DAC61402 [TI]

具有精密内部基准的双通道、12 位、±20V 电压范围、缓冲输出 DAC;
DAC61402
型号: DAC61402
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有精密内部基准的双通道、12 位、±20V 电压范围、缓冲输出 DAC

文件: 总55页 (文件大小:5253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
具有内部基准DACx1402 16 12 位高压输DAC  
1 特性  
3 说明  
• 性能:  
16 DAC81402 12 DAC61402 (DACx1402) 是  
引脚兼容的双通道缓冲式高压输出数模转换器  
(DAC)。这些器件包括一个低漂移 2.5V 内部电压基  
因此在大多数应用中无需使用外部精密基准。这些  
器件具有单调性并能提供 ±1LSB INL 的高线性度。  
此外这些器件采用每通道检测引脚来消除 IR 压降并  
可检测高±12V 的地弹。  
16 位分辨率下具有单调性  
INL16 位分辨率下±1LSB最大值)  
TUE±0.05% FSR最大值)  
• 集成输出缓冲器  
– 满量程输出电压±5V±10V±20V5V、  
10V20V40V  
– 高驱动能力±15mA  
– 每通道检测引脚  
• 集2.5V 精密基准  
用户可自行选择输出配置包括满量程双极输出电压  
±20V±10V ±5V及满量程非双极输出电压  
40V20V10V 5V。而且每个 DAC 通道的满量  
程输出范围都是独立可编程的。集成的 DAC 输出缓冲  
器可实现高达 15mA 的灌电流或拉电流从而减少了  
对额外的运算放大器的需求。  
– 初始精度±2.5mV最大值)  
– 低漂移10ppm/°C最大值)  
• 可靠性特性:  
CRC 误差校验  
– 短路限制  
– 故障引脚  
DACx1402 包含的上电复位电路可在上电时将 DAC 输  
出端连接至接地端。输出端会保持该模式直至器件得  
到适当的运行配置。这些器件还包括其他可靠性特性,  
CRC 误差校验、短路保护以及过热报警。  
50MHz SPI 兼容型串行接口  
4 线制模式工作电压1.7V 5.5V  
– 回读和菊链运行方式  
• 温度范围40°C +125°C  
• 封装5mm × 5mm 32 QFN  
通过一个支持 1.7V 5.5V 工作电压的 4 线制串行接  
支持器件间通信。  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
DAC81402  
DAC61402  
2 应用  
伺服驱动器控制模块  
模拟输出模块  
VQFN (32)  
5.00mm × 5.00mm  
实验室和现场仪表  
数据采(DAQ)  
半导体测试  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
IOVDD DVDD  
FAULT  
REFIO  
AVDD  
R_LIMIT  
SENSEP  
Internal Reference  
Ccomp  
DAC61402  
CCOMP  
Power On  
Reset  
REF  
BUF  
œ
SCLK  
SDIN  
R_LIMIT  
VOUT  
IO Protection  
+
Cable  
Driver  
Stage  
+
DAC Ladder  
REF  
œ
SYNC  
SENSEN  
DAC  
Ladder  
Buffer  
Register  
Active  
Register  
CCOMP[A:B]  
OUT[A:B]  
+
SDO  
Motor  
LDAC  
RST  
Position  
Encoder  
œ
40 kΩ  
SENSEP[A:B]  
SENSEN[A:B]  
40 kΩ  
CLR  
Analog Output Module  
Motor Control Module  
Channel  
A
40 kΩ  
œ
+
40 kΩ  
电机驱动器应用  
Resistor Gain  
Network  
REF  
GND  
AGND  
REFGND  
AVSS  
功能方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLASEH3  
 
 
 
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
Table of Contents  
7.13 Typical Characteristics............................................17  
8 Detailed Description......................................................25  
8.1 Overview...................................................................25  
8.2 Functional Block Diagram.........................................25  
8.3 Feature Description...................................................26  
8.4 Device Functional Modes..........................................30  
8.5 Programming............................................................ 31  
8.6 Register Map.............................................................34  
9 Application and Implementation..................................41  
9.1 Application Information............................................. 41  
9.2 Typical Application.................................................... 41  
10 Power Supply Recommendations..............................44  
11 Layout...........................................................................44  
11.1 Layout Guidelines................................................... 44  
11.2 Layout Example...................................................... 44  
12 Device and Documentation Support..........................45  
12.1 Documentation Support.......................................... 45  
12.2 接收文档更新通知................................................... 45  
12.3 支持资源..................................................................45  
12.4 Trademarks.............................................................45  
12.5 静电放电警告.......................................................... 45  
12.6 术语表..................................................................... 45  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings ....................................... 5  
7.2 ESD Ratings .............................................................. 5  
7.3 Recommended Operating Conditions ........................6  
7.4 Thermal Information ...................................................6  
7.5 Electrical Characteristics ............................................7  
7.6 Timing Requirements: Write, IOVDD: 1.7 V to 2.7  
V .................................................................................13  
7.7 Timing Requirements: Write, IOVDD: 2.7 V to 5.5  
V .................................................................................13  
7.8 Timing Requirements: Read and Daisy Chain,  
FSDO = 0, IOVDD: 1.7 V to 2.7 V ............................... 14  
7.9 Timing Requirements: Read and Daisy Chain,  
FSDO = 1, IOVDD: 1.7 V to 2.7 V ............................... 14  
7.10 Timing Requirements: Read and Daisy Chain,  
FSDO = 0, IOVDD: 2.7 V to 5.5 V ............................... 15  
7.11 Timing Requirements: Read and Daisy Chain,  
FSDO = 1, IOVDD: 2.7 V to 5.5 V ............................... 15  
7.12 Timing Diagrams.....................................................16  
Information.................................................................... 45  
4 Revision History  
Changes from Revision * (November 2020) to Revision A (May 2021)  
Page  
• 添加DAC81402 和相关内容........................................................................................................................... 1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
5 Device Comparison Table  
DEVICE  
RESOLUTION  
16-Bit  
DAC81402  
DAC61402  
12-Bit  
6 Pin Configuration and Functions  
NC  
NC  
1
2
3
4
5
6
7
8
24  
NC  
23  
22  
21  
20  
19  
18  
17  
NC  
NC  
NC  
NC  
NC  
Thermal pad  
SENSENA  
SENSEPA  
CCOMPA  
OUTA  
SENSENB  
SENSEPB  
CCOMPB  
OUTB  
Not to scale  
6-1. RHB (32-pin VQFN) Package, Top View  
6-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
NC  
No connection.  
No connection.  
No connection.  
No connection.  
2
NC  
3
NC  
4
NC  
5
SENSENA  
SENSEPA  
Input  
Input  
Channel-A sense pin for the negative voltage output load connection.  
Channel-A sense pin for the positive voltage output load connection.  
6
Channel-A external compensation capacitor connection pin.  
The addition of an external capacitor improves the output buffer stability with high capacitive  
loads at the OUTA pin by reducing the bandwidth of the output amplifier at the expense of  
increased settling time.  
7
CCOMPA  
OUTA  
SDO  
Input  
Output  
Output  
Input  
8
Channel-A analog output voltage.  
Serial interface data output.  
The SDO pin must be enabled before operation by setting the SDO-EN bit. Data are clocked out  
of the input shift register on either rising or falling edges of the SCLK pin as specified by the  
FSDO bit (rising edge by default).  
9
10  
SCLK  
Serial interface clock.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DAC81402 DAC61402  
 
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
Serial interface data input. Data are clocked into the input shift register on each falling edge of the  
SCLK pin.  
11  
SDIN  
Input  
Input  
Input  
Active low serial data enable. This input is the frame synchronization signal for the serial data.  
The serial serial interface input shift register is enabled when SYNC is low.  
12  
13  
SYNC  
LDAC  
Active low synchronization signal. The DAC outputs of those channels configured in synchronous  
mode are updated simultaneously when the LDAC pin is low. Connect to IOVDD if unused.  
14  
15  
GND  
Ground  
Power  
Digital ground reference point.  
IOVDD  
IO supply voltage. This pin sets the digital I/O operating voltage for the device.  
Active-low clear input. Logic low on this pin clears all outputs to their clear code. Connect to  
IOVDD if unused.  
16  
17  
CLR  
Input  
OUTB  
Output  
Channel-B analog output voltage.  
Channel-B external compensation capacitor connection pin.  
The addition of an external capacitor improves the output buffer stability with high capacitive  
loads at the OUTB pin by reducing the bandwidth of the output amplifier at the expense of  
increased settling time.  
18  
CCOMPB  
Input  
19  
20  
21  
22  
23  
24  
25  
SENSEPB  
SENSENB  
NC  
Input  
Input  
Channel-B sense pin for the positive voltage output load connection.  
Channel-B sense pin for the negative voltage output load connection.  
No connection.  
NC  
No connection.  
NC  
No connection.  
NC  
No connection.  
REFGND  
Ground  
Ground reference point for the internal reference.  
Reference input to the device when operating with an external reference. Reference output  
voltage pin when using the internal reference. Connect a 150-nF capacitor to ground.  
26  
REFIO  
Input/Output  
27  
28  
29  
30  
AVSS  
AVDD  
AGND  
DVDD  
Power  
Power  
Ground  
Power  
Output buffers negative supply voltage.  
Output buffers positive supply voltage.  
Analog ground reference point.  
Digital and analog supply voltage.  
FAULT is an open-drain, fault-condition output. An external 10-kΩpullup resistor to a voltage no  
higher than IOVDD is required.  
31  
32  
FAULT  
RST  
Output  
Input  
Active-low reset input. Logic low on this pin causes the device to issue a power-on-reset event.  
Thermal  
Pad  
The thermal pad is located on the package underside. The thermal pad should be connected to  
any internal PCB ground plane through multiple vias for good thermal performance.  
Thermal pad  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
MAX  
UNIT  
DVDD to GND  
IOVDD to GND  
6
6
44  
0.3  
Supply voltage  
AVDD to GND  
V
0.3  
AVSS to GND  
0.3  
22  
AVDD to AVSS  
44  
0.3  
VOUTX to GND  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
DVDD + 0.3  
+0.3  
AVSS 0.3  
AVSS 0.3  
AVSS 0.3  
0.3  
VSENSEPX to GND  
VSENSENX to GND  
VREFIO to GND  
Pin voltage  
V
VREFGND to GND  
Digital inputs to GND  
SDO to GND  
0.3  
IOVDD + 0.3  
IOVDD + 0.3  
6
0.3  
0.3  
FAULT to GND  
Current into any digital pin  
0.3  
Input current  
10  
mA  
°C  
10  
TJ  
Junction temperature  
Storage temperature  
150  
40  
Tstg  
150  
°C  
60  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per  
JEDEC specification JESD22-C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DAC81402 DAC61402  
 
 
 
 
 
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
UNIT  
DVDD to GND  
IOVDD to GND  
5.5  
5.5  
41.5  
0
1.7  
AVDD to GND  
AVSS to GND  
AVDD to AVSS  
VSENSENX to GND  
4.5  
Supply voltage  
V
21.5  
4.5  
43  
Pin voltage  
12  
V
12  
40  
TA  
Ambient temperature  
125  
°C  
7.4 Thermal Information  
DACx1402  
THERMAL METRIC(1)  
RHB (VQFN)  
32 PINS  
29.3  
UNIT  
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
/W  
/W  
/W  
/W  
/W  
/W  
RΘJC(top)  
RΘJB  
17.0  
9.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ΨJT  
9.5  
ΨJB  
RΘJC(bot)  
1.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
 
 
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.5 Electrical Characteristics  
all minimum/maximum specifications at TA = 40°C to +125°C and all typical specifications at TA = 25°C, AVDD = 4.5 V to  
41.5 V, AVSS = 21.5 V to 0 V, DVDD = 5.0 V, internal reference enabled, IOVDD = 1.7 V, VSENSENX = 0 V, CCOMPX floating,  
DAC outputs unloaded, and digital inputs at IOVDD or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
STATIC PERFORMANCE  
DAC81402  
16  
12  
Resolution  
Bits  
DAC61402  
DAC81402. All ranges, except 0-V to  
40-V and overranges  
1
1  
INL  
Relative accuracy(1)  
LSB  
LSB  
DAC81402. 0-V to 40-V range  
DAC61402  
2
1
2  
1  
DNL  
Differential nonlinearity(1)  
1
1  
Unipolar ranges, AVSS = 0 V  
0.07  
0.07  
Unipolar ranges, AVSS = 0 V,  
0TA 50℃  
0.05  
0.05  
0.05  
0.05  
TUE  
Total unadjusted error(1)  
%FSR  
Bipolar ranges, 21.5 V AVSS < 0  
V
Unipolar ranges, AVSS = 0 V  
Bipolar ranges, 21.5 V AVSS < 0  
Offset error(1)  
0.05  
%FSR  
0.05  
V
Unipolar ranges, AVSS = 0 V  
Offset error temperature coefficient  
±2  
±2  
ppmFSR/°C  
Bipolar ranges, 21.5 V AVSS < 0  
V
All unipolar ranges, AVSS = 0 V  
0.15  
0.05  
Zero-code (negative full scale) error  
%FSR  
All bipolar ranges,  
21.5 V AVSS < 0 V  
All unipolar ranges, AVSS = 0 V  
All bipolar ranges,  
21.5 V AVSS < 0 V  
Zero-code (negative full scale) error  
temperature coefficient  
ppm of  
FSR/°C  
Full-scale error(2)  
0.06  
0.06  
%FSR  
0.06  
0.06  
Full-scale error temperature  
coefficient(2)  
ppm of  
FSR/°C  
±3  
±2  
Gain error(1)  
%FSR  
ppm of  
FSR/°C  
Gain error temperature coefficient  
All bipolar ranges,  
21.5 V AVSS < 0 V  
Bipolar-zero (midscale) error  
0.03  
%FSR  
0.03  
All bipolar ranges,  
21.5 V AVSS < 0 V  
Bipolar-zero (midscale) error  
temperature coefficient  
ppm of  
FSR/°C  
±2  
±6  
TA = 40, DAC code = full scale,  
1000 hours  
Output voltage drift over time  
ppm FSR  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DAC81402 DAC61402  
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = 40°C to +125°C and all typical specifications at TA = 25°C, AVDD = 4.5 V to  
41.5 V, AVSS = 21.5 V to 0 V, DVDD = 5.0 V, internal reference enabled, IOVDD = 1.7 V, VSENSENX = 0 V, CCOMPX floating,  
DAC outputs unloaded, and digital inputs at IOVDD or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT CHARACTERISTICS  
0
0
5
6
20% overrange  
0
10  
12  
20  
24  
40  
5
20% overrange  
20% overrange  
0
0
0
VOUT  
Output voltage  
V
0
-5  
20% overrange  
20% overrange  
-6  
6
10  
12  
20  
10  
12  
20  
to AVSS and AVDD  
10 mA load current 10 mA  
1.25  
Output voltage headroom and  
footroom  
V
to AVSS and AVDD  
5.5 V < AVDD 41.5 V,  
,
1.5  
15 mA load current 15 mA  
Full-scale output shorted to AVSS  
40  
40  
Zero-scale output shorted to AVDD  
5.5 V < AVDD 41.5 V,  
,
Short circuit current(3)  
mA  
Zero-scale output shorted to AVDD  
4.5 V AVDD 5.5 V  
,
25  
50  
DAC at midscale,  
15 mA load current 15 mA  
Load regulation  
µV/mA  
nF  
RLOAD = open, CCOMPX pin left floating  
0
2
1
CL  
Capacitive load(4)  
RLOAD = open,  
CCOMPX = 500 pF ± 10% to VOUTX  
µF  
15  
10  
5.5 V < AVDD 41.5 V  
Load current(4)  
mA  
4.5 V AVDD 5.5 V  
DAC code at midscale, DAC unloaded  
DAC code at full scale, DAC unloaded  
0.05  
0.05  
VOUT dc output impedance  
Ω
DAC code at negative full scale,  
DAC unloaded  
25  
DAC code at midscale, 10-V span  
DAC disabled  
55  
45  
45  
45  
VSENSEP dc output impedance  
VSENSEN dc output impedance  
kΩ  
kΩ  
DAC code at midscale, 10-V span  
DAC disabled  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = 40°C to +125°C and all typical specifications at TA = 25°C, AVDD = 4.5 V to  
41.5 V, AVSS = 21.5 V to 0 V, DVDD = 5.0 V, internal reference enabled, IOVDD = 1.7 V, VSENSENX = 0 V, CCOMPX floating,  
DAC outputs unloaded, and digital inputs at IOVDD or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC PERFORMANCE  
5-V span, 1/4 to 3/4 scale and 3/4 to  
1/4 scale, settling time to ±2 LSB  
7
8
10-V span, 1/4 to 3/4 scale and 3/4 to  
1/4 scale, settling time to ±2 LSB  
µs  
20-V span, 1/4 to 3/4 scale and 3/4 to  
1/4 scale, settling time to ±2 LSB  
12  
22  
40-V span, 1/4 to 3/4 scale and 3/4 to  
1/4 scale, settling time to ±2 LSB  
5-V span, 1/4 to 3/4 scale and 3/4 to  
1/4 scale, settling time to ±2 LSB,  
CL = 1 µF, CCOMPX = 500 pF to VOUTX  
0.6  
0.6  
0.6  
1.2  
Output voltage settling time  
10-V span, 1/4 to 3/4 scale and 3/4 to  
1/4 scale, settling time to ±2 LSB,  
CL = 1 µF, CCOMPX = 500 pF to VOUTX  
ms  
20-V span, 1/4 to 3/4 scale and 3/4 to  
1/4 scale, settling time to ±2 LSB,  
CL = 1 µF, CCOMPX = 500 pF to VOUTX  
40-V span, 1/4 to 3/4 scale and 3/4 to  
1/4 scale, settling time to ±2 LSB,  
CL = 1 µF, CCOMPX = 500 pF to VOUTX  
0-V to 5-V range (10% to 90% of full-  
scale range)  
0.8  
4
All other output ranges except 40-V  
span (10% to 90% of full-scale range)  
Slew rate  
V/µs  
0-V to 5-V range, CL = 1 µF,  
CCOMPX = 500 pF to VOUTX  
0.04  
0.04  
All other ranges, CL = 1 µF,  
CCOMPX = 500 pF to VOUTX  
AVSS and AVDD ramped symmetrically,  
ramp rate = 18 V/ms, output unloaded,  
internal reference  
Power-on glitch magnitude  
0.1  
0.35  
25  
V
V
AVSS and AVDD ramped, output  
unloaded, internal reference, gain = 1x  
Output enable glitch magnitude  
0.1 Hz to 10 Hz, DAC code at  
midscale, 5-V span, external reference  
= 2.5 V, output unloaded  
Output noise  
µVPP  
0.1 Hz to 10 Hz, DAC code at  
midscale, 5-V span, internal reference  
= 2.5 V, output unloaded  
30  
1 kHz, DAC code at midscale, 5-V  
span, output unloaded, external  
reference  
115  
Output noise density  
nV/Hz  
10 kHz, DAC code at midscale, 5-V  
span, output unloaded, external  
reference  
105  
88  
1-kHz sine wave on VOUTX, output  
unloaded, DAC update rate = 400 kHz  
THD  
Total harmonic distortion  
dB  
dB  
VOUTX = 0 V (midscale), output  
unloaded, ±10-V output,  
frequency = 60 Hz,  
PSRR-AC  
Power supply ac rejection ratio  
75  
amplitude 200 mVPP  
,
superimposed on AVDD, DVDD or AVSS  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = 40°C to +125°C and all typical specifications at TA = 25°C, AVDD = 4.5 V to  
41.5 V, AVSS = 21.5 V to 0 V, DVDD = 5.0 V, internal reference enabled, IOVDD = 1.7 V, VSENSENX = 0 V, CCOMPX floating,  
DAC outputs unloaded, and digital inputs at IOVDD or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOUTX = 0 V (midscale), ±10-V output,  
DVDD = 5 V, AVDD = 15 V ± 20%,  
AVSS = 15 V, output unloaded  
5
µV/V  
VOUTX = 0 V (midscale), ±10-V output,  
DVDD = 5 V, AVDD = 15 V,  
AVSS = 15 V ± 20%, output  
unloaded  
PSRR-DC  
Power supply dc rejection ratio  
10  
VOUTX = 0 V (midscale), ±10-V output,  
DVDD = 5 V ± 5%, AVDD = 15 V,  
AVSS = 15 V, output unloaded  
0.2  
mV/V  
nV-s  
1-LSB change around midscale,  
0-V to 5-V range, output unloaded  
1
2
2
1-LSB change around midscale,  
0-V to 10-V range, output unloaded  
Code change glitch impulse  
1-LSB change around midscale,  
5-V to +5-V range, output unloaded  
1-LSB change around midscale,  
10-V to +10-V range, output  
unloaded  
4
1-LSB change around midscale,  
0-V to 5-V, 0-V to 10-V, 5-V to +5-V  
and 10-V to +10-V ranges, output  
unloaded  
Code change glitch amplitude  
±10  
mV  
10-V span, full-scale swing on all other  
channel, measured channel at  
midscale, output unloaded  
Channel-to-channel ac crosstalk  
Channel-to-channel dc crosstalk  
1
1
nV-s  
LSB  
10-V span, full-scale swing on all other  
channel, measured channel at  
midscale, output unloaded  
10-V span, full-scale swing on all other  
input buffer, measured channel at  
midscale, output unloaded  
Digital crosstalk  
1
1
nV-s  
nV-s  
DAC code at midscale, fSCLK = 1 MHz,  
output unloaded  
Digital feedthrough  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = 40°C to +125°C and all typical specifications at TA = 25°C, AVDD = 4.5 V to  
41.5 V, AVSS = 21.5 V to 0 V, DVDD = 5.0 V, internal reference enabled, IOVDD = 1.7 V, VSENSENX = 0 V, CCOMPX floating,  
DAC outputs unloaded, and digital inputs at IOVDD or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EXTERNAL REFERENCE INPUT  
VREFIO  
Reference input voltage  
Reference input current  
Reference input impedance  
Reference input capacitance  
2.49  
2.5  
50  
50  
90  
2.51  
V
µA  
kΩ  
pF  
INTERNAL REFERENCE  
Reference output voltage  
TA = 25°C  
2.4975  
2.5025  
10  
V
Reference output drift  
5
0.15  
12  
ppm/°C  
Reference output impedance  
Reference output noise  
Ω
0.1 Hz to 10 Hz  
µVPP  
Reference output noise density  
Reference load current  
10 kHz, VREFIO = 10 nF  
240  
5
nV/Hz  
mA  
Reference load regulation  
Reference line regulation  
Reference output drift over time  
Source  
120  
100  
±300  
±125  
±25  
µV/mA  
µV/V  
µV  
TA = 40°C, 1000 hours  
First cycle  
Reference thermal hysteresis  
µV  
Additional cycle  
DIGITAL INPUTS AND OUTPUTS  
0.7 × IO  
VDD  
VIH  
VIL  
Input high voltage  
Input low voltage  
V
V
0.3  
× IOVDD  
Input current  
±2  
2
µA  
pF  
Input pin capacitance  
IOVDD  
0.2  
VOH  
VOL  
SDO, high-level output voltage  
SDO load current = 0.2 mA  
V
SDO, low-level output voltage  
FAULT, low-level output voltage  
Output pin capacitance  
SDO load current = 0.2 mA  
FAULT load current = 10 mA  
0.4  
0.4  
V
V
5
pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = 40°C to +125°C and all typical specifications at TA = 25°C, AVDD = 4.5 V to  
41.5 V, AVSS = 21.5 V to 0 V, DVDD = 5.0 V, internal reference enabled, IOVDD = 1.7 V, VSENSENX = 0 V, CCOMPX floating,  
DAC outputs unloaded, and digital inputs at IOVDD or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER REQUIREMENTS  
Normal mode, internal reference  
Normal mode, external reference  
Power-down mode  
8
7
mA  
AIDD  
DIDD  
AVDD supply current(5)  
DVDD supply current(5)  
10  
8
µA  
Digital interface static  
mA  
Normal mode, internal reference  
Normal mode, external reference  
Power-down mode  
8  
7  
mA  
AISS  
AVSS supply current(5)  
IOVDD supply current(5)  
µA  
µA  
10  
IIOVDD  
SCLK toggling at 1 MHz  
100  
(1) End point fit between codes. 16-bit: 512 to 65024 for AVDD 5.5 V, 512 to 63488 for AVDD 5.5 V, 0.2-V headroom between VREFIO  
and AVDD; 12-bit: 32 to 4064 for AVDD 5.5 V, 32 to 3968 for AVDD 5.5 V, 0.2-V headroom between VREFIO and AVDD  
.
(2) Full-scale code written to the DAC for AVDD 5.5 V. 16-bit: code 63488 written to the DAC for AVDD 5.5 V; 12-bit: code 3968 written  
to the DAC for AVDD 5.5 V.  
(3) Temporary overload condition protection. junction temperature can be exceeded during current limit. operation above the specified  
maximum junction temperature may impair device reliability.  
(4) Specified by design and characterization, not production tested.  
(5) AVDD = +15 V, AVSS = 15 V, DVDD = 5 V, SPI static, 10-V output span, all DAC at full scale, VOUTX unloaded.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
 
 
 
 
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.6 Timing Requirements: Write, IOVDD: 1.7 V to 2.7 V  
all specifications at TA = 40°C to +125°C, input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed  
from a voltage level of (VIL + VIH) / 2, SDO loaded with 20 pF, 1.7 V IOVDD < 2.7 V  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency  
SCLK high time  
SCLK low time  
SDIN setup  
25  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
20  
20  
10  
10  
30  
10  
50  
2.4  
4
ns  
ns  
tSDIH  
SDIN hold  
ns  
tCSS  
SYNC to SCLK falling edge setup  
SCLK falling edge to SYNC rising edge  
SYNC high time  
ns  
tCSH  
ns  
tCSHIGH  
tDACWAIT  
tBCASTWAIT  
tLDACAL  
tLDACW  
tCLRW  
ns  
Sequential DAC update wait time  
Broadcast DAC update wait time  
SYNC rising edge to LDAC falling edge  
LDAC low time  
µs  
µs  
80  
20  
20  
20  
ns  
ns  
CLR low time  
ns  
tRSTW  
RST low time  
ns  
7.7 Timing Requirements: Write, IOVDD: 2.7 V to 5.5 V  
all specifications at TA = 40°C to +125°C, input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed  
from a voltage level of (VIL + VIH) / 2, SDO loaded with 20 pF, 2.7 V IOVDD 5.5 V  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency  
SCLK high time  
SCLK low time  
SDIN setup  
50  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
10  
10  
5
ns  
ns  
tSDIH  
SDIN hold  
5
ns  
tCSS  
SYNC to SCLK falling edge setup  
SCLK falling edge to SYNC rising edge  
SYNC high time  
15  
5
ns  
tCSH  
ns  
tCSHIGH  
tDACWAIT  
tBCASTWAIT  
tLDACAL  
tLDACW  
tCLRW  
25  
2.4  
4
ns  
Sequential DAC update wait time  
Broadcast DAC update wait time  
SYNC rising edge to LDAC falling edge  
LDAC low time  
µs  
µs  
40  
20  
20  
20  
ns  
ns  
CLR low time  
ns  
tRSTW  
RST low time  
ns  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DAC81402 DAC61402  
 
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.8 Timing Requirements: Read and Daisy Chain, FSDO = 0, IOVDD: 1.7 V to 2.7 V  
all specifications at TA = 40°C to +125°C, input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed  
from a voltage level of (VIL + VIH) / 2, SDO loaded with 20 pF, 1.7 V IOVDD < 2.7 V  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency  
SCLK high time  
SCLK low time  
SDIN setup  
12.5  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
33  
33  
10  
10  
30  
10  
50  
0
ns  
ns  
tSDIH  
SDIN hold  
ns  
tCSS  
SYNC to SCLK falling edge setup  
SCLK falling edge to SYNC rising edge  
SYNC high time  
ns  
tCSH  
ns  
tCSHIGH  
tSDOZ  
ns  
SDO driven to tri-state mode  
30  
30  
ns  
tSDODLY  
SDO output delay from SCLK rising edge  
0
ns  
7.9 Timing Requirements: Read and Daisy Chain, FSDO = 1, IOVDD: 1.7 V to 2.7 V  
all specifications at TA = 40°C to +125°C, input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed  
from a voltage level of (VIL + VIH) / 2, SDO loaded with 20 pF, 1.7 V IOVDD < 2.7 V  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency  
SCLK high time  
SCLK low time  
SDIN setup  
25  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
20  
20  
10  
10  
30  
10  
50  
0
ns  
ns  
tSDIH  
SDIN hold  
ns  
tCSS  
SYNC to SCLK falling edge setup  
SCLK falling edge to SYNC rising edge  
SYNC high time  
ns  
tCSH  
ns  
tCSHIGH  
tSDOZ  
ns  
SDO driven to tri-state mode  
30  
30  
ns  
tSDODLY  
SDO output delay from SCLK rising edge  
0
ns  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
 
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.10 Timing Requirements: Read and Daisy Chain, FSDO = 0, IOVDD: 2.7 V to 5.5 V  
all specifications at TA = 40°C to +125°C, input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed  
from a voltage level of (VIL + VIH) / 2, SDO loaded with 20 pF, 2.7 V IOVDD 5.5 V  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency  
SCLK high time  
SCLK low time  
SDIN setup  
20  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
25  
25  
5
ns  
ns  
tSDIH  
SDIN hold  
5
ns  
tCSS  
SYNC to SCLK falling edge setup  
SCLK falling edge to SYNC rising edge  
SYNC high time  
20  
5
ns  
tCSH  
ns  
tCSHIGH  
tSDOZ  
25  
0
ns  
SDO driven to tri-state mode  
20  
20  
ns  
tSDODLY  
SDO output delay from SCLK rising edge  
0
ns  
7.11 Timing Requirements: Read and Daisy Chain, FSDO = 1, IOVDD: 2.7 V to 5.5 V  
all specifications at TA = 40°C to +125°C, input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed  
from a voltage level of (VIL + VIH) / 2, SDO loaded with 20 pF, 2.7 V IOVDD 5.5 V  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency  
SCLK high time  
SCLK low time  
SDIN setup  
35  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
14  
14  
5
ns  
ns  
tSDIH  
SDIN hold  
5
ns  
tCSS  
SYNC to SCLK falling edge setup  
SCLK falling edge to SYNC rising edge  
SYNC high time  
20  
5
ns  
tCSH  
ns  
tCSHIGH  
tSDOZ  
25  
0
ns  
SDO driven to tri-state mode  
20  
20  
ns  
tSDODLY  
SDO output delay from SCLK rising edge  
0
ns  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DAC81402 DAC61402  
 
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.12 Timing Diagrams  
tCSS  
tCSH  
tCSHIGH  
SYNC  
SCLK  
SDIN  
tSCLKLOW  
tSCLKHIGH  
tSDIH  
tSDIS  
Bit 23  
Bit 1  
Bit 0  
LDAC(A)  
LDAC(B)  
CLR  
tCLRW  
tLDACAL tLDACW  
tRSTW  
RST  
A. Asynchronous update.  
B. Synchronous update.  
7-1. Serial Interface Write Timing Diagram  
tCSHIGH  
tCSS  
tCSH  
SYNC  
SCLK  
tSCLKLOW  
tSCLKHIGH  
FIRST READ COMMAND  
Bit 22  
ANY COMMAND  
Bit 22  
SDIN  
SDO  
Bit 23  
Bit 0  
Bit 23  
Bit 23  
Bit 0  
tSDIH  
tSDIS  
DATA FROM FIRST  
READ COMMAND  
Bit 22  
Bit 0  
tSDOZ  
tSDODLY  
7-2. Serial Interface Read Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.13 Typical Characteristics  
at TA = 25°C, DVDD = 5.0 V, IOVDD = 1.8 V, internal reference enabled, unipolar ranges: AVSS = 0 V and AVDD VMAX + 1.5  
V for the DAC range, bipolar ranges: AVSS VMIN 1.5 V and AVDD VMAX + 1.5 V for the DAC range, and DAC outputs  
unloaded (unless otherwise noted)  
7-3. DAC81402 INL vs Digital Input Code  
7-4. DAC81402 INL vs Digital Input Code  
(Bipolar Outputs)  
(Unipolar Outputs)  
7-5. DAC81402 DNL vs Digital Input Code  
7-6. DAC81402 DNL vs Digital Input Code  
(Bipolar Outputs)  
(Unipolar Outputs)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DAC81402 DAC61402  
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.13 Typical Characteristics (continued)  
at TA = 25°C, DVDD = 5.0 V, IOVDD = 1.8 V, internal reference enabled, unipolar ranges: AVSS = 0 V and AVDD VMAX + 1.5  
V for the DAC range, bipolar ranges: AVSS VMIN 1.5 V and AVDD VMAX + 1.5 V for the DAC range, and DAC outputs  
unloaded (unless otherwise noted)  
7-7. DAC81402 TUE vs Digital Input Code  
7-8. DAC81402 TUE vs Digital Input Code  
(Bipolar Outputs)  
(Unipolar Outputs)  
7-9. DAC61402 INL vs Digital Input Code  
7-10. DAC61402 INL vs Digital Input Code  
(Bipolar Outputs)  
(Unipolar Outputs)  
7-11. DAC61402 DNL vs Digital Input Code  
7-12. DAC61402 DNL vs Digital Input Code  
(Bipolar Outputs)  
(Unipolar Outputs)  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.13 Typical Characteristics (continued)  
at TA = 25°C, DVDD = 5.0 V, IOVDD = 1.8 V, internal reference enabled, unipolar ranges: AVSS = 0 V and AVDD VMAX + 1.5  
V for the DAC range, bipolar ranges: AVSS VMIN 1.5 V and AVDD VMAX + 1.5 V for the DAC range, and DAC outputs  
unloaded (unless otherwise noted)  
7-13. DAC61402 TUE vs Digital Input Code  
7-14. DAC61402 TUE vs Digital Input Code  
(Bipolar Outputs)  
(Unipolar Outputs)  
7-15. DAC81402 INL vs Temperature  
7-16. DAC81402 DNL vs Temperature  
7-17. DAC61402 INL vs Temperature  
7-18. DAC61402 DNL vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.13 Typical Characteristics (continued)  
at TA = 25°C, DVDD = 5.0 V, IOVDD = 1.8 V, internal reference enabled, unipolar ranges: AVSS = 0 V and AVDD VMAX + 1.5  
V for the DAC range, bipolar ranges: AVSS VMIN 1.5 V and AVDD VMAX + 1.5 V for the DAC range, and DAC outputs  
unloaded (unless otherwise noted)  
7-19. TUE vs Temperature  
7-20. Unipolar Offset Error vs Temperature  
7-21. Unipolar Zero Code Error vs Temperature  
7-22. Bipolar Zero Code Error vs Temperature  
7-23. Bipolar Zero Error vs Temperature  
7-24. Gain Error vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.13 Typical Characteristics (continued)  
at TA = 25°C, DVDD = 5.0 V, IOVDD = 1.8 V, internal reference enabled, unipolar ranges: AVSS = 0 V and AVDD VMAX + 1.5  
V for the DAC range, bipolar ranges: AVSS VMIN 1.5 V and AVDD VMAX + 1.5 V for the DAC range, and DAC outputs  
unloaded (unless otherwise noted)  
7-26. Supply Current (DIDD  
)
7-25. Full-Scale Error vs Temperature  
vs Digital Input Code  
7-27. Supply Current (AIDD, AISS  
)
7-28. Supply Current (IIOVDD  
)
vs Digital Input Code  
vs Supply Voltage  
DAC range: ±20 V  
7-29. Supply Current vs Temperature  
DAC range: ±20 V  
7-30. Power-Down Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.13 Typical Characteristics (continued)  
at TA = 25°C, DVDD = 5.0 V, IOVDD = 1.8 V, internal reference enabled, unipolar ranges: AVSS = 0 V and AVDD VMAX + 1.5  
V for the DAC range, bipolar ranges: AVSS VMIN 1.5 V and AVDD VMAX + 1.5 V for the DAC range, and DAC outputs  
unloaded (unless otherwise noted)  
7-32. Source and Sink Capability  
7-31. Headroom and Footroom from Supply  
vs Output Current  
DAC range: ±10 V  
DAC range: ±10 V  
7-33. Full-Scale Settling Time, Rising Edge  
7-34. Full-Scale Settling Time, Falling Edge  
DAC range: ±20 V  
DAC range: ±10 V  
7-35. DAC Output Enable Glitch  
7-36. Glitch Impulse, 1 LSB Step,  
Rising Edge  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.13 Typical Characteristics (continued)  
at TA = 25°C, DVDD = 5.0 V, IOVDD = 1.8 V, internal reference enabled, unipolar ranges: AVSS = 0 V and AVDD VMAX + 1.5  
V for the DAC range, bipolar ranges: AVSS VMIN 1.5 V and AVDD VMAX + 1.5 V for the DAC range, and DAC outputs  
unloaded (unless otherwise noted)  
DAC range: ±10 V  
7-37. Glitch Impulse, 1 LSB Step,  
7-38. Power-Up Response  
Falling Edge  
DAC range: ±20 V  
7-40. Clear Command Response  
7-39. Power-Down Response  
DAC range: 0 V to 5 V, midscale code  
7-42. DAC Output Noise  
DAC range: 0 V to 5 V, midscale code  
7-41. DAC Output Noise Density vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
7.13 Typical Characteristics (continued)  
at TA = 25°C, DVDD = 5.0 V, IOVDD = 1.8 V, internal reference enabled, unipolar ranges: AVSS = 0 V and AVDD VMAX + 1.5  
V for the DAC range, bipolar ranges: AVSS VMIN 1.5 V and AVDD VMAX + 1.5 V for the DAC range, and DAC outputs  
unloaded (unless otherwise noted)  
7-43. Internal Reference Voltage vs Temperature  
7-44. Internal Reference Voltage  
vs Supply Voltage  
7-45. Internal Reference Voltage vs Time  
7-46. Internal Reference Noise Density vs Frequency  
7-48. Internal Reference Temperature Drift Histogram  
7-47. Internal Reference Noise  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The 16-bit DAC81402 and 12-bit DAC61402 (DACx1402) are pin-compatible, dual-channel, high-voltage-output  
digital-to-analog converters (DACs). The DACx1402 consist of an R-2R based ladder followed by an output  
buffer. These devices also include a precision reference and a reference buffer. The R-2R-based ladder is  
production trimmed to provide monotonicity and a linearity of ±1 LSB. The devices are also optimized to reduce  
the code-to-code change glitch to less than 2 nV-s.  
The DACx1402 output amplifier provides bipolar voltage outputs up to ±20 V, and unipolar voltage outputs up to  
40 V. Each output channel includes sense pins that eliminate the IR drop across load connections and sense a  
difference of up to ±12 V between the load and DAC grounds. Alternatively, the sense pins can also be used for  
output offset adjustment. An external capacitor compensation pin is also provided to stabilize the output amplifier  
for high capacitive loads.  
Communication to the DACx1402 is performed through a 4-wire serial interface that supports stand-alone and  
daisy-chain operation. An optional frame-error check provides added robustness to the device serial interface.  
The DACx1402 incorporate a power-on-reset circuit that connects the DAC outputs to ground at power up. The  
outputs remain in this mode until the device is properly configured for operation. The devices include additional  
reliability features such as short-circuit protection and a thermal alarm.  
8.2 Functional Block Diagram  
IOVDD DVDD  
FAULT  
REFIO  
AVDD  
Internal Reference  
Power On  
Reset  
REF  
BUF  
SCLK  
SDIN  
REF  
SYNC  
DAC  
Ladder  
Buffer  
Register  
Active  
Register  
CCOMP[A:B]  
OUT[A:B]  
+
SDO  
LDAC  
RST  
œ
40 kΩ  
SENSEP[A:B]  
SENSEN[A:B]  
40 kΩ  
CLR  
Channel  
A
40 kΩ  
œ
+
40 kΩ  
Resistor Gain  
Network  
REF  
GND  
AGND  
REFGND  
AVSS  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DAC81402 DAC61402  
 
 
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8.3 Feature Description  
Each output channel in the device consists of an R-2R ladder digital-to-analog converter (DAC) with dedicated  
reference and ground buffers, and an output buffer amplifier capable of rail-to-rail operation. The device also  
includes an internal 2.5-V reference. 8-1 shows a simplified diagram of the device architecture.  
DVDD  
IOVDD  
REFIO  
Internal  
Reference  
REF  
BUF  
REF  
DAC  
Ladder  
Buffer  
Register  
Active  
Register  
AVDD  
(async mode)  
CCOMPX  
OUTX  
+
-
Clear Signal  
LDAC Trigger  
(synchronous mode)  
AVSS  
40 k  
40 k  
SENSEPX  
SENSENX  
40 k  
40 k  
-
+
Resistor Gain  
Network  
REF  
GND  
AGND  
REFGND  
8-1. Device Architecture  
8.3.1 R-2R Ladder DAC  
The DAC architecture consists of a voltage-output, segmented, R-2R ladder as shown in 8-2. The device  
incorporates a dedicated reference buffer per output channel that provides constant input impedance with code  
at the REFIO pin. The output of the reference buffers drives the R-2R ladders. A production trim process  
provides excellent linearity and low glitch.  
Output  
Amplifier  
R
R
R
R
OUTX  
Internal  
Reference  
REFIO  
Reference  
Buffer  
REFGND  
8-2. R-2R Ladder  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
 
 
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8.3.2 Programmable-Gain Output Buffer  
The voltage output stage as conceptualized in 8-3 provides the voltage output according to the DAC code and  
the output range setting.  
REFIO  
AVDD  
DAC  
CCOMPX  
OUTX  
+
Ladder  
-
AVSS  
40 k  
40 k  
SENSEPX  
SENSENX  
40 k  
-
+
40 k  
R
REFIO  
Resistor Gain  
Network  
REFGND  
8-3. Voltage Output Buffer  
For unipolar output mode, the output range can be programmed as:  
0 V to 5 V  
0 V to 10 V  
0 V to 20 V  
0 V to 40 V  
For bipolar output mode, the output reange can be programmed as:  
±5 V  
±10 V  
±20 V  
In addition, 20% overrange is available on all ranges except for 0 V to 40 V and ±20 V.  
The input data are written to the individual DAC data registers in straight-binary format for all output ranges. The  
output voltage (VOUTX) can be expressed as 方程1 and 方程2.  
For unipolar output mode  
CODE  
VOUTX = VREFIO ìGAINì  
2N  
(1)  
(2)  
For bipolar output mode  
VREFIO  
CODE  
2N  
VOUTX = VREFIO ìGAINì  
- GAINì  
2
where:  
CODE is the decimal equivalent of the binary code loaded to the DAC data register.  
N is the DAC resolution in bits.  
VREFIO is the reference voltage (internal or external).  
GAIN is the gain factor assigned to each output voltage output range as shown in 8-1.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DAC81402 DAC61402  
 
 
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8-1. Voltage Output Range vs Gain Setting  
MODE  
VOLTAGE OUTPUT RANGE  
GAIN  
2.0  
5 V  
6 V (20% overrange)  
10 V  
2.4  
4.0  
Unipolar  
12 V (20% overrange)  
20 V  
4.8  
8.0  
24 V (20% overrange)  
40 V  
9.6  
16.0  
4.0  
±5 V  
±6 V (20% overrange)  
±10 V  
4.8  
Bipolar  
8.0  
±12 V (20% overrange)  
±20 V  
9.6  
16.0  
The output amplifiers can drive up to ±15 mA with 1.5-V supply headroom while maintaining the specified TUE  
specification for the device. The output stage has short-circuit current protection that limits the output current to  
40 mA. The device is able to drive capacitive loads up to 1 µF. For loads greater than 2 nF, an external  
compensation capacitor must be connected between the CCOMPx and OUTx pins to keep the output voltage  
stable, but at the expense of reduced bandwidth and increased settling time.  
8.3.2.1 Sense Pins  
The SENSEPx pins are provided to enable sensing of the load by connecting to points electrically closer to the  
load. This configuration allows the internal output amplifier to make sure that the correct voltage is applied  
across the load, as long as headroom is available on the power supply. The SENSEPx pins are used to correct  
for resistive drops on the system board, and are connected to VOUTX at the pins. In some cases, both VOUTX and  
VSENSEPX are brought out through separate lines and connected remotely together at the load. In such cases, if  
the VSENSEPX line is cut, then the amplifier loop is broken; use a 5-kΩresistor between the OUTx and SENSEPx  
pins to maintain proper amplifier operation.  
The SENSENx pins are provided as remote ground sense reference outputs from the internal VOUTX amplifier.  
The output swing of the VOUTX amplifier is relative to the voltage seen at these pins. The voltage difference  
between VSENSENX and the device ground must be lower than ±12 V.  
At device start up, the power-on-reset circuit makes sure that all registers are at default values. The voltage  
output buffer is in a Hi-Z state; however, the SENSEPx pins connect to the amplifier inputs through an internal  
40-kΩ feedback resistor (8-3). If the OUTx and SENSEPx pins are connected together, the OUTx pins are  
also connected to the same node through the feedback resistor. This node is protected by internal circuitry and  
settles to a value between GND and the reference input.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8.3.3 DAC Register Structure  
Data written to the DAC data registers is initially stored in the DAC buffer registers. The transfer of data from the  
DAC buffer registers to the active registers can be configured to occur immediately (asynchronous mode) or be  
initiated by a DAC trigger signal (synchronous mode). After the active registers are updated, the DAC outputs  
change to the new values.  
After a power-on or reset event, all DAC registers set to zero code, the DAC output amplifiers power down, and  
the DAC outputs connect to ground.  
8.3.3.1 DAC Output Update  
The DAC double-buffered architecture enables data updates without disturbing the analog outputs. Data updates  
can be performed either in synchronous or asynchronous mode. The device offers both software and hardware  
data update control.  
The update mode for each DAC channel is determined by the status of the corresponding SYNC-EN bit. In both  
update modes, a minimum wait time of 2.4 μs is required between DAC output updates.  
8.3.3.1.1 Synchronous Update  
In synchronous mode, writing to the DAC data register does not automatically update the DAC output. Instead  
the update occurs only after a trigger event. A DAC trigger signal is generated eigher through the SOFT-LDAC  
bit or by the LDAC pin. The synchronous update mode enables simultaneous update of multiple DAC outputs.  
8.3.3.1.2 Asynchronous Update  
In asynchronous mode, a DAC data register write results in an immediate update of the DAC active register and  
DAC output on a SYNC rising edge.  
8.3.3.2 Broadcast DAC Register  
The DAC broadcast register enables a simultaneous update of multiple DAC outputs with the same value with a  
single register write.  
Each DAC channel can be configured to update or remain unaffected by a broadcast command by setting the  
corresponding DAC-BRDCAST-EN bit. A register write to the BRDCAST-DATA register forces those DAC  
channels that have been configured for broadcast operation to update their DAC buffer registers to this value.  
The DAC outputs update to the broadcast value according to their synchronous mode configuration.  
8.3.3.3 Clear DAC Operation  
The DAC outputs are set in clear mode either through the CLR pin or the SOFT-CLR bit. In clear mode, each  
DAC data register is set to either zero code (if configured for unipolar range operation) or midscale code (if set  
for bipolar range operation). A clear command forces all DAC channels to clear the contents of their buffer and  
active registers to the clear code regardless of their synchronization setting.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8.3.4 Internal Reference  
The device includes a precision 2.5-V band-gap reference with a maximum temperature drift of 10 ppm/°C. The  
internal reference is in power-down mode by default.  
The internal reference voltage is available at the REFIO pin and can source up to 5 mA. To filter noise, place a  
minimum 150-nF capacitor between the reference output and ground.  
External reference operation is also supported. The external reference is applied to the REFIO pin. If using an  
external reference, power down the internal reference.  
8.3.5 Power-On Reset (POR)  
The device incorporates a power-on-reset function. After the supplies reach their minimum specified values, a  
POR event is issued. Additionally, a POR event can be initiated by the RST pin or a SOFT-RESET command.  
A POR event causes all registers to initialize to default values, and communication with the device is valid only  
after a 1 ms POR delay. After a POR event, the device is set to power-down mode, where all DAC channels and  
internal reference are powered down and the DAC outputs are connected to ground through a 10-kΩ internal  
resistor.  
8.3.5.1 Hardware Reset  
A device hardware reset event is initiated by a minimum 20-ns logic low on the RST pin.  
8.3.5.2 Software Reset  
The device implements a software reset feature. A device software reset is initiated by writing reserved code  
0x1010 to SOFT-RESET in the TRIGGER register. The software reset command is triggered on the SYNC rising  
edge of the instruction.  
8.3.6 Thermal Alarm  
The device incorporates a thermal shutdown that is triggered when the die temperature exceeds 140°C. A  
thermal shutdown sets the TEMP-ALM bit, and causes all DAC outputs to power-down; however, the internal  
reference remains powered on. The FAULT pin can be configured to monitor a thermal shutdown condition by  
setting the TEMPALM-EN bit. After a thermal shutdown is triggered, the device stays in shutdown even after the  
device temperature lowers.  
The die temperature must fall to less than 140°C before the device can be returned to normal operation. To  
resume normal operation, the thermal alarm must be cleared through the ALM-RESET bit while the DAC  
channels are in power-down mode.  
8.4 Device Functional Modes  
8.4.1 Power-Down Mode  
The device output amplifiers and internal reference power-down status can be individually configured and  
monitored though the PWDWN registers. Setting a DAC channel in power-down mode disables the output  
amplifier and clamps the output pin to ground through an internal 10-kΩresistor.  
The DAC data registers are not cleared when the DAC goes into power-down mode. Therefore, upon return to  
normal operation, the DAC output voltages return to the same respective voltages prior to the device entering  
power-down mode. The DAC data registers can be updated while in power-down mode, which allows for  
changing the power-on voltage, if required.  
After a power-on or reset event, all the DAC channels and the internal reference are in power-down mode. The  
entire device can be configured into power-down or active modes through the DEV-PWDWN bit.  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8.5 Programming  
The device is controlled through an SPI-compatible, flexible, four-wire, serial interface. The interface provides  
access to the device registers, and can be configured to daisy-chain multiple devices for write operations. The  
device incorporates an optional error-checking mode to validate SPI data communication integrity in noisy  
environments.  
8.5.1 Stand-Alone Operation  
A serial interface access cycle is initiated by asserting the SYNC pin low. The serial clock, SCLK, can be a  
continuous or gated clock. SDIN data are clocked on SCLK falling edges. A regular serial interface access cycle  
is 24 bits long with error checking disabled and 32 bits long with error checking enabled. Therefore, the SYNC  
pin must stay low for at least 24 or 32 SCLK falling edges. The access cycle ends when the SYNC pin is  
deasserted high. If the access cycle contains less than the minimum clock edges, the communication is ignored.  
If the access cycle contains more than the minimum clock edges, only the first 24 or 32 bits are used by the  
device. When SYNC is high, the SCLK and SDIN signals are blocked, and SDO is in a Hi-Z state.  
8-2 describes the format for an error-checking-disabled access cycle (24-bits long). The first byte input to  
SDIN is the instruction cycle. The instruction cycle identifies the request as a read or write command and the 6-  
bit address that is to be accessed. The last 16 bits in the cycle form the data cycle.  
8-2. Serial Interface Access Cycle  
BIT  
FIELD  
DESCRIPTION  
Identifies the communication as a read or write command to the address  
register:  
R/W = 0 sets a write operation.  
R/W = 1 sets a read operation  
23  
RW  
22  
x
Don't care bit  
Register address specifies the register to be accessed during the read or  
write operation  
21-16  
A[5:0]  
Data cycle bits:  
If a write command, the data cycle bits are the values to be written to the  
register with address A[5:0]  
15-0  
DI[15:0]  
If a read command, the data cycle bits are don't care values  
Read operations require that the SDO pin is first enabled by setting the SDO-EN bit. A read operation is initiated  
by issuing a read command access cycle. After the read command, a second access cycle must be issued to get  
the requested data. The output data format is shown in 8-3. Data are clocked out on the SDO pin either on  
the falling edge or rising edge of SCLK according to the FSDO bit.  
8-3. SDO Output Access Cycle  
BIT  
23  
FIELD  
DESCRIPTION  
RW  
Echo RW from previous access cycle  
22  
x
Echo bit 22 from previous access cycle  
21-16  
15-0  
A[5:0]  
DO[15:0]  
Echo address from previous access cycle  
Readback data requested on previous access cycle  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DAC81402 DAC61402  
 
 
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8.5.2 Daisy-Chain Operation  
For systems that contain several devices, the SDO pin can be used to daisy-chain the devices together. Daisy-  
chain operation is useful in reducing the number of serial interface lines.The SDO pin must be enabled by setting  
the SDO-EN bit before initiating daisy-chain operation.  
The first falling edge on the SYNC pin starts the operation cycle (see 8-4). If more than 24 clock pulses are  
applied while the SYNC pin is kept low, the data ripple out of the shift register and are clocked out on the SDO  
pin, either on the falling edge or rising edge of SCLK according to the FSDO bit. By connecting the SDO output  
of the first device to the SDIN input of the next device in the chain, a multiple-device interface is constructed.  
Each device in the daisy-chain system requires 24 clock pulses. As a result the total number of clock cycles  
must be equal to 24 × N, where N is the total number of devices in the daisy chain. When the serial transfer to all  
devices is complete, the SYNC signal is taken high. This action transfers the data from the SPI shift registers to  
the internal register of each device in the daisy chain, and prevents any further data from being clocked into the  
input shift register.  
SYNC  
1
8
9
24  
25  
48  
49  
72  
SCLK  
Device A command  
Device B command  
NOP  
D23  
D16  
D15  
D0  
SDIN  
D23 œ D1  
D0  
D23 œ D1  
D0  
SDO  
Device A command  
Device B command  
8-4. Serial Interface Daisy-Chain Write Cycle  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8.5.3 Frame Error Checking  
If the device is used in a noisy environment, error checking can be used to check the integrity of SPI data  
communication between the device and the host processor. This feature is enabled by setting the CRC-EN bit.  
The error checking scheme is based on the CRC-8-ATM (HEC) polynomial: x8 + x2 + x + 1 (that is, 100000111).  
When error checking is enabled, the serial interface access cycle width is 32 bits. The normal 24-bit SPI data are  
appended with an 8-bit CRC polynomial by the host processor before feeding the data to the device. In all serial  
interface readback operations, the CRC polynomial is output on the SDO pin as part of the 32-bit cycle.  
8-4. Error Checking Serial Interface Access Cycle  
BIT  
FIELD  
DESCRIPTION  
Identifies the communication as a read or write command to the address  
register.  
R/W = 0 sets a write operation.  
R/W = 1 sets a read operation.  
31  
RW  
30  
CRC-ERROR  
A[5:0]  
Reserved bit. Set to zero.  
Register address. Specifies the register to be accessed during the read or  
write operation.  
29-24  
Data cycle bits.  
If a write command, the data cycle bits are the values to be written to the  
register with address A[5:0].  
If a read command, the data cycle bits are don't care values.  
23-8  
7-0  
DI[15:0]  
CRC  
8-bit CRC polynomial.  
The device decodes the 32-bit access cycle to compute the CRC remainder on SYNC rising edges. If no error  
exists, the CRC remainder is zero and data are accepted by the device.  
A write operation failing the CRC check causes the data to be ignored by the device. After the write command, a  
second access cycle can be issued to determine the error checking results (CRC-ERROR bit) on the SDO pin.  
If there is a CRC error, the CRC-ALM bit of the status register is set to 1. The FAULT pin can be configured to  
monitor a CRC error by setting the CRCALM-EN bit.  
8-5. Write Operation Error Checking Cycle  
BIT  
31  
FIELD  
DESCRIPTION  
Echo RW from previous access cycle (RW = 0).  
Returns a 1 when a CRC error is detected; otherwise, returns a 0.  
Echo address from previous access cycle.  
Echo data from previous access cycle.  
RW  
30  
CRC-ERROR  
A[5:0]  
29-24  
23-8  
7-0  
DO[15:0]  
CRC  
Calculated CRC value of bits 31:8.  
A read operation must be followed by a second access cycle to get the requested data on the SDO pin. The  
error check result (CRC-ERROR bit) from the read command is output on the SDO pin.  
As in the case of a write operation failing the CRC check, the CRC-ALM bit of the status register is set to 1, and  
the ALMOUT pin, if configured for CRC alerts, is set low.  
8-6. Read Operation Error Checking Cycle  
BIT  
31  
FIELD  
DESCRIPTION  
Echo RW from previous access cycle (RW = 1).  
Returns a 1 when a CRC error is detected; otherwise, returns a 0.  
Echo address from previous access cycle.  
RW  
30  
CRC-ERROR  
A[5:0]  
29-24  
23-8  
7-0  
DO[15:0]  
CRC  
Readback data requested on previous access cycle.  
Calculated CRC value of bits 31:8.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8.6 Register Map  
8-7 lists the memory-mapped registers for the device. All register addresses not listed should be considered as reserved locations and the register  
contents should not be modified.  
8-7. Register Map  
BIT DESCRIPTION  
ADDR  
(HEX)  
RESET  
(HEX)  
REGISTER  
TYPE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
00  
01  
NOP  
W
0000  
NOP[15:0]  
0A70(1)  
or  
DEVICEID  
R
DEVICEID[13:0]  
VERSIONID[1:0]  
0930(2)  
DAC-  
BUSY  
TEMP-  
ALM  
02  
03  
04  
STATUS  
R
0000  
0AA4  
4000  
RESERVED  
CRC-ALM  
SDO-EN  
TEMPALM- DACBUSY- CRCALM-  
EN EN EN  
DEV-  
PWDWN  
SPICONFIG  
GENCONFIG  
R/W  
R/W  
RESERVED  
RESERVED  
CRC-EN  
RSVD  
RSVD  
FSDO  
RSVD  
REF-  
PWDWN  
RSVD  
RESERVED  
DACB-  
DACA-  
BRDCAST BRDCAST  
05  
06  
BRDCONFIG  
R/W  
R/W  
000F  
0000  
RESERVED  
RSVD  
-EN  
-EN  
DACB-  
DACA-  
SYNC-EN SYNC-EN  
SYNCCONFIG  
RESERVED  
RSVD  
RSVD  
RSVD  
RSVD  
DACB-  
PWDWN  
DACA-  
PWDWN  
09  
0A  
0E  
DACPWDWN  
DACRANGE  
TRIGGER  
R/W  
W
FFFF  
0000  
0000  
RESERVED  
RESERVED  
DACB-RANGE[3:0]  
DACA-RANGE[3:0]  
RESERVED  
RESERVED  
SOFT-RESET[3:0]  
ALM-  
RESET  
SOFT-  
LDAC  
R/W  
RESERVED  
SOFT-CLR  
0F  
11  
12  
BRDCAST  
DACA  
W
W
W
0000  
0000  
0000  
BRDCAST-DATA[15:0]  
DACA-DATA[15:0]  
DACB-DATA[15:0]  
DACB  
(1) Reset code for DAC81402.  
(2) Reset code for DAC61402.  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
 
 
 
 
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8.6.1 NOP Register (address = 00h) [reset = 0000h]  
Return to Register Map.  
8-5. NOP Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NOP[15:0]  
W-0000h  
8-8. NOP Register Field Descriptions  
Bit  
15-0  
Field  
NOP[15:0]  
Type  
Reset  
Description  
W
0000h  
No operation. Write 0000h for proper no-operation command.  
8.6.2 DEVICEID Register (address = 01h) [reset = 0A70h or 0930h]  
Return to Register Map.  
8-6. DEVICEID Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
DEVICEID[13:6]  
R
4
3
DEVICEID[5:0]  
R
VERSIONID[1:0]  
R-0h  
8-9. DEVICEID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
029Ch  
024Ch  
0h  
Description  
15-2  
DEVICEID[13:0]  
R
DAC81402 device ID.  
DAC61402 device ID.  
Version ID. Subject to change.  
1-0  
VERSIONID[1:0]  
R
8.6.3 STATUS Register (address = 02h) [reset = 0000h]  
Return to Register Map.  
8-7. STATUS Register  
15  
7
14  
6
13  
12  
11  
10  
9
8
0
RESERVED  
R-00h  
5
4
3
2
1
RESERVED  
R-00h  
CRC-ALM  
R-0h  
DAC-BUSY  
R-0h  
TEMP-ALM  
R-0h  
8-10. STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000h  
0h  
Description  
15-3  
RESERVED  
CRC-ALM  
R
Reserved for factory use  
CRC-ALM = 1 indicates a CRC error.  
2
1
0
R
DAC-BUSY  
TEMP-ALM  
R
0h  
DAC-BUSY = 1 indicates DAC registers are not ready for updates.  
R
0h  
TEMP-ALM = 1 indicates die temperature is over 140°C. A thermal  
alarm event forces the DAC outputs to go into power-down mode.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8.6.4 SPICONFIG Register (address = 03h) [reset = 0AA4h]  
Return to Register Map.  
8-8. SPICONFIG Register  
15  
14  
13  
5
12  
11  
10  
9
CRCALM-EN  
R/W-1h  
1
8
RESERVED  
R-0h  
RESERVED  
R-0h  
TEMPALM-EN DACBUSY-EN  
R/W-1h  
3
R/W-0h  
2
7
6
4
0
RESERVED  
DEV-PWDWN  
R/W-1h  
CRC-EN  
R/W-0h  
RESERVED  
R-0h  
SDO-EN  
R/W-1h  
FSDO  
RESERVED  
R-0h  
R-1h  
R-0h  
R/W-0h  
8-11. SPICONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11  
RESERVED  
R
0h  
Reserved for factory use  
TEMPALM-EN  
DACBUSY-EN  
R/W  
R/W  
1h  
When set to 1, a thermal alarm triggers the FAULT pin.  
10  
0h  
When set to 1, the FAULT pin is set between DAC output updates.  
Contrary to other alarm events, this alarm resets automatically.  
9
8-6  
5
CRCALM-EN  
RESERVED  
DEV-PWDWN  
R/W  
R
1h  
2h  
1h  
When set to 1, a CRC error triggers the FAULT pin..  
Reserved for factory use  
R/W  
DEV-PWDWN = 1 sets the device in power-down mode.  
DEV-PWDWN = 0 sets the device in active mode.  
4
3
2
1
CRC-EN  
RESERVED  
SDO-EN  
FSDO  
R/W  
R
0h  
0h  
1h  
0h  
When set to 1, frame error checking is enabled.  
Reserved for factory use  
R/W  
R/W  
When set to 1, the SDO pin is operational.  
Fast SDO bit (half-cycle speedup).  
When 0, SDO updates on SCLK rising edges.  
When 1, SDO updates on SCLK falling edges.  
0
RESERVED  
R
0h  
Reserved for factory use  
8.6.5 GENCONFIG Register (address = 04h) [reset = 4000h]  
Return to Register Map.  
8-9. GENCONFIG Register  
15  
RESERVED  
R-0h  
14  
REF-PWDWN  
R/W-1h  
6
13  
5
12  
11  
10  
2
9
1
8
0
RESERVED  
R-00h  
7
4
3
RESERVED  
R-00h  
8-12. GENCONFIG Register Field Descriptions  
Bit  
15  
14  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved for factory use  
REF-PWDWN  
R/W  
1h  
REF-PWDWN = 1 powers down the internal reference.  
REF-PWDWN = 0 activates the internal reference.  
13-0  
RESERVED  
R
0000h  
Reserved for factory use  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8.6.6 BRDCONFIG Register (address = 05h) [reset = 000Fh]  
Return to Register Map.  
8-10. BRDCONFIG Register  
15  
7
14  
6
13  
5
12  
11  
10  
9
8
RESERVED  
R-00h  
4
3
2
1
0
RESERVED  
R-0h  
RESERVED  
R-1h  
DACB-  
DACA-  
RESERVED  
BRDCAST-EN BRDCAST-EN  
R/W-1h R/W-1h  
R-1h  
8-13. BRDCONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
000h  
1h  
Description  
15-4  
RESERVED  
R
Reserved for factory use  
Reserved for factory use  
3
2
1
RESERVED  
R
DACB-BRDCAST-EN  
DACA-BRDCAST-EN  
R/W  
R/W  
1h  
When set to 1, the corresponding DAC is set to update the output to  
the value set in the BDCAST register.  
When cleared to 0, the corresponding DAC output remains  
unaffected by a BRDCAST command.  
1h  
0
RESERVED  
R
1h  
Reserved for factory use  
8.6.7 SYNCCONFIG Register (address = 06h) [reset = 0000h]  
Return to Register Map.  
8-11. SYNCCONFIG Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
RESERVED  
R-00h  
4
3
0
RESERVED  
R-0h  
RESERVED  
DACB-SYNC-  
EN  
DACA-SYNC-  
EN  
RESERVED  
R-0h  
R/W-0h  
R/W-0h  
R-0h  
8-14. SYNCCONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
000h  
0h  
Description  
15-4  
RESERVED  
R
Reserved for factory use  
Reserved for factory use  
3
2
1
RESERVED  
R
DACB_SYNC_EN  
DACA_SYNC_EN  
R/W  
R/W  
0h  
When set to 1, the corresponding DAC is set to update in response  
to an LDAC trigger (synchronous mode).  
When cleared to 0, the corresponding DAC output is set to update  
immediately on SYNC rising edge (asynchronous mode).  
0h  
0
RESERVED  
R
0h  
Reserved for factory use  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8.6.8 DACPWDWN Register (address = 09h) [reset = FFFFh]  
Return to Register Map.  
8-12. DACPWDWN Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
RESERVED  
R-FFh  
4
3
RESERVED  
R-Fh  
RESERVED DACB-PWDWN DACA-PWDWN RESERVED  
R-1h R/W-1h R/W-1h R-1h  
8-15. DACPWDWN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
FFFh  
1h  
Description  
15-4  
RESERVED  
R
Reserved for factory use  
Reserved for factory use  
3
2
1
0
RESERVED  
R
DACB-PWDWN  
DACA-PWDWN  
RESERVED  
R/W  
R/W  
R
1h  
When set to 1, the corresponding DAC is in power-down mode, and  
the output is connected to ground through a 10-kΩinternal resistor.  
1h  
1h  
Reserved for factory use  
8.6.9 DACRANGE Register (address = 0Ah) [reset = 0000h]  
Return to Register Map.  
8-13. DACRANGE Register  
15  
7
14  
13  
5
12  
11  
10  
9
8
0
RESERVED  
W-0h  
DACB-RANGE[3:0]  
W-0h  
6
4
3
2
1
DACA-RANGE[3:0]  
W-0h  
RESERVED  
W-0h  
8-16. DACRANGE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-8  
7-4  
RESERVED  
W
0h  
Reserved for factory use  
DACB-RANGE[3:0]  
DACA-RANGE[3:0]  
W
0h  
Sets the output range for the corresponding DAC.  
0000: 0 V to 5 V  
1000: 0 V to 6 V  
W
0h  
0001: 0 V to 10 V  
1001: 0 V to 12 V  
0010: 0 V to 20 V  
1010: 0 V to 24 V  
0011: 0 V to 40 V  
0101: 5 V to +5 V  
1101: 6 V to +6 V  
0110: 10 V to +10 V  
1110: 12 V to +12 V  
0111: 20 V to +20 V  
All others: invalid  
3-0  
RESERVED  
W
0h  
Reserved for factory use  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8.6.10 TRIGGER Register (address = 0Eh) [reset = 0000h]  
Return to Register Map.  
8-14. TRIGGER Register  
15  
7
14  
13  
5
12  
11  
10  
2
9
SOFT-CLR  
W-0h  
8
ALM-RESET  
W-0h  
RESERVED  
W-00h  
6
4
3
1
0
RESERVED  
W-0h  
SOFT-LDAC  
W-0h  
SOFT-RESET[3:0]  
W-0h  
8-17. TRIGGER Register Field Descriptions  
Bit  
Field  
Type  
Reset  
00h  
0h  
Description  
15-10  
RESERVED  
SOFT-CLR  
ALM-RESET  
W
Reserved for factory use  
9
8
W
Set this bit to 1 to clear all DAC outputs.  
W
0h  
Set this bit to 1 to clear an alarm event. Not applicable for a DAC-  
BUSY alarm event.  
7-5  
4
RESERVED  
SOFT-LDAC  
W
W
0h  
0h  
Reserved for factory use  
Set this bit to 1 to synchronously load the DACs that have been set  
in synchronous mode in the SYNCCONFIG register.  
3-0  
SOFT_RESET[3:0]  
W
0h  
Set these bits to reserved code 1010 to reset the device to the  
default state.  
8.6.11 BRDCAST Register (address = 0Fh) [reset = 0000h]  
Return to Register Map.  
8-15. BRDCAST Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BRDCAST-DATA[15:0]  
W-0000h  
8-18. BRDCAST Register Field Descriptions  
Bit  
15-0  
Field  
BRDCAST_DATA[15:0]  
Type  
Reset  
Description  
W
0000h  
Writing to the BRDCAST register forces the DAC channels that have  
been set to broadcast in the BRDCONFIG register to update the data  
register data to BRDCAST-DATA.  
Data are MSB aligned in straight-binary format:  
DAC81402: { DATA[15:0] }  
DAC61402: { DATA[11:0], x, x, x, x }  
x Don't care bits  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
8.6.12 DACn Register (address = 11h to 12h) [reset = 0000h]  
Return to Register Map.  
8-16. DACn Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DACn-DATA[15:0]  
W-0000h  
8-19. DACn Register Field Descriptions  
Bit  
15-0  
Field  
DACn-DATA[15:0]  
Type  
Reset  
Description  
W
0000h  
Stores the data to be loaded to DACn in MSB-aligned, straight-binary  
format:  
DAC81402: { DATA[15:0] }  
DAC61402: { DATA[11:0], x, x, x, x }  
x Don't care bits  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The primary applications for the device include motor-drive circuits in industrial environments, and  
programmable power supplies commonly used in automated test equipment and laboratory power supplies. In  
these applications, high precision and programmable voltage ranges are important considerations. The excellent  
device linearity of ±1 LSB INL and inherently monotonic design meets the criteria for these applications.  
9.2 Typical Application  
In industrial automation and process control applications, voltage and current analog output signals are used to  
operate control sources such as motors, solenoids and valve based actuators. The DAC provides a voltage  
output which is then used by control modules to drive industrial motors. Standard analog output ranges provided  
by these programmable logic control (PLC) systems include: 5 V, 10 V, ± 5 V and ± 12 V.  
The end application and user requirements determine the appropriate output range, so software programmability  
of the output range is a desirable function in many system designs. Furthermore force-sense of the output  
voltage, capacitive load stability even with long cables at the DAC outputs, and smaller packages which enable  
multi-channel systems, are all important factors in these applications. Motor drive applications require a high  
precision voltage output to precisely control the motor movements in factory automations. 9-1 illustrates a  
simple voltage output module driving motors in an industrial CNC control application  
R_LIMIT  
SENSEP  
Ccomp  
DAC61402  
CCOMP  
œ
R_LIMIT  
VOUT  
IO Protection  
+
Cable  
Driver  
Stage  
+
DAC Ladder  
œ
SENSEN  
Motor  
Position  
Encoder  
Analog Output Module  
Motor Control Module  
9-1. Motor Drive Circuit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DAC81402 DAC61402  
 
 
 
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
9.2.1 Design Requirements  
Voltage range: 0 to 5 V, 0 to 10 V, 0 to 40 V, and ± 20 V  
Capacitive load: 1 μF  
Bipolar supply voltage: AVDD = 21 V, AVSS = 21 V  
Unipolar supply voltage: AVDD = 41.5 V, AVSS = 0 V  
EOS protection: Required  
9.2.2 Detailed Design Procedure  
The DACx1402 are an excellent choice for this application because of their exceptional linearity and  
programmable output ranges which simplify the drive stage design. Since the maximum output voltage  
requirements is ±20 V, the AVDD and AVSS supplies should be set to 21 V and 21 V, respectively. In unipolar  
output range, the AVDD supply should be set to 41 V for a full-scale output voltage of 40 V. In unipolar designs,  
the AVSS supply can be tied to ground. In all cases, the supply voltages must be selected such that the AVDD  
AVSS voltage does not exceed 41.5 V.  
The analog output module design includes an external electrical overstress protection circuit for short circuit  
events. R_LIMIT sets the maximum current flowing into the device in the event of an electrical overstress  
condition. The design uses a compensation capacitor for driving large cables such as the ones found in  
industrial environments. A CCOMP value of 470 pF is sufficient to drive capacitive loads as large as 1 μF.  
9-2 shows a simplified structure of the device output pins, represented as a pair of clamp-to-rail diodes  
connected to the AVDD and AVSS supply rails.  
AVSS  
AVDD  
C2  
C3  
AVDD  
AVSS  
AVDD  
R2  
SENSEP  
AVDD  
AVSS  
AVDD  
D1  
Voltage  
Output  
R1  
FB1  
OUT  
AVDD  
C_ext  
TVS  
D3  
D2  
AVSS  
AVDD  
C1  
CCOMP  
AVSS  
AVSS  
R3  
SENSEN  
AVSS  
(Single Channel Illustrated for Simplicity)  
9-2. Electrical Overstress (EOS) Protection Scheme  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
If the device output pins are exposed to industrial transient testing without external protection components, the  
diode structures will become forward biased and conduct current. If the conducted current is large, as is common  
in high-voltage industrial transient tests, the structures will become permanently damaged and impact the device  
functionality.  
Both attenuation and diversion strategies are implemented to protect the device. Attenuation is realized by the  
capacitor Cext which forms an RC low-pass filter when interacting with the source impedance of the transient  
generator. The ferrite bead FB1 also helps attenuate high-frequency currents, along with both AC and DC  
current limiters realized by the series pass elements R1, R2, and R3.  
Diversion is achieved by the transient voltage suppressor (TVS) diode D3 and clamp-to-rail diodes D1 and D2.  
The combined effects of both strategies effectively limits the current flowing into the device internal diode  
structures to prevent permanent damage. If we assume the schottky diode clamps VOUT to ±1.5 V from rail, then  
the peak current entering the device is equal to 80 mA, assuming R1 = 10 Ω and the diode FB is 0.7 V. It is  
important to also include the TVS diodes D4 and D5 at the AVDD and AVSS nodes in order to provide a  
discharge path for the energy sent to these nodes through diodes D4, D5, and the internal diode structures. In  
the abscensce of these diodes when current is diverted to these nodes decoupling capacitors will charge, slowly  
increasing the voltage at these nodes which can exceed the threshold limits of AVDD and AVSS.  
9.2.3 Application Curves  
9-3. Output Voltage vs DAC Code Sweep  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DAC81402 DAC61402  
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
10 Power Supply Recommendations  
The device requires four power-supply inputs: IOVDD, DVDD, AVDD, and AVSS. A 0.1-µF ceramic capacitor  
must be connected close to each power-supply pin. In addition, a 4.7-µF or 10-µF bulk capacitor is  
recommended for each power supply. Tantalum or aluminum types can be chosen for the bulk capacitors.  
There is no sequencing requirement for the power supplies. The DAC output range is configurable; therefore,  
sufficient power-supply headroom is required to achieve linearity at codes close to the power-supply rails. When  
sourcing or sinking current from or to the DAC output, make sure to account for the effects of power dissipation  
on the temperature of the device, and ensure the device does not exceed the maximum junction temperature.  
11 Layout  
11.1 Layout Guidelines  
Printed circuit board (PCB) layout plays a significant role in achieving desired ac and dc performance from the  
device. The device has a pinout that supports easy splitting of the noisy and quiet grounds. The digital and  
analog signals are available on separate sides of the package for easy layout. 11-1 shows an example layout  
where the different ground planes have been clearly demarcated, as well as the best position for the single-point  
shorts between the planes.  
For best power-supply bypassing, place the bypass capacitors close to the respective power-supply pins.  
Provide unbroken ground reference planes for the digital signal traces, especially for the SPI and LDAC signals.  
The RST and FAULT signals are static lines; therefore these lines can lie on the analog side of the ground plane.  
11.2 Layout Example  
VOUT A  
Ccomp  
AGND PLANE  
DGND PLANE  
SDO  
1
SCLK  
SDIN  
AVDD  
SYNCZ  
LDACZ  
IOVDD  
AVSS  
CLRZ  
REFIO  
Ccomp  
VOUT B  
11-1. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DAC81402 DAC61402  
 
 
 
 
 
DAC81402, DAC61402  
ZHCSLN9A OCTOBER 2020 REVISED MAY 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, BP-DAC81404EVM, BP-DAC61402EVM user's guide  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: DAC81402 DAC61402  
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-May-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC61402RHBR  
DAC61402RHBT  
DAC81402RHBR  
DAC81402RHBT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
D61402  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
D61402  
D81402  
D81402  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-May-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC61402RHBR  
DAC61402RHBT  
DAC81402RHBR  
DAC81402RHBT  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.5  
12.4  
12.5  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC61402RHBR  
DAC61402RHBT  
DAC81402RHBR  
DAC81402RHBT  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
3000  
250  
338.0  
205.0  
338.0  
205.0  
355.0  
200.0  
355.0  
200.0  
50.0  
33.0  
50.0  
33.0  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY