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DMD0014A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.38)  
SYMM  
14X (0.65)  
14X (0.25)  
METAL  
TYP  
1
14  
2X (1.47)  
12X (0.5)  
SYMM  
(0.835)  
8
7
(2.75)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4221688/A 09/2014  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY