DAC60501ZDQFT [TI]

采用 WSON 封装、具有精密内部基准电压的真正 12 位、单通道、SPI/I2C、电压输出 DAC | DQF | 8 | -40 to 125;
DAC60501ZDQFT
型号: DAC60501ZDQFT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 WSON 封装、具有精密内部基准电压的真正 12 位、单通道、SPI/I2C、电压输出 DAC | DQF | 8 | -40 to 125

光电二极管 转换器
文件: 总53页 (文件大小:3152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
具有精密内部基准的 DACx0501 16/14/12 1LSB INL 电压输出 DAC  
1 特性  
3 说明  
1
16 位性能:1LSB INL DNL(最大值)  
低毛刺脉冲能量:4nV-s  
DAC80501DAC70501 DAC60501 (DACx0501)  
数模转换器 (DAC) 分别为 16 位、14 位和 12 位的高  
精度、低功耗、电压输出器件。DACx0501 按设计要  
求具有单调性,并可提供低于 1LSB 的线性度。这些  
器件包括一个 2.5V5ppm/˚C 内部基准,可提供  
1.25V2.5V 5V 的满量程输出电压范围。  
DACx0501 采用了上电复位电路,可确保 DAC 输出以  
零电平或中间电平上电,并在向器件写入有效代码之前  
一直保持该电平。这类器件消耗 1mA 的低电流,并具  
有断电功能,可在 5V 时将电流消耗降至 15µA(典型  
值)。  
宽电源电压范围:2.7V 5.5V  
缓冲输出范围:5V2.5V 1.25V  
极低功耗:1mA (5.5V)  
集成 5ppm/˚C(最大值)、2.5V 精密基准  
引脚可选串行接口:  
3 线制,兼容 SPI,高达 50MHz  
两线制,兼容 I2C  
上电复位:零电平或中间电平  
VDD = 5.5V 时的 VIH 1.62V  
温度范围:–40˚C +125˚C  
DACx0501 的数字接口可通过 SPI2C 引脚配置为 SPI  
I2C 模式。在 SPI 模式下,DACx0501 使用一个在  
高达 50MHz 的时钟频率下运行的通用 3 线制串行接  
口。在 I2C 模式下,DACx0501 支持标准 (100kbps)、  
快速 (400kbps) 和快速+ (1.0Mbps) 工作模式。  
封装:小型 8 引脚 WSON 10 引脚 VSSOP  
2 应用  
示波器 (DSO)  
半导体测试  
DACx0501 采用易于组装的  
数据采集 (DAQ)  
10 引脚 VSSOP 封装和小型 2mm × 2mm8 引脚  
WSON 封装。这类器件的额定工业温度范围均为  
–40°C +125°C。  
LCD 测试  
小型蜂窝基站  
模拟输出模块  
器件信息(1)  
过程分析(pH、气体、浓度、力和湿度)  
直流电源、交流电源、电子负载  
器件型号  
DAC80501  
DAC70501  
DAC60501  
封装  
WSON (8)  
VSSOP (10)  
封装尺寸(标称值)  
2.00mm × 2.00mm  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
功能方框图  
使用 DACx0501 进行失调电压修整  
VREFIO  
VDD  
Signal  
Input  
Internal  
Reference  
OPAMP  
Serial  
Interface  
OPAMP  
+
Signal  
Output  
DACx0501  
VREFIO  
+
SPI2C  
DAC  
Buffer  
DAC  
Register  
BUF  
VOUT  
DAC  
œ
SCLK or SCL  
œ
SDIN or SDA  
Bipolar  
Output  
or A0  
SYNC  
Power On Reset  
Power Down Logic  
Resistive Network  
AGND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS794  
 
 
 
 
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 20  
8.4 Device Functional Modes........................................ 23  
8.5 Programming........................................................... 23  
8.6 Register Map........................................................... 31  
Application and Implementation ........................ 35  
9.1 Application Information............................................ 35  
9.2 Typical Application .................................................. 35  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements : SPI Mode............................. 9  
7.7 Timing Requirements : I2C Standard Mode.............. 9  
7.8 Timing Requirements : I2C Fast Mode...................... 9  
7.9 Timing Requirements : I2C Fast-Mode Plus ........... 10  
7.10 Typical Characteristics.......................................... 11  
Detailed Description ............................................ 20  
8.1 Overview ................................................................. 20  
8.2 Functional Block Diagram ....................................... 20  
9
10 Power Supply Recommendations ..................... 38  
11 Layout................................................................... 38  
11.1 Layout Guidelines ................................................. 38  
11.2 Layout Example .................................................... 38  
12 器件和文档支持 ..................................................... 39  
12.1 文档支持 ............................................................... 39  
12.2 相关链接................................................................ 39  
12.3 接收文档更新通知 ................................................. 39  
12.4 支持资源................................................................ 39  
12.5 ....................................................................... 39  
12.6 静电放电警告......................................................... 39  
12.7 Glossary................................................................ 39  
13 机械、封装和可订购信息....................................... 39  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (November 2019) to Revision D  
Page  
已更改 Figure 29 to remove broken text from x axis (typo).................................................................................................. 15  
已更改 Figures 33, 34 and 35; updated for clarity................................................................................................................ 16  
Changes from Revision B (August 2019) to Revision C  
Page  
已更改 将采用 DGS (VSSOP) 封装的器件从预发布更改为生产数据(正在供货)” ........................................................... 1  
Added TUE parameter for DGS package to electrical characteristics table........................................................................... 5  
Added gain error parameter for DGS package to electrical characteristics table .................................................................. 5  
Added full-scale error parameter for DGS package to electrical characteristics table........................................................... 6  
Changes from Revision A (August 2019) to Revision B  
Page  
已更改 将 DAC70501 DAC60501 器件从预发布更改为生产数据(正在供货)” ............................................................ 1  
Changes from Original (November 2018) to Revision A  
Page  
已更改 将采用 DQF (WSON) 封装的 DAC80501 预告信息(预发布)更改为生产数据(正在供货)”........................... 1  
2
Copyright © 2018–2020, Texas Instruments Incorporated  
 
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
5 Device Comparison Table  
DEVICE  
RESOLUTION  
REFERENCE  
POWER-ON RESET  
Zero Scale  
Midscale  
DAC80501Z  
DAC80501M  
DAC70501Z  
DAC70501M  
DAC60501Z  
DAC60501M  
16-Bit  
16-Bit  
14-Bit  
14-Bit  
12-Bit  
12-Bit  
Internal (default) or External  
Internal (default) or External  
Internal (default) or External  
Internal (default) or External  
Internal (default) or External  
Internal (default) or External  
Zero Scale  
Midscale  
Zero Scale  
Midscale  
6 Pin Configuration and Functions  
DGS Package  
10-Pin VSSOP  
Top View  
DQF Package  
8-Pin WSON  
Top View  
VDD  
VOUT  
NC  
1
2
3
4
5
10  
9
VREFIO  
NC  
VDD  
VOUT  
AGND  
SPI2C  
1
2
3
4
8
7
6
5
VREFIO  
SDIN/SDA  
SYNC/A0  
SCLK/SCL  
8
SDIN/SDA  
SYNC/A0  
SCLK/SCL  
AGND  
SPI2C  
7
6
Not to scale  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
DGS  
DQF  
3
AGND  
NC  
4
3
9
6
Ground  
Ground reference point for all circuitry on the device.  
No connection. Leave floating.  
5
NC  
No connection. Leave floating.  
SCLK/SCL  
Input  
Serial interface clock. SPI or I2C mode.  
SPI mode: Serial interface data input. Data are clocked into the input shift  
register on each falling edge of the SCLK pin.  
SDIN/SDA  
8
7
Input/output I2C mode: Data are clocked into or out of the input register. This pin is a  
bidirectional, SDA drain data line that must be connected to the supply voltage  
with an external pullup resistor.  
Interface select pin.  
Digital interface in SPI mode if SPI2C = 0  
SPI2C  
5
7
4
6
Input  
Digital interface in I2C mode if SPI2C = 1  
SPI2C pin must be kept static after device powers up.  
SPI mode: Active low serial data enable. This input is the frame synchronization  
signal for the serial data. When the signal goes low, the serial interface input  
SYNC/A0  
Input  
shift register is enabled.  
I2C mode: Four-state address input 0.  
VDD  
1
2
1
2
Power  
Output  
Analog supply voltage (2.7 V to 5.5 V)  
Analog output voltage from the DAC  
VOUT  
When using the internal reference, this pin is the reference output voltage pin  
(default). Reference input to the device when operating with external reference.  
VREFIO  
10  
8
Input/output  
Copyright © 2018–2020, Texas Instruments Incorporated  
3
 
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–10  
MAX  
6
UNIT  
VDD to AGND  
Input voltage  
VREFIO to AGND  
VDD + 0.3  
VDD + 0.3  
VDD + 0.3  
10  
V
Digital input(s) to AGND  
VOUT to AGND  
Output voltage  
Input current  
V
Current into any pin  
Junction temperature (TJ)  
Storage temperature (Tstg  
mA  
–40  
150  
Temperature  
°C  
)
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-  
001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
MAX  
UNIT  
POWER SUPPLY  
VDD to AGND  
DIGITAL INPUTS  
VIH  
Positive supply voltage to ground  
5.5  
V
Input high voltage  
Input low voltage  
1.62  
V
V
VIL  
0.45  
REFERENCE INPUT  
2.7 V VDD < 3.3 V,  
reference divider disabled (REF-DIV bit = 0)  
VREFIO to AGND  
VREFIO to AGND  
VREFIO to AGND  
VREFIO to AGND  
1.2  
2.4  
1.2  
2.4  
0.5 × (VDD – 0.2)  
(VDD – 0.2)  
0.5 × VDD  
VDD  
V
V
V
V
2.7 V VDD < 3.3 V,  
reference divider enabled (REF-DIV bit = 1)  
3.3 V VDD 5.5 V,  
reference divider disabled (REF-DIV bit = 0)  
3.3 V VDD 5.5 V,  
reference divider enabled (REF-DIV bit = 1)  
TEMPERATURE  
TA  
Operating temperature  
–40  
125  
°C  
4
Copyright © 2018–2020, Texas Instruments Incorporated  
 
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
7.4 Thermal Information  
DACx0501  
THERMAL METRIC(1)  
DGS (VSSOP)  
10 PINS  
170.1  
DQF (WSON)  
8 PINS  
122.6  
58.3  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
60.5  
92.6  
50  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
7.8  
1.5  
ΨJB  
90.7  
49.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
all minimum and maximum values at TA = –40°C to +125°C and all typcal values at TA = 25°C, 2.7 V VDD 5.5 V, external  
or internal VREFIO = 1.25 V to 5.5 V , RLOAD = 2 kΩ to AGND, CLOAD = 200 pF to AGND, and digital inputs at VDD or AGND  
(unless otherwise noted)  
PARAMETER  
STATIC PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DAC80501  
DAC70501  
DAC60501  
16  
14  
12  
–1  
–1  
Resolution  
Bits  
INL  
Integral nonlinearity(1)  
Differential nonlinearity(1)  
1
1
LSB  
LSB  
DNL  
DAC80501,  
reference divider disabled (REF-DIV bit = 0)  
–0.08  
–0.06  
–0.07  
-0.02  
0.025  
0.025  
0.08  
0.06  
0.07  
DAC80501,  
reference divider enabled (REF-DIV bit = 1)  
TUE  
Total unadjusted error(1)  
%FSR  
DAC80501, DGS package  
reference divider enabled (REF-DIV bit = 1)  
DAC70501, DAC60501  
–0.1  
–1.5  
0.04  
0.5  
0.1  
1.5  
Zero code error(1)  
DAC loaded with zero scale code  
mV  
µV/°C  
mV  
Zero code error temperature  
coefficient(1)  
Offset error(1)  
±2  
0.5  
±2  
–1.5  
1.5  
Offset error temperature  
µV/°C  
(1)  
coefficient  
DAC80501,  
reference divider disabled (REF-DIV bit = 0)  
–0.08  
–0.06  
-0.02  
0.025  
0.08  
0.06  
DAC80501,  
reference divider enabled (REF-DIV bit = 1)  
Gain error(1)  
%FSR  
DAC80501, DGS package  
reference divider enabled (REF-DIV bit = 1)  
–0.07  
–0.1  
0.025  
0.04  
±1  
0.07  
0.1  
DAC70501, DAC60501  
Gain error temperature  
coefficient(1)  
ppm  
FSR/°C  
(1) End point fit between code 256 to code 64,511 for 16-bit, code 64 to code 16,127 for 14-bit, code 16 to code 4031 for 12 bit, DAC output  
unloaded, performance under resistive and capacitice load conditions are specified by design and characterization, DAC output range ≥  
2.5 V.  
Copyright © 2018–2020, Texas Instruments Incorporated  
5
 
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
all minimum and maximum values at TA = –40°C to +125°C and all typcal values at TA = 25°C, 2.7 V VDD 5.5 V, external  
or internal VREFIO = 1.25 V to 5.5 V , RLOAD = 2 kΩ to AGND, CLOAD = 200 pF to AGND, and digital inputs at VDD or AGND  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DAC80501, DAC loaded with full scale,  
reference divider disabled (REF-DIV bit = 0)  
–0.08  
-0.02  
0.08  
DAC80501, DAC loaded with full scale,  
reference divider enabled (REF-DIV bit = 1)  
–0.06  
0.025  
0.06  
Full-scale error(1)  
%FSR  
DAC80501, DGS package  
reference divider enabled (REF-DIV bit = 1)  
–0.07  
–0.1  
0.025  
0.04  
±2  
0.07  
0.1  
DAC70501, DAC60501  
Full-scale error temperature  
coefficient(1)  
ppm  
FSR/°C  
OUTPUT CHARACTERISTICS  
2 ×  
VREFIO  
BUFF-GAIN bit set to 1, REF-DIV bit set to 0  
BUFF-GAIN bit set to 1, REF-DIV bit set to 1  
BUFF-GAIN bit set to 0, REF-DIV bit set to 1  
0
0
0
VO  
Output voltage  
VREFIO  
V
0.5 ×  
VREFIO  
VDD = 2.7 V  
0.25  
0.5  
RLOAD  
Resistive load(2)  
kΩ  
VDD = 5.5 V  
RLOAD = infinite  
2
CLOAD  
Capacitive load(2)  
Load regulation  
nF  
µV/mA  
mA  
RLOAD = 2 kΩ  
10  
DAC at midscale, –10 mA IOUT 10 mA  
Full scale output shorted to AGND  
Zero output shorted to VDD  
80  
30  
30  
Short circuit current  
to VDD, DAC at full code, IOUT = 10 mA  
(sourcing)  
Output voltage headroom  
Output voltage footroom  
0.3  
0.3  
0.1  
V
V
to AGND, DAC at zero code, IOUT = 10 mA  
(sinking)  
DAC at midscale  
0.1  
10  
ZO  
DC small signal output impedance DAC at code 256  
DAC at code 65279  
Ω
10  
Power supply rejection ratio (DC) DAC at midscale; VDD = 5 V ± 10%  
0.15  
mV/V  
ppm of  
FSR  
Output voltage drift vs time  
TA = 35°C, VOUT = midscale, 1900 hr  
20  
VOLTAGE REFERENCE INPUT  
Reference input impedance  
(VREFIO)  
ZVREFIO  
100  
5
kΩ  
Reference input capacitance  
(VREFIO)  
CVREFIO  
pF  
(2) Not production tested.  
6
Copyright © 2018–2020, Texas Instruments Incorporated  
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
Electrical Characteristics (continued)  
all minimum and maximum values at TA = –40°C to +125°C and all typcal values at TA = 25°C, 2.7 V VDD 5.5 V, external  
or internal VREFIO = 1.25 V to 5.5 V , RLOAD = 2 kΩ to AGND, CLOAD = 200 pF to AGND, and digital inputs at VDD or AGND  
(unless otherwise noted)  
PARAMETER  
VOLTAGE REFERENCE OUTPUT  
Output (initial accuracy)(3)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA = 25°C  
DAC80501  
2.4975  
2.5025  
V
5
Output drift(3)  
ppm/  
DAC70501, DAC60501  
10  
Output impedance(3)  
Output noise(3)  
Output noise density(3)  
Load current(3)  
0.1  
14  
Ω
µVPP  
nV/Hz  
mA  
0.1 Hz to 10 Hz  
Measured at 10 kHz, reference load = 10 nF  
140  
±5  
Load regulation(3)  
Line regulation(3)  
Output voltage drift vs time(3)  
Sourcing and sinking  
90  
µV/mA  
µV/V  
µV  
20  
TA = 35°C, 1900 hr  
1st cycle  
20  
500  
25  
µV  
Thermal hysteresis(3)  
Additional cycle  
µV  
DYNAMIC PERFORMANCE  
¼ to ¾ scale and ¾ to ¼ scale settling to ±2  
LSB, VDD = 5.5 V, VREFIO = 2.5 V  
5
3
ts  
Output voltage settling time(4)  
µs  
10-mV settling to ±2 LSB, VDD = 5.5 V,  
VREFIO = 2.5 V  
Slew rate(4)  
VDD = 5.5 V, VREFIO = 2.5 V  
CLOAD = 50 pF  
2
V/µs  
mV  
Power on glitch magnitude  
200  
0.1 Hz to 10 Hz, DAC at midscale,  
VDD = 5.5 V, external VREFIO = 2.5 V  
14  
23  
µVPP  
Vn  
Output noise(4)  
100-kHz Bandwidth, DAC at midscale,  
VDD = 5.5 V, external VREFIO = 2.5 V  
µVrms  
Measured at 1 kHz, DAC at midscale,  
VDD = 5.5 V, external VREFIO = 2.5 V,  
gain = 2X (BUFF-GAIN bit = 1)  
78  
74  
55  
Measured at 10 kHz, DAC at midscale,  
VDD = 5.5 V, external VREFIO = 2.5 V,  
gain = 2X (BUFF-GAIN bit = 1)  
Vn  
Output noise density  
nV/Hz  
Measured at 1 kHz, DAC at full scale,  
VDD = 2.7 V, external VREFIO = 2.5 V,  
gain = 1X (BUFF-GAIN bit = 0)  
Measured at 10 kHz, DAC at full scale,  
VDD = 2.7 V, external VREFIO = 2.5 V,  
gain = 1X (BUFF-GAIN bit = 0)  
50  
70  
70  
85  
1-kHz sinusiod at DAC output, DAC updated  
at 500 kHz, include up to 7th harmonics, no  
filter on DAC output  
SFDR  
THD  
Spurious free dynamic range  
Total harmonic distortion  
dB  
dB  
dB  
1-kHz sinusiod at DAC output, DAC updated  
at 500 kHz, include up to 7th harmonics, no  
filter on DAC output  
200-mV 50-Hz to 60-Hz sine wave  
superimposed on power supply voltage, DAC  
at midscale. (ac analysis)  
Power supply rejection ratio (ac)  
Code change glitch impulse  
Code change glitch magnitude  
Midcode ±1 LSB (including feedthrough)  
4
nV-s  
mV  
Midcode ±1 LSB (including feedthrough)  
gain = 1X (BUFF-GAIN bit = 0)  
7.5  
(3) Characterized on 8-pin DQF package.  
(4) Output buffer in gain = 2X setting (BUFF-GAIN bit = 1).  
Copyright © 2018–2020, Texas Instruments Incorporated  
7
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
all minimum and maximum values at TA = –40°C to +125°C and all typcal values at TA = 25°C, 2.7 V VDD 5.5 V, external  
or internal VREFIO = 1.25 V to 5.5 V , RLOAD = 2 kΩ to AGND, CLOAD = 200 pF to AGND, and digital inputs at VDD or AGND  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Digital feedthrough  
At SCLK = 1 MHz, DAC output at midscale  
4
nV-s  
DIGITAL INPUTS  
Hysteresis voltage  
Input current  
0.4  
10  
V
–5  
5
µA  
pF  
Pin capacitance  
Per pin  
POWER REQUIREMENTS  
Normal mode, internal reference enabled,  
DAC at full scale, SPI static  
1.5  
1
2.0  
1.4  
mA  
IVDD  
Current flowing into VDD  
Normal mode, external reference = 2.5 V,  
DAC at full scale, SPI static  
DAC and Internal reference power-down  
0-V to 5-V range, midscale code  
15  
25  
µA  
µA  
IVREFIO  
Current flowing into VREFIO  
8
Copyright © 2018–2020, Texas Instruments Incorporated  
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
7.6 Timing Requirements : SPI Mode  
all input signals are specified with tR = tF = 1 ns/V and timed from a voltage level of (VIL + VIH) / 2. 2.7 V VDD 5.5 V,  
VIH = 1.62 V, VIL = 0.15 V, VREFIO = 1.25 V to 5.5 V, and TA = –40°C to +125°C (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency  
50  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
SCLK high time  
9
9
SCLK low time  
ns  
SDIN setup  
5
ns  
tSDIH  
SDIN hold  
10  
13  
10  
160  
ns  
tSYNCS  
tSYNCH  
SYNC falling edge to SCLK falling edge setup  
SCLK falling edge to SYNC rising edge  
ns  
ns  
tSYNCHIGH SYNC high time  
tSYNCIGNOR  
ns  
SCLK falling edge to SYNC ignore  
15  
1
ns  
µs  
E
tDACWAIT  
Sequential DAC update wait time  
7.7 Timing Requirements : I2C Standard Mode  
all input signals are specified with tR = tF = 1 ns/V and timed from a voltage level of (VIL + VIH) / 2. 2.7 V VDD 5.5 V,  
VIH = 1.62 V, VIL = 0.45 V, VREFIO = 1.25 V to 5.5 V, and TA = – 40°C to +125°C (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
MHz  
µs  
fSCLK  
tBUF  
SCL frequency  
0.1  
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
4.7  
4
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
µs  
4.7  
4
µs  
µs  
0
ns  
Data setup time  
250  
4700  
4000  
ns  
SCL clock low period  
ns  
tHIGH  
tR  
SCL clock high period  
ns  
Clock and data fall time  
Clock and data rise time  
Sequential DAC update wait time  
300  
ns  
tF  
1000  
ns  
tUPDATE  
1
µs  
7.8 Timing Requirements : I2C Fast Mode  
all input signals are specified with tR = tF = 1 ns/V and timed from a voltage level of (VIL + VIH) / 2. 2.7 V VDD 5.5 V,  
VIH = 1.62 V, VIL = 0.45 V, VREFIO = 1.25 V to 5.5 V, and TA = – 40°C to +125°C (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
MHz  
µs  
fSCLK  
tBUF  
SCL frequency  
0.4  
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
1.3  
0.6  
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
µs  
0.6  
µs  
0.6  
µs  
0
ns  
Data setup time  
100  
1300  
600  
ns  
SCL clock low period  
ns  
tHIGH  
tR  
SCL clock high period  
ns  
Clock and data fall time  
Clock and data rise time  
Sequential DAC update wait time  
300  
300  
ns  
tF  
ns  
tUPDATE  
1
µs  
Copyright © 2018–2020, Texas Instruments Incorporated  
9
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
7.9 Timing Requirements : I2C Fast-Mode Plus  
all input signals are specified with tR = tF = 1 ns/V and timed from a voltage level of (VIL + VIH) / 2. 2.7 V VDD 5.5 V,  
VIH = 1.62 V, VIL = 0.45 V, VREFIO = 1.25 V to 5.5 V, and TA = – 40°C to +125°C (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
MHz  
µs  
fSCLK  
tBUF  
SCL frequency  
1
Bus free time between stop and start conditions  
Hold time after repeated start  
Repeated start setup time  
Stop condition setup time  
Data hold time  
0.5  
0.26  
0.26  
0.26  
0
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tSUDAT  
tLOW  
µs  
µs  
µs  
ns  
Data setup time  
50  
ns  
SCL clock low period  
500  
260  
ns  
tHIGH  
tR  
SCL clock high period  
ns  
Clock and data fall time  
Clock and data rise time  
Sequential DAC update wait time  
120  
120  
ns  
tF  
ns  
tUPDATE  
1
µs  
tSYNCHIGH  
tSYNCH  
tSYNCS  
SYNC  
tSYNCIGNORE  
tSCLKLOW  
SCLK  
tSCLKHIGH  
SDIN  
Bit 23  
Bit 1  
Bit 0  
tSDIS  
tSDIH  
1. SPI Mode Timing  
Low byte ACK cycle  
tR  
tLOW  
tF  
SCL  
tSUSTA  
tHDSTA  
tHIGH  
tSUSTO  
tHDDAT  
tSUDAT  
tHDSTA  
SDA  
tBUF  
S
P
S
P
2. I2C Mode Timing  
10  
版权 © 2018–2020, Texas Instruments Incorporated  
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
7.10 Typical Characteristics  
at TA = 25°C, VDD = 5.5 V, Internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, and DAC outputs unloaded (unless  
otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
Unloaded  
5 kW || 200 pF  
Unloaded  
5 kW || 200 pF  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
D001  
D002  
3. Integral Linearity Error vs Digital Input Code  
4. Differential Linearity Error vs Digital Input Code  
0.08  
0.06  
0.04  
0.02  
0
1
Unloaded  
5 kW || 200 pF  
INL Max, Unloaded  
INL Min, Unloaded  
INL Max, 5 kW || 200 pF  
INL Min, 5 kW || 200 pF  
0.75  
0.5  
0.25  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.25  
-0.5  
-0.75  
-1  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D003  
D004  
5. Total Unadjusted Error vs Digital Input Code  
6. Integral Linearity Error vs Temperature  
1
0.75  
0.5  
0.08  
0.06  
0.04  
0.02  
0
DNL Max, Unloaded  
DNL Min, Unloaded  
DNL Max, 5 kW || 200 pF  
DNL Min, 5 kW || 200 pF  
Unloaded  
5 kW || 200 pF  
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.02  
-0.04  
-0.06  
-0.08  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D005  
D006  
7. Differential Linearity Error vs Temperature  
8. Total Unadjusted Error vs Temperature  
版权 © 2018–2020, Texas Instruments Incorporated  
11  
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 5.5 V, Internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, and DAC outputs unloaded (unless  
otherwise noted)  
1.5  
1.5  
1.25  
1
Unloaded  
5 kW || 200 pF  
1
0.5  
0
0.75  
0.5  
0.25  
0
-0.5  
-1  
-1.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D007  
D008  
9. Zero Code Error vs Temperature  
10. Offset Error vs Temperature  
0.08  
0.06  
0.04  
0.02  
0
0.08  
0.06  
0.04  
0.02  
0
Unloaded  
5 kW || 200 pF  
Unloaded  
5 kW || 200 pF  
-0.02  
-0.04  
-0.06  
-0.08  
-0.02  
-0.04  
-0.06  
-0.08  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
DD0a0t9a  
D010  
11. Full Scale Error vs Temperature  
12. Gain Error vs Temperature  
1
0.75  
0.5  
1
0.75  
0.5  
Max INL  
Min INL  
Max DNL  
Min DNL  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.25  
-0.5  
-0.75  
-1  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
VDD (V)  
VDD (V)  
D011  
D012  
REF-DIV = 0 and BUFF-GAIN = 0  
13. Integral Linearity Error vs Supply Voltage  
REF-DIV = 0 and BUFF-GAIN = 0  
14. Differential Linearity Error vs Supply Voltage  
12  
版权 © 2018–2020, Texas Instruments Incorporated  
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 5.5 V, Internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, and DAC outputs unloaded (unless  
otherwise noted)  
0.08  
0.06  
0.04  
0.02  
0
1.5  
REF-DIV = 1, BUFF-GAIN = 1  
REF-DIV = 0, BUFF-GAIN = 0  
REF-DIV = 1, BUFF-GAIN = 1  
REF-DIV = 0, BUFF-GAIN = 0  
1
0.5  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.5  
-1  
-1.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
VDD (V)  
VDD (V)  
D013  
D014  
15. Total Unadjusted Error vs Supply Voltage  
16. Zero Code Error vs Supply Voltage  
1.5  
1
0.08  
0.06  
0.04  
0.02  
0
REF-DIV = 1, BUFF-GAIN = 1  
REF-DIV = 0, BUFF-GAIN = 0  
REF-DIV = 1, BUFF-GAIN = 1  
REF-DIV = 0, BUFF-GAIN = 0  
0.5  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.5  
-1  
-1.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
VDD (V)  
VDD (V)  
D015  
D016  
17. Offset Error vs Supply Voltage  
18. Gain Error vs Supply Voltage  
0.08  
0.06  
0.04  
0.02  
0
1
0.75  
0.5  
REF-DIV = 1, BUFF-GAIN = 1  
REF-DIV = 0, BUFF-GAIN = 0  
Max, REFDIV = 0  
Max, REFDIV = 1  
Min, REFDIV = 0  
Min, REFDIV = 1  
0.25  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.25  
-0.5  
-0.75  
-1  
2.7  
3.1  
3.5  
3.9  
VDD (V)  
4.3  
4.7  
5.1  
5.5  
1.25  
2
2.75  
3.5  
VREFIN (V)  
4.25  
5
5.5  
D017  
D018  
19. Full Scale Error vs Supply Voltage  
20. Integral Linearity Error vs Reference Voltage  
版权 © 2018–2020, Texas Instruments Incorporated  
13  
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 5.5 V, Internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, and DAC outputs unloaded (unless  
otherwise noted)  
1
0.75  
0.5  
0.08  
0.06  
0.04  
0.02  
0
Max, REFDIV = 0  
Max, REFDIV = 1  
Min, REFDIV = 0  
Min, REFDIV = 1  
REFDIV = 0  
REFDIV = 1  
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-0.02  
-0.04  
-0.06  
-0.08  
1.25  
2
2.75  
3.5  
VREFIN (V)  
4.25  
5
5.5  
1.25  
2
2.75  
3.5  
VREFIN (V)  
4.25  
5
5.5  
D019  
D020  
21. Differential Linearity Error vs Reference Voltage  
22. Total Unadjusted Error vs Reference Voltage  
1.5  
1.5  
1
REF-DIV = 0, BUFF-GAIN = 0  
REF-DIV = 1, BUFF-GAIN = 1  
REF-DIV = 0, BUFF-GAIN = 0  
REF-DIV = 1, BUFF-GAIN = 1  
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-1.5  
1.25  
2
2.75  
3.5  
VREFIN (V)  
4.25  
5
5.5  
1.25  
2
2.75  
3.5  
VREFIN (V)  
4.25  
5
5.5  
D021  
D022  
23. Zero Code Error vs Reference Voltage  
24. Offset Error vs Reference Voltage  
0.08  
0.06  
0.04  
0.02  
0
0.08  
0.06  
0.04  
0.02  
0
REF-DIV = 0, BUFF-GAIN = 0  
REF-DIV = 1, BUFF-GAIN = 1  
REF-DIV = 0, BUFF-GAIN = 0  
REF-DIV = 1, BUFF-GAIN = 1  
-0.02  
-0.04  
-0.06  
-0.08  
-0.02  
-0.04  
-0.06  
-0.08  
1.25  
2
2.75  
3.5  
VREFIN (V)  
4.25  
5
5.5  
1.25  
2
2.75  
3.5  
VREFIN (V)  
4.25  
5
5.5  
D023  
D024  
25. Gain Error vs Reference Voltage  
26. Full Scale Error vs Reference Voltage  
14  
版权 © 2018–2020, Texas Instruments Incorporated  
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 5.5 V, Internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, and DAC outputs unloaded (unless  
otherwise noted)  
2
1.75  
1.5  
1.25  
1
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0.75  
0.5  
0.25  
0
Internal Reference, BUFF-GAIN = 0  
Internal Reference, BUFF-GAIN = 1  
External Reference, BUFF-GAIN = 0  
External Reference, BUFF-GAIN = 1  
Internal Reference, BUFF-GAIN = 0  
Internal Reference, BUFF-GAIN = 1  
External Reference, BUFF-GAIN = 0  
External Reference, BUFF-GAIN = 1  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D025  
D026  
DAC code at midscale  
27. Supply Current vs Digital Input Code  
28. Supply Current vs Temperature  
2
1.75  
1.5  
1.25  
1
12  
10  
8
Internal Reference, BUFF-GAIN = 0  
Internal Reference, BUFF-GAIN = 1  
External Reference, BUFF-GAIN = 0  
External Reference, BUFF-GAIN = 1  
6
0.75  
0.5  
0.25  
0
4
2
0
2.7  
3.1  
3.5  
3.9  
VDD (V)  
4.3  
4.7  
5.1  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D027  
D028  
DAC code at midscale  
29. Supply Current vs Supply Voltage  
REF-DIV = 0 and BUFF-GAIN = 0  
30. Power Down Current vs Temperature  
1
0.8  
0.6  
0.4  
0.2  
0
15  
12  
9
-0.2  
-0.4  
-0.6  
-0.8  
-1  
6
Sourcing 5.5V  
Sourcing 2.7V  
Sinking 5.5V  
Sinking 2.7V  
3
0
2.7  
3.1  
3.5  
3.9  
VDD (V)  
4.3  
4.7  
5.1  
5.5  
0
5
10  
15  
Load Current (mA)  
20  
25  
30  
D029  
D033  
External reference = 2.5 V, REF-DIV = 1 and BUFF-GAIN = 0  
External reference = 2.5 V  
31. Power Down Current vs Supply Voltage  
32. Headroom and Footroom vs Load Current  
版权 © 2018–2020, Texas Instruments Incorporated  
15  
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 5.5 V, Internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, and DAC outputs unloaded (unless  
otherwise noted)  
7
8
0xFFFF  
0xC000  
0x8000  
0x4000  
0x0  
0xFFFF  
0xC000  
0x8000  
0x4000  
0x0  
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
-1  
-1  
-50 -40 -30 -20 -10  
0
Loading Current (mA)  
10  
20  
30  
40  
50  
-50 -40 -30 -20 -10  
0
Loading Current (mA)  
10  
20  
30  
40  
50  
D031  
D032  
REF-DIV = 0 and BUFF-GAIN = 0  
REF-DIV = 0 and BUFF-GAIN = 1  
33. Source and Sink Capability  
34. Source and Sink Capability  
7
6
0xFFFF  
0xC000  
0x8000  
0x4000  
0x0  
5
4
3
3 nV-sec  
2
1
VOUT (2.5 mV/div)  
CS (5 V/div)  
0
-1  
Time (0.5 ms/div)  
-50 -40 -30 -20 -10  
0
Loading Current (mA)  
10  
20  
30  
40  
50  
D034  
D033  
DAC code transition from midscale – 1 to midscale LSB,  
REF-DIV = 0 and BUFF-GAIN = 0  
REF-DIV = 1 and BUFF-GAIN = 0  
36. Glitch Impulse, Rising Edge, 1 LSB Step  
35. Source and Sink Capability  
Small Singal VOUT (3 LSB/div)  
Large Singal VOUT (2 V/div)  
CS (5 V/div)  
2 nV-sec  
VOUT (2.5mV/div)  
CS (5 V/div)  
Time (0.5 ms/div)  
Time (2 msec/div)  
D035  
D036  
DAC code transition from midscale to midscale – 1 LSB,  
REF-DIV = 0 and BUFF-GAIN = 0  
REF-DIV = 0 and BUFF-GAIN = 0  
37. Glitch Impulse, Falling Edge, 1 LSB Step  
38. Full-Scale Settling Time, Rising Edge  
版权 © 2018–2020, Texas Instruments Incorporated  
16  
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 5.5 V, Internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, and DAC outputs unloaded (unless  
otherwise noted)  
Small Singal VOUT (3 LSB/div)  
Large Singal VOUT (2 V/div)  
CS (5 V/div)  
VDD (2 V/div)  
DAC Output (40 mV/div)  
Time (2 msec/div)  
Time (1 ms/div)  
D037  
D038  
REF-DIV = 0 and BUFF-GAIN = 0  
REF-DIV = 0 and BUFF-GAIN = 0  
39. Full-Scale Settling Time, Falling Edge  
40. Power-on Glitch  
0
-10  
VDD (2 V/div)  
DAC Output (40 mV/div)  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
Time (1 ms/div)  
1
10  
100 1000  
Frequency (Hz)  
10000  
100000  
D039  
D040  
REF-DIV = 0 and BUFF-GAIN = 0  
DAC code at midscale, VDD = 5.0 V + 0.2 VPP  
,
REF-DIV = 0 and BUFF-GAIN = 0  
41. Power-off Glitch  
42. DAC Output AC PSRR vs Frequency  
20  
0
300  
250  
200  
150  
100  
50  
DAC Code = 0x0  
DAC Code = 0x8000  
DAC Code = 0xFFFF  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
0
0
4000  
8000 12000  
Frequency (Hz)  
16000  
20000  
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
D041  
D042  
fo = 1 kHz, fs = 400 kHz, includes 7 harmonics,  
Gain = 1X (REF-DIV = 1 and BUFF-GAIN = 1),  
external reference = 2.5 V,  
measurement bandwidth = 20 kHz, external reference = 2.5 V,  
REF-DIV = 0 and BUFF-GAIN = 0  
REF-DIV = 0 and BUFF-GAIN = 0  
43. DAC Output THD+N vs Frequency  
44. DAC Output Noise Spectral Density  
版权 © 2018–2020, Texas Instruments Incorporated  
17  
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 5.5 V, Internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, and DAC outputs unloaded (unless  
otherwise noted)  
D043  
D044  
DAC code at midscale, external reference = 2.5 V,  
REF-DIV = 0 and BUFF-GAIN = 0  
DAC code at midscale, internal reference = 2.5 V,  
REF-DIV = 0 and BUFF-GAIN = 0  
45. DAC Output Noise 0.1 Hz to 10 Hz  
46. DAC Output Noise 0.1 Hz to 10 Hz  
2.505  
SCLK (5 V/div)  
2.5025  
2.5  
VOUT (1 mV/div)  
2.4975  
2.495  
Time (5 msec/div)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D045  
D046  
SCLK = 1 MHz, DAC code at midscale, external reference = 2.5 V,  
REF-DIV = 0 and BUFF-GAIN = 0  
30 units  
47. Clock Feedthrough  
48. Internal Reference Voltage vs Temperature  
2.505  
100  
75  
2.5025  
2.5  
50  
25  
0
-25  
-50  
-75  
-100  
2.4975  
2.495  
2.7  
3.1  
3.5  
3.9  
VDD (V)  
4.3  
4.7  
5.1  
5.5  
0
200  
400  
600  
Time (Hours)  
800  
1000  
1200  
D047  
D048  
49. Internal Reference Voltage vs Supply Voltage  
50. Internal Reference Voltage vs Time  
18  
版权 © 2018–2020, Texas Instruments Incorporated  
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VDD = 5.5 V, Internal reference = 2.5 V, REF-DIV = 0 and BUFF-GAIN = 1, and DAC outputs unloaded (unless  
otherwise noted)  
800  
700  
600  
500  
400  
300  
200  
100  
0
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
D050  
D049  
52. Internal Reference Noise, 0.1 Hz to 10 Hz  
51. Internal Reference Noise Density vs Frequency  
55  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
Presolder Heat Reflow  
Postsolder Heat Reflow  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
1
2
3
4
5
2.4975 2.4980 2.4985 2.4990 2.4995 2.5000 2.5005 2.5010  
VREFOUT (V)  
D051  
D053  
Temperature Drift (ppm/èC)  
53. Internal Reference Temperature Drift Histogram  
54. Internal Reference Initial Accuracy (Pre and Post  
Solder) Histogram  
28%  
26%  
24%  
22%  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
6%  
4%  
2%  
0
-3 -2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
3
D054  
VREFOUT Drift Delta (ppm/èC)  
55. Internal Reference Temperature Drift (Pre and Post Solder) Histogram  
版权 © 2018–2020, Texas Instruments Incorporated  
19  
 
 
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The DAC80501, DAC70501, DAC60501 (DACx0501) family of devices are buffered voltage output, 16-bit, 14-bit,  
or 12-bit digital-to-analog converters (DACs), respectively. These devices include a 2.5-V, 5-ppm/˚C internal  
reference, giving full-scale output voltage ranges of 1.25 V, 2.5 V, or 5 V. The DACx0501 devices incorporate a  
power-on-reset circuit that makes sure that the DAC output powers up at zero scale or midscale, and remains at  
that scale until a valid code is written to the device.  
The digital interface of the DACx0501 can be configured to SPI or I2C mode using the SPI2C pin. In SPI mode,  
the DACx0501 family uses a 3-wire serial interface that operates at clock rates up to 50 MHz. In I2C mode, the  
DACx0501 devices operate in standard mode (100 kbps), fast mode (400 kbps), and fast mode plus (1.0 Mbps).  
8.2 Functional Block Diagram  
VREFIO  
VDD  
Internal  
Reference  
SPI2C  
DAC  
Buffer  
DAC  
Register  
BUF  
VOUT  
DAC  
SCLK or SCL  
SDIN or SDA  
or A0  
SYNC  
Power On Reset  
Power Down Logic  
Resistive Network  
AGND  
8.3 Feature Description  
8.3.1 DAC Architecture  
The output channel in the DACx0501 family of devices consists of a rail-to-rail ladder architecture with an output  
buffer amplifier. The devices include an internal 2.5-V reference. 56 shows a block diagram of the DAC  
architecture.  
VREFIO  
2.5-V  
Reference  
REF Divider  
REF-DIV Bit  
(x1 or x0.5)  
Serial Interface  
DAC Data Register  
Gain  
(x1 or x2)  
BUFF-GAIN Bit  
VOUT  
DAC  
Buffer  
Register  
DAC  
Active  
Register  
R-2R  
BUF  
DAC  
Output  
AGND  
56. DACx0501 DAC Block Diagram  
20  
版权 © 2018–2020, Texas Instruments Incorporated  
 
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
Feature Description (接下页)  
8.3.1.1 DAC Transfer Function  
The input data writes to the individual DAC data registers in straight binary format. After a power-on or a reset  
event, all DAC registers are set to zero code (DACx0501Z devices) or midscale code (DACx0501M devices).  
The DAC transfer function is shown by 公式 1.  
DAC_DATA VREFIO  
ì
VOUT  
=
ì GAIN  
2N  
DIV  
where:  
N = resolution in bits = either 12 (DAC60501), 14 (DAC70501) or 16 (DAC80501).  
DAC_DATA = decimal equivalent of the binary code that is loaded to the DAC register (address 8h).  
DAC_DATA ranges from 0 to 2N – 1.  
VREFIO = DAC reference voltage at the VREFIO pin. Either VREFIO from the internal 2.5-V reference or  
VREFIO from an external reference.  
DIV = 1 (default) or 2, as set by the REF-DIV bit in the GAIN register (address 4h).  
GAIN = 1 or 2 (default), as set by the BUFF-GAIN bit in the GAIN register (address 4h).  
(1)  
8.3.1.2 DAC Register Structure  
Data written to the DAC data registers are initially stored in the DAC buffer registers. The update mode of the  
DAC output is determined by the status of the DAC_SYNC_EN bit (address 2h).  
In asynchronous mode (default, DAC_SYNC_EN = 0), a write to the DAC buffer register results in an immediate  
update of the DAC active register. In SPI mode, the DAC output (VOUT pin) updates on the rising edge of  
SYNC. In I2C mode, the DAC output (VOUT pin) updates on the falling edge of SCL on the last acknowledge bit.  
In synchronous mode (DAC_SYNC_EN = 1), writing to the DAC buffer register does not automatically update the  
DAC active register. Instead, the update occurs only after a software LDAC trigger event. A software LDAC  
trigger generates through the LDAC bit in the TRIGGER register (address 5h). When the host reads from a DAC  
buffer register, the value held in the DAC buffer register is returned (not the value held in the DAC active  
register).  
8.3.1.3 Output Amplifier  
The output buffer amplifier generates rail-to-rail voltages on the output, giving a maximum output range of 0 V to  
VDD. 公式 1 shows that the full-scale output range of the DAC output is determined by the voltage on the  
VREFIO pin, the reference divider setting (DIV) as set by the REF-DIV bit (address 4h), and the gain  
configuration for that channel set by the corresponding BUFF-GAIN bit (address 4h).  
8.3.2 Internal Reference  
The DAx0501 family of devices includes a 2.5-V precision band-gap reference that is enabled by default.  
Operation from an external reference is supported by disabling the internal reference in the REF_PWDWN bit  
(address 3h). The internal reference is externally available at the VREFIO pin, and sources up to 5 mA. For noise  
filtering, use a minimum 150-nF capacitor between the reference output and AGND.  
The reference voltage to the device, either from the internal reference or an external one, can be divided by a  
factor of two by setting the REF-DIV bit (address 4h) to 1. The REF-DIV bit provides additional flexibility in setting  
the full-scale output range of the DAC output. Make sure to configure REF-DIV so that there is sufficient  
headroom from VDD to the DAC operating reference voltage, VREFIO (see 公式 1). See the Recommended  
Operating Conditions for more information.  
Improper configuration of the reference divider triggers a reference alarm condition. In this case, the reference  
buffer is shut down, and all the DAC outputs go to 0 V. The DAC data registers are unaffected by the alarm  
condition, thus enabling the DAC output to return to normal operation after the reference divider is configured  
correctly.  
版权 © 2018–2020, Texas Instruments Incorporated  
21  
 
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
Feature Description (接下页)  
8.3.2.1 Solder Heat Reflow  
A known behavior of IC reference voltage circuits is the shift induced by the soldering process. 54 and 55  
show the effect of solder heat reflow for the DACx0501 internal reference.  
8.3.3 Power-On-Reset (POR)  
The DACx0501 family of devices includes a power-on reset (POR) function that controls the output voltage at  
power up. After the VDD supply has been established, a POR event is issued. The POR causes all registers to  
initialize to default values, and communication with the device is valid only after a 250-µs POR delay. The default  
value for the DAC data registers is zero-code for the DACx0501Z devices and midscale code for the  
DACx0501M devices. The DAC output remains at the power-up voltage until a valid command is written to a  
channel.  
When the device powers up, a POR circuit sets the device to the default mode. The POR circuit requires specific  
VDD levels, as indicated in 57, to make sure that the internal capacitors discharge and reset the device at  
power up. To make sure that a POR occurs, VDD must be less than 0.7 V for at least 1 ms. When VDD drops to  
less than 2.2 V but remains greater than 0.7 V (shown as the undefined region), the device may or may not reset  
under all specified temperature and power-supply conditions. In this case, initiate a POR. When VDD remains  
greater than 2.2 V, a POR does not occur.  
VDD (V)  
5.50  
Specified supply  
voltage range  
No power-on reset  
2.70  
2.20  
Undefined  
0.70  
Power-on reset  
0.00  
57. Threshold Levels for VDD POR Circuit  
8.3.4 Software Reset  
A device software reset event is initiated by writing the reserved code 0x1010 to the SOFT-RESET bit in the  
TRIGGER register (address 5h). A software reset initiates a POR event.  
22  
版权 © 2018–2020, Texas Instruments Incorporated  
 
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
8.4 Device Functional Modes  
The DACx0501 has two modes of operation: normal and power-down.  
8.4.1 Power-Down Mode  
The DACx0501 output amplifiers and internal reference can be independently powered down through the  
CONFIG register (3h). At power up, the DAC output and the internal reference are active by default. In power-  
down mode, the DAC output (VOUT pin) is internally connected to AGND through a 1-kΩ resistor.  
8.5 Programming  
8.5.1 Serial Interface  
The DACx0501 family of devices is controlled through either a 3-wire SPI or a 2-wire I2C interface. The type of  
interface is determined at device power up based on the logic level of the SPI2C pin. A logic 0 on the SPI2C pin  
puts the DACx0501 in SPI mode; whereas, logic 1 on SPI2C puts the DACx0501 in I2C mode. The SPI2C pin  
must be kept static after the device powers up.  
8.5.1.1 SPI Mode  
The DACx0501 digital interface is programmed to work in SPI mode when the logic level of the SPI2C pin is 0 at  
power up. In SPI mode, the DACx0501 have a 3-wire serial interface: SYNC, SCLK, and SDIN, as shown in the  
Pin Configuration and Functions section. The serial interface is compatible with SPI, QSPI, and Microwire  
interface standards, and most digital signal processors (DSPs). The serial interface operates at up to 50 MHz.  
The input shift register is 24 bits wide.  
The serial clock SCLK is a continuous or a gated clock. The first falling edge of SYNC starts the operation cycle.  
When SYNC is high, the SCLK and SDIN signals are blocked. The device internal registers are updated from the  
shift register on the rising edge of SYNC.  
版权 © 2018–2020, Texas Instruments Incorporated  
23  
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
Programming (接下页)  
8.5.1.1.1 SYNC Interrupt  
For SPI mode operation, the SYNC line stays low for at least 24 falling edges of SCLK and the addressed DAC  
register updates on the SYNC rising edge. However, if the SYNC line is brought high before the 24th SCLK  
falling edge, this event acts as an interrupt to the write sequence. The shift register resets and the write  
sequence is discarded. Neither an update of the data buffer or DAC register contents, nor a change in the  
operating mode occurs, as shown in 58.  
SCLK  
1
2
24  
SYNC  
SDIN  
DB23  
DB0  
Invalid/Interrupted write sequence  
SCLK  
1
2
24  
SYNC  
SDIN  
DB23  
DB0  
Valid write sequence  
58. SYNC Interrupt  
24  
版权 © 2018–2020, Texas Instruments Incorporated  
 
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
Programming (接下页)  
8.5.1.2 I2C Mode  
The DACx0501 digital interface is programmed to work in I2C mode when the logic level of the SPI2C pin is 1 at  
power up. In I2C mode, the DACx0501 have a 2-wire serial interface: SCL, SDA, and one address pin, A0, as  
shown in the Pin Configuration and Functions section. The I2C bus consists of a data line (SDA) and a clock line  
(SCL) with pull-up structures. When the bus is idle, both the SDA and SCL lines are pulled high. All the I2C-  
compatible devices connect to the I2C bus through the open-drain I/O pins, SDA and SCL.  
The I2C specification states that the device that controls communication is called a master, and the devices that  
are controlled by the master are called slaves. The master device generates the SCL signal. The master device  
also generates special timing conditions (start condition, repeated start condition, and stop condition) on the bus  
to indicate the start or stop of a data transfer. Device addressing is completed by the master. The master device  
on an I2C bus is typically a microcontroller or DSP. The DACx0501 operate as a slave device on the I2C bus. A  
slave device acknowledges master commands, and upon master control, receives or transmits data.  
Typically, the DACx0501 operate as a slave receiver. A master device writes to the DACx0501, a slave receiver.  
However, if a master device requires the DACx0501 internal register data, the DACx0501 operate as a slave  
transmitter. In this case, the master device reads from the DACx0501 According to I2C terminology, read and  
write refer to the master device.  
The DACx0501 are slave devices that support the following data transfer modes:  
1. Standard mode (100 kbps)  
2. Fast mode (400 kbps)  
3. Fast mode plus (1.0 Mbps)  
The data transfer protocol for standard and fast modes is exactly the same; therefore, these modes are referred  
to as F/S-mode in this document. The fast-mode plus (FM+) protocol is supported in terms of data transfer  
speed, but not output current. The low-level output current would be 3 mA, similar to the case of standard and  
fast modes. The DACx0501 support 7-bit addressing. The 10-bit addressing mode is not supported. These  
devices support the general call reset function. Send the following sequence to initiate a software reset within the  
device: Start/Repeated Start, 0x00, 0x06, Stop. The reset is asserted within the device on the falling edge of the  
ACK bit, following the second byte.  
Other than specific timing signals, the I2C interface works with serial bytes. At the end of each byte, a ninth clock  
cycle generates and detects an acknowledge signal. Acknowledge is when the SDA line is pulled low during the  
high period of the ninth clock cycle. A not-acknowledge is when the SDA line is left high during the high period of  
the ninth clock cycle as shown in 59.  
Data output  
by Transmitter  
Not acknowledge  
Data output  
by Receiver  
Acknowledge  
2
9
1
8
SCL from  
Master  
S
Clock pulse for  
acknowledgement  
Start  
condition  
59. Acknowledge and Not Acknowledge on the I2C Bus  
版权 © 2018–2020, Texas Instruments Incorporated  
25  
 
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
Programming (接下页)  
8.5.1.2.1 F/S Mode Protocol  
1. The master initiates data transfer by generating a start condition. The start condition is when a high to-low  
transition occurs on the SDA line while SCL is high, as shown in 60. All I2C-compatible devices recognize  
a start condition.  
SDA  
SCL  
S
P
Start  
condition  
Stop  
condition  
60. Start and Stop Conditions  
SDA  
SCL  
Change of data  
allowed  
Data line stable  
Data valid  
61. Bit Transfer on the I2C Bus  
2. The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit  
(R/W) on the SDA line. During all transmissions, the master makes sure that data are valid. A valid data  
condition requires the SDA line to be stable during the entire high period of the clock pulse, as shown in 图  
61. All devices recognize the address sent by the master and compare it to their internal fixed addresses.  
Only the slave device with a matching address generates an acknowledge by pulling the SDA line low during  
the entire high period of the ninth SCL cycle, as shown in 59 by pulling the SDA line low during the entire  
high period of the ninth SCL cycle. Upon detecting this acknowledge, the master knows the communication  
link with a slave has been established.  
3. The master generates further SCL cycles to transmit (R/W bit 0) or receive (R/W bit 1) data to the slave. In  
either case, the receiver must acknowledge the data sent by the transmitter. Therefore, the acknowledge  
signal can be generated by the master or by the slave, depending on which one is the receiver. The 9-bit  
valid data sequences consists of 8-data bits and 1 acknowledge-bit, and can continue as long as necessary.  
4. To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from low  
to high while the SCL line is high (see 60). This action releases the bus and stops the communication link  
with the addressed slave. All I2C-compatible devices recognize the stop condition. Upon receipt of a stop  
condition, the bus is released, and all slave devices then wait for a start condition followed by a matching  
address.  
26  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
Programming (接下页)  
8.5.1.2.2 DACx0501 I2C Update Sequence  
For a single update, the DACx0501 requires a start condition, a valid I2C address byte, a command byte, and two  
data bytes: the most significant data byte (MSDB), and least significant data byte (LSDB), as listed in 1.  
1. Update Sequence  
MSB  
....  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
MSB  
...  
LSB  
ACK  
Address (A) byte  
DB [32:24]  
Command byte  
DB [23:16]  
MSDB  
LSDB  
DB [7:0]  
DB [15:8]  
After each byte is received, the DACx0501 acknowledge the byte by pulling the SDA line low during the high  
period of a single clock pulse, as shown in 62. These four bytes and acknowledge cycles make up the 36  
clock cycles required for a single update to occur. A valid I2C address byte selects the DACx0501 devices.  
Recognize  
START or  
REPEATED  
Recognize  
STOP or  
REPEATED  
Generate ACKNOWLEDGE  
START  
START  
signal  
condition  
condition  
P
SDA  
Sr  
MSB  
Acknowledgement  
signal from Slave  
Address  
R/W  
1
SCL  
1
7
8
9
2 - 8  
9
Sr  
S
or  
Sr  
or  
P
ACK  
ACK  
START or  
REPEATED  
START or  
STOP  
REPEATED  
START  
condition  
Clock line held low while  
interrupts are serviced  
condition  
62. I2C Bus Protocol  
The command byte sets the operational mode of the selected DACx0501 device. When the operational mode is  
selected by this byte, the DACx0501 must receive two data bytes, the most significant data byte (MSDB) and  
least significant data byte (LSDB), for a data update to occur. The DACx0501 devices perform an update on the  
falling edge of the acknowledge signal that follows the LSDB.  
When using fast mode (clock = 400 kHz), the maximum DAC update rate is limited to 11.11 kSPS. Using the  
fast-mode plus (clock = 1 MHz), the maximum DAC update rate is limited to 27.77 kSPS. When a stop condition  
is received, the DACx0501 release the I2C bus and await a new start condition.  
版权 © 2018–2020, Texas Instruments Incorporated  
27  
 
 
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
8.5.1.2.2.1 DACx0501 Address Byte  
The address byte, as shown in 2, is the first byte received following the START condition from the master  
device. The first four bits (MSBs) of the address are factory preset to 1001. The next three bits of the address  
are controlled by the A0 pin. The A0 pin input can be connected to VDD, AGND, SCL, or SDA. The A0 pin is  
sampled during the first byte of each data frame to determine the address. The device latches the value of the  
address pin, and consequently, responds to that particular address according to 3.  
2. DACx0501 Address Byte  
MSB  
AD3  
1
LSB  
R/W  
ADDRESS TYPE  
AD6  
AD5  
AD4  
AD2  
AD1  
AD0  
General address  
1
0
0
See 3 (slave address column)  
0 or 1  
3. Address Format  
SLAVE ADDRESS  
A0 PIN  
1001 000  
1001 001  
1001 010  
1001 011  
AGND  
VDD  
SDA  
SCL  
8.5.1.2.2.2 DACx0501 Command Byte  
The DACx0501 command byte (shown in 4) controls which command is executed and which register is being  
accessed when writing to or reading from the DACx0501 series.  
4. DACx0501 Command Byte  
B23  
0
B22  
0
B21  
0
B20  
0
B19  
0
B18  
0
B17  
0
B16  
0
REGISTER  
NOOP  
0
0
0
0
0
0
0
1
DEVID  
0
0
0
0
0
0
1
0
SYNC  
0
0
0
0
0
0
1
1
CONFIG  
GAIN  
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
1
TRIGGER  
STATUS  
DAC DATA  
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
28  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
 
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
8.5.1.2.2.3 DACx0501 Data Byte (MSDB and LSDB)  
The MSDB and LSDB contain the data that are passed to the register or registers specified by the command byte, as shown in 5. The DACx0501  
update at the falling edge of the acknowledge signal that follows the LSDB[0] bit.  
5. DACx0501 Data Byte  
DATA BITS  
COMMAND BITS  
REGISTER  
NOOP  
LSDB  
B3  
B19 B18 B17 B16 B15 B14 B13 B12 B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B2  
B1  
B0  
NOOP  
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
0
0
0
1
1
0
0
1
0
0
1
0
1
0
1
1
0
NOOP  
DEVID  
0
RESOLUTION  
0
0
1
0
RSTSEL  
0
0
1
0
1
0
1
SYNC  
RESERVED  
REF-PWDWN  
REF-DIV  
DAC_SYNC_EN  
DAC_PWDWN  
BUF-GAIN  
CONFIG  
GAIN  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
LDAC  
TRIGGER  
STATUS  
DAC DATA  
SOFT-RESET [3:0]  
REF-ALARM  
RESERVED  
DAC-DATA [15:0] for 16-bit, DAC-DATA [13:0] for 14-bit, DAC-DATA [11:0] for 12-bit, left aligned  
版权 © 2018–2020, Texas Instruments Incorporated  
29  
 
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
8.5.1.2.3 DACx0501 I2C Read Sequence  
To read any register, use the following command sequence:  
1. Send a start or repeated start command with a slave address and the R/W bit set to 0 for writing. The device acknowledges this event.  
2. Send a command byte for the register to be read. The device acknowledges this event again.  
3. Send a repeated start with the slave address and the R/W bit set to 1 for reading. The device acknowledges this event.  
4. The device writes the MSDB byte of the addressed register. The master must acknowledge this byte.  
5. Finally, the device writes out the LSDB of the register.  
An alternative reading method allows for reading back the value of the last register written. The sequence is a start or repeated start with the slave  
address and the R/W bit set to 1, and the two bytes of the last register are read out. All the registers in DACx0501 family can be read out with the  
exception of SOFT-RESET register. 5 shows the read command set.  
6. Read Sequence  
R/W  
(0)  
R/W  
(1)  
S
MSB  
ACK  
MSB  
LSB  
ACK  
Sr  
MSB  
ACK  
MSB  
LSB  
ACK  
MSB  
LSB  
NACK  
ADDRESS  
BYTE  
COMMAND  
BYTE  
ADDRESS  
BYTE  
Sr  
MSDB  
LSDB  
From Master  
Slave  
From Master  
Slave  
From Master  
Slave  
From Slave  
Master  
From Slave  
Master  
30  
版权 © 2018–2020, Texas Instruments Incorporated  
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
8.6 Register Map  
Table 7. Register Map  
OFFSET  
0h  
REGISTER NAME  
NOOP  
REGISTER DESCRIPTION  
No operation  
SECTION  
NOOP Register  
DEVID Register  
SYNC Register  
CONFIG Register  
GAIN Register  
1h  
DEVID  
Device identification  
Synchronization  
Configuration  
2h  
SYNC  
3h  
CONFIG  
GAIN  
4h  
Gain  
5h  
TRIGGER  
STATUS  
DAC  
Trigger  
TRIGGER Register  
STATUS Register  
DAC Register  
7h  
Status  
8h  
Digital-to-analog converter  
8.6.1 NOOP Register (offset = 0h) [reset = 0000h]  
Figure 63. NOOP Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NOOP  
W-0h  
Table 8. NOOP Register Field Descriptions  
Bit  
15-0  
Field  
No operation  
Type  
Reset  
Description  
W
0h  
No Operation command  
8.6.2 DEVID Register (offset = 1h)  
Figure 64. DEVID Register  
15  
0
14  
13  
12  
11  
0
10  
0
9
1
8
0
7
6
0
5
0
4
1
3
0
2
1
1
0
1
RESOLUTION  
RSTSEL  
0
R-0h R-0000h (DAC80501) R-0h  
or 0001h (DAC70501)  
R-0h  
R-1h  
R-0h  
R-0h  
(DACx0501Z)  
or 1h  
R-0h  
R-0h  
R-1h  
R-0h  
R-1h  
R-0h  
R-1h  
or 0020h (DAC60501)  
(DACx0501M)  
Table 9. DEVID Register Field Descriptions  
Bit  
15  
Field  
Type  
R
Reset  
Description  
RESERVED  
RESOLUTION  
0h  
RESERVED  
14-12  
R
0000h  
DAC Resolution:  
(DAC80501)  
0000h (DAC80501 16-bit)  
0001h  
0001h (DAC70501 14-bit)  
(DAC70501)  
0020h  
0020h (DAC60501 12-bit)  
(DAC60501)  
11-8  
7
RESERVED  
RSTSEL  
R
R
4h  
0h  
RESERVED  
DAC Power on Reset:  
(DAC80501Z) 0h (DAC80501Z reset to zero scale)  
1h  
1h (DAC80501M reset to midscale)  
(DAC70501M)  
6-0  
RESERVED  
015h  
RESERVED  
Copyright © 2018–2020, Texas Instruments Incorporated  
31  
 
 
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
8.6.3 SYNC Register (offset = 2h) [reset = 0000h]  
Figure 65. SYNC Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
DAC_SYNC_EN  
R/W-0h  
Table 10. SYNC Register Field Descriptions  
Bit  
Field  
RESERVED  
DAC_SYNC_EN  
Type  
RW  
Reset  
0h  
Description  
15-1  
0
RESERVED  
RW  
0h  
When set to 1, the DAC output is set to update in response to  
an LDAC trigger (synchronous mode).  
When cleared to 0 ,the DAC output is set to update immediately  
(asynchronous mode), default.  
8.6.4 CONFIG Register (offset = 3h) [reset = 0000h]  
Figure 66. CONFIG Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
REF_PWDWN  
R/W-0h  
RESERVED  
R/W-0h  
DAC_PWDWN  
R/W-0h  
Table 11. CONFIG Register Field Descriptions  
Bit  
Field  
Type  
RW  
RW  
RW  
RW  
Reset  
0h  
Description  
15-9  
8
RESERVED  
RESERVED  
REF_PWDWN  
RESERVED  
0h  
When set to 1, this bit disables the device internal reference.  
RESERVED  
7-1  
0
0h  
DAC_PWDWN  
0h  
When set to 1, the DAC in power-down mode and the DAC  
output is connected to GND through a 1-kinternal resistor.  
32  
Copyright © 2018–2020, Texas Instruments Incorporated  
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
8.6.5 GAIN Register (offset = 4h) [reset = 0001h]  
Figure 67. GAIN Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
REF-DIV  
R/W-0h  
RESERVED  
R/W-0h  
BUFF-GAIN  
R/W-1h  
Table 12. GAIN Register Field Descriptions  
Bit  
Field  
Type  
RW  
Reset  
0h  
Description  
15-9  
8
RESERVED  
REF-DIV  
RESERVED  
RW  
0h  
The reference voltage to the device (either from the internal or  
external reference) can be divided by a factor of two by setting  
the REF-DIV bit to 1. Make sure to configure REF-DIV so that  
there is sufficient headroom from VDD to the DAC operating  
reference voltage. Improper configuration of the reference  
divider triggers a reference alarm condition. In the case of an  
alarm condition, the reference buffer is shut down, and all the  
DAC outputs go to 0 V. The DAC data registers are unaffected  
by the alarm condition, and thus enable the DAC output to return  
to normal operation after the reference divider is configured  
correctly.  
When REF-DIV set to 1, the reference voltage is internally  
divided by a factor of 2.  
When REF-DIV is cleared to 0, the reference voltage is  
unaffected.  
7-1  
0
RESERVED  
BUFF-GAIN  
RW  
RW  
0h  
1h  
RESERVED  
When set to 1, the buffer amplifier for corresponding DAC has a  
gain of 2.  
When cleared to 0, the buffer amplifier for corresponding DAC  
has a gain of 1.  
8.6.6 TRIGGER Register (offset = 5h) [reset = 0000h]  
Figure 68. TRIGGER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
LDAC  
W-0h  
SOFT-RESET [3:0]  
W-0h  
Table 13. TRIGGER Register Field Descriptions  
Bit  
Field  
Type  
RW  
W
Reset  
0h  
Description  
15-5  
4
RESERVED  
LDAC  
RESERVED  
0h  
Set this bit to 1 to synchronously load the DAC in synchronous  
mode, This bit is self resetting.  
3-0  
SOFT-RESET [3:0]  
W
0h  
When set to the reserved code of 1010, this bit resets the device  
to the default state. These bits are self resetting.  
Copyright © 2018–2020, Texas Instruments Incorporated  
33  
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
8.6.7 STATUS Register (offset = 7h) [reset = 0000h]  
Figure 69. STATUS Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
REF-ALARM  
R-0h  
Table 14. STATUS Register Field Descriptions  
Bit  
Field  
Type  
RW  
R
Reset  
0h  
Description  
15-1  
0
RESERVED  
REF-ALARM  
RESERVED  
0
REF-ALARM bit. Reads 1 when the difference between the  
reference and supply pins is below a minimum analog threshold.  
Reads 0 otherwise. When 1, the reference buffer is shut down,  
and the DAC outputs are all zero volts. The DAC codes are  
unaffected, and the DAC output returns to normal when the  
difference is above the analog threshold.  
8.6.8 DAC Register (offset = 8h) [reset = 0000h for DACx0501Z or reset = 8000h for DACx0501M]  
Figure 70. DAC Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DAC-DATA [15:0]  
R/W-0000h (DACx0501Z) or 8000h (DACx0501M)  
Table 15. DAC Register Field Descriptions  
Bit  
15-0  
Field  
DAC-DATA [15:0]  
Type  
Reset  
Description  
RW  
0000h for  
DACx0501Z  
DAC data register.  
Data are MSB aligned in straight binary format, and  
use the following format:  
8000h for  
DACx0501M  
DAC80501: DATA[15:0]  
DAC70501: DATA[13:0], 0, 0  
DAC60501: DATA[11:0], 0, 0, 0, 0  
34  
版权 © 2018–2020, Texas Instruments Incorporated  
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
Applications that incorporate analog circuits often require trimming, control, biasing, or a combination of all three.  
These functions require high-accuracy, simple-to-implement compact solutions. The DACx0501 family of  
precision DACs are an excellent choice for such applications. The DACx0501 tiny package, high resolution, and  
simple interface makes these devices suitable for applications such as offset and gain control, VCO tuning,  
programmable reference, and more. With the aforementioned features, this family of DACs caters to a wide  
range of end equipment, such as battery testers, communications equipment, factory automation and control, test  
and measurement, and more.  
9.2 Typical Application  
End equipment, such as oscilloscopes, battery test equipment, and other lab instruments require precision  
calibration and control signals to tune the system accuracy. Precision DACs are typically used to generate these  
signals. The complexity and accuracy of these systems are driving the need for multiple precision signals to be  
generated in the system. The common approach for generating these signal is by using a multichannel DAC. An  
alternative way to generate these signal is to use a single channel DAC with sample and hold circuit to produce  
multichannel output. Using this approach, the users can generate customized number of channel instead of using  
a fixed number of channels available in multichannel DACs.  
RL  
œ
SW  
RS  
VOUT0  
DAC80501  
+
CL  
CH  
RL  
œ
SPI  
SW  
RS  
VOUT1  
+
CL  
CH  
MCU  
RL  
œ
SW  
RS  
VOUTN  
SYNC  
+
CL  
CH  
SEQUENCER  
DEMUX  
2-N  
N
71. Multichannel Sample-and-Hold Circuit  
版权 © 2018–2020, Texas Instruments Incorporated  
35  
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
Typical Application (接下页)  
9.2.1 Design Requirements  
The design requirements for this circuit are as follows:  
Output range: 0-V to 5-V  
Channels: 10  
Output offset error: ±3-mV  
9.2.2 Detailed Design Procedure  
A basic sample-and-hold circuit consists of a voltage source (DAC in this case), a switch, a capacitor, and a  
buffer. As the name implies, this circuit has two modes of operation: sample and hold. In sample mode, the  
switch is closed connecting the DAC output to the hold capacitor, CH. In hold mode, the switch opens,  
disconnecting the DAC output from CH. Thus, the final output is held to the sampled value because of the charge  
stored on hold capacitor CH. The output buffer is needed for delivering the required current. In a practical circuit,  
the switch leakage and the amplifier bias current make the capacitor drift from the stored value. Therefore, the  
sample-and-hold circuit must be refreshed, even if the DAC value does not change. The key design parameters  
of a sample-and-hold circuit are charge injection and voltage droop.  
9.2.2.1 Charge Injection  
During the sample-to-hold transition, a small amount of charge is injected onto the hold capacitor, mostly  
because of the stray capacitance of the switch that creates small level changes when transitioning between  
states. The resulting dc offset is typically referred to as pedestal error. This error contributes to the offset error of  
the system. The pedestal error, ΔVOUT, is the measured offset voltage resulting from charge injection when the  
switch transitions to hold state. ΔVOUT is related to charge injection through 公式 2.  
Q
DVOUT  
=
C
where  
Q is the injected charge coulombs.  
C is the value of the hold capacitor in farads.  
(2)  
In most solid-state switch data sheets, charge injection is graphed with respect to supply voltage, analog input, or  
temperature. A charge injection value of 3-pC is typical in many solid-state switches under the conditions: 25°C,  
5-V supply, and 0-V analog input.  
9.2.2.2 Voltage Droop  
In hold mode, the voltage across CH that should have remained constant suffers a droop because of the leakage  
resistance of the switch and the amplifier bias current. A simplified equation for calculating the voltage droop is  
given by 公式 3  
I
+ IBIAS  
(
)
DV  
Dt  
LEAK  
=
C
where  
ILEAK is the leakage current through the switch in amperes.  
IBIAS is the bias current of the amplifier in amperes.  
C is the value of the hold capacitance in farads.  
(3)  
36  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
Typical Application (接下页)  
9.2.2.3 Output Offset Error  
The output offset error of an sample-and-hold channel is the cumulative error contributed by the DAC offset error,  
amplifier offset error, and sample-and-hold pedestal error due to charge injection. The amplifier offset error can  
be made negligible by choosing a low-offset amplifier such as the OPA4317. The OPA4317 has an offset error of  
0.1-mV max. The DAC80501 has a max offset error of ±1.5-mV. Thus, in order to achieve an total offset error  
less than ±3-mV, the offset error contributed by the sample-and-hold circuit must be limited to ±1.5-mV.  
Considering the bias current of 300-pA in the OPA4317, and a typical switch leakage current of 1-nA, a 2-nF hold  
capacitor results in a droop rate of 0.65 V/s. When the sample-and-hold circuit refreshes at a rate of more than  
100-µs, the voltage droop is 65-µV. This small offset error can be ignored for the simplicity of calculation. Thus,  
the only contributor to the sample-and-hold offset error is the pedestal error. For a charge injection of 3-pC and a  
pedestal error of 1.5-mV, the value of the hold capacitor is calculated as 2-nF, according to 公式 2. A capacitive  
load of 2-nF can be handled by the DAC80501. The switch on resistance and optional series resistance RS  
further helps in the stability of the DAC output amplifier. RS can be omitted for better settling time.  
9.2.2.4 Switch Selection  
The switch in the design must feature low on-state resistance and low off leakage, and must conduct rail-to-rail  
analog signals. Very low charge injection is also a primary factor for selecting the switch. The TS12A4515 are  
single pole and single throw (SPST), low-voltage, single-supply CMOS analog switches with 20-on-state  
resistance, 3 pC of charge-injection (5-V supply), and an off-Leakage current value of 1 nA.  
9.2.2.5 Amplifier Selection  
The key parameters for the amplifier in this system are low offset voltage and low input bias current. The  
OPA4317 is a quad amplifier that has a max offset voltage of 100 µV and a max bias current of 300 pA. As a  
result of the quad package, less board area is used.  
9.2.2.6 Hold Capacitor Selection  
Use a hold capacitor that has high insulation resistance, low temperature coefficient, and low dielectric  
absorption. Low temperature coefficient NP0/C0G ceramic capacitors are a great choice for this purpose. As  
calculated in 公式 2, a 2-nF capacitor provides a total offset error of ±3 mV per channel.  
9.2.3 Application Curves  
72. Sample-and-Hold Pedestal Error With 3-pC Charge Injection  
版权 © 2018–2020, Texas Instruments Incorporated  
37  
DAC80501, DAC70501, DAC60501  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
The DACx0501 operate within the specified VDD supply range of 2.7 V to 5.5 V. The DACx0501 do not require  
specific supply sequencing.  
The VDD supply must be well regulated and low noise. Switching power supplies and DC/DC converters often  
have high-frequency glitches or spikes riding on the output voltage. In addition, digital components create similar  
high-frequency spikes. This noise can easily couple into the DAC output voltage through various paths between  
the power connections and analog output. To further minimize noise from the power supply, include a 1-μF to 10-  
μF capacitor and 0.1-μF bypass capacitor. The current consumption on the VDD pin, the short-circuit current  
limit, and the load current for the device is listed in the Electrical Characteristics section. The power supply must  
meet the aforementioned current requirements.  
11 Layout  
11.1 Layout Guidelines  
A precision analog component requires careful layout. The following list provides some insight into good layout  
practices.  
Bypass the VDD to ground with a low ESR ceramic bypass capacitor. The typical recommended bypass  
capacitance is 0.1-µF to 0.22-µF ceramic capacitor, with a X7R or NP0 dielectric.  
Place power supplies and REF bypass capacitors close to the pins to minimize inductance and optimize  
performance.  
Use a high-quality, ceramic-type NP0 or X7R for optimal performance across temperature, and a very low  
dissipation factor.  
The digital and analog sections must have proper placement with respect to the digital pins and analog pins  
of the DACx0501 devices. The separation of analog and digital blocks minimizes coupling into neighboring  
blocks, as well as interaction between analog and digital return currents.  
11.2 Layout Example  
GND  
Decoupling  
Capacitor  
GND  
Reference  
Bypass  
Capacitor  
Optional  
REFIN or  
REFOUT  
DACx0501  
VDD  
1
2
3
4
8
7
6
5
SDIN/SDA  
VOUT  
Pull-up  
GND  
VDD  
SYNC/A0  
SCLK/SCL  
Pull-down for  
SPI Mode  
(Note: Ground and Power planes omitted for clarity)  
73. Layout Example  
38  
版权 © 2018–2020, Texas Instruments Incorporated  
DAC80501, DAC70501, DAC60501  
www.ti.com.cn  
ZHCSJ19D NOVEMBER 2018REVISED FEBRUARY 2020  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:德州仪器 (TI)DAC80501EVM 用户指南  
12.2 相关链接  
16 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具与软件,以及申请样片或购买产品的快速  
链接。  
16. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
DAC80501  
DAC70501  
DAC60501  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018–2020, Texas Instruments Incorporated  
39  
 
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC60501MDGSR  
DAC60501MDGST  
DAC60501MDQFR  
DAC60501MDQFT  
DAC60501ZDGSR  
DAC60501ZDGST  
DAC60501ZDQFR  
DAC60501ZDQFT  
DAC70501MDGSR  
DAC70501MDGST  
DAC70501MDQFR  
DAC70501MDQFT  
DAC70501ZDGSR  
DAC70501ZDGST  
DAC70501ZDQFR  
DAC70501ZDQFT  
DAC80501MDGSR  
DAC80501MDGST  
DAC80501MDQFR  
DAC80501MDQFT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
DGS  
DGS  
DQF  
DQF  
DGS  
DGS  
DQF  
DQF  
DGS  
DGS  
DQF  
DQF  
DGS  
DGS  
DQF  
DQF  
DGS  
DGS  
DQF  
DQF  
10  
10  
8
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
651M  
651M  
651M  
651M  
651Z  
651Z  
651Z  
651Z  
751M  
751M  
751M  
751M  
751Z  
751Z  
751Z  
751Z  
851M  
851M  
851M  
851M  
NIPDAUAG  
NIPDAU  
8
NIPDAU  
10  
10  
8
NIPDAUAG  
NIPDAUAG  
NIPDAU  
8
NIPDAU  
10  
10  
8
NIPDAUAG  
NIPDAUAG  
NIPDAU  
8
NIPDAU  
10  
10  
8
NIPDAUAG  
NIPDAUAG  
NIPDAU  
8
NIPDAU  
10  
10  
8
NIPDAUAG  
NIPDAUAG  
NIPDAU  
8
250  
RoHS & Green  
NIPDAU  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC80501ZDGSR  
DAC80501ZDGST  
DAC80501ZDQFR  
DAC80501ZDQFT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
WSON  
WSON  
DGS  
DGS  
DQF  
DQF  
10  
10  
8
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
851Z  
851Z  
851Z  
851Z  
NIPDAUAG  
NIPDAU  
8
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC60501MDGSR  
DAC60501MDGST  
DAC60501MDQFR  
DAC60501MDQFT  
DAC60501ZDGSR  
DAC60501ZDGST  
DAC60501ZDQFR  
DAC60501ZDQFT  
DAC70501MDGSR  
DAC70501MDGST  
DAC70501MDQFR  
DAC70501MDQFT  
DAC70501ZDGSR  
DAC70501ZDGST  
DAC70501ZDQFR  
DAC70501ZDQFT  
DAC80501MDGSR  
DAC80501MDGST  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
DGS  
DGS  
DQF  
DQF  
DGS  
DGS  
DQF  
DQF  
DGS  
DGS  
DQF  
DQF  
DGS  
DGS  
DQF  
DQF  
DGS  
DGS  
10  
10  
8
2500  
250  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
12.4  
12.4  
8.4  
5.3  
5.3  
2.2  
2.2  
5.3  
5.3  
2.2  
2.2  
5.3  
5.3  
2.2  
2.2  
5.3  
5.3  
2.2  
2.2  
5.3  
5.3  
3.4  
3.4  
2.2  
2.2  
3.4  
3.4  
2.2  
2.2  
3.4  
3.4  
2.2  
2.2  
3.4  
3.4  
2.2  
2.2  
3.4  
3.4  
1.4  
1.4  
1.2  
1.2  
1.4  
1.4  
1.2  
1.2  
1.4  
1.4  
1.2  
1.2  
1.4  
1.4  
1.2  
1.2  
1.4  
1.4  
8.0  
8.0  
4.0  
4.0  
8.0  
8.0  
4.0  
4.0  
8.0  
8.0  
4.0  
4.0  
8.0  
8.0  
4.0  
4.0  
8.0  
8.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q2  
Q2  
Q1  
Q1  
Q2  
Q2  
Q1  
Q1  
Q2  
Q2  
Q1  
Q1  
Q2  
Q2  
Q1  
Q1  
3000  
250  
8
8.4  
8.0  
10  
10  
8
2500  
250  
12.4  
12.4  
8.4  
12.0  
12.0  
8.0  
3000  
250  
8
8.4  
8.0  
10  
10  
8
2500  
250  
12.4  
12.4  
8.4  
12.0  
12.0  
8.0  
3000  
250  
8
8.4  
8.0  
10  
10  
8
2500  
250  
12.4  
12.4  
8.4  
12.0  
12.0  
8.0  
3000  
250  
8
8.4  
8.0  
10  
10  
2500  
250  
12.4  
12.4  
12.0  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jan-2021  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC80501MDQFR  
DAC80501MDQFT  
DAC80501ZDGSR  
DAC80501ZDGST  
DAC80501ZDQFR  
DAC80501ZDQFT  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
DQF  
DQF  
DGS  
DGS  
DQF  
DQF  
8
8
3000  
250  
180.0  
180.0  
330.0  
330.0  
180.0  
180.0  
8.4  
8.4  
2.2  
2.2  
5.3  
5.3  
2.2  
2.2  
2.2  
2.2  
3.4  
3.4  
2.2  
2.2  
1.2  
1.2  
1.4  
1.4  
1.2  
1.2  
4.0  
4.0  
8.0  
8.0  
4.0  
4.0  
8.0  
8.0  
Q2  
Q2  
Q1  
Q1  
Q2  
Q2  
10  
10  
8
2500  
250  
12.4  
12.4  
8.4  
12.0  
12.0  
8.0  
3000  
250  
8
8.4  
8.0  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC60501MDGSR  
DAC60501MDGST  
DAC60501MDQFR  
DAC60501MDQFT  
DAC60501ZDGSR  
DAC60501ZDGST  
DAC60501ZDQFR  
DAC60501ZDQFT  
DAC70501MDGSR  
DAC70501MDGST  
DAC70501MDQFR  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
DGS  
DGS  
DQF  
DQF  
DGS  
DGS  
DQF  
DQF  
DGS  
DGS  
DQF  
10  
10  
8
2500  
250  
366.0  
366.0  
213.0  
213.0  
366.0  
366.0  
213.0  
213.0  
366.0  
366.0  
213.0  
364.0  
364.0  
191.0  
191.0  
364.0  
364.0  
191.0  
191.0  
364.0  
364.0  
191.0  
50.0  
50.0  
35.0  
35.0  
50.0  
50.0  
35.0  
35.0  
50.0  
50.0  
35.0  
3000  
250  
8
10  
10  
8
2500  
250  
3000  
250  
8
10  
10  
8
2500  
250  
3000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jan-2021  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC70501MDQFT  
DAC70501ZDGSR  
DAC70501ZDGST  
DAC70501ZDQFR  
DAC70501ZDQFT  
DAC80501MDGSR  
DAC80501MDGST  
DAC80501MDQFR  
DAC80501MDQFT  
DAC80501ZDGSR  
DAC80501ZDGST  
DAC80501ZDQFR  
DAC80501ZDQFT  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
DQF  
DGS  
DGS  
DQF  
DQF  
DGS  
DGS  
DQF  
DQF  
DGS  
DGS  
DQF  
DQF  
8
10  
10  
8
250  
2500  
250  
213.0  
366.0  
366.0  
213.0  
213.0  
366.0  
366.0  
213.0  
213.0  
366.0  
366.0  
213.0  
213.0  
191.0  
364.0  
364.0  
191.0  
191.0  
364.0  
364.0  
191.0  
191.0  
364.0  
364.0  
191.0  
191.0  
35.0  
50.0  
50.0  
35.0  
35.0  
50.0  
50.0  
35.0  
35.0  
50.0  
50.0  
35.0  
35.0  
3000  
250  
8
10  
10  
8
2500  
250  
3000  
250  
8
10  
10  
8
2500  
250  
3000  
250  
8
Pack Materials-Page 3  
PACKAGE OUTLINE  
DQF0008A  
WSON - 0.8 mm max height  
S
C
A
L
E
6
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.05 C  
0.05  
0.00  
SYMM  
(0.2) TYP  
4
5
SYMM  
2X 1.5  
6X 0.5  
8
1
0.3  
8X  
0.2  
0.1  
0.05  
0.7  
0.5  
C A B  
PIN 1 ID  
0.6  
0.4  
7X  
4220563/A 03/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DQF0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SEE SOLDER MASK  
DETAIL  
SYMM  
(0.8)  
8
8X (0.25)  
1
SYMM  
6X (0.5)  
(R0.05) TYP  
4
5
7X (0.7)  
(1.7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 30X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220563/A 03/2021  
NOTES: (continued)  
3. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DQF0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.8)  
8X (0.25)  
1
8
SYMM  
6X (0.5)  
(R0.05) TYP  
5
4
SYMM  
(1.7)  
7X (0.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 30X  
4220563/A 03/2021  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY