DAC70504RTER [TI]

采用微型 QFN 封装、具有精密内部基准电压的真正 14 位、4 通道、SPI、电压输出 DAC | RTE | 16 | -40 to 125;
DAC70504RTER
型号: DAC70504RTER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用微型 QFN 封装、具有精密内部基准电压的真正 14 位、4 通道、SPI、电压输出 DAC | RTE | 16 | -40 to 125

转换器
文件: 总50页 (文件大小:2484K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
带有内部基准电压的 DACx0504 四通道 161412 SPI 电压输出  
DAC  
1 特性  
3 说明  
1
性能  
DAC80504DAC70504 DAC60504 (DACx0504)  
是引脚兼容系列低功耗、四通道、缓冲电压输出的数模  
转换器 (DAC),具有 1614 12 位分辨率。  
DACx0504 包括一个低漂移 2.5V 内部基准电压,大多  
数应用中无需使用外部精度 基准. 用户可选增益配置提  
1.25V(增益 = ½)、2.5V(增益 = 1)或 5V(增  
= 2)满量程输出电压。这些器件由 2.7V 5.5V  
单电源供电,具有指定单调性,并能提供 ±1LSB INL  
的高线性度。  
INL16 位分辨率下为 ±1 LSB(最大值)  
TUEFSR 最大值 ±0.1%  
集成 2.5V 精密内部基准电压  
初始精度:±5 mV,最大值  
低温漂:2ppm/°C(典型值)  
高驱动能力:20mA 0.5V 电源轨  
灵活的输出配置  
用户可选增益:21 ½  
复位至零标度或中标度  
通过一个运行时钟速率为 50MHz 4 线制串行接口与  
DACx0504 通信。VIO 引脚使串行接口可在 1.7V 至  
5.5V 电压范围内运行。DACx0504 灵活接口使其能够  
用于广泛的行业标准微处理器和微控制器。  
宽运行范围:  
电源:2.7V 5.5V  
温度:–40˚C +125˚C  
50MHzSPI 兼容串行接口  
DACx0504 采用了上电复位电路,上电后可以将 DAC  
输出保持在零电平或中间电平,直到在器件中写入一个  
有效代码。这些器件在 5.5V 时消耗 0.7mA/通道的低  
电流,因此非常适用于依靠电池供电的设备。每通道断  
电特性可将器件电流消耗量降低至 15µA。  
4 线制模式,1.7V 5.5V 工作电压  
菊链运行  
CRC 误差校验  
低功耗:0.7mA/通道 (5.5V)  
小型封装:3mm × 3mm16 引脚 WQFN  
DACx0504 可在 –40°C +125°C 的温度范围内正常  
运行,采用 3mm × 3mm QFN 小型封装。  
2 应用  
光纤网络  
器件信息(1)  
无线基础设施  
工业自动化  
器件型号  
DACx0504  
封装  
WQFN (16)  
封装尺寸(标称值)  
3.00mm × 3.00mm  
数据采集系统  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
简化方框图  
VDD  
REF  
GAIN  
VIO  
REFDIV  
Internal  
Reference  
DACx0504  
÷1 or ÷2  
GAIN  
×1 or ×2  
SCLK  
SDI  
DAC  
Register  
DAC  
Buffer  
DAC  
BUF  
OUT0  
SDO/ALARM  
CS  
Channel 0  
OUT1  
OUT2  
OUT3  
Channel 1  
Channel 2  
Channel 3  
LDAC  
Power Down Logic  
Power On Reset  
Resistive Network  
RSTSEL  
GND  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS871  
 
 
 
 
 
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
目录  
8.5 Programming........................................................... 28  
8.6 Register Map........................................................... 30  
Application and Implementation ........................ 36  
9.1 Application Information............................................ 36  
9.2 Typical Application .................................................. 38  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics........................................... 7  
7.6 Typical Characteristics............................................ 10  
Detailed Description ............................................ 20  
8.1 Overview ................................................................. 20  
8.2 Functional Block Diagram ....................................... 20  
8.3 Feature Description................................................. 21  
8.4 Device Functional Modes........................................ 25  
9
10 Power Supply Recommendations ..................... 40  
11 Layout................................................................... 40  
11.1 Layout Guidelines ................................................. 40  
11.2 Layout Example .................................................... 40  
12 器件和文档支持 ..................................................... 41  
12.1 文档支持 ............................................................... 41  
12.2 相关链接................................................................ 41  
12.3 接收文档更新通知 ................................................. 41  
12.4 社区资源................................................................ 41  
12.5 ....................................................................... 41  
12.6 静电放电警告......................................................... 41  
12.7 术语表 ................................................................... 41  
13 机械、封装和可订购信息....................................... 41  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (September 2018) to Revision C  
Page  
已添加 向数据表中增加了 DAC60504 器件 ............................................................................................................................ 1  
Changed TUE values for DAC70504 in Electrical Characteristics ......................................................................................... 7  
Changed Full-scale error values for DAC70504 in Electrical Characteristics ........................................................................ 7  
Changed Gain error values for DAC70504 in Electrical Characteristics................................................................................ 7  
Changed channel-to-channel dc crosstalk values for DAC70504 in Electrical Characteristics.............................................. 8  
Changed reference output drift values for DAC70504 in Electrical Characteristics............................................................... 9  
Changed reference thermal hysteresis values for DAC70504 in Electrical Characteristics................................................... 9  
Deleted Figure 58, DAC70504 Solder Heat Reflow Reference Voltage Shift...................................................................... 23  
Changed reset value for VERSIONID from 10 to 11 in Table 10, DEVICE ID Field Descriptions ...................................... 31  
Changes from Revision A (December 2017) to Revision B  
Page  
已更改 将 特性 中的 TUE ±0.14% 更改为 ±0.1% .............................................................................................................. 1  
已更改 将 特性 中的低温漂从 5ppm/°C 更改为 2ppm/°C,并且增加了 DAC80504 ............................................................... 1  
已删除 删除了器件信息中的 DAC80504 产品预览 ................................................................................................................. 1  
Deleted Product Preview for DAC80504 from Device Comparison Table ............................................................................ 4  
Added Added TUE DAC80504. All Gains row in Electrical Characteristics .......................................................................... 7  
Added Added Full-scale error DAC80504. All Gains row in Electrical Characteristics ......................................................... 7  
Added Added Gain error DAC80504. All Gains row in Electrical Characteristics ................................................................. 7  
Changed Short circuit current, DAC code = full scale, output shorted to GND in Electrical CharacteristicsTYP from  
35 mA to 30 mA ..................................................................................................................................................................... 8  
Changed Short circuit current, DAC code = zero scale, output shorted to VDD in Electrical Characteristics TYP from  
30 mA to 35 mA ..................................................................................................................................................................... 8  
Added Channel-to channel dc crosstalk, Measured channel at midscale. Adjacent channel at full scale. DAC80504  
in Electrical Characteristics ................................................................................................................................................... 8  
Added Channel-to-channel crosstalk, Measured channel at midscale. All other channels at full scale. DAC80504 in  
2
版权 © 2017–2019, Texas Instruments Incorporated  
 
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
Electrical Characteristics ....................................................................................................................................................... 8  
Added Added Reference output drift, DAC80504 in Electrical Characteristics ..................................................................... 9  
Added Reference thermal hysteresis, DAC80504. First cycle in Electrical Characteristics................................................... 9  
Changed some graphs in Typical Characteristics ............................................................................................................... 10  
Added Figure 59, Solder Heat Reflow Reference Voltage Shift........................................................................................... 23  
Added tLDACS and tLDACH to Table 7 ...................................................................................................................................... 28  
Added 010 (12-bit) to D14:12 Description in Table 10......................................................................................................... 31  
Changes from Original (August 2017) to Revision A  
Page  
已更改 将预告信息更改为混合状态.................................................................................................................................... 1  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
5 Device Comparison Table  
DEVICE  
RESOLUTION  
16-Bit  
REFERENCE  
DAC80504  
DAC70504  
DAC60504  
Internal (default) or External  
Internal (default) or External  
Internal (default) or External  
14-Bit  
12-Bit  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
6 Pin Configuration and Functions  
RTE Package  
16-Pin WQFN  
Top View  
REF  
OUT0  
OUT1  
OUT2  
1
2
3
4
12  
11  
10  
9
CS  
LDAC  
Thermal Pad  
REFDIV  
RSTSEL  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
When using internal reference, this is the reference output voltage pin (default). When using an  
external reference, this is the reference input pin to the device.  
REF  
1
I/O  
OUT0  
OUT1  
OUT2  
OUT3  
GND  
2
3
4
5
6
7
O
O
O
O
Analog output voltage from DAC 0.  
Analog output voltage from DAC 1.  
Analog output voltage from DAC 2.  
Analog output voltage from DAC 3.  
GND Ground reference point for all circuitry on the device.  
VDD  
PWR Analog supply voltage (2.7 V to 5.5 V).  
Sets the gain configuration after a power-up or reset event. When tied to GND, the initial buffer  
GAIN  
8
9
I
I
I
I
amplifier gain for all four channels is set to 1. When tied to VIO the initial buffer amplifier gain is 2.  
Changing the state of this pin after power-up does not affect the device operation.  
Reset select pin. When tied to GND all four DACs reset to zero scale. When connected to VIO all four  
DACs reset to midscale.  
RSTSEL  
REFDIV  
LDAC  
Sets the reference divider configuration after a power-up or reset event. When tied to GND, the  
reference voltage is not divided down. When tied to VIO the reference voltage is divided by 2. Changing  
the state of this pin after power-up does not affect the device operation.  
10  
11  
A high-to-low transition on the LDAC pin causes the DAC outputs of those channels configured in  
synchronous mode to update simultaneously. The pin can be tied permanently to GND.  
Active low serial data enable. This input is the frame synchronization signal for the serial data. When  
the signal goes low, it enables the serial interface input shift register.  
CS  
12  
13  
14  
I
I
I
SCLK  
SDI  
Serial interface clock.  
Serial interface data input. Data are clocked into the input shift register on each falling edge of the  
SCLK pin.  
Serial interface data output (default). The SDO pin is in high impedance when CS pin is high. Data are  
clocked out of the input shift register on either rising or falling edges of the SCLK pin as specified by  
the FSDO bit. Alternatively the pin can be configured as an ALARM open-drain output to indicate a  
CRC or reference alarm event. If configured as ALARM a 10 kΩ, pull-up resistor to VIO is required.  
SDO/ALARM  
15  
O
VIO  
16  
PWR IO supply voltage (1.7 V to 5.5 V). This pin sets the I/O operating voltage for the serial interface.  
The thermal pad is located on the bottom-side of the QFN package. The thermal pad should be  
Thermal Pad  
connected to any internal PCB ground plane using multiple vias for good thermal performance.  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–10  
–40  
–40  
–60  
MAX  
6
UNIT  
VDD to GND  
Suppy voltage  
V
VIO to GND  
6
DAC outputs to GND  
VDD + 0.3  
VDD + 0.3  
VIO + 0.3  
10  
Pin voltage  
Input current  
Temperature  
REF to GND  
V
Digital pins to GND  
Input current to any pin except supply pins  
Operating free-air, TA  
Junction, TJ  
mA  
°C  
125  
150  
Storage, Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±3000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
V
POWER SUPPLY  
VDD  
Analog supply voltage  
IO supply voltage  
2.7  
1.7  
5.5  
5.5  
VIO  
DIGITAL INPUTS  
Digital input voltage  
0
VIO  
V
REFERENCE INPUT  
Reference divider disabled  
Reference divider enabled  
Reference divider disabled  
Reference divider enabled  
1.2  
2.4  
1.2  
2.4  
(VDD – 0.2)/2  
VDD – 0.2  
VDD/2  
VDD = 2.7 V to 3.3 V  
VREFIN  
V
VDD = 3.3 V to 5.5 V  
VDD  
TEMPERATURE  
TA  
Operating free-air temperature  
–40  
125  
°C  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
 
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
7.4 Thermal Information  
DACx0504  
THERMAL METRIC(1)  
RTE (WQFN)  
16 PINS  
33.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
29.5  
Junction-to-board thermal resistance  
7.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
7.4  
RθJC(bot)  
0.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
all minimum and maximum specifications at VDD= 2.7 V to 5.5 V, VIO = 1.7 V to 5.5 V, VREFIN = 1.25 V to 5.5 V, RLOAD = 2 k  
to GND, CLOAD = 200 pF to GND, digital inputs at VIO or GND, and TA = –40°C to +125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
STATIC PERFORMANCE(1)  
DAC80504  
DAC70504  
DAC60504  
DAC80504  
DAC70504  
DAC60504  
16  
14  
12  
Resolution  
Bits  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.05  
±0.75  
0.5  
±1  
±1  
INL  
Integral nonlinearity  
Differential nonlinearity  
LSB  
LSB  
±1  
DAC80504, specified 16-bit monotonic  
DAC70504, specified 14-bit monotonic  
DAC60504, specified 12-bit monotonic  
±1  
DNL  
TUE  
±1  
±1  
Total unadjusted error  
Offset error  
±0.1  
±1.5  
1.5  
±0.1  
±0.1  
%FSR  
mV  
Zero-code error  
DAC code = zero scale  
mV  
Full-scale error  
±0.05  
±0.05  
±1  
%FSR  
Gain error  
%FSR  
Offset error drift  
Zero-code error drift  
Full-scale error drift  
Gain error drift  
µV/°C  
±2  
µV/°C  
±2  
ppm of FSR/°C  
ppm of FSR/°C  
ppm of FSR  
±1  
Output voltage drift over time  
TA = 25°C, DAC code = midscale, 1600 hours  
20  
(1) Static performance specified with DAC outputs unloaded for all gain options, unless otherwise noted. End point fit between codes. 16-  
bit: Code 256 to 65280, 14-bit: Code 128 to 16127, 12-bit: Code 16 to 4031.  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
 
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
all minimum and maximum specifications at VDD= 2.7 V to 5.5 V, VIO = 1.7 V to 5.5 V, VREFIN = 1.25 V to 5.5 V, RLOAD = 2 kΩ  
to GND, CLOAD = 200 pF to GND, digital inputs at VIO or GND, and TA = –40°C to +125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT CHARACTERISTICS  
Gain = 2 (BUFF-GAIN = 1, REF-DIV = 0)  
Gain = 1 (BUFF-GAIN = 1, REF-DIV = 1)  
Gain = ½ (BUFF-GAIN = 0, REF-DIV = 1)  
to GND or VDD (unloaded)  
0
0
0
2 × VREF  
VREF  
Voltage range  
V
½ × VREF  
0.004  
to GND or VDD (–5 mA IOUT 5 mA)  
to GND or VDD (–10 mA IOUT 10 mA)  
to GND or VDD (–20 mA IOUT 20 mA)  
DAC code = full scale, output shorted to GND  
DAC code = zero scale, output shorted to VDD  
DAC code = midscale, -10 mA IOUT 10 mA  
RLOAD = ∞  
0.15  
0.3  
Output voltage headroom  
V
0.5  
30  
35  
85  
Short circuit current(2)  
Load regulation  
mA  
µV/mA  
nF  
0
0
2
Maximum capacitive load(3)  
RLOAD = 2 kΩ  
10  
DAC code = midscale  
0.085  
15  
DC output impedance  
Ω
DAC code at GND or VDD  
DYNAMIC PERFORMANCE  
¼ to ¾ scale and ¾ to ¼ scale settling time to ±2  
LSB, VDD = 5.5 V, VREFIN = 2.5 V, gain = 2  
Output voltage settling time  
Slew rate  
5
1.8  
12  
µs  
V/µs  
µs  
VDD = 5.5 V, VREFIN = 2.5 V, gain = 2  
DACx-PWDWN 1 to 0 transition, DAC code = full  
Power-up time  
scale, VDD = 5.5 V, VREFIN = 2.5 V, gain = 2(4)  
DAC code = zero scale, VDD = 5.5 V, VREFIN = 2.5 V,  
gain = 2. CLOAD = 50 pF  
Power-up glitch magnitude  
Output noise  
25  
14  
78  
74  
55  
50  
85  
mV  
0.1 Hz to 10 Hz, DAC code = midscale, VDD = 5.5 V,  
VREFIN = 2.5 V, gain = 2  
µVPP  
1 kHz, DAC code = midscale, VDD = 5.5 V, VREFIN  
2.5 V, gain = 2  
=
10 kHz, DAC code = midscale, VDD = 5.5 V, VREFIN  
2.5 V, gain = 2  
=
=
Output noise density  
nV/Hz  
1 kHz, DAC code = full scale, VDD = 5.5 V, VREFIN  
2.5 V, gain = 1  
=
10 kHz, DAC code = full scale, VDD = 5.5 V, VREFIN  
2.5 V, gain = 1  
DAC code = midscale, frequency = 60 Hz,  
amplitude = 200 mVPP superimposed on VDD  
AC PSRR  
dB  
DC PSRR  
DAC code = midscale, VDD = 5 V ± 10%  
1 LSB change around major carrier  
10  
4
µV/V  
nV-s  
Code change glitch impulse  
DAC code = midscale. Code 32 to full-scale swing on  
adjacent channel  
Channel-to-channel ac crosstalk  
0.2  
5
nV-s  
Measured channel at midscale, adjacent channel at  
full scale  
Channel-to-channel dc crosstalk  
Digital feedthrough  
µV  
Measured channel at midscale, all other channels at  
full scale  
10  
DAC code = midscale. fSCLK = 1 MHz, SDO disabled  
0.1  
nV-s  
EXTERNAL REFERENCE INPUT  
Reference input current  
VREFIN = 2.5 V  
25  
100  
5
µA  
kΩ  
pF  
Reference input impedance  
Reference input capacitance  
(2) Temporary overload condition protection. Junction temperature can be exceeded during current limit. Operation above the specified  
maximum junction temperature may impair device reliability.  
(3) Specified by design and characterization. Not tested during production.  
(4) Time to exit DAC power-down mode. Measured from CS rising edge to 90% of DAC final value.  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
Electrical Characteristics (continued)  
all minimum and maximum specifications at VDD= 2.7 V to 5.5 V, VIO = 1.7 V to 5.5 V, VREFIN = 1.25 V to 5.5 V, RLOAD = 2 kΩ  
to GND, CLOAD = 200 pF to GND, digital inputs at VIO or GND, and TA = –40°C to +125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INTERNAL REFERENCE  
VREFOUT  
Reference output voltage  
Reference output drift  
TA = 25°C  
2.495  
2.5  
2
2.505  
5
V
ppm/°C  
Ω
Reference output impedance  
Reference output noise  
0.1  
15  
0.1 Hz to 10 Hz  
µVPP  
nV/Hz  
mA  
Reference output noise density  
Reference load current  
10 kHz, REFLOAD = 10 nF  
130  
±5  
Reference load regulation  
Reference line regulation  
Reference output drift over time  
Source and sink  
100  
20  
µV/mA  
µV/V  
ppm  
TA = 25°C, 1600 hours  
First cycle  
4.8  
50  
Reference thermal hysteresis  
ppm  
Additional cycle  
18  
DIGITAL INPUTS  
VIH  
VIL  
High-level input voltage  
0.7 × VIO  
V
V
Low-level input voltage  
Input current  
0.3 × VIO  
±2  
2
µA  
pF  
Input pin capacitance  
DIGITAL OUTPUTS  
VOH  
VOL  
High-level output voltage  
ILOAD = 0.2 mA  
ILOAD = –0.2 mA  
VIO – 0.4  
V
V
Low-level output voltage  
Output pin capacitance  
0.4  
4
pF  
POWER SUPPLY REQUIREMENTS  
Active mode, internal reference enabled, gain = 1,  
DAC code = full scale, outputs unloaded, SPI static  
2.8  
2.3  
3.6  
3
mA  
IDD  
VDD supply current  
VIO supply current  
Active mode, internal reference disabled, gain = 1,  
DAC code = full scale, outputs unloaded, SPI static  
Power-down  
15  
2
µA  
µA  
IIO  
3
Copyright © 2017–2019, Texas Instruments Incorporated  
9
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
7.6 Typical Characteristics  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
OUT0  
OUT1  
OUT2  
OUT3  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
OUT0  
OUT1  
OUT2  
OUT3  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
Code  
D001  
D002  
Figure 1. Integral Linearity Error vs Digital Input Code  
Figure 2. Differential Linearity Error vs Digital Input Code  
0.1  
1
OUT0  
OUT1  
OUT2  
OUT3  
INL Max  
INL Min  
0.08  
0.06  
0.04  
0.02  
0
0.8  
0.6  
0.4  
0.2  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
8192 16384 24576 32768 40960 49152 57344 65536  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
Code  
D003  
D004  
Figure 3. Total Unadjusted Error vs Digital Input Code  
Figure 4. Integral Linearity Error vs Temperature  
1
0.1  
0.08  
0.06  
0.04  
0.02  
0
DNL Max  
DNL Min  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D005  
D006  
Figure 5. Differential Linearity Error vs Temperature  
Figure 6. Total Unadjusted Error vs Temperature  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
Typical Characteristics (continued)  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)  
1.5  
1
1.5  
1.25  
1
0.5  
0
0.75  
0.5  
0.25  
0
-0.5  
-1  
-1.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D007  
D008  
Figure 7. Offset Error vs Temperature  
Figure 8. Zero Code Error vs Temperature  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.08  
0.06  
0.04  
0.02  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D009  
D010  
Figure 9. Gain Error vs Temperature  
Figure 10. Full Scale Error vs Temperature  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
INL Max  
INL Min  
DNL Max  
DNL Min  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
VDD (V)  
VDD (V)  
D011  
D012  
Gain = 1  
Gain = 1  
Figure 11. Integral Linearity Error vs Supply Voltage  
Figure 12. Differential Linearity Error vs Supply Voltage  
Copyright © 2017–2019, Texas Instruments Incorporated  
11  
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)  
0.1  
0.08  
0.06  
0.04  
0.02  
0
1.5  
1
0.5  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-0.5  
-1  
REF-DIV = 1  
REF-DIV = 0  
REF-DIV = 1  
REF-DIV = 0  
-1.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
VDD (V)  
VDD (V)  
D013  
D014  
Gain = 1  
Gain = 1  
Figure 13. Total Unadjusted Error vs Supply Voltage  
Figure 14. Offset Error vs Supply Voltage  
1.5  
0.1  
0.08  
0.06  
0.04  
0.02  
0
REF-DIV = 1  
REF-DIV = 0  
1.25  
1
0.75  
0.5  
0.25  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
REF-DIV = 1  
REF-DIV = 0  
2.7  
3.1  
3.5  
3.9  
VDD (V)  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
D015  
VDD (V)  
D016  
Gain = 1  
Gain = 1  
Figure 15. Zero Code Error vs Supply Voltage  
Figure 16. Gain Error vs Supply Voltage  
0.1  
0.08  
0.06  
0.04  
0.02  
0
1
0.8  
0.6  
0.4  
0.2  
0
REF-DIV = 1  
REF-DIV = 0  
INL Max  
INL Min  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
2.7  
3.1  
3.5  
3.9  
VDD (V)  
4.3  
4.7  
5.1  
5.5  
1.25  
2
2.75  
3.5  
4.25  
5
5.5  
VREFIN (V)  
D017  
D018  
Gain = 1  
Gain = 1  
Figure 17. Full Scale Error vs Supply Voltage  
Figure 18. Integral Linearity Error vs Reference Voltage  
12  
Copyright © 2017–2019, Texas Instruments Incorporated  
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
Typical Characteristics (continued)  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)  
0.1  
0.08  
0.06  
0.04  
0.02  
0
1
0.8  
0.6  
0.4  
0.2  
0
REFDIV = 0  
REFDIV = 1  
DNL Max  
DNL Min  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
1.25  
2
2.75  
3.5  
VREFIN (V)  
4.25  
5
5.5  
1.25  
2
2.75  
3.5  
4.25  
5
5.5  
VREFIN (V)  
D019  
D020  
Gain = 1  
Gain = 1  
Figure 19. Differential Linearity Error vs Reference Voltage  
Figure 20. Total Unadjusted Error vs Reference Voltage  
1.5  
1.5  
REFDIV = 0  
REFDIV = 1  
REFDIV = 0  
REFDIV = 1  
1
1.25  
0.5  
0
1
0.75  
0.5  
-0.5  
-1  
0.25  
0
-1.5  
1.25  
2
2.75  
3.5  
4.25  
5
5.5  
1.25  
2
2.75  
3.5  
4.25  
5
5.5  
VREFIN (V)  
VREFIN (V)  
D021  
D022  
Gain = 1  
Gain = 1  
Figure 21. Offset Error vs Reference Voltage  
Figure 22. Zero Code Error vs Reference Voltage  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.08  
0.06  
0.04  
0.02  
0
REFDIV = 0  
REFDIV = 1  
REFDIV = 0  
REFDIV = 1  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
1.25  
2
2.75  
3.5  
4.25  
5
5.5  
1.25  
2
2.75  
3.5  
4.25  
5
5.5  
VREFIN (V)  
VREFIN (V)  
D023  
D024  
Gain = 1  
Gain = 1  
Figure 23. Gain Error vs Reference Voltage  
Figure 24. Full Scale Error vs Reference Voltage  
Copyright © 2017–2019, Texas Instruments Incorporated  
13  
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)  
3
2.5  
2
3
6.5  
3.25  
3
6
5.5  
5
2.75  
2.5  
2.25  
2
2.5  
2
4.5  
4
3.5  
3
1.75  
1.5  
1.5  
1
1.5  
1
IDD, Gain = 2  
IIO, Gain = 2  
IDD, Gain = 1  
IIO, Gain = 1  
IDD, Gain = 2  
2.5  
2
1.25  
1
IIO, Gain = 2  
IDD, Gain = 1  
IIO, Gain = 1  
1.5  
1
0.75  
0.5  
0.25  
0
0.5  
0
0.5  
0
0.5  
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
Code  
D025  
D026  
Gain = 1, external reference = 2.5 V  
Gain = 1  
Figure 25. Supply Current With External Reference vs  
Digital Input Code  
Figure 26. Supply Current With Internal Reference vs  
Digital Input Code  
3
2.5  
2
3
3.5  
3
3.5  
3
2.5  
2
2.5  
2
2.5  
2
1.5  
1
1.5  
1
1.5  
1
1.5  
IDD, Gain = 2  
IIO, Gain = 2  
IDD, Gain = 1  
IIO, Gain = 1  
IDD, Gain = 2  
IIO, Gain = 2  
IDD, Gain = 1  
IIO, Gain = 1  
1
0.5  
0
0.5  
0
0.5  
0
0.5  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Temperature (èC)  
D027  
D028  
Gain = 1, external reference = 2.5 V  
Gain = 1  
Figure 27. Supply Current With External Reference vs  
Temperature  
Figure 28. Supply Current With Internal Reference vs  
Temperature  
3
2.5  
2
3
6
5.5  
5
3
2.75  
2.5  
2.25  
2
2.5  
2
4.5  
4
3.5  
3
1.75  
1.5  
1.5  
1
1.5  
2.5  
2
1.25  
IDD  
IIO  
IDD  
IIO  
1
1
1.5  
1
0.75  
0.5  
0.25  
0
0.5  
0
0.5  
0
0.5  
0
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
VDD (V)  
VDD (V)  
D029  
D030  
Gain = 1, external reference = 2.5 V  
Gain = 1  
Figure 29. Supply Current With External Reference vs  
Supply Voltage  
Figure 30. Supply Current With Internal Reference vs  
Supply Voltage  
14  
Copyright © 2017–2019, Texas Instruments Incorporated  
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
Typical Characteristics (continued)  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)  
25  
22.5  
20  
2
25  
22.5  
20  
0.5  
IDD  
IIO  
IDD  
IIO  
1.8  
1.6  
1.4  
1.2  
1
0.45  
0.4  
17.5  
15  
17.5  
15  
0.35  
0.3  
12.5  
10  
12.5  
10  
0.25  
0.2  
0.8  
0.6  
0.4  
0.2  
0
7.5  
5
7.5  
5
0.15  
0.1  
2.5  
0
2.5  
0
0.05  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.7  
3.1  
3.5  
3.9  
VDD (V)  
4.3  
4.7  
5.1  
5.5  
Temperature (èC)  
D031  
D032  
Figure 31. Supply Current and Input Current vs Temperature  
Figure 32. Supply Current and Input Current vs Supply  
Voltage  
1
0.8  
0.6  
0.4  
0.2  
0
4
Code 0x0000  
Code 0x4000  
Code 0x8000  
Code 0xC000  
Code 0xFFFF  
3
2
1
0
-0.2  
-0.4  
Sourcing 5.5V  
Sourcing 2.7V  
-0.6  
-1  
-2  
Sinking 5.5V  
Sinking 2.7V  
-0.8  
-1  
0
5
10  
15  
20  
25  
30  
-60  
-40  
-20  
0
20  
40  
60  
Load Current (mA)  
Load Current (mA)  
D033  
D034  
Figure 33. Headroom/Footroom vs Load Current  
Figure 34. Source and Sink Capability With Gain = ½  
4
3
7
6
0xFFFF  
0xC000  
0xFFFF  
0xC000  
5
2
4
0x8000  
3
0x8000  
0x4000  
1
0x4000  
0x0000  
2
0
1
0x0000  
0
-1  
-2  
-1  
-2  
-60  
-40  
-20  
0
20  
40  
60  
-60  
-40  
-20  
0
20  
40  
60  
Load Current (mA)  
Load Current (mA)  
D035  
D036  
Figure 35. Source and Sink Capability With Gain = 1  
Figure 36. Source and Sink Capability With Gain = 2  
Copyright © 2017–2019, Texas Instruments Incorporated  
15  
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)  
Small Singal VOUT (3 LSB/div)  
Large Singal VOUT (2 V/div)  
CS (5 V/div)  
Small Singal VOUT (3 LSB/div)  
Large Singal VOUT (2 V/div)  
CS (5 V/div)  
Time (2 msec/div)  
Time (2 msec/div)  
D037  
D038  
Gain = 1  
Gain = 1  
Gain = 1  
Gain = 1  
Gain = 1  
Gain = 1  
Figure 37. Full-Scale Settling Time, Rising Edge  
Figure 38. Full-Scale Settling Time, Falling Edge  
VOUT (2.5 mV/div)  
CS (5 V/div)  
VOUT (2.5mV/div)  
CS (5 V/div)  
Time (0.5 ms/div)  
Time (0.5 ms/div)  
D039  
D040  
Figure 39. Glitch Impulse, Falling Edge, 1 LSB Step  
Figure 40. Glitch Impulse, Rising Edge, 1 LSB Step  
VDD (1.5 V/div)  
VOUT (10 mV/div)  
VDD (1.5 V/div)  
VOUT (1 V/div)  
Time (600 ms/div)  
Time (600ms/div)  
D041  
D042  
Figure 41. Power-On, Reset to Zero Scale  
Figure 42. Power-On, Reset to Midscale  
16  
Copyright © 2017–2019, Texas Instruments Incorporated  
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
Typical Characteristics (continued)  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)  
VDD (1.5 V/div)  
VOUT (1 V/div)  
VIO (1.5 V/div)  
VOUT (1 V/div)  
Time (600ms/div)  
Time (600ms/div)  
D044  
D060  
Gain = 1, DAC code at midscale  
Figure 43. VDD Power-Down  
Gain = 1, DAC code at midscale  
Figure 44. VIO Power-Down  
SCLK (5 V/div)  
VOUT (1 mV/div)  
VOUT (200 mV/div)  
CS (5 V/div)  
Time (2 msec/div)  
Time (5 msec/div)  
D045  
D046  
Gain = 1, measured DAC at midscale,  
Gain = 1, DAC code at midscale  
all other DACs switch from code 32 to full scale  
Figure 45. Channel to Channel Crosstalk  
Figure 46. Clock Feedthrough With SCLK = 1 MHz  
0
-10  
300  
250  
200  
150  
100  
50  
Gain = 1  
Gain = 2  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
1
10  
100  
1000  
10000  
100000  
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
Frequency (Hz)  
D047  
D048  
Gain = 1, VDD = 5 V + 200 mVPP (Sinusoid), DAC code at fullscale  
External reference = 2.5 V, DAC code at midscale  
Figure 48. DAC Output Noise Density vs Frequency  
Figure 47. DAC Output AC PSRR vs Frequency  
Copyright © 2017–2019, Texas Instruments Incorporated  
17  
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)  
D049  
D050  
Gain = 1, external reference = 2.5 V, DAC code at midscale  
Gain = 1, DAC code at midscale  
Figure 49. DAC Output Noise With External Reference  
0.1 Hz to 10 Hz  
Figure 50. DAC Output Noise With Internal Reference  
0.1 Hz to 10 Hz  
2.505  
2.5025  
2.5  
2.505  
2.5025  
2.5  
2.4975  
2.4975  
2.495  
2.495  
2.7  
3.1  
3.5  
3.9  
VDD (V)  
4.3  
4.7  
5.1  
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
D053  
D051  
Figure 52. Internal Reference Voltage vs Supply Voltage  
Figure 51. Internal Reference Voltage vs Temperature  
2.505  
800  
700  
600  
500  
400  
300  
200  
100  
0
2.5025  
2.5  
2.4975  
2.495  
0
200  
400  
600  
800 1000 1200 1400 1600  
10 2030 50 100 200 5001000  
Frequency (Hz)  
10000  
100000  
Hours  
D055  
D056  
Figure 53. Internal Reference Voltage vs Time  
Figure 54. Internal Reference Noise Density vs Frequency  
18  
Copyright © 2017–2019, Texas Instruments Incorporated  
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
Typical Characteristics (continued)  
at TA = 25°C, VDD = 5.5 V, internal reference = 2.5 V, gain = 2, DAC outputs unloaded (unless otherwise noted)  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
1
2
3
4
5
D058  
Temperature Drift (ppm/èC)  
D057  
0.1 Hz to 10 Hz  
Figure 55. Internal Reference Noise  
Figure 56. Internal Reference Temperature Drift Histogram  
Copyright © 2017–2019, Texas Instruments Incorporated  
19  
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The DACx0504 is a pin-compatible family of low-power, four-channel, buffered voltage-output digital-to-analog  
converters (DACs) with 16-, 14-, and 12-bit resolution. The DACx0504 include a 2.5-V internal reference and  
user-selectable gain configuration. providing full-scale output voltages of 1.25 V (gain = ½), 2.5 V (gain = 1), or 5  
V (gain = 2). The device operates from a single 2.7 V to 5.5 V supply, is specified monotonic, and provides high  
linearity of ±1 LSB INL.  
Communication to the DACx0504 is performed through a 4-wire serial interface that supports stand-alone and  
daisy-chain operation. The optional frame-error checking provides added robustness to the DACx0504 serial  
interface.  
The DACx0504 incorporates a power-on-reset circuit and RSTSEL pin that powers up and maintains the DAC  
outputs at either zero scale or midscale until a valid code is written to the device.  
8.2 Functional Block Diagram  
VDD  
REF  
GAIN  
VIO  
REFDIV  
Internal  
Reference  
DACx0504  
÷1 or ÷2  
GAIN  
×1 or ×2  
SCLK  
SDI  
DAC  
Register  
DAC  
Buffer  
DAC  
OUT0  
BUF  
SDO/ALARM  
CS  
Channel 0  
OUT1  
OUT2  
OUT3  
Channel 1  
Channel 2  
Channel 3  
LDAC  
Power Down Logic  
Power On Reset  
Resistive Network  
RSTSEL  
GND  
Copyright © 2017, Texas Instruments Incorporated  
20  
Copyright © 2017–2019, Texas Instruments Incorporated  
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
8.3 Feature Description  
8.3.1 Digital-to-Analog Converter (DAC)  
Each output channel in the DACx0504 consists of an R-2R ladder architecture followed by an output buffer  
amplifier. Figure 57 shows a block diagram of the DAC architecture.  
REF  
2.5-V  
Reference  
REF Divider  
(÷1 or ÷2)  
DIV  
Serial Interface  
DAC Data Register  
Gain  
(×1 or ×2)  
GAIN  
READ  
WRITE  
DAC  
Buffer  
DAC  
Active  
R-2R  
VOUT  
DAC Output  
Register  
Register  
(asynchronous mode)  
LDAC Trigger  
(synchronous mode)  
GND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 57. DACx0504 DAC Block Diagram  
8.3.1.1 DAC Transfer Function  
The input data are written to the individual DAC data registers in straight binary format. After a power-on or a  
reset event, all DAC registers are set to either zero code or midscale code, as determined by the RSTSEL pin.  
The DAC transfer function is given by Equation 1.  
VREF  
DIV  
CODE  
2n  
VOUT  
=
ì
ì GAIN  
where  
CODE = decimal equivalent of the binary code that is loaded to the DAC register. CODE ranges from 0 to 2n –  
1.  
VREF = DAC reference voltage. Either VREFOUT from the internal 2.5 V reference or VREFIN if using an external  
one.  
n = resolution in bits. Either 16 (DAC80504), 14 (DAC70504), or 12 (DAC60504).  
DIV = 1 or 2 as set by the REFDIV pin after a reset event or by the REF-DIV bit in the GAIN register.  
GAIN = 1 or 2 as set by the GAIN pin after a reset event or by the BUFF-GAIN bit for that DAC channel in the  
GAIN register.  
(1)  
Copyright © 2017–2019, Texas Instruments Incorporated  
21  
 
 
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
Feature Description (continued)  
8.3.1.2 Output Amplifiers  
The DACx0504 output buffer amplifier is capable of generating rail-to-rail voltages on its output, giving a  
maximum output range of 0 V to VDD. Each buffer amplifier is capable of driving a load of 2 kin parallel with  
10 nF to GND.  
The full-scale output voltage for each channel is determined by the reference voltage (VREF), the reference  
divider setting (DIV), and the output buffer gain for that channel (GAIN), as shown in Table 1. After a power-up or  
reset event the DIV and GAIN settings are set by the REFDIV and GAIN pins, respectively. During normal  
operation the DIV and GAIN settings can be reconfigured through the REF-DIV and BUFF-GAIN bit (see  
Equation 1). The GAIN setting for each output channel can be individually configured thus enabling independent  
output voltage ranges for each DAC output.  
Table 1. DAC Output Range Configuration  
DIV SETTING  
GAIN SETTING  
DAC OUTPUT RANGE  
0 V to ½ × VREF  
÷2  
÷1  
÷2  
÷1  
×1  
×1  
×2  
×2  
Not recommended  
0 V to VREF  
0 V to 2 × VREF  
8.3.1.3 DAC Register Structure  
Data written to the DAC data registers is initially stored in the DAC buffer registers. Transfer of data from the  
DAC buffer registers to the active DAC registers can be configured to happen immediately (asynchronous mode)  
or initiated by an LDAC trigger (synchronous mode). Once the DAC active registers are updated, the DAC  
outputs change to their new values. When the host reads from a DAC Data register, the value held in the DAC  
buffer register is returned (not the value held in the DAC active register).  
8.3.1.3.1 DAC Register Synchronous and Asynchronous Updates  
The update mode for each DAC channel is determined by the status of its corresponding SYNC-EN bit. In  
asynchronous mode, a write to the DAC data register results in an immediate update of the DAC active register  
and DAC output on CS rising edge. In synchronous mode, writing to the DAC data register does not  
automatically update the DAC output. Instead the update occurs only after an LDAC trigger event. An LDAC  
trigger is generated either through the LDAC bit in the TRIGGER register or by the LDAC pin. The synchronous  
update mode enables simultaneous update of multiple DAC outputs. In both update modes a minimum wait time  
of 1 µs is required between DAC output updates.  
8.3.1.3.2 Broadcast DAC Register  
The DAC broadcast register enables a simultaneous update of multiple DAC outputs with the same value with a  
single register write. Each DAC channel can be configured to update or remain unaffected by a broadcast  
command by setting the corresponding DAC-BRDCAST-EN bit in the SYNC register. A register write to the  
BRDCAST-DATA register forces those DAC channels that have been configured for broadcast operation to  
update their outputs. The DAC ouputs update to the broadcast value on CS rising edge independently of their  
synchronous mode configuration.  
22  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
8.3.2 Internal Reference  
The DACx0504 includes a 2.5 V precision bandgap reference enabled by default. Operation from an external  
reference is supported by disabling the internal reference in the CONFIG register. The internal reference is  
externally available at the REF pin.  
A minimum 150 nF capacitor is recommended between the reference output and GND for noise filtering.  
8.3.2.1 Reference Divider  
The reference voltage to the device, either from the internal reference or an external one can be divided by a  
factor of two by tying the REFDIV pin high at power-up or by setting the REF-DIV bit in the GAIN register to 1  
during normal operation. The reference voltage divider provides additional flexibility in setting the full-scale output  
voltage for each DAC output and must be configured to make certain that there is sufficient headroom from VDD  
to the DAC operating reference voltage (VREF/DIV). See the Recommended Operating Conditions table for more  
information.  
Improper configuration of the reference divider issues a reference alarm condition. In this case, the reference  
buffer is shut down, and all the DAC outputs go to 0 V. The DAC data registers are unaffected by the alarm  
condition thus enabling the DAC output to return to normal operation once the reference divider is configured  
correctly. The reference alarm status can be read from the REF-ALM bit in the STATUS register. Additionally by  
setting ALM-EN = 1 and ALM-SEL = 1 in the CONFIG register, the SDO/ALARM pin is configured as a reference  
alarm pin.  
8.3.2.2 Solder Heat Reflow  
A known behavior of IC reference voltage circuits is the shift induced by the soldering process. Figure 58 shows  
the effect of solder heat reflow for the DACx0504 internal reference.  
70%  
Presolder Heat Reflow  
Postsolder Heat Reflow  
60%  
50%  
40%  
30%  
20%  
10%  
0
2.4975 2.4980 2.4985 2.4990 2.4995 2.5000 2.5005 2.5010  
D061  
VREFOUT (V)  
Figure 58. Solder Heat Reflow Reference Voltage Shift  
Copyright © 2017–2019, Texas Instruments Incorporated  
23  
 
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
8.3.3 Device Reset Options  
8.3.3.1 Power-on-Reset (POR)  
The DACx0504 includes a power-on reset function that controls the output voltage at power up. After the VDD  
and VIO supplies have been established a POR event is issued. The POR causes all registers to initialize to their  
default values and communication with the device is valid only after a 250 µs power-on-reset delay. The default  
value for all DACs is either zero-code or midscale-code as determined by the RSTSEL pin. Each DAC channel  
remains at the power-up voltage until a valid command is written to it.  
The POR circuit requires specific supply levels to discharge the internal capacitors and to reset the device on  
power up, as indicated in Figure 59 and Figure 60. In order to initiate a POR event, VDD or VIO must be below  
their corresponding low thresholds for at least 100 µs. If VDD and VIO remain above their specified high threshold  
a POR event will not occur. When the supplies drop below their high threshold but remain over the lower one  
(shown as the undefined region), the device may or may not reset under all specified temperature and power-  
supply conditions.  
VDD (V)  
VIO (V)  
5.50  
5.50  
Specified Supply  
Voltage Range  
No Power-On Reset  
Specified Supply  
Voltage Range  
No Power-On Reset  
2.70  
2.20  
Undefined  
1.70  
1.50  
1.20  
Undefined  
0.70  
0.00  
Power-On Reset  
Power-On Reset  
0.00  
Figure 59. Threshold Levels for VDD POR Circuit  
Figure 60. Threshold Levels for VIO POR Circuit  
8.3.3.2 Software Reset  
A device software reset event is initiated by writing the reserved code 0x1010 to SOFT-RESET in the TRIGGER  
register. The software reset command is triggered on the CS rising edge of the instruction. A software reset  
initiates a POR event.  
24  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
8.4 Device Functional Modes  
8.4.1 Stand-Alone Operation  
A serial interface access cycle is initiated by asserting the CS pin low. The serial clock SCLK can be a  
continuous or gated clock. SDI data are clocked on SCLK falling edges. A regular serial interface access cycle is  
24 bits long with error checking disabled and 32 bits long with error checking enabled, thus the CS pin must stay  
low for at least 24 or 32 SCLK falling edges. The access cycle ends when the CS pin is de-asserted high. If the  
access cycle contains less than the minimum clock edges, the communication is ignored. If the access cycle  
contains more than the minimum clock edges are present, only the last 24 or 32 bits are used by the device.  
When CS is high, the SCLK and SDI signals are blocked and the SDO pin is in a Hi-Z state.  
In an error checking disabled access cycle (24-bits long) the first byte input to SDI is the instruction cycle which  
identifies the request as a read or write command and the 4-bit address to be accessed. The following bits in the  
cycle form the data cycle, as shown in Table 2.  
Table 2. Serial Interface Access Cycle  
BIT  
FIELD  
DESCRIPTION  
Identifies the communication as a read or write command to the addressed register. R/W = 0 sets a  
write operation. R/W = 1 sets a read operation.  
23  
RW  
22:20  
19:16  
Reserved  
A[3:0]  
Reserved bits. Must be filled with zeros.  
Register address. Specifies the register to be accessed during the read or write operation.  
Data cycle bits. If a write command, the data cycle bits are the values to be written to the register with  
address A[3:0]. If a read command, the data cycle bits are don’t care values.  
15:0  
DI[15:0]  
A read operation is initiated by issuing a read command access cycle. After the read command, a second access  
cycle must be issued to get the requested data, as shown in Table 3. Data are clocked out on SDO pin either on  
the falling edge or rising edge of SCLK according to the FSDO bit in the CONFIG register.  
Table 3. SDO Output Access Cycle  
BIT  
23  
FIELD  
RW  
DESCRIPTION  
Echo RW from previous access cycle.  
22:20  
19:16  
15:0  
Reserved  
A[3:0]  
Echo bits 22:20 from previous access cycle (all zeros).  
Echo address from previous access cycle.  
DO[15:0]  
Readback data requested on previous access cycle.  
Copyright © 2017–2019, Texas Instruments Incorporated  
25  
 
 
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
8.4.2 Daisy-Chain Operation  
For systems that contain more than one DACx0504 devices, the SDO pin can be used to daisy-chain them  
together. Daisy-chain operation is useful in reducing the number of serial interface lines.  
The first falling edge on the CS pin starts the operation cycle. If more than 24 SCLK pulses are applied while the  
CS pin is kept low, the data ripples out of the shift register and is clocked out on the SDO pin either on the falling  
edge or rising edge of SCLK according to the FSDO bit. By connecting the SDO output of the first device to the  
SDI input of the next device in the chain, a multiple-device interface is constructed. Each device in the system  
requires 24 clock pulses. As a result the total number of clock cycles must be equal to 24 × N, where N is the  
total number of DACx0504 devices in the daisy chain. When the serial transfer to all devices is complete the CS  
signal is taken high. This action transfers the data from the serial peripheral interface (SPI) shift registers to the  
internal registers of each device in the daisy chain and prevents any further data from being clocked into the  
input shift register.  
C
B
A
DACx0504  
DACx0504  
DACx0504  
SDO  
SDO  
SDO  
SDI  
SDI  
SDI  
SCLK  
SCLK  
SCLK  
CS  
CS  
CS  
Copyright © 2017, Texas Instruments Incorporated  
Figure 61. Daisy-Chain Layout  
8.4.3 Frame Error Checking  
If the DACx0504 is used in a noisy environment, error checking can be used to check the integrity of SPI data  
communication between the device and the host processor. This feature can be enabled by setting the CRC-EN  
bit in the CONFIG register.  
The error checking scheme is based on the CRC-8-ATM (HEC) polynomial x8 + x2 + x + 1 (that is, 100000111).  
When error checking is enabled, the serial interface access cycle width is 32 bits. The normal 24-bit SPI data are  
appended with an 8-bit CRC polynomial by the host processor before feeding it to the device, as shown in  
Table 4. In all serial interface readback operations the CRC polynomial is output on the SDO pin as part of the  
32-bit cycle.  
Table 4. Error Checking Serial Interface Access Cycle  
BIT  
FIELD  
DESCRIPTION  
Identifies the communication as a read or write command to the addressed register. R/W = 0 sets a  
write operation. R/W = 1 sets a read operation.  
31  
RW  
30  
CRC-ERROR Reserved bit. Set to zero.  
29:28  
27:24  
Reserved  
A[3:0]  
Reserved bits. Must be filled with zeros.  
Register address. Specifies the register to be accessed during the read or write operation.  
Data cycle bits. If a write command, the data cycle bits are the values to be written to the register with  
address A[3:0]. If a read command, the data cycle bits are don’t care values.  
23:8  
7:0  
DI[15:0]  
CRC  
8-bit CRC polynomial.  
26  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
The DACx0504 decodes the 32-bit access cycle to compute the CRC remainder on CS rising edges. If no error  
exists, the CRC remainder is zero and data are accepted by the device.  
A write operation failing the CRC check causes the data to be ignored by the device. After the write command, a  
second access cycle can be issued to determine the error checking result (CRC-ERROR bit) on the SDO pin, as  
shown in Table 5. Additionally, by setting ALM-EN = 1 and ALM-SEL = 0 in the CONFIG register, the  
SDO/ALARM pin is configured as a CRC alarm pin.  
Table 5. Write Operation Error Checking Cycle  
BIT  
31  
FIELD  
DESCRIPTION  
Echo RW from previous access cycle (RW = 0).  
RW  
30  
CRC-ERROR Returns a 1 when a CRC error is detected, 0 otherwise.  
29:28  
27:24  
23:8  
7:0  
Reserved  
A[3:0]  
Echo bits 29:28 from previous access cycle (all zeros).  
Echo address from previous access cycle.  
Echo data from previous access cycle.  
DO[15:0]  
CRC  
Calculated CRC value of bits 31:8.  
A read operation must be followed by a second access cycle to get the requested data on the SDO pin. The  
error check result (CRC-ERROR bit) from the read command is output on the SDO pin, as shown in Table 6. As  
in the case of a write operation failing the CRC check, the SDO/ALARM pin if configured as a CRC alarm pin can  
be used to indicate a read command CRC failure.  
Table 6. Read Operation Error Checking Cycle  
BIT  
31  
FIELD  
DESCRIPTION  
Echo RW from previous access cycle (RW = 1).  
RW  
30  
CRC-ERROR Returns a 1 when a CRC error is detected, 0 otherwise.  
29:28  
27:24  
23:8  
7:0  
Reserved  
A[3:0]  
Echo bits 29:28 from previous access cycle (all zeros).  
Echo address from previous access cycle.  
Readback data requested on previous access cycle.  
Calculated CRC value of bits 31:8.  
DO[15:0]  
CRC  
8.4.4 Power-Down Mode  
The DACx0504 DAC output amplifiers and internal reference can be independently powered down through the  
CONFIG register. At power-up all output channels and the device internal reference are active by default. A DAC  
output channel in power-down mode is connected internally to GND through a 1-kΩ resistor.  
Copyright © 2017–2019, Texas Instruments Incorporated  
27  
 
 
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
8.5 Programming  
The DACx0504 is controlled through a flexible four-wire serial interface that is compatible with SPI type  
interfaces used on many microcontrollers and DSP controllers. The interface provides read and write access to  
all DACx0504 registers and can also be configured to daisy-chain multiple devices for write operations. The  
DACx0504 incorporates an optional error checking mode to validate SPI data communication integrity in noisy  
environments. Table 7 shows the SPI timing requirements. Figure 62 and Figure 63 show the SPI write and read  
timing diagrams, respectively. Figure 64 shows the digital logic timing diagram.  
Table 7. Programming Timing Requirements(1)  
VIO = 1.7 V to 2.7 V  
VIO = 2.7 V to 5.5 V  
UNIT  
MIN  
NOM  
MAX  
MIN  
NOM  
MAX  
SERIAL INTERFACE – WRITE OPERATION  
fSCLK  
SCLK frequency  
50  
50  
MHz  
ns  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
SCLK high time  
9
9
9
9
SCLK low time  
ns  
SDI setup  
5
5
ns  
tSDIH  
SDI hold  
10  
13  
10  
15  
7
10  
13  
10  
15  
7
ns  
tCSS  
CS to SCLK falling edge setup  
SCLK falling edge to CS rising edge  
CS high time  
ns  
tCSH  
ns  
tCSHIGH  
tCSIGNORE  
ns  
SCLK falling edge to CS ignore  
ns  
SERIAL INTERFACE – READ AND DAISY CHAIN OPERATION, FSDO = 0  
fSCLK  
SCLK frequency  
12  
18  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
SCLK high time  
35  
35  
5
25  
25  
5
SCLK low time  
SDI setup  
tSDIH  
SDI hold  
10  
32  
10  
15  
3.5  
0
10  
20  
10  
15  
3.5  
0
tCSS  
CS to SCLK falling edge setup  
SCLK falling edge to CS rising edge  
CS high time  
tCSH  
tCSHIGH  
tSDODLY  
tSDODZ  
tCSIGNORE  
SDO output delay from SCLK rising edge  
SDO driven to tri-state  
SCLK falling edge to CS ignore  
33.5  
30  
23  
25  
7
7
SERIAL INTERFACE – READ AND DAISY CHAIN OPERATION, FSDO = 1  
fSCLK  
SCLK frequency  
20  
25  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
SCLK high time  
22  
22  
5
18  
18  
5
SCLK low time  
SDI setup  
tSDIH  
SDI hold  
10  
32  
10  
15  
3.5  
0
10  
20  
10  
15  
3.5  
0
tCSS  
CS to SCLK falling edge setup  
SCLK falling edge to CS rising edge  
CS high time  
tCSH  
tCSHIGH  
tSDODLY  
tSDODZ  
SDO output delay from SCLK falling edge  
SDO driven to tri-state  
SCLK falling edge to CS ignore  
45  
30  
32  
25  
tCSIGNORE  
DIGITAL LOGIC  
tRSTDLYPOR  
tDACWAIT  
tLDACS  
7
7
POR reset delay  
Sequential DAC output updates  
LDAC setup  
170  
250  
170  
250  
µs  
µs  
ns  
ns  
1
0
5
1
0
5
tLDACH  
LDAC hold  
(1) All input signals are specified at tR = tF = 1 ns/V (10% to 90% of VIO), timed from a voltage level of (VIL + VIH) / 2, VDD = 2.7 V to 5.5 V,  
VIO = 1.7 V to 5.5 V, VREFIN = 1.25 V to 5.5 V, SDO loaded with 20 pF, and TA = –40°C to +125°C (unless otherwise noted)  
28  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
tCSHIGH  
tCSS  
tCSH  
CS  
SCLK  
SDI  
tCSIGNORE  
tSCLKLOW  
tSCLKHIGH  
Bit 23  
Bit 1  
Bit 0  
tSDIH  
tSDIS  
Figure 62. Serial Interface Write Timing Diagram  
tCSHIGH  
tCSS  
tCSH  
CS  
tCSIGNORE  
tSCLKLOW  
SCLK  
tSCLKHIGH  
FIRST READ COMMAND  
Bit 22  
ANY COMMAND  
Bit 1  
SDI  
Bit 23  
tSDIS  
tSDIH  
Bit 0  
Bit 23  
Bit 23  
Bit 0  
Bit 0  
SDO  
FSDO = 0  
Bit 1  
tSDODZ  
tSDODLY  
DATA FROM FIRST READ COMMAND  
SDO  
FSDO = 1  
Bit 23  
Bit 1  
Bit 0  
X
tSDODZ  
tSDODLY  
DATA FROM FIRST READ COMMAND  
Figure 63. Serial Interface Read Timing Diagram  
tLDACS  
tLDACH  
CS  
LDAC  
Figure 64. Digital Logic Timing Diagram  
Copyright © 2017–2019, Texas Instruments Incorporated  
29  
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
8.6 Register Map  
Table 8. Register Map  
ADDRESS BITS  
DATA BITS  
D8 D7  
REGISTER  
TYPE RESET  
A3 A2 A1 A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NOP  
DEVICE ID  
SYNC  
W
R
0000  
0
0
0
0
0
0
0
0
1
0
1
0
NOP  
DEVICEID  
DACx-BRDCAST-EN  
REF  
VERSIONID  
R/W  
FF00  
RESERVED  
RESERVED  
RESERVED  
DACx-SYNC-EN  
ALM ALM CRC  
SEL EN EN  
F
D
CONFIG  
GAIN  
R/W  
R/W  
0000  
0000  
0
0
0
1
1
0
1
0
RESERVED  
PWD  
WN  
DACx-PWDWN  
SDO SDO  
REF  
DIV-  
EN  
RESERVED  
RESERVED  
BUFFx-GAIN  
L
DAC  
TRIGGER  
BRDCAST  
STATUS  
W
0000  
0000  
0000  
0
0
0
1
1
1
0
1
1
1
0
1
RESERVED  
SOFT-RESET[3:0]  
R/W  
R/W  
BRDCAST-DATA[15:0]  
RESERVED  
REF  
ALM  
DAC0  
DAC1  
R/W  
R/W  
R/W  
R/W  
0000  
0000  
0000  
0000  
1
1
0
0
0
0
0
1
DAC0-DATA[15:0]  
DAC1-DATA[15:0]  
DAC2-DATA[15:0]  
DAC3-DATA[15:0]  
RESERVED  
DAC2  
1
0
1
0
DAC3  
1
0
1
1
All Others  
30  
Copyright © 2017–2019, Texas Instruments Incorporated  
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
8.6.1 NOP Register (address = 0x00) [reset = 0x0000]  
Figure 65. NOP Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NOP  
W
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. NOP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
No operation. Write 0000h for proper no-operation command  
15:0  
NOP  
W
0x0000  
8.6.2 DEVICE ID Register (address = 0x01) [reset = 0x---]  
Figure 66. DEVICE ID Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DEVICEID  
R
VERSIONID  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 10. DEVICE ID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:2  
DEVICEID  
R
----  
Device ID:  
D15 Reserved - 0  
D14:12 Resolution - 000 (16-bit); 001 (14-bit); 010 (12-bit)  
D11:4 Channels - 0100 (4 channels)  
D7 Reset - Determined by RSTSEL pin. 0 (reset to zero); 1  
(reset to midscale)  
D6:2 Reserved - 00101  
1:0  
VERSIONID  
R
11  
Version ID. Subject to change  
Copyright © 2017–2019, Texas Instruments Incorporated  
31  
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
8.6.3 SYNC Register (address = 0x2) [reset = 0xFF00]  
Figure 67. SYNC Register  
15  
7
14  
6
13  
5
12  
11  
10  
9
8
Reserved  
DAC3-  
DAC2-  
DAC1-  
DAC0-  
BRDCAST-EN BRDCAST-EN BRDCAST-EN BRDCAST-EN  
R/W  
3
R/W  
2
R/W  
1
R/W  
0
4
Reserved  
DAC3-SYNC-  
EN  
DAC2-SYNC-  
EN  
DAC1-SYNC-  
EN  
DAC0-SYNC-  
EN  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. SYNC Register Field Descriptions  
Bit  
15:12  
11  
10  
9
Field  
Type  
Reset  
Description  
Reserved  
1111  
Reserved for factory use  
DAC3-BRDCAST-EN  
DAC2-BRDCAST-EN  
DAC1-BRDCAST-EN  
DAC0-BRDCAST-EN  
Reserved  
R/W  
R/W  
R/W  
R/W  
1
When set to 1 the corresponding DAC is set to update its output  
after a serial interface write to the BRDCAST register.  
When cleared to 0 the corresponding DAC output remains  
unaffected after a serial interface write to the BRDCAST  
register.  
1
1
8
1
7:4  
3
0000  
Reserved for factory use  
DAC3-SYNC-EN  
DAC2-SYNC-EN  
DAC1-SYNC-EN  
DAC0-SYNC-EN  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
When set to 1 the corresponding DAC output is set to update in  
response to an LDAC trigger (synchronous mode).  
When cleared to 0 the corresponding DAC output is set to  
update immediately on a CS rising edge (asynchronous mode).  
2
1
0
32  
Copyright © 2017–2019, Texas Instruments Incorporated  
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
8.6.4 CONFIG Register (address = 0x3) [reset = 0x0000]  
Figure 68. CONFIG Register  
15  
7
14  
6
13  
12  
11  
10  
9
8
Reserved  
ALM-SEL  
R/W  
ALM-EN  
R/W  
CRC-EN  
R/W  
FSDO  
R/W  
DSDO  
R/W  
REF-PWDWN  
R/W  
5
4
3
2
1
0
Reserved  
DAC3-PWDWN DAC2-PWDWN DAC1-PWDWN DAC0-PWDWN  
R/W R/W R/W R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. CONFIG Register Field Descriptions  
Bit  
15:14  
13  
Field  
Type  
Reset  
00  
Description  
Reserved  
ALM-SEL  
Reserved for factory use  
R/W  
0
ALARM select.  
0: ALARM pin is CRC-ERROR  
1: ALARM pin is REF-ALARM  
12  
ALM-EN  
R/W  
0
Configure SDO/ALARM pin. When 1: SDO/ALARM pin is an  
active-low, open-drain, alarm pin. An external 10 kΩ pullup  
resistor to VIO is required. FSDO and DSDO bits are ignored.  
When 0: SDO/ALARM pin is a serial interface, push-pull, SDO  
pin  
11  
10  
CRC-EN  
FSDO  
R/W  
R/W  
0
0
CRC enable bit. Set to 1 to enable CRC. Set to 0 to disable  
Fast SDO bit (half-cycle speedup). When 0, SDO updates on an  
SCLK rising edge. When 1, SDO updates a half-cycle earlier,  
during an SCLK falling edge.  
9
DSDO  
R/W  
0
Disable SDO bit. When 1, SDO is always tri-stated. When 0,  
SDO is driven while CS is low, and tri-stated while CS is high  
8
7:4  
3
REF-PWDWN  
Reserved  
R/W  
0
When set to 1 disables the device internal reference  
Reserved for factory use  
0000  
DAC3-PWDWN  
DAC2-PWDWN  
DAC1-PWDWN  
DAC0-PWDWN  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
When set to 1 the corresponding DAC is set in power-down  
mode and its output is connected to GND through a 1 k  
internal resistor.  
2
1
0
Copyright © 2017–2019, Texas Instruments Incorporated  
33  
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
8.6.5 GAIN Register (address = 0x04) [reset = 0x---]  
Figure 69. GAIN Register  
15  
7
14  
6
13  
5
12  
Reserved  
11  
10  
9
8
REFDIV-EN  
R/W  
4
3
2
1
0
Reserved  
BUFF3-GAIN  
R/W  
BUFF2-GAIN  
R/W  
BUFF1-GAIN  
R/W  
BUFF0-GAIN  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. GAIN Register Field Descriptions  
Bit  
15:9  
8
Field  
Type  
Reset  
0
Description  
Reserved  
REFDIV-EN  
Reserved for factory use.  
R/W  
0/1  
When set to 1 the reference voltage is internally divided by a  
factor of 2.  
When cleared to 0 the reference voltage is unaffected.  
Default value is determined by the REFDIV pin.  
7:4  
3
Reserved  
0000  
0/1  
Reserved for factory use  
BUFF3-GAIN  
BUFF2-GAIN  
BUFF1-GAIN  
BUFF0-GAIN  
R/W  
R/W  
R/W  
R/W  
When set to 1 the buffer amplifier for corresponding DAC has a  
gain of 2.  
When cleared to 0 the buffer amplifier for corresponding DAC  
has a gain of 1.  
2
0/1  
1
0/1  
Default value is determined by the GAIN pin.  
0
0/1  
8.6.6 TRIGGER Register (address = 0x05) [reset = 0x0000]  
Figure 70. TRIGGER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
LDAC  
W
3
2
1
0
Reserved  
SOFT-RESET[3:0]  
W
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. TRIGGER Register Field Descriptions  
Bit  
15:5  
4
Field  
Type  
Reset  
Description  
Reserved  
LDAC  
0
0
Reserved for factory use.  
W
Set this bit to 1 to synchronously load those DACs that have  
been set in synchronous mode in the SYNC register.  
3:0  
SOFT-RESET[3:0]  
W
0x0  
When set to the reserved code 1010 resets the device to its  
default state.  
34  
Copyright © 2017–2019, Texas Instruments Incorporated  
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
8.6.7 BRDCAST Register (address = 0x6) [reset = 0x0000]  
Figure 71. BRDCAST Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BRDCAST-DATA[15:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 15. BRDCAST Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
BRDCAST-DATA[15:0]  
R/W  
0x0000  
Writing to the BRDCAST register forces those DAC channels  
that have been set to broadcast in the SYNC register to update  
their active data register with the BRDCAST-DATA value.  
Data are MSB aligned in straight binary format and follows the  
format below:  
DAC80504: { DATA[15:0] }  
DAC70504: { DATA[13:0], x, x }  
DAC60504: { DATA[11:0], x, x, x, x }  
x – Don’t care bits  
8.6.8 STATUS Register (address = 0x7) [reset = 0x0000]  
Figure 72. STATUS Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved  
REF-  
ALM  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 16. STATUS Register Field Descriptions  
Bit  
15:1  
0
Field  
Type  
Reset  
Description  
Reserved  
REF-ALM  
0
0
Reserved for factory use.  
R
Reference alarm bit. Reads 1 when the difference between  
VREF/DIV and VDD is below the required minimum analog  
threshold. Reads 0 otherwise.  
8.6.9 DACx Register (address = 0x8 to 0xF) [reset = 0x0000 or 0x8000]  
Figure 73. DACx Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DACx-DATA[15:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 17. DACx Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
DACx-DATA[15:0]  
R/W  
0x0000 or Stores the 16- or 14-bit data to be loaded to DACx in MSB  
0x8000  
aligned straight binary format. The default value is determined  
by the RSTSEL pin.  
Data follows the format below:  
DAC80504: { DATA[15:0] }  
DAC70504: { DATA[13:0], x, x }  
DAC60504: { DATA[11:0], x, x, x, x }  
x – Don’t care bits  
Copyright © 2017–2019, Texas Instruments Incorporated  
35  
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The high linearity, small package size and wide temperature range make the DACx0504 suitable in applications  
such as optical networking, wireless infrastructure, industrial automation and data acquisition systems. The  
device incorporates a 2.5 V internal reference with an internal reference divider circuit that enables full-scale  
DAC output voltages of 1.25 V, 2.5 V, or 5 V.  
9.1.1 Interfacing to a Microcontroller  
Figure 74 displays a typical serial interface that may be observed when connecting the DACx0504 SPI serial  
interface to a (master) microcontroller type platform. The setup for the interface is as follows: the microcontroller  
output SPI CLK drives the SCLK pin of the DACx0504, while the DACx0504 SDI pin is driven by the MOSI pin of  
the microcontroller. The CS pin of the DACx0504 can be asserted from a general program input/output pin of the  
microcontroller. When data are to be transmitted to the DACx0504, the CS pin is taken low. The data from the  
microcontroller is then transmitted to the DACx0504, totaling 24 bits latched into the DACx0504 device through  
the falling edge of SCLK. CS is then brought high after the completed write. The DACx0504 requires data with  
the MSB as the first bit received.  
Microcontroller  
DACx0504  
CS  
CS  
SCLK  
SCLK  
MOSI  
MISO  
SDI  
SDO  
Copyright © 2017, Texas Instruments Incorporated  
Figure 74. Typical Serial Interface  
36  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
Application Information (continued)  
9.1.2 Programmable Current Source Circuit  
The DACx0504 can be integrated into the circuit in Figure 75 to implement an improved Howland current pump  
for precise voltage to current conversions. Bidirectional current flow and high voltage compliance are two  
features of the circuit. With a matched resistor network, the load current of the circuit is shown by Equation 2.  
R2 + R3 / R1  
(
)
CODE  
2n  
IL  
=
ì VREF ì  
R3  
(2)  
The value of R3 in Equation 2 can be reduced to increase the output current drive of U3. U3 can drive ±20 mV in  
both directions with voltage compliance limited up to 15 V by the U3 voltage supply. Elimination of the circuit  
compensation capacitor C1 in the circuit is not suggested as a result of the change in the output impedance ZO,  
according to Equation 3.  
'
R1 R3 R1+ R2  
(
)(  
)
(
)
ZO  
=
R1 R2' + R3' -R1 R2 + R3  
'
(
)
(
)
(3)  
As shown in Equation 3, with matched resistors, ZO is infinite and the circuit is optimum for use as a current  
source. However, if unmatched resistors are used, ZO is positive or negative with negative output impedance  
being a potential cause of oscillation. Therefore, by incorporating C1 into the circuit, possible oscillation problems  
are eliminated. The value of C1 can be determined for critical applications; for most applications, however, a  
value of several pF is suggested.  
R2'  
15 k  
C1  
VDD REF  
VDD VREF  
10 pF  
R1'  
150 kꢀ  
R3'  
50 ꢀ  
VDAC  
DACx0504  
U3  
V
OPA277  
OUT  
GND  
R3  
50 ꢀ  
GND  
R1  
R2  
150 kꢀ  
15 kꢀ  
IL  
LOAD  
Copyright © 2017, Texas Instruments Incorporated  
Figure 75. Programmable Bidirectional Current Source Circuit  
Copyright © 2017–2019, Texas Instruments Incorporated  
37  
 
 
 
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
9.2 Typical Application  
The DACx0504 is designed for single-supply operation; however, a bipolar output is also possible using the  
circuit shown in Figure 76.  
GND  
15 V  
VDAC  
DACx0504  
OPA192  
VOUT  
R2  
REF  
VREF  
œ15 V  
R3  
R1  
VREF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 76. Bipolar Operation Using the DACx0504  
9.2.1 Design Requirements  
The circuit shown in Figure 76 gives a bipolar output voltage at VOUT. When GAIN = 1, VOUT can be calculated  
using Equation 4:  
»
ÿ
Ÿ
«
÷
÷
R3 R3  
R3  
CODE  
2n  
VOUT CODE = VREF  
ì
1+  
+
- VREF ì  
(
)
÷
R2 R1 ◊  
R1 ◊  
«
Ÿ
«
where  
VOUT(CODE) = output voltage versus code  
CODE = 0 to 2n – 1. This is the digital code loaded to the DAC  
VREF = reference voltage applied to the DACx0504  
n = resolution in bits  
(4)  
Table 18. Design Parameters  
PARAMETER  
VALUE  
±10 V  
2.5 V  
12  
VOUT  
VREF  
n
9.2.2 Detailed Design Procedure  
The bipolar output span can be calculated through Equation 4 by defining a few parameters, the first being the  
value for the reference voltage. Once a reference voltage is chosen, the gain resistors can be set accordingly by  
determining the desired VOUT at code 0 and code 2n. For a VREF of 2.5 V and a desired output voltage range of  
±10 V the calculation is as follows.  
CODE = 0:  
÷
÷
R3  
R3  
VOUT 0 = - VREF ì  
= - 2.5V ì  
( )  
R1 ◊  
R1 ◊  
«
«
(5)  
Setting the equation to minimum output span, VOUT(0) = –10 V, will reduce the equation to: R3/R1 = 4:  
CODE = 4096:  
Setting the equation to maximum output scan, VOUT(4096) = 10 V, and R3/R1 = 4 will reduce the equation to:  
R3/R2 = 3  
It is important to note that the maximum code of a 12-bit DAC is 4095; code 4096 was used to simplify the  
equation above. For practical use, the true output span will encompass a range of –10 V to (10 V – 1 LSB),  
which in this case is –10 V to 9.995 V.  
38  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
9.2.3 Application Curve  
The ±10 V output span with a reference voltage of 2.5 V can be achieved by using values of 30 k, 10 k, and  
7.5 kfor R3, R2, and R1, respectively. A curve to illustrate this output span is shown in Figure 77. For this  
example, 1% tolerance resistors were used in evaluating bipolar operation.  
10  
5
0
-5  
-10  
0
512 1024 1536 2048 2560 3072 3584 4096  
DAC Code  
D001  
Figure 77. Bipolar Operation  
Copyright © 2017–2019, Texas Instruments Incorporated  
39  
 
DAC80504, DAC70504, DAC60504  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
The DACx0504 operates within the specified VDD supply range of 2.7 V to 5.5 V, and VIO supply range of 1.7 V to  
5.5 V. The DACx0504 does not require specific supply sequencing.  
The VDD supply must be well-regulated and low-noise. Switching power supplies and dc-dc converters often have  
high-frequency glitches or spikes riding on the output voltage. In addition, digital components can create similar  
high-frequency spikes. This noise can easily couple into the DAC output voltage through various paths between  
the power connections and analog output. In order to further minimize noise from the power supply, include a 1-  
μF to 10-μF capacitor and 0.1-μF bypass capacitor. The current consumption on the VDD pin, the short-circuit  
current limit, and the load current for the device is listed in the Electrical Characteristics. The power supply must  
meet the aforementioned current requirements.  
11 Layout  
11.1 Layout Guidelines  
A precision analog component requires careful layout, the list below provides some insight into good layout  
practices.  
Bypass all power supply pins to ground with a low-ESR ceramic bypass capacitor. The typical recommended  
bypass capacitance is 0.1-µF to 0.22-µF ceramic with a X7R or NP0 dielectric.  
Place power supplies and REF bypass capacitors close to the pins to minimize inductance and optimize  
performance.  
Use a high-quality ceramic type NP0 or X7R for its optimal performance across temperature, and very low  
dissipation factor.  
The digital and analog sections must have proper placement with respect to the digital pins and analog pins  
of the DACx0504 device. The separation of analog and digital blocks minimizes coupling into neighboring  
blocks, as well as interaction between analog and digital return currents.  
11.2 Layout Example  
ANALOG SIDE  
GND POUR  
BYPASS CAPACITOR  
2
1
4
3
16  
15  
14  
13  
5
6
7
8
BYPASS CAPACITORS  
10 11  
12  
9
GND POUR  
DIGITAL SIDE  
Figure 78. DACx0504 Layout Example  
40  
版权 © 2017–2019, Texas Instruments Incorporated  
DAC80504, DAC70504, DAC60504  
www.ti.com.cn  
ZHCSH59C AUGUST 2017REVISED JANUARY 2019  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档: DACx0504 评估模块用户指南》  
12.2 相关链接  
19 列出了快速访问链接。类别包括技术文档、支持和社区资源、工具与软件,以及立即订购快速访问。  
19. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
DAC80504  
DAC70504  
DAC60504  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2019, Texas Instruments Incorporated  
41  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC60504BRTER  
DAC60504BRTET  
DAC70504RTER  
DAC70504RTET  
DAC80504RTER  
DAC80504RTET  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RTE  
RTE  
RTE  
RTE  
RTE  
RTE  
16  
16  
16  
16  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
654B  
654B  
70504  
70504  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
(80504, 854)  
(80504, 854)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC60504BRTER  
DAC60504BRTET  
DAC70504RTER  
DAC70504RTET  
DAC80504RTER  
DAC80504RTET  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RTE  
RTE  
RTE  
RTE  
RTE  
RTE  
16  
16  
16  
16  
16  
16  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC60504BRTER  
DAC60504BRTET  
DAC70504RTER  
DAC70504RTET  
DAC80504RTER  
DAC80504RTET  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RTE  
RTE  
RTE  
RTE  
RTE  
RTE  
16  
16  
16  
16  
16  
16  
3000  
250  
367.0  
213.0  
367.0  
213.0  
367.0  
213.0  
367.0  
191.0  
367.0  
191.0  
367.0  
191.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
3000  
250  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016D  
WQFN - 0.8 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.15  
2.85  
A
B
PIN 1 INDEX AREA  
3.15  
2.85  
C
0.8  
0.7  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 1.5  
SYMM  
(0.2) TYP  
5
8
EXPOSED  
THERMAL PAD  
4
9
SYMM  
17  
2X 1.5  
0.8 0.1  
12X 0.5  
1
12  
PIN 1 ID  
0.30  
0.18  
16X  
16  
13  
0.5  
0.3  
0.1  
C A B  
16X  
0.05  
4219118/A 11/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016D  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
0.8)  
SYMM  
SEE SOLDER MASK  
DETAIL  
16  
13  
16X (0.6)  
12  
16X (0.24)  
1
17  
SYMM  
(2.8)  
12X (0.5)  
(R0.05) TYP  
4
9
(
0.2) TYP  
VIA  
5
8
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219118/A 11/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016D  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
0.76)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
12X (0.5)  
(2.8)  
9
4
(R0.05) TYP  
5
8
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 17  
90% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219118/A 11/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY