DAC7562TDSCR [TI]

DAC7562T 双通道、12 位、低功耗、电压输出 DAC,具有 2.5V、4ppm/°C、内部基准电压和 5V TTL I/O | DSC | 10 | -40 to 125;
DAC7562TDSCR
型号: DAC7562TDSCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DAC7562T 双通道、12 位、低功耗、电压输出 DAC,具有 2.5V、4ppm/°C、内部基准电压和 5V TTL I/O | DSC | 10 | -40 to 125

文件: 总63页 (文件大小:2322K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
DACxx6xT 具有 2.5V4PPM/°C 内部基准和 5V TTL I/O 的双路 16 位、  
14 位、12 位低功耗电压输出 DAC  
1 特性  
3 说明  
1
相对精度:16 位时为 4 最低有效位 (LSB) 最大积  
分非线性 (INL)  
DAC856xTDAC816xT DAC756xT 器件分别为 16  
位、14 位和 12 位低功耗电压输出双通道数模转换器  
(DAC)。 这些器件包括一个 2.5V、  
低毛刺脉冲:0.1nV-s  
双向基准引脚:输入或 2.5V 输出  
4ppm/°C 内部基准,从而提供了一个 2.5V 5V 的满  
量程输出电压范围。 此内部基准有一个 ±5mV 的初始  
精度,并且能够在 VREFIN/VREFOUT引脚上提供或吸收高  
20mA 的电流。  
4ppm/°C 温度漂移(典型值)  
上电复位至零量程或量程中点  
低功耗:5V AVDD 时为 4mW  
宽电源范围:2.7V 5.5V  
这些器件是单片器件,从而提供了出色的线性并大大降  
低了有害的代码至代码转换时的瞬态电压(毛刺脉  
冲)。 它们使用一个运行时钟速率高达 50MHz 的多  
用途 3 线制串口。 此接口与标准 SPI™QSPI™,  
Microwire,以及数字信号处理器 (DSP) 接口兼容。  
DACxx62T 器件配有一个上电复位电路,此电路可确  
保在一个有效代码被写入此器件前,DAC 输出上电并  
保持零量程,而 DACxx63T 在量程中点上电。 这些器  
件包含一个断电特性,此特性可将 5V 电压时的流耗减  
少至 550nA(典型值)。 此低功耗、内部基准和小封  
装尺寸使得这些器件非常适合于便携式、电池供电运行  
类设备。  
带有施密特触发输入的 50MHz 串行外设接口 (SPI)  
LDAC CLR 功能  
支持轨到轨运行的输出缓冲器  
DAC8562 系列引脚到引脚兼容  
支持 5V 晶体管晶体管逻辑电路 (TTL) I/O  
封装:晶圆级小外形无引线 (WSON)-10 (3mm ×  
3mm),超薄小外形尺寸 (VSSOP)-10  
温度范围:-40°C 125°C  
2 应用  
便携式仪表  
可编程逻辑控制器 (PLC) 模拟输出模块  
双极输出 (第 9.2.2 节)  
闭环伺服器控制  
DACxx62T 器件一样,DACxx63T 器件之间可互相  
插接并且功能兼容。 整个系列均提供 VSSOP-10 和  
WSON-10 封装。  
压控振荡器调谐  
数据采集系统  
器件信息(1)  
可编程增益和偏移调整  
器件型号  
DAC8562T  
封装  
封装尺寸(标称值)  
VSSOP (10),  
WSON (10)  
DAC8162T  
DAC7562T  
3.00mm × 3.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化框图  
GND  
AVDD  
LDAC  
CLR  
VREFIN/VREFOUT  
Power-  
Down  
Control  
Logic  
DIN  
Buffer Control  
Register Control  
2.5-V  
Reference  
Input Control Logic  
SCLK  
SYNC  
Control Logic  
DAC Register B  
DAC Register A  
VOUT  
B
Data Buffer B  
Data Buffer A  
DAC  
DAC756xT (12-Bit)  
DAC816xT (14-Bit)  
DAC856xT (16-Bit)  
VOUTA  
DAC  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLASE61  
 
 
 
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
目录  
8.4 Device Functional Modes........................................ 32  
8.5 Programming........................................................... 36  
Application and Implementation ........................ 39  
9.1 Application Information............................................ 39  
9.2 Typical Applications ................................................ 41  
9.3 System Examples ................................................... 45  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings ............................................................ 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements................................................ 9  
7.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 28  
8.1 Overview ................................................................. 28  
8.2 Functional Block Diagram ....................................... 28  
8.3 Feature Description................................................. 28  
9
10 Power Supply Recommendations ..................... 46  
11 Layout................................................................... 46  
11.1 Layout Guidelines ................................................. 46  
11.2 Layout Example .................................................... 47  
12 器件和文档支持 ..................................................... 49  
12.1 相关链接................................................................ 49  
12.2 社区资源................................................................ 49  
12.3 Trademarks........................................................... 49  
12.4 Electrostatic Discharge Caution............................ 49  
12.5 Glossary................................................................ 49  
13 机械、封装和可订购信息....................................... 49  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (September 2015) to Revision A  
Page  
从产品预览改为量产数据 ........................................................................................................................................................ 1  
2
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
5 Device Comparison Table  
MAXIMUM  
DIFFERENTIAL  
NONLINEARITY (LSB)  
MAXIMUM RELATIVE  
ACCURACY (LSB)  
MAXIMUM REFERENCE  
RESET TO  
DEVICE  
DRIFT (ppm/°C)  
DAC7562T  
DAC7563T  
DAC8162T  
DAC8163T  
DAC8562T  
DAC8563T  
Zero  
±0.75  
±0.25  
±0.5  
±1  
10  
Mid-scale  
Zero  
±3  
10  
Mid-scale  
Zero  
±12  
10  
Mid-scale  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
3
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
6 Pin Configuration and Functions  
DGS Package  
10-Pin VSSOP  
(Top View)  
DSC Package  
10-Pin WSON  
(Top View)  
1
2
3
4
5
10  
9
VOUT  
A
VREFIN/VREFOUT  
AVDD  
1
2
3
4
5
10  
VOUT  
A
VREFIN/VREFOUT  
VOUT  
B
9
8
7
6
VOUT  
B
AVDD  
DIN  
8
DIN  
GND  
LDAC  
CLR  
GND  
LDAC  
CLR  
Thermal Pad(1)  
7
SCLK  
SCLK  
SYNC  
6
SYNC  
(1) TI recommends connecting the thermal pad to the ground plane for better thermal dissipation.  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
AVDD  
NO.  
9
I
Power-supply input, 2.7 V to 5.5 V  
Asynchronous clear input. The CLR input is falling-edge sensitive. On activation of CLR, zero  
scale (DACxx62T) or mid-scale (DACxx63T) is loaded to all input and DAC registers. This sets the  
DAC output voltages accordingly. The device exits clear code mode on the 24th falling edge of the  
next write to the device. Activating CLR during a write sequence aborts the write.  
CLR  
5
I
Serial data input. Data are clocked into the 24-bit input shift register on each falling edge of the  
serial clock input. Schmitt-trigger logic input  
DIN  
8
3
I
GND  
Ground reference point for all circuitry on the device  
In synchronous mode, data update occurs with the falling edge of the 24th SCLK cycle, which  
follows a falling edge of SYNC. Such synchronous updates do not require the LDAC, which must  
be connected to GND permanently or asserted and held low before sending commands to the  
device.  
In asynchronous mode, the LDAC pin is used as a negative edge-triggered timing signal for  
simultaneous DAC updates. Multiple single-channel commands can be written in order to set  
different channel buffers to desired values and then make a falling edge on the LDAC pin to  
update the DAC output registers simultaneously.  
LDAC  
4
I
SCLK  
SYNC  
7
6
I
I
Serial clock input. Data can be transferred at rates up to 50 MHz. Schmitt-trigger logic input  
Level-triggered control input (active-low). This input is the frame synchronization signal for the  
input data. When SYNC goes low, it enables the input shift register, and data are sampled on  
subsequent falling clock edges. The DAC output updates following the 24th clock falling edge. If  
SYNC is taken high before the 23rd clock edge, the rising edge of SYNC acts as an interrupt, and  
the write sequence is ignored by the DAC756xT, DAC816xT, and DAC856xT devices. Schmitt-  
trigger logic input  
VOUT  
A
B
1
2
O
O
Analog output voltage from DAC-A  
VOUT  
Analog output voltage from DAC-B  
VREFIN/VREFOUT  
10  
I/O  
Bidirectional voltage reference pin. If internal reference is used, 2.5-V output.  
4
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
Over operating ambient temperature range (unless otherwise noted).  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
6
UNIT  
V
AVDD to GND  
CLR, DIN, LDAC, SCLK and SYNC input voltage to GND  
VOUT[A, B] to GND  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
125  
V
V
VREFIN/VREFOUT to GND  
V
Operating temperature range  
Junction temperature, TJ  
°C  
°C  
°C  
150  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
2.7  
0
NOM  
MAX  
5.5  
UNIT  
V
POWER SUPPLY  
Supply voltage  
DIGITAL INPUTS  
Digital input voltage  
AVDD to GND  
CLR, DIN, LDAC, SCLK and SYNC  
AVDD  
AVDD  
125  
V
REFERENCE INPUT  
VREFIN Reference input voltage  
TEMPERATURE RANGE  
0
V
TA  
Operating ambient temperature  
–40  
°C  
7.4 Thermal Information  
DAC756xT, DAC816xT, DAC856xT  
THERMAL METRIC  
DSC (WSON)  
10 PINS  
62.8  
DGS (VSSOP)  
10 PINS  
173.8  
48.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
44.3  
26.5  
79.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
1.7  
ψJB  
25.5  
68.4  
RθJC(bot)  
46.2  
N/A  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
5
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
7.5 Electrical Characteristics  
At AVDD = 2.7 V to 5.5 V and TA = –40°C to 125°C (unless otherwise noted).  
PARAMETER  
STATIC PERFORMANCE(1)  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
12  
Bits  
LSB  
Bits  
LSB  
Bits  
LSB  
DAC756xT  
DAC816xT  
DAC856xT  
Relative accuracy  
Using line passing through codes 32 and 4,064  
±0.3  
±0.75  
±0.25  
Differential nonlinearity 12-bit monotonic  
±0.05  
Resolution  
14  
16  
Relative accuracy  
Using line passing through codes 128 and 16,256  
±1  
±3  
Differential nonlinearity 14-bit monotonic  
Resolution  
±0.1  
±0.5  
Relative accuracy  
Using line passing through codes 512 and 65,024  
±4  
±0.2  
±1  
±12  
±1  
Differential nonlinearity 16-bit monotonic  
Offset error  
Extrapolated from two-point line(1), unloaded  
±4  
mV  
µV/°C  
% FSR  
mV  
Offset error drift  
Full-scale error  
Zero-code error  
Zero-code error drift  
Gain error  
±2  
DAC register loaded with all 1s, DAC output unloaded  
DAC register loaded with all 0s, DAC output unloaded  
±0.03  
1
±0.2  
4
±2  
µV/°C  
% FSR  
Extrapolated from two-point line(1), unloaded  
±0.01  
±0.15  
ppm  
FSR/°C  
Gain temperature coefficient  
±1  
OUTPUT CHARACTERISTICS(2)  
Output voltage range  
0
AVDD  
V
µs  
DACs unloaded  
7
10  
Output voltage settling time(3)  
Slew rate  
RL = 1 MΩ  
Measured between 20%–80% of a full-scale transition  
RL = ∞  
0.75  
1
V/µs  
nF  
Capacitive load stability  
RL = 2 kΩ  
3
Code-change glitch impulse  
Digital feedthrough  
1-LSB change around major carry  
SCLK toggling, SYNC high  
RL = 2 k, CL = 470 pF, AVDD = 5.5 V  
0.1  
0.1  
40  
nV-s  
nV-s  
mV  
Power-on glitch impulse  
Full-scale swing on adjacent channel,  
External reference  
5
Channel-to-channel dc crosstalk  
µV  
Full-scale swing on adjacent channel,  
Internal reference  
15  
5
DC output impedance  
Short-circuit current  
At mid-scale input  
Ω
mA  
µs  
DAC outputs at full-scale, DAC outputs shorted to  
GND  
40  
50  
Power-up time, including settling time  
AC PERFORMANCE(2)  
DAC output noise density  
DAC output noise  
Coming out of power-down mode  
TA = 25°C, at mid-scale input, fOUT = 1 kHz  
TA = 25°C, at mid-scale input, 0.1 Hz to 10 Hz  
90  
nV/Hz  
2.6  
µVPP  
LOGIC INPUTS(2)  
Input-pin leakage current  
Logic input LOW voltage VIL  
Logic input HIGH voltage VIH  
Pin capacitance  
–1  
0
±0.1  
1
0.8  
µA  
V
2.1  
AVDD  
3
V
pF  
(1) 16-bit: codes 512 and 65,024; 14-bit: codes 128 and 16,256; 12-bit: codes 32 and 4,064, All digital inputs kept at same IO levels before  
and after write to the DAC  
(2) Specification based on design or characterization  
(3) Transition time between 1 / 4 scale and 3 / 4 scale, including settling to within ±0.024% FSR  
6
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
Electrical Characteristics (continued)  
At AVDD = 2.7 V to 5.5 V and TA = –40°C to 125°C (unless otherwise noted).  
PARAMETER  
REFERENCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
External VREF = 2.5 V (when internal reference is  
disabled), all channels active using gain = 1  
External reference current  
Reference input impedance  
15  
µA  
Internal reference disabled, gain = 1  
Internal reference disabled, gain = 2  
170  
85  
kΩ  
REFERENCE OUTPUT  
Output voltage  
TA = 25°C  
TA = 25°C  
2.495  
–5  
2.5  
2.505  
5
V
Initial accuracy  
±0.1  
mV  
Internal reference output voltage temperature drift is  
characterized from –40°C to 125°C.  
Output-voltage temperature drift  
Output-voltage noise  
4
10  
ppm/°C  
µVPP  
f = 0.1 Hz to 10 Hz  
12  
250  
30  
TA = 25°C, f = 1 kHz, CL = 0 µF  
TA = 25°C, f = 1 MHz, CL = 0 µF  
TA = 25°C, f = 1 MHz, CL = 4.7 µF  
TA = 25°C  
Output-voltage noise density (high-  
frequency noise)  
nV/Hz  
10  
Load regulation, sourcing(4)  
Load regulation, sinking(4)  
Output-current load capability(2)  
Line regulation  
20  
µV/mA  
µV/mA  
mA  
TA = 25°C  
185  
±20  
50  
TA = 25°C  
µV/V  
ppm  
Long-term stability or drift (aging)(4)  
TA = 25°C, time = 0 to 1900 hours  
First cycle  
100  
200  
50  
Thermal hysteresis(4)  
ppm  
Additional cycles  
POWER REQUIREMENTS(5)  
AVDD = 3.6 V to 5.5 V, normal mode, internal  
reference off, Digital inputs at VDD or GND  
0.25  
0.9  
0.5  
4
AVDD = 3.6 V to 5.5 V, normal mode, internal  
reference off, Digital inputs at TTL level  
mA  
µA  
AVDD = 3.6 V to 5.5 V, normal mode, internal  
reference on, Digital inputs at VDD or GND  
1.6  
5
AVDD = 3.6 V to 5.5 V, normal mode, internal  
reference on, Digital inputs at TTL level  
AVDD = 3.6 V to 5.5 V, power-down modes, Digital  
inputs at VDD or GND  
0.55  
0.2  
4
Power supply current (IDD  
)
AVDD = 2.7 V to 3.6 V, normal mode, internal  
reference off, Digital inputs at VDD or GND  
0.4  
0.8  
1.4  
1.8  
3
AVDD = 2.7 V to 3.6 V, normal mode, internal  
reference off, Digital inputs at TTL level  
mA  
µA  
AVDD = 2.7 V to 3.6 V, normal mode, internal  
reference on, Digital inputs at VDD or GND  
0.73  
0.35  
AVDD = 2.7 V to 3.6 V, normal mode, internal  
reference on, Digital inputs at TTL level  
AVDD = 2.7 V to 3.6 V, power-down modes, Digital  
inputs at VDD or GND  
(4) See the Application Information section of this data sheet.  
(5) Input code = mid-scale, no load  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
7
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
Electrical Characteristics (continued)  
At AVDD = 2.7 V to 5.5 V and TA = –40°C to 125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AVDD = 3.6 V to 5.5 V, normal mode, internal  
reference off, Digital inputs at VDD or GND  
0.9  
2.75  
mW  
AVDD = 3.6 V to 5.5 V, normal mode, internal  
reference on, Digital inputs at VDD or GND  
3.2  
2
8.8  
22  
AVDD = 3.6 V to 5.5 V, power-down modes, Digital  
inputs at VDD or GND  
µW  
mW  
µW  
Power dissipation  
AVDD = 2.7 V to 3.6 V, normal mode, internal  
reference off, Digital inputs at VDD or GND  
0.54  
1.97  
0.95  
1.44  
5
AVDD = 2.7 V to 3.6 V, normal mode, internal  
reference on, Digital inputs at VDD or GND  
AVDD = 2.7 V to 3.6 V, power-down modes, Digital  
inputs at VDD or GND  
10.8  
8
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
7.6 Timing Requirements(1)(2)  
At AVDD = 2.7 V to 5.5 V, external VREFIN = 2.5 V to 5.5 V, and over –40°C to 125°C (unless otherwise noted). See Figure 1.  
DAC756xT, DAC816xT,  
DAC856xT  
UNIT  
MIN  
TYP  
MAX  
f(SCLK)  
t(1)  
Serial clock frequency  
50  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK falling edge to SYNC falling edge (for successful write operation)  
SCLK cycle time  
SYNC rising edge to 23rd SCLK falling edge (for successful SYNC interrupt)  
10  
20  
13  
15  
13  
8
t(2)  
t(3)  
t(4)  
Minimum SYNC HIGH time  
t(5)  
SYNC to SCLK falling edge setup time  
SCLK LOW time  
t(6)  
t(7)  
SCLK HIGH time  
8
t(8)  
SCLK falling edge to SYNC rising edge  
Data setup time  
10  
6
t(9)  
t(10)  
t(11)  
t(12)  
t(13)  
t(14)  
Data hold time  
6
SCLK falling edge to LDAC falling edge for asynchronous LDAC update mode  
LDAC pulse duration, LOW time  
5
10  
80  
CLR pulse duration, LOW time  
CLR falling edge to start of VOUT transition  
100  
(1) All input signals are specified with tr = tf = 1 ns/V (10% to 90% of AVDD) and timed from a voltage level of (VIL + VIH) / 2.  
(2) See the Serial Write Operation timing diagram (Figure 1).  
t(1)  
t(2)  
SCLK  
SYNC  
DIN  
t(5)  
t(6)  
t(3)  
t(7)  
t(8)  
t(4)  
t(10)  
t(9)  
DB23  
DB0  
t(11)  
t(12)  
LDAC(1)  
LDAC(2)  
t(13)  
CLR  
t(14)  
VOUT  
x
(1) Asynchronous LDAC update mode. For more information, see the LDAC Functionality section.  
(2) Synchronous LDAC update mode; LDAC remains low. For more information, see the LDAC Functionality section.  
Figure 1. Timing Diagram, Serial Write Operation  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
9
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
7.7 Typical Characteristics  
Table 1. Typical Characteristics: Internal Reference Performance  
POWER-SUPPLY  
VOLTAGE  
MEASUREMENT  
Internal Reference Voltage vs Temperature  
FIGURE NUMBER  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Internal Reference Voltage Temperature Drift Histogram  
Internal Reference Voltage vs Load Current  
Internal Reference Voltage vs Time  
5.5 V  
Internal Reference Noise Density vs Frequency  
Internal Reference Voltage vs Supply Voltage  
2.7 V–5.5 V  
Table 2. Typical Characteristics: DAC Static Performance  
POWER-SUPPLY  
MEASUREMENT  
VOLTAGE  
FIGURE NUMBER  
FULL-SCALE, GAIN, OFFSET AND ZERO-CODE ERRORS  
Full-Scale Error vs Temperature  
Gain Error vs Temperature  
Offset Error vs Temperature  
Zero-Code Error vs Temperature  
Full-Scale Error vs Temperature  
Gain Error vs Temperature  
Offset Error vs Temperature  
Zero-Code Error vs Temperature  
LOAD REGULATION  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 63  
Figure 64  
Figure 65  
Figure 66  
5.5 V  
2.7 V  
5.5 V  
2.7 V  
Figure 30  
Figure 74  
DAC Output Voltage vs Load Current  
DIFFERENTIAL NONLINEARITY ERROR  
T = –40°C  
T = 25°C  
T = 125°C  
Figure 9  
Figure 11  
Figure 13  
Figure 15  
Figure 56  
Figure 58  
Figure 60  
Figure 62  
Differential Linearity Error vs Digital Input Code  
Differential Linearity Error vs Temperature  
Differential Linearity Error vs Digital Input Code  
Differential Linearity Error vs Temperature  
5.5 V  
2.7 V  
T = –40°C  
T = 25°C  
T = 125°C  
INTEGRAL NONLINEARITY ERROR (RELATIVE ACCURACY)  
T = –40°C  
Figure 8  
Figure 10  
Figure 12  
Figure 14  
Figure 55  
Figure 57  
Figure 59  
Figure 61  
Linearity Error vs Digital Input Code  
Linearity Error vs Temperature  
Linearity Error vs Digital Input Code  
Linearity Error vs Temperature  
T = 25°C  
5.5 V  
2.7 V  
T = 125°C  
T = –40°C  
T = 25°C  
T = 125°C  
10  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
Table 2. Typical Characteristics: DAC Static Performance (continued)  
POWER-SUPPLY  
VOLTAGE  
MEASUREMENT  
FIGURE NUMBER  
POWER-DOWN CURRENT  
Power-Down Current vs Temperature  
Power-Down Current vs Power-Supply Voltage  
Power-Down Current vs Temperature  
POWER-SUPPLY CURRENT  
5.5 V  
2.7 V – 5.5 V  
2.7 V  
Figure 28  
Figure 29  
Figure 73  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 49  
Figure 50  
Figure 51  
Figure 52  
Figure 53  
Figure 54  
Figure 67  
Figure 68  
Figure 69  
Figure 70  
Figure 71  
Figure 72  
Power-Supply Current vs Temperature  
Power-Supply Current vs Digital Input Code  
Power-Supply Current Histogram  
5.5 V  
2.7 V – 5.5 V  
3.6 V  
Power-Supply Current vs Power-Supply Voltage  
Power-Supply Current vs Temperature  
Power-Supply Current vs Digital Input Code  
Power-Supply Current Histogram  
Power-Supply Current vs Temperature  
Power-Supply Current vs Digital Input Code  
Power-Supply Current Histogram  
2.7 V  
Table 3. Typical Characteristics: DAC Dynamic Performance  
POWER-SUPPLY  
MEASUREMENT  
VOLTAGE  
FIGURE NUMBER  
CHANNEL-TO-CHANNEL CROSSTALK  
5-V Rising Edge  
5-V Falling Edge  
Figure 43  
Figure 44  
Channel-to-Channel Crosstalk  
CLOCK FEEDTHROUGH  
Clock Feedthrough  
5.5 V  
5.5 V  
2.7 V  
Figure 48  
Figure 87  
500 kHz, Midscale  
GLITCH IMPULSE  
Rising Edge, Code 7FFFh to 8000h  
Falling Edge, Code 8000h to 7FFFh  
Rising Edge, Code 7FFCh to 8000h  
Falling Edge, Code 8000h to 7FFCh  
Rising Edge, Code 7FF0h to 8000h  
Falling Edge, Code 8000h to 7FF0h  
Figure 37  
Figure 38  
Figure 39  
Figure 40  
Figure 41  
Figure 42  
Glitch Impulse, 1-LSB Step  
Glitch Impulse, 4-LSB Step  
Glitch Impulse, 16-LSB Step  
5.5 V  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
11  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
Table 3. Typical Characteristics: DAC Dynamic Performance (continued)  
POWER-SUPPLY  
VOLTAGE  
MEASUREMENT  
FIGURE NUMBER  
Rising Edge, Code 7FFFh to 8000h  
Figure 79  
Figure 80  
Figure 81  
Figure 82  
Figure 83  
Figure 84  
Glitch Impulse, 1-LSB Step  
Glitch Impulse, 4-LSB Step  
Falling Edge, Code 8000h to 7FFFh  
Rising Edge, Code 7FFCh to 8000h  
Falling Edge, Code 8000h to 7FFCh  
Rising Edge, Code 7FF0h to 8000h  
Falling Edge, Code 8000h to 7FF0h  
2.7 V  
Glitch Impulse, 16-LSB Step  
NOISE  
External VREF  
Internal VREF  
External VREF  
Figure 45  
Figure 46  
Figure 47  
DAC Output Noise Density vs  
Frequency  
5.5 V  
DAC Output Noise 0.1 Hz to 10 Hz  
POWER-ON GLITCH  
Reset to Zero Scale  
Reset to Midscale  
Reset to Zero Scale  
Reset to Midscale  
Figure 35  
Figure 36  
Figure 85  
Figure 86  
5.5 V  
2.7 V  
Power-On Glitch  
SETTLING TIME  
Rising Edge, Code 0h to FFFFh  
Falling Edge, Code FFFFh to 0h  
Rising Edge, Code 4000h to C000h  
Falling Edge, Code C000h to 4000h  
Rising Edge, Code 0h to FFFFh  
Falling Edge, Code FFFFh to 0h  
Rising Edge, Code 4000h to C000h  
Falling Edge, Code C000h to 4000h  
Figure 31  
Figure 32  
Figure 33  
Figure 34  
Figure 75  
Figure 76  
Figure 77  
Figure 78  
Full-Scale Settling Time  
5.5 V  
2.7 V  
Half-Scale Settling Time  
Full-Scale Settling Time  
Half-Scale Settling Time  
12  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
7.7.1 Typical Characteristics: Internal Reference  
At TA = 25°C, AVDD = 5.5 V, gain = 2, and VREFOUT unloaded, unless otherwise noted.  
30  
25  
20  
15  
10  
5
2.505  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
60 units shown  
(30 MSOP, 30 SON-10)  
0
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature Drift (ppm/èC)  
Figure 2. Internal Reference Voltage vs Temperature  
Figure 3. Internal Reference Voltage, Temperature Drift  
Histogram  
2.510  
400  
300  
200  
100  
0
2.505  
2.500  
2.495  
2.490  
−100  
−200  
−300  
−400  
16 units shown (8 MSOP, 8 SON-10)  
Average shown in dashed line  
−20  
−15  
−10  
−5  
0
5
10  
15  
20  
0
250  
500  
750  
1000  
1250  
1500  
Load Current (mA)  
Elapsed Time (Hours)  
Figure 4. Internal Reference Voltage vs Load Current  
Figure 5. Internal Reference Voltage vs Time  
400  
2.505  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
No Load  
4.7 µF Load  
−40°C  
+25°C  
+125°C  
350  
300  
250  
200  
150  
100  
50  
0
10  
100  
1k  
10k  
100k  
1M  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Frequency (Hz)  
AVDD (V)  
Figure 6. Internal Reference Noise Density vs Frequency  
Figure 7. Internal Reference Voltage vs Supply Voltage  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
13  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
 
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
7.7.2 Typical Characteristics: DAC at AVDD = 5.5 V  
At TA = 25°C, 5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
12  
9
1.0  
0.8  
0.6  
6
0.4  
3
0.2  
0
0.0  
−0.2  
−0.4  
−0.6  
−0.8  
−1.0  
−3  
−6  
−9  
−12  
Typical channel shown  
−40°C  
Typical channel shown  
−40°C  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 8. Linearity Error vs Digital Input Code (–40°C)  
Figure 9. Differential Linearity Error vs Digital Input Code  
(–40°C)  
12  
9
1.0  
0.8  
0.6  
6
0.4  
3
0.2  
0
0.0  
−0.2  
−0.4  
−0.6  
−3  
−6  
−9  
Typical channel shown  
25°C  
Typical channel shown  
−0.8  
25°C  
−1.0  
−12  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 10. Linearity Error vs Digital Input Code (25°C)  
Figure 11. Differential Linearity Error vs Digital Input Code  
(25°C)  
12  
9
1.0  
0.8  
0.6  
6
0.4  
3
0.2  
0
0.0  
−0.2  
−0.4  
−0.6  
−3  
−6  
−9  
Typical channel shown  
125°C  
Typical channel shown  
−0.8  
125°C  
−1.0  
−12  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 12. Linearity Error vs Digital Input Code (125°C)  
Figure 13. Differential Linearity Error vs Digital Input Code  
(125°C)  
14  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
Typical Characteristics: DAC at AVDD = 5.5 V (continued)  
At TA = 25°C, 5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
12  
1.0  
INL Max  
INL Min  
DNL Max  
DNL Min  
0.8  
9
0.6  
6
0.4  
3
0.2  
0
0.0  
−0.2  
−0.4  
−0.6  
−0.8  
−1.0  
−3  
−6  
−9  
−12  
Typical channel shown  
−40 −25 −10  
Typical channel shown  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Figure 14. Linearity Error vs Temperature  
Figure 15. Differential Linearity Error vs Temperature  
0.20  
0.15  
0.15  
Ch A  
Ch B  
Ch A  
Ch B  
0.10  
0.05  
0.10  
0.05  
0.00  
0.00  
−0.05  
−0.10  
−0.15  
−0.20  
−0.05  
−0.10  
−0.15  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Figure 16. Full-Scale Error vs Temperature  
Figure 17. Gain Error vs Temperature  
4
3
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Ch A  
Ch B  
Ch A  
Ch B  
2
1
0
−1  
−2  
−3  
−4  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Figure 18. Offset Error vs Temperature  
Figure 19. Zero-Code Error vs Temperature  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
15  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
Typical Characteristics: DAC at AVDD = 5.5 V (continued)  
At TA = 25°C, 5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
Internal reference enabled  
DACs at midscale code, Gain = 2  
DACs at midscale code  
−40 −25 −10 20 35 50 65 80 95 110 125  
Temperature (°C)  
5
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Figure 20. Power-Supply Current vs Temperature  
Figure 21. Power-Supply Current vs Temperature  
0.50  
1.3  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
Internal reference enabled, Gain = 2  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 22. Power-Supply Current vs Digital Input Code  
Figure 23. Power-Supply Current vs Digital Input Code  
30  
30  
Internal reference enabled  
Gain = 2  
25  
25  
20  
20  
15  
15  
10  
10  
5
5
0
0
Power Supply Current (mA)  
Power Supply Current (mA)  
Figure 24. Power-Supply Current Histogram  
Figure 25. Power-Supply Current Histogram  
16  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
Typical Characteristics: DAC at AVDD = 5.5 V (continued)  
At TA = 25°C, 5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
VREFIN = 2.5 V  
DACs at midscale code, Gain = 1  
Internal reference enabled  
DACs at midscale code, Gain = 1  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
AVDD (V)  
AVDD (V)  
Figure 26. Power-Supply Current vs Power-Supply Voltage  
Figure 27. Power-Supply Current vs Power-Supply Voltage  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.60  
IDD (µA)  
IREFIN (µA)  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
AVDD (V)  
G028  
G029  
Figure 28. Power-Down Current vs Temperature  
Figure 29. Power-Down Current vs Power-Supply Voltage  
7.0  
Typical channel shown  
Full scale  
Mid scale  
Zero scale  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
−1.0  
−20  
−15  
−10  
−5  
0
5
10  
15  
20  
ILOAD (mA)  
Figure 30. DAC Output Voltage vs Load Current  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
17  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
Typical Characteristics: DAC at AVDD = 5.5 V (continued)  
At TA = 25°C, 5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
LDAC Trigger (5 V/div)  
LDAC Trigger (5 V/div)  
Large Signal VOUT (2 V/div)  
Large Signal VOUT (2 V/div)  
Small Signal Settling  
(1.22 mV/div = 0.024% FSR)  
Small Signal Settling (1.22 mV/div = 0.024% FSR)  
From Code: 0h  
To Code: FFFFh  
From Code: FFFFh  
To Code: 0h  
Time (5 μs/div)  
Time (5 μs/div)  
Figure 31. Full-Scale Settling Time, Rising Edge  
Figure 32. Full-Scale Settling Time, Falling Edge  
LDAC Trigger (5 V/div)  
LDAC Trigger (5 V/div)  
Large Signal VOUT (2 V/div)  
Large Signal VOUT (2 V/div)  
Small Signal Settling (1.22 mV/div = 0.024% FSR)  
Small Signal Settling (1.22 mV/div = 0.024% FSR)  
From Code: 4000h  
To Code: C000h  
From Code: C000h  
To Code: 4000h  
Time (5 μs/div)  
Figure 33. Half-Scale Settling Time, Rising Edge  
AVDD (2 V/div)  
Time (5 μs/div)  
Figure 34. Half-Scale Settling Time, Falling Edge  
AVDD (2 V/div)  
VOUTA (1 V/div)  
VOUTB (1 V/div)  
VOUTA (50 mV/div)  
VOUTB (50 mV/div)  
VREFIN shorted to AVDD  
VREFIN shorted to AVDD  
Time (1 ms/div)  
Time (1 ms/div)  
Figure 35. Power-On Glitch, Reset to Zero Scale  
Figure 36. Power-On Glitch, Reset to Midscale  
18  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
Typical Characteristics: DAC at AVDD = 5.5 V (continued)  
At TA = 25°C, 5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
LDAC Trigger (5 V/div)  
LDAC Trigger (5 V/div)  
LDAC Feedthrough  
Glitch Impulse » 0.1 nV-s  
VOUT (100 μV/div)  
VOUT (100 μV/div)  
LDAC Feedthrough  
Glitch Impulse » 0.12 nV-s  
From Code: 7FFFh  
To Code: 8000h  
From Code: 8000h  
To Code: 7FFFh  
Time (5 μs/div)  
Time (5 μs/div)  
Figure 37. Glitch Impulse, Rising Edge, 1-LSB Step  
Figure 38. Glitch Impulse, Falling Edge, 1-LSB Step  
LDAC Trigger (5 V/div)  
LDAC Trigger (5 V/div)  
Glitch Impulse » 0.1 nV-s  
LDAC Feedthrough  
VOUT (100 μV/div)  
VOUT (100 μV/div)  
LDAC Feedthrough  
Glitch Impulse » 0.14 nV-s  
From Code: 8000h  
To Code: 7FFCh  
From Code: 7FFCh  
To Code: 8000h  
Time (5 μs/div)  
Time (5 μs/div)  
Figure 39. Glitch Impulse, Rising Edge, 4-LSB Step  
Figure 40. Glitch Impulse, Falling Edge, 4-LSB Step  
LDAC Trigger (5 V/div)  
LDAC Trigger (5 V/div)  
Glitch Impulse » 0.1 nV-s  
VOUT (500 μV/div)  
LDAC Feedthrough  
LDAC Feedthrough  
VOUT (500 μV/div)  
Glitch Impulse » 0.1 nV-s  
From Code: 7FF0h  
To Code: 8000h  
From Code: 8000h  
To Code: 7FF0h  
Time (5 μs/div)  
Time (5 μs/div)  
Figure 41. Glitch Impulse, Rising Edge, 16-LSB Step  
Figure 42. Glitch Impulse, Falling Edge, 16-LSB Step  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
19  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
Typical Characteristics: DAC at AVDD = 5.5 V (continued)  
At TA = 25°C, 5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
LDAC Trigger (5 V/div)  
VOUTB (1 V/div)  
LDAC Trigger (5 V/div)  
Glitch Area (Between Cursors) = 2 nV-s  
VOUTA (500 μV/div)  
6.4 μs  
VOUTA (500 μV/div)  
VOUTA at Midscale Code  
Glitch Area (Between Cursors) = 1.6 nV-s  
VOUTA at Midscale Code  
Internal Reference Enabled  
Gain = 2  
7.3 μs  
VOUTB (1 V/div)  
Internal Reference Enabled  
Gain = 2  
Time (5 μs/div)  
Time (5 μs/div)  
Figure 43. Channel-to-Channel Crosstalk, 5-V Rising Edge  
Figure 44. Channel-to-Channel Crosstalk, 5-V Falling Edge  
1400  
1400  
Internal reference disabled  
VREFIN = 5 V, Gain = 1  
Full Scale  
Mid Scale  
Zero Scale  
Internal reference enabled  
Gain = 2  
Full Scale  
Mid Scale  
Zero Scale  
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Figure 45. DAC Output Noise Density vs Frequency  
Figure 46. DAC Output Noise Density vs Frequency  
SCLK (5 V/div)  
VOUT (500 μV/div)  
» 2.5 μVPP  
Clock Feedthrough Impulse » 0.06 nV-s  
DAC = Midscale  
Time (500 ns/div)  
Figure 48. Clock Feedthrough, 500 kHz, Midscale  
Figure 47. DAC Output Noise, 0.1 Hz to 10 Hz  
20  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
7.7.3 Typical Characteristics: DAC at AVDD = 3.6 V  
At TA = 25°C, 3.3-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
Internal reference enabled  
DACs at midscale code, Gain = 1  
DACs at midscale code  
−40 −25 −10 20 35 50 65 80 95 110 125  
Temperature (°C)  
5
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Figure 49. Power-Supply Current vs Temperature  
Figure 50. Power-Supply Current vs Temperature  
0.50  
1.3  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
Internal reference enabled, Gain = 1  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 51. Power-Supply Current vs Digital Input Code  
Figure 52. Power-Supply Current vs Digital Input Code  
30  
30  
Internal reference enabled  
Gain = 1  
25  
25  
20  
20  
15  
15  
10  
10  
5
5
0
0
Power Supply Current (mA)  
Power Supply Current (mA)  
Figure 53. Power-Supply Current Histogram  
Figure 54. Power-Supply Current Histogram  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
21  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
7.7.4 Typical Characteristics: DAC at AVDD = 2.7 V  
At TA = 25°C, 2.5-V external reference used, gain = 1, and DAC output not loaded, unless otherwise noted.  
12  
9
1.0  
0.8  
0.6  
6
0.4  
3
0.2  
0
0.0  
−0.2  
−0.4  
−0.6  
−0.8  
−1.0  
−3  
−6  
−9  
−12  
Typical channel shown  
−40°C  
Typical channel shown  
−40°C  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 55. Linearity Error vs Digital Input Code (–40°C)  
Figure 56. Differential Linearity Error vs Digital Input Code  
(–40°C)  
12  
9
1.0  
0.8  
0.6  
6
0.4  
3
0.2  
0
0.0  
−0.2  
−0.4  
−0.6  
−3  
−6  
−9  
Typical channel shown  
25°C  
Typical channel shown  
−0.8  
25°C  
−1.0  
−12  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 57. Linearity Error vs Digital Input Code (25°C)  
Figure 58. Differential Linearity Error vs Digital Input Code  
(25°C)  
12  
9
1.0  
0.8  
0.6  
6
0.4  
3
0.2  
0
0.0  
−0.2  
−0.4  
−0.6  
−3  
−6  
−9  
Typical channel shown  
125°C  
Typical channel shown  
−0.8  
125°C  
−1.0  
−12  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 59. Linearity Error vs Digital Input Code (125°C)  
Figure 60. Differential Linearity Error vs Digital Input Code  
(125°C)  
22  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
Typical Characteristics: DAC at AVDD = 2.7 V (continued)  
At TA = 25°C, 2.5-V external reference used, gain = 1, and DAC output not loaded, unless otherwise noted.  
12  
1.0  
INL Max  
INL Min  
DNL Max  
DNL Min  
0.8  
9
0.6  
6
0.4  
3
0.2  
0
0.0  
−0.2  
−0.4  
−0.6  
−0.8  
−1.0  
−3  
−6  
−9  
−12  
Typical channel shown  
−40 −25 −10  
Typical channel shown  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Figure 61. Linearity Error vs Temperature  
Figure 62. Differential Linearity Error vs Temperature  
0.20  
0.15  
0.15  
Ch A  
Ch B  
Ch A  
Ch B  
0.10  
0.05  
0.10  
0.05  
0.00  
0.00  
−0.05  
−0.10  
−0.15  
−0.20  
−0.05  
−0.10  
−0.15  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Figure 63. Full-Scale Error vs Temperature  
Figure 64. Gain Error vs Temperature  
4
3
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Ch A  
Ch B  
Ch A  
Ch B  
2
1
0
−1  
−2  
−3  
−4  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Figure 65. Offset Error vs Temperature  
Figure 66. Zero-Code Error vs Temperature  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
23  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
Typical Characteristics: DAC at AVDD = 2.7 V (continued)  
At TA = 25°C, 2.5-V external reference used, gain = 1, and DAC output not loaded, unless otherwise noted.  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
Internal reference enabled  
DACs at midscale code, Gain = 1  
DACs at midscale code  
−40 −25 −10 20 35 50 65 80 95 110 125  
Temperature (°C)  
5
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Figure 67. Power-Supply Current vs Temperature  
Figure 68. Power-Supply Current vs Temperature  
0.40  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Internal reference enabled, Gain = 1  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 69. Power-Supply Current vs Digital Input Code  
Figure 70. Power-Supply Current vs Digital Input Code  
30  
30  
Internal reference enabled  
Gain = 1  
25  
25  
20  
20  
15  
15  
10  
10  
5
5
0
0
Power Supply Current (mA)  
Power Supply Current (mA)  
Figure 71. Power-Supply Current Histogram  
Figure 72. Power-Supply Current Histogram  
24  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
Typical Characteristics: DAC at AVDD = 2.7 V (continued)  
At TA = 25°C, 2.5-V external reference used, gain = 1, and DAC output not loaded, unless otherwise noted.  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4
Typical channel shown  
Full scale  
Mid scale  
Zero scale  
3
2
1
0
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
−1  
−20  
−15  
−10  
−5  
0
5
10  
15  
20  
G073  
ILOAD (mA)  
Figure 74. DAC Output Voltage vs Load Current  
Figure 73. Power-Down Current vs Temperature  
LDAC Trigger (5 V/div)  
LDAC Trigger (5 V/div)  
Large Signal VOUT (1 V/div)  
Large Signal VOUT (1 V/div)  
Small Signal Settling (0.61 mV/div = 0.024% FSR)  
Small Signal Settling (0.61 mV/div = 0.024% FSR)  
From Code: 0h  
To Code: FFFFh  
From Code: FFFFh  
To Code: 0h  
Time (5 μs/div)  
Time (5 μs/div)  
Figure 75. Full-Scale Settling Time, Rising Edge  
Figure 76. Full-Scale Settling Time, Falling Edge  
LDAC Trigger (5 V/div)  
LDAC Trigger (5 V/div)  
Large Signal VOUT (1 V/div)  
Large Signal VOUT (1 V/div)  
Small Signal Settling (0.61 mV/div = 0.024% FSR)  
Small Signal Settling (0.61 mV/div = 0.024% FSR)  
From Code: 4000h  
To Code: C000h  
From Code: C000h  
To Code: 4000h  
Time (5 μs/div)  
Time (5 μs/div)  
Figure 77. Half-Scale Settling Time, Rising Edge  
Figure 78. Half-Scale Settling Time, Falling Edge  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
25  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
Typical Characteristics: DAC at AVDD = 2.7 V (continued)  
At TA = 25°C, 2.5-V external reference used, gain = 1, and DAC output not loaded, unless otherwise noted.  
LDAC Trigger (5 V/div)  
LDAC Trigger (5 V/div)  
VOUT (100 μV/div)  
LDAC Feedthrough  
Glitch Impulse » 0.1 nV-s  
VOUT (100 μV/div)  
LDAC Feedthrough  
Glitch Impulse » 0.1 nV-s  
From Code: 7FFFh  
To Code: 8000h  
From Code: 8000h  
To Code: 7FFFh  
Time (5 μs/div)  
Time (5 μs/div)  
Figure 79. Glitch Impulse, Rising Edge, 1-LSB Step  
Figure 80. Glitch Impulse, Falling Edge, 1-LSB Step  
LDAC Trigger (5 V/div)  
LDAC Trigger (5 V/div)  
LDAC Feedthrough  
Glitch Impulse » 0.1 nV-s  
VOUT (100 μV/div)  
VOUT (100 μV/div)  
LDAC Feedthrough  
Glitch Impulse » 0.1 nV-s  
From Code: 7FFCh  
To Code: 8000h  
From Code: 8000h  
To Code: 7FFCh  
Time (5 μs/div)  
Time (5 μs/div)  
Figure 81. Glitch Impulse, Rising Edge, 4-LSB Step  
LDAC Trigger (5 V/div)  
Figure 82. Glitch Impulse, Falling Edge, 4-LSB Step  
LDAC Trigger (5 V/div)  
LDAC Feedthrough  
Glitch Impulse » 0.1 nV-s  
VOUT (200 μV/div)  
LDAC Feedthrough  
VOUT (200 μV/div)  
Glitch Impulse » 0.1 nV-s  
From Code: 7FF0h  
To Code: 8000h  
From Code: 8000h  
To Code: 7FF0h  
Time (5 μs/div)  
Time (5 μs/div)  
Figure 83. Glitch Impulse, Rising Edge, 16-LSB Step  
Figure 84. Glitch Impulse, Falling Edge, 16-LSB Step  
26  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
Typical Characteristics: DAC at AVDD = 2.7 V (continued)  
At TA = 25°C, 2.5-V external reference used, gain = 1, and DAC output not loaded, unless otherwise noted.  
AVDD (2 V/div)  
AVDD (2 V/div)  
VOUTA (500 mV/div)  
VOUTB (500 mV/div)  
VOUTA (50 mV/div)  
VOUTB (50 mV/div)  
VREFIN shorted to AVDD  
VREFIN shorted to AVDD  
Time (1 ms/div)  
Time (1 ms/div)  
Figure 85. Power-On Glitch, Reset to Zero Scale  
Figure 86. Power-On Glitch, Reset to Midscale  
SCLK (2 V/div)  
Clock Feedthrough Impulse » 0.02 nV-s  
VOUT (500 μV/div)  
Time (500 ns/div)  
Figure 87. Clock Feedthrough, 500 kHz, Midscale  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
27  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The DAC756xT, DAC816xT, and DAC856xT devices are low-power, voltage-output, dual-channel, 16-, 14-, and  
12-bit digital-to-analog converters (DACs), respectively. These devices include a 2.5-V, 4-ppm/°C internal  
reference, giving a full-scale output voltage range of 2.5 V or 5 V. The internal reference has an initial accuracy  
of ±5 mV and can source or sink up to 20 mA at the VREFIN/VREFOUT pin.  
8.2 Functional Block Diagram  
GND  
AVDD  
LDAC  
CLR  
VREFIN/VREFOUT  
Power-  
Down  
Control  
Logic  
DIN  
Buffer Control  
Register Control  
2.5-V  
Reference  
Input Control Logic  
SCLK  
SYNC  
Control Logic  
DAC Register B  
DAC Register A  
VOUT  
B
Data Buffer B  
Data Buffer A  
DAC  
DAC756xT (12-Bit)  
DAC816xT (14-Bit)  
DAC856xT (16-Bit)  
VOUTA  
DAC  
8.3 Feature Description  
8.3.1 Digital-to-Analog Converter (DAC)  
The DAC756xT, DAC816xT, and DAC856xT architecture consists of two string DACs, each followed by an  
output buffer amplifier. The devices include an internal 2.5-V reference with 4-ppm/°C temperature drift  
performance. Figure 88 shows a principal block diagram of the DAC architecture.  
VREFIN  
/
VREFOUT  
150 kW  
150 kW  
Gain  
Register  
VOUT  
REF(+)  
Resistor String  
REF(-)  
DAC  
Register  
DIN  
n
GND  
Figure 88. DAC Architecture  
The input coding to the DAC756xT, DAC816xT, and DAC856xT devices is straight binary, so the ideal output  
voltage is given by Equation 1:  
D
æ
ç
è
IN ö  
VOUT  
=
´ VREF ´ Gain  
÷
2n  
ø
(1)  
where:  
n = resolution in bits; either 12 (DAC756xT), 14 (DAC816xT) or 16 (DAC856xT)  
DIN = decimal equivalent of the binary code that is loaded to the DAC register. DIN ranges from 0 to 2n – 1.  
VREF = DAC reference voltage; either VREFOUT from the internal 2.5-V reference or VREFIN from an  
aaa external reference.  
Gain = 1 by default when internal reference is disabled (using external reference), and gain = 2 by default  
aaa when using internal reference. Gain can also be manually set to either 1 or 2 using the gain register.  
aaa See the Gain Function section for more information.  
28  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
Feature Description (continued)  
8.3.1.1 Resistor String  
The resistor string section is shown in Figure 89. It is simply a string of resistors, each of value R. The code  
loaded into the DAC register determines at which node on the string the voltage is tapped off to be fed into the  
output amplifier by closing one of the switches connecting the string to the amplifier. The resistor string  
architecture results in monotonicity. The RDIVIDER switch is controlled by the gain registers (see the Gain Function  
section). Because the output amplifier has a gain of 2, RDIVIDER is not shorted when the DAC-n gain is set to 1  
(default if internal reference is disabled), and is shorted when the DAC-n gain is set to 2 (default if internal  
reference is enabled).  
VREFIN/VREFOUT  
RDIVIDER  
VREF  
2
R
To Output Amplifier  
R
R
R
Figure 89. Resistor String  
8.3.1.2 Output Amplifier  
The output buffer amplifier is capable of generating rail-to-rail voltages on its output, giving a maximum output  
range of 0 V to AVDD. It is capable of driving a load of 2 kΩ in parallel with 3 nF to GND. The typical slew rate is  
0.75 V/µs, with a typical full-scale settling time of 14 µs as shown in Figure 31, Figure 32, Figure 75 and  
Figure 76.  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
29  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
Feature Description (continued)  
8.3.2 Internal Reference  
The DAC756xT, DAC816xT, and DAC856xT devices include a 2.5-V internal reference that is disabled by  
default. The internal reference is externally available at the VREFIN/VREFOUT pin. The internal reference output  
voltage is 2.5 V and can sink and source up to 20 mA.  
A minimum 150-nF capacitor is recommended between the reference output and GND for noise filtering.  
The internal reference of the DAC756xT, DAC816xT, and DAC856xT devices is a bipolar transistor-based  
precision band-gap voltage reference. Figure 90 shows the basic band-gap topology. Transistors Q1 and Q2 are  
biased such that the current density of Q1 is greater than that of Q2. The difference of the two base-emitter  
voltages (VBE1 – VBE2) has a positive temperature coefficient and is forced across resistor R1. This voltage is  
amplified and added to the base-emitter voltage of Q2, which has a negative temperature coefficient. The  
resulting output voltage is virtually independent of temperature. The short-circuit current is limited by design to  
approximately 100 mA.  
VREFIN/VREFOUT  
Reference  
Enable  
Q1  
Q2  
R1  
R2  
Figure 90. Band-Gap Reference Simplified Schematic  
8.3.3 Power-On Reset  
8.3.3.1 Power-On Reset to Zero-Scale  
The DAC7562T, DAC8162T, and DAC8562T devices contain a power-on-reset circuit that controls the output  
voltage during power up. All device registers are reset as shown in Table 4. At power up, all DAC registers are  
filled with zeros and the output voltages of all DAC channels are set to zero volts. Each DAC channel remains  
that way until a valid load command is written to it. The power-on reset is useful in applications where it is  
important to know the state of the output of each DAC while the device is in the process of powering up. No  
device pin should be brought high before applying power to the device. The internal reference is disabled by  
default and remains that way until a valid reference-change command is executed.  
8.3.3.2 Power-On Reset to Mid-Scale  
The DAC7563T, DAC8163T, and DAC8563T devices contain a power-on reset circuit that controls the output  
voltage during power up. At power up, all DAC registers are reset to mid-scale code and the output voltages of  
all DAC channels are set to VREFIN / 2 volts. Each DAC channel remains that way until a valid load command is  
written to it. The power-on reset is useful in applications where it is important to know the state of the output of  
each DAC while the device is in the process of powering up. No device pin should be brought high before  
applying power to the device. The internal reference is powered off or down by default and remains that way until  
a valid reference-change command is executed. If using an external reference, it is acceptable to power on the  
VREFIN pin either at the same time as or after applying AVDD  
.
30  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
Table 4. DACxx62T and DACxx63T Power-On Reset Values  
REGISTER  
DEFAULT SETTING  
Zero-scale  
DACxx62T  
DACxx63T  
DAC and input registers  
Mid-scale  
LDAC registers  
LDAC pin enabled for both channels  
DACs powered up  
Power-down registers  
Internal reference register  
Gain registers  
Internal reference disabled  
Gain = 1 for both channels  
8.3.3.3 Power-On Reset (POR) Levels  
When the device powers up, a POR circuit sets the device in default mode as shown in Table 4. The POR circuit  
requires specific AVDD levels, as indicated in Figure 91, to ensure discharging of internal capacitors and to reset  
the device on power up. In order to ensure a power-on reset, AVDD must be below 0.7 V for at least 1 ms. When  
AVDD drops below 2.2 V but remains above 0.7 V (shown as the undefined region), the device may or may not  
reset under all specified temperature and power-supply conditions. In this case, TI recommends a power-on  
reset. When AVDD remains above 2.2 V, a power-on reset does not occur.  
AVDD (V)  
5.50  
Specified Supply  
Voltage Range  
No Power-On Reset  
2.70  
2.20  
Undefined  
0.70  
Power-On Reset  
0.00  
Figure 91. Relevant Voltage Levels for POR Circuit  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
31  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
8.4 Device Functional Modes  
8.4.1 Power-Down Modes  
www.ti.com  
The DAC756xT, DAC816xT, and DAC856xT devices have two separate sets of power-down commands. One set  
is for the DAC channels and the other set is for the internal reference. The internal reference is forced to a  
powered-down state while both DAC channels are powered down, and is only enabled if any DAC channel is  
also in the normal mode of operation. For more information on the internal reference control, see the Internal  
Reference Enable Register section.  
8.4.1.1 DAC Power-Down Commands  
The DAC756xT, DAC816xT, and DAC856xT DACs use four modes of operation. These modes are accessed by  
setting the serial interface command bits to 100. Once the command bits are set correctly, the four different  
power-down modes are software programmable by setting bits DB5 and DB4 in the shift register. Table 5 and  
Table 6 show the different power-down options. For more information on how to set the DAC operating mode see  
Table 17.  
Table 5. DAC-n Operating Modes  
DB5  
DB4  
DAC Modes of Operation  
0
0
1
1
0
1
0
1
Selected DACs power up (normal mode, default)  
Selected DACs power down, output 1 kto GND  
Selected DACs power down, output 100 kto GND  
Selected DACs power down, output Hi-Z to GND  
Table 6. DAC-n Selection for Operating Modes  
DAC-B (DB1), DAC-A (DB0)  
Operating Mode  
DAC-n does not change operating mode  
DAC-n operating mode set to value on PD1 and PD0  
0
1
It is possible to write to the DAC register or buffer of the DAC channel that is powered down. When the DAC  
channel is then powered up, it powers up to this new value.  
The advantage of the available power-down modes is that the output impedance of the device is known while it is  
in power-down mode. As described in Table 5, there are three different power-down options. VOUT can be  
connected internally to GND through a 1-kresistor, a 100-kresistor, or open-circuited (Hi-Z). The DAC  
power-down circuitry is shown in Figure 92.  
Resistor  
String  
DAC  
Amplifier  
VOUTX  
Power-Down  
Circuitry  
Resistor  
Network  
Figure 92. Output Stage  
32  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
 
 
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
8.4.2 Gain Function  
The gain register controls the GAIN setting in the DAC transfer function:  
D
æ
ç
è
IN ö  
VOUT  
=
´ VREF ´ Gain  
÷
2n  
ø
(2)  
The DAC756xT, DAC816xT, and DAC856xT devices have a gain register for each channel. The gain for each  
channel, in Equation 2, is either 1 or 2. This gain is automatically set to 2 when using the internal reference, and  
is automatically set to 1 when the internal reference is disabled (default). However, each channel can have either  
gain by setting the registers appropriately. The gain registers are accessible by setting the serial interface  
command bits to 000, address bits to 010, and using DB1 for DAC-B and DB0 for DAC-A. See Table 7 and  
Table 17 for the full command structure. The gain registers are automatically reset to provide either gain of 1 or 2  
when the internal reference is powered off or on, respectively. After the reference is powered off or on, the gain  
register is again accessible to change the gain.  
Table 7. DAC-n Selection for Gain Register Command  
DB1, DB0  
Value  
Gain  
DB0  
0
1
0
1
DAC-A uses gain = 2 (default with internal reference)  
DAC-A uses gain = 1 (default with external reference)  
DAC-B uses gain = 2 (default with internal reference)  
DAC-B uses gain = 1 (default with external reference)  
DB1  
8.4.3 Software Reset Function  
The DAC756xT, DAC816xT, and DAC856xT devices contain a software reset feature. The software reset  
function is accessed by setting the serial interface command bits to 101. The software reset command contains  
two reset modes which are software-programmable by setting bit DB0 in the shift register. Table 8 and Table 17  
show the available software reset commands.  
Table 8. Software Reset  
DB0  
Registers Reset to Default Values  
0
DAC registers  
Input registers  
1
DAC registers  
Input registers  
LDAC registers  
Power-down registers  
Internal reference register  
Gain registers  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
33  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
 
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
8.4.4 Internal Reference Enable Register  
The internal reference in the DAC756xT, DAC816xT, and DAC856xT devices is disabled by default for  
debugging, evaluation purposes, or when using an external reference. The internal reference can be powered up  
and powered down by setting the serial interface command bits to 111 and configuring DB0 (see Table 9). The  
internal reference is forced to a powered down state while both DAC channels are powered down, and can only  
be enabled if any DAC channel is in normal mode of operation. During the time that the internal reference is  
disabled, the DAC functions normally using an external reference. At this point, the internal reference is  
disconnected from the VREFIN/VREFOUT pin (Hi-Z output).  
Table 9. Internal Reference  
DB0  
Internal Reference Configuration  
Disable internal reference and reset DACs to gain = 1  
Enable internal reference and reset DACs to gain = 2  
0
1
8.4.4.1 Enabling Internal Reference  
To enable the internal reference, refer to the command structure in Table 17. When performing a power cycle to  
reset the device, the internal reference is switched off (default mode). In the default mode, the internal reference  
is powered down until a valid write sequence powers up the internal reference. However, the internal reference is  
forced to a disabled state while both DAC channels are powered down, and remains disabled until either DAC  
channel is returned to the normal mode of operation. See DAC Power-Down Commands for more information on  
DAC channel modes of operation.  
8.4.4.2 Disabling Internal Reference  
To disable the internal reference, refer to the command structure in Table 17. When performing a power cycle to  
reset the device, the internal reference is disabled (default mode).  
8.4.5 CLR Functionality  
The edge-triggered CLR pin can be used to set the input and DAC registers immediately according to Table 10.  
When the CLR pin receives a falling edge signal the clear mode is activated and changes the DAC output  
voltages accordingly. The device exits clear mode on the 24th falling edge of the next write to the device. If the  
CLR pin receives a falling edge signal during a write sequence in normal operation, the clear mode is activated  
and changes the input and DAC registers immediately according to Table 10.  
Table 10. Clear Mode Reset Values  
DEVICE  
DAC Output Entering Clear Mode  
Zero-scale  
DAC8562T, DAC8162T, DAC7562T  
DAC8563T, DAC8163T, DAC7563T  
Mid-scale  
34  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
8.4.6 LDAC Functionality  
The DAC756xT, DAC816xT, and DAC856xT devices offer both a software and hardware simultaneous update  
and control function. The DAC double-buffered architecture has been designed so that new data can be entered  
for each DAC without disturbing the analog outputs.  
DAC756xT, DAC816xT, and DAC856xT data updates can be performed either in synchronous or in  
asynchronous mode.  
In asynchronous mode, the LDAC pin is used as a negative edge-triggered timing signal for simultaneous DAC  
updates. Multiple single-channel writes can be done in order to set different channel buffers to desired values  
and then make a falling edge on LDAC pin to simultaneously update the DAC output registers. Data buffers of all  
channels must be loaded with desired data before an LDAC falling edge. After a high-to-low LDAC transition, all  
DACs are simultaneously updated with the last contents of the corresponding data buffers. If the content of a  
data buffer is not changed, the corresponding DAC output remains unchanged after the LDAC pin is triggered.  
LDAC must be returned high before the next serial command is initiated.  
In synchronous mode, data are updated with the falling edge of the 24th SCLK cycle, which follows a falling edge  
of SYNC. For such synchronous updates, the LDAC pin is not required, and it must be connected to GND  
permanently or asserted and held low before sending commands to the device.  
Alternatively, all DAC outputs can be updated simultaneously using the built-in software function of LDAC. The  
LDAC register offers additional flexibility and control by allowing the selection of which DAC channel(s) should be  
updated simultaneously when the LDAC pin is being brought low. The LDAC register is loaded with a 2-bit word  
(DB1 and DB0) using command bits C2, C1, and C0 (see Table 17). The default value for each bit, and therefore  
for each DAC channel, is zero. If the LDAC register bit is set to 1, it overrides the LDAC pin (the LDAC pin is  
internally tied low for that particular DAC channel) and this DAC channel updates synchronously after the falling  
edge of the 24th SCLK cycle. However, if the LDAC register bit is set to 0, the DAC channel is controlled by the  
LDAC pin.  
The combination of software and hardware simultaneous update functions is particularly useful in applications  
when updating a DAC channel, while keeping the other channel unaffected; see Table 11 and Table 17 for more  
information.  
Table 11. DAC-n Selection for LDAC Register Command  
DB1, DB0  
Value  
LDAC Pin Functionality  
DB0  
0
1
0
1
DAC-A uses LDAC pin  
DAC-A operates in synchronous mode  
DAC-B uses LDAC pin  
DB1  
DAC-B operates in synchronous mode  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
35  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
8.5 Programming  
The DAC756xT, DAC816xT, and DAC856xT devices have a three-wire serial interface (SYNC, SCLK, and DIN;  
see the table) compatible with SPI, QSPI, and Microwire interface standards, as well as most DSPs. See the  
Serial Write Operation timing diagram (Figure 1) for an example of a typical write sequence.  
The DAC756xT, DAC816xT, or DAC856xT input shift register is 24 bits wide, consisting of two don’t care bits  
(DB23 to DB22), three command bits (DB21 to DB19), three address bits (DB18 to DB16), and 16 data bits  
(DB15 to DB0). All 24 bits of data are loaded into the DAC under the control of the serial clock input, SCLK.  
DB23 (MSB) is the first bit that is loaded into the DAC shift register. DB23 is followed by the rest of the 24-bit  
word pattern, left-aligned. This configuration means that the first 24 bits of data are latched into the shift register,  
and any further clocking of data is ignored.  
The write sequence begins by bringing the SYNC line low. Data from the DIN line are clocked into the 24-bit shift  
register on each falling edge of SCLK. The serial clock frequency can be as high as 50 MHz, making the  
DAC756xT, DAC816xT, and DAC856xT devices compatible with high-speed DSPs. On the 24th falling edge of  
the serial clock, the last data bit is clocked into the shift register and the shift register locks. Further clocking does  
not change the shift register data.  
After receiving the 24th falling clock edge, the DAC756xT, DAC816xT, and DAC856xT devices decode the three  
command bits, three address bits and 16 data bits to perform the required function, without waiting for a SYNC  
rising edge. After the 24th falling edge of SCLK is received, the SYNC line may be kept low or brought high. In  
either case, the minimum delay time from the 24th falling SCLK edge to the next falling SYNC edge must be met  
in order to begin the next cycle properly; see the Serial Write Operation timing diagram (Figure 1).  
A rising edge of SYNC before the 24-bit sequence is complete resets the SPI interface; no data transfer occurs.  
A new write sequence starts at the next falling edge of SYNC. To assure the lowest power consumption of the  
device, care should be taken that the levels are as close to each rail as possible.  
8.5.1 SYNC Interrupt  
In a normal write sequence, the SYNC line stays low for at least 24 falling edges of SCLK and the addressed  
DAC register updates on the 24th falling edge. However, if SYNC is brought high before the 23rd falling edge, it  
acts as an interrupt to the write sequence; the shift register resets and the write sequence is discarded. Neither  
an update of the data buffer contents, DAC register contents, nor a change in the operating mode occurs (as  
shown in Figure 93).  
24th Falling Edge  
24th Falling Edge  
CLK  
SYNC  
DIN  
DB23  
DB0  
DB23  
DB0  
Invalid/Interrupted Write Sequence:  
Output/Mode Does Not Update on the Falling Edge  
Valid Write Sequence:  
Output/Mode Updates on the Falling Edge  
Figure 93. SYNC Interrupt Facility  
36  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
Programming (continued)  
8.5.2 DAC Register Configuration  
When the DAC registers are being written to, the DAC756xT, DAC816xT, and DAC856xT devices receive all 24  
bits of data, ignore DB23 and DB22, and decode the next three bits (DB21 to DB19) in order to determine the  
DAC operating or control mode (see Table 12). Bits DB18 to DB16 are used to address the DAC channels (see  
Table 13).  
Table 12. Commands for the DAC756xT, DAC816xT, and DAC856xT Devices  
C2  
(DB21)  
C1  
(DB20)  
C0  
(DB19)  
Command  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Write to input register n (Table 13)  
Software LDAC, update DAC register n (Table 13)  
Write to input register n (Table 13) and update all DAC registers  
Write to input register n and update DAC register n (Table 13)  
Set DAC power up or -down mode  
Software reset  
Set LDAC registers  
Enable or disable the internal reference  
Table 13. Address Select for the DAC756xT, DAC816xT, and DAC856xT Devices  
A2  
(DB18)  
A1  
(DB17)  
A0  
(DB16)  
Channel (n)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DAC-A  
DAC-B  
Gain (only use with command 000)  
Reserved  
Reserved  
Reserved  
Reserved  
DAC-A and DAC-B  
When writing to the DAC input registers the next 16, 14, or 12 bits of data that follow are decoded by the DAC to  
determine the equivalent analog output (see Table 14 through Table 16) . The data format is straight binary, with  
all 0s corresponding to 0-V output and all 1s corresponding to full-scale output. For all documentation purposes,  
the data format and representation used here is a true 16-bit pattern (that is, FFFFh data word for full scale) that  
the DAC756xT, DAC816xT, and DAC856xT devices require.  
Table 14. DAC856xT Data Input Register Format  
COMMAND  
ADDRESS  
DATA  
X(1)  
X
C2 C1 C0 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DB0  
DB23  
(1) X' denotes don't care bits.  
Table 15. DAC816xT Data Input Register Format  
COMMAND  
ADDRESS  
DATA  
X
X
X
C2 C1 C0 A2 A1 A0 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
DB23  
DB0  
Table 16. DAC756xT Data Input Register Format  
COMMAND  
ADDRESS  
DATA  
X
C2 C1 C0 A2 A1 A0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
DB23  
DB0  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
37  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
 
 
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
In additon to DAC input register updates, the DAC756xT, DAC816xT, and DAC856xT devices support a number  
of functional mode commands (such as write to LDAC register, power down DACs and so on). The complete set  
of functional mode commands is shown in Table 17.  
Table 17. Command Matrix for the DAC756xT, DAC816xT, and DAC856xT Devices  
Command  
Address  
Data  
DB23-  
DB22  
DESCRIPTION  
DB15-  
DB6  
DB3-  
C2  
C1  
C0  
A2  
A1  
A0  
DB5  
DB4  
DB1  
DB0  
DB2  
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
1
0
1
1
0
1
1
0
1
1
16-, 14-, or 12-bit DAC data  
16-, 14-, or 12-bit DAC data  
16-, 14-, or 12-bit DAC data  
16-, 14-, or 12-bit DAC data  
16-, 14-, or 12-bit DAC data  
16-, 14-, or 12-bit DAC data  
16-, 14-, or 12-bit DAC data  
16-, 14-, or 12-bit DAC data  
16-, 14-, or 12-bit DAC data  
X
Write to DAC-A input register  
X(1)  
0
0
1
1
0
0
Write to DAC-B input register  
Write to DAC-A and DAC-B input registers  
Write to DAC-A input register and update all DACs  
Write to DAC-B input register and update all DACs  
Write to DAC-A and DAC-B input register and update all DACs  
Write to DAC-A input register and update DAC-A  
Write to DAC-B input register and update DAC-B  
Write to DAC-A and DAC-B input register and update all DACs  
Update DAC-A  
X
0
0
0
0
1
1
X
X
X
Update DAC-B  
X
Update all DACs  
0
0
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
1
0
1
0
1
0
1
Gain: DAC-B gain = 2, DAC-A gain = 2 (default with internal VREF  
Gain: DAC-B gain = 2, DAC-A gain = 1  
Gain: DAC-B gain = 1, DAC-A gain = 2  
Gain: DAC-B gain = 1, DAC-A gain = 1 (power-on default)  
Power up DAC-A  
)
0
X
0
0
0
0
1
0
X
1
1
0
X
X
X
1
1
1
0
0
0
0
0
0
X
X
X
X
X
X
X
0
0
1
1
0
1
0
1
X
X
X
X
1
1
0
1
1
0
1
1
0
1
1
X
X
0
0
1
1
X
X
Power up DAC-B  
Power up DAC-A and DAC-B  
Power down DAC-A; 1 kto GND  
Power down DAC-B; 1 kto GND  
Power down DAC-A and DAC-B; 1 kto GND  
Power down DAC-A; 100 kto GND  
Power down DAC-B; 100 kto GND  
Power down DAC-A and DAC-B; 100 kto GND  
Power down DAC-A; Hi-Z  
X
X
1
1
0
0
0
1
X
X
Power down DAC-B; Hi-Z  
Power down DAC-A and DAC-B; Hi-Z  
Reset DAC-A and DAC-B input register and update all DACs  
Reset all registers and update all DACs (Power-on-reset update)  
LDAC pin active for DAC-B and DAC-A  
LDAC pin active for DAC-B; inactive for DAC-A  
LDAC pin inactive for DAC-B; active for DAC-A  
LDAC pin inactive for DAC-B and DAC-A  
Disable internal reference and reset DACs to gain = 1  
Enable internal reference and reset DACs to gain = 2  
X
X
X
X
X
1
1
1
1
0
1
X
X
(1) X denotes don't care bits.  
38  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 DAC Internal Reference  
The internal reference of the DAC756xT, DAC816xT, and DAC856xT devices does not require an external load  
capacitor for stability because it is stable without any capacitive load. However, for improved noise performance,  
an external load capacitor of 150 nF or larger connected to the VREFIN/VREFOUT output is recommended. Figure 94  
shows the typical connections required for operation of the DAC756xT, DAC816xT, and DAC856xT internal  
reference. A supply bypass capacitor at the AVDD input is also recommended.  
DGS  
DSC  
150 nF  
150 nF  
AVDD  
VREFIN  
VREFOUT  
AVDD  
/
1
2
3
4
5
10  
9
VOUT  
VOUT  
GND  
A
1
2
3
4
5
10  
9
VOUT  
VOUT  
GND  
A
VREFIN/VREFOUT  
AVDD  
B
AVDD  
B
1 mF  
1 mF  
8
8
DIN  
DIN  
SCLK  
SYNC  
7
LDAC  
CLR  
SCLK  
7
LDAC  
CLR  
6
SYNC  
6
Figure 94. Typical Connections for Operating the DAC756xT, DAC816xT, and DAC856xT Internal  
Reference  
9.1.1.1 Supply Voltage  
The internal reference features an extremely low dropout voltage. It can be operated with a supply of only 5 mV  
above the reference output voltage in an unloaded condition. For loaded conditions, see the Load Regulation  
section. The stability of the internal reference with variations in supply voltage (line regulation, dc PSRR) is also  
exceptional. Within the specified supply voltage range of 2.7 V to 5.5 V, the variation at VREFIN/VREFOUT is  
typically 50 μV/V; see Figure 7.  
9.1.1.2 Temperature Drift  
The internal reference is designed to exhibit minimal drift error, defined as the change in reference output voltage  
over varying temperature. The drift is calculated using the box method described by Equation 3:  
V
- VREF _MIN  
æ
ö
REF _MAX  
Drift Error =  
´106 ppm/°C  
(
)
ç
ç
÷
÷
VREF ´ TRANGE  
è
ø
(3)  
where:  
VREF_MAX = maximum reference voltage observed within temperature range TRANGE  
.
VREF_MIN = minimum reference voltage observed within temperature range TRANGE  
.
VREF = 2.5 V, target value for reference output voltage.  
TRANGE = the characterized range from –40°C to 125°C (165°C range)  
The internal reference features an exceptional typical drift coefficient of 4 ppm/°C from –40°C to 125°C.  
Characterizing a large number of units, a maximum drift coefficient of 10 ppm/°C is observed. Temperature drift  
results are summarized in Figure 3.  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
39  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
Application Information (continued)  
9.1.1.3 Noise Performance  
Typical 0.1-Hz to 10-Hz voltage noise and noise spectral density performance are listed in the Electrical  
Characteristics. Additional filtering can be used to improve output noise levels, although care should be taken to  
ensure the output impedance does not degrade the ac performance. The output noise spectrum at the  
VREFIN/VREFOUT pin, both unloaded and with an external 4.7-µF load capacitor, is shown in Figure 6. Internal  
reference noise impacts the DAC output noise when the internal reference is used.  
9.1.1.4 Load Regulation  
Load regulation is defined as the change in reference output voltage as a result of changes in load current. The  
load regulation of the internal reference is measured using force and sense contacts as shown in Figure 95. The  
force and sense lines reduce the impact of contact and trace resistance, resulting in accurate measurement of  
the load regulation contributed solely by the internal reference. Measurement results are shown in Figure 4.  
Force and sense lines should be used for applications that require improved load regulation.  
Output Pin  
Contact and  
Trace Resistance  
VOUT  
Force Line  
IL  
Sense Line  
Load  
Meter  
Figure 95. Accurate Load Regulation of the DAC756xT, DAC816xT, and DAC856xT Internal Reference  
9.1.1.4.1 Long-Term Stability  
Long-term stability or aging refers to the change of the output voltage of a reference over a period of months or  
years. This effect lessens as time progresses. The typical drift value for the internal reference is listed in the  
Electrical Charateristics and measurement results are shown in Figure 5. This parameter is characterized by  
powering up multiple devices and measuring them at regular intervals.  
9.1.1.5 Thermal Hysteresis  
Thermal hysteresis for a reference is defined as the change in output voltage after operating the device at 25°C,  
cycling the device through the operating temperature range, and returning to 25°C. Hysteresis is expressed by  
Equation 4:  
é
ê
ê
ë
ù
ú
ú
û
V
- V  
REF_PRE  
REF_POST  
6
V
=
´ 10 (ppm/°C)  
HYST  
V
REF_NOM  
(4)  
where:  
VHYST = thermal hysteresis.  
VREF_PRE = output voltage measured at 25°C pre-temperature cycling.  
VREF_POST = output voltage measured after the device cycles through the temperature range of –40°C to  
aaa 125°C, and returns to 25°C.  
VREF_NOM = 2.5 V, target value for reference output voltage.  
9.1.2 DAC Noise Performance  
Output noise spectral density at the VOUT-n pin versus frequency is depicted in Figure 45 and Figure 46 for full-  
scale, mid-scale, and zero-scale input codes. The typical noise density for mid-scale code is 90 nV/Hz at 1 kHz.  
High-frequency noise can be improved by filtering the reference noise. Integrated output noise between 0.1 Hz  
and 10 Hz is close to 2.5 µVPP (mid-scale), as shown in Figure 47.  
40  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
9.2 Typical Applications  
9.2.1 Combined Voltage and Current Analog Output Module Using the XTR300  
The design features two independent outputs that can source and sink voltage and current over the standard  
industrial output ranges. The possible outputs of the design include: –24 mA to 24 mA, 4 mA–20 mA, 0 mA to 24  
mA, 0 V to 5 V, 0 V to 10 V, –5 V to5 V, and –10 V to 10 V.  
VREF  
CCOMP  
RSET  
5.5 V  
0.1 µF  
15 V  
–15 V  
0.1 µF  
0.1 µF  
4.7 µF  
XTR300 V+  
V–  
RIMON  
AVDD  
IMON  
Current  
Copy  
ICOPY  
LDAC  
SCLK  
DIN  
DRV  
IAIN+  
VDAC  
CH2  
IDRV  
V or I OUTA  
RIN  
VIN  
DAC8563T  
VOUT  
A
0 V to 5 V, 0 V to 10 V, 5 to 5 V,  
–10 V to 10 V, 24 mA to 24 mA,  
0 mA to 24 mA, 4mA to 20 mA  
OPA  
SET  
SYNC  
+
VOUT  
B
IIA  
RG1  
RG2  
RIA  
VREFIN  
/
IAOUT  
IA  
RG  
VREFOUT  
GND  
GND  
VREF  
0.022 µF  
IAIN–  
DGND  
Figure 96. DAC8563T and XTR300 Discrete Analog Output Module  
9.2.1.1 Design Requirements  
The design uses a DAC and a current-or-voltage output driver to create a discrete analog output design that can  
output either voltage or current from the same pin while focusing on high-accuracy specifications. The choice of  
the DAC8563T device takes advantage of its 16-bit resolution as well as its low typical offset error of 1 mV and  
gain error of 0.01% FSR. The choice of the XTR300 device is based on its strong dc performance, having a  
typical error of 400 µV and 0.04% FSR gain error. The XTR300 device allows a variety of both current and  
voltage outputs on the same pin while providing load monitoring and error status pins.  
The power-on reset-to-midscale feature of the DAC8563T makes the bipolar output of the XTR300 power up at 0  
V or 0 A. If using a unipolar output, the recommended device to achieve a system power-on output of 0 V, 0 A or  
4 mA is the DAC8562T device.  
A recommendation for minimizing the introduction of errors into the system is to use ±0.01% tolerance RG and  
RSET resistors. The bypass capacitors on AVDD, VREF, V+ and V– should have values between 100 nF and  
10 µF. Smaller capacitors filter fast low-energy transients, whereas the large capacitors filter the slow high-  
energy transients. If there is an expectation of both types of signals in the system, the recommendation is to use  
a pair of small and large values as shown on the AVDD pin of the DAC8563T device in Figure 96.  
9.2.1.2 Detailed Design Procedure  
When configured for voltage mode, the output of the instrumentation amplifier (IA), internal to the XTR300  
device, is routed to the SET pin. The SET output provides feedback for the IA based on the IA input voltage. The  
feedback from the IA provides high-impedance remote sensing of the voltage at the output load. Using the output  
voltage can overcome errors from PCB traces and protection component impedances. The DAC provides a  
unipolar input voltage to the VIN pin of the XTR300 device. The XTR300 device offsets the VDAC range by a  
negative VREF and amplifies the difference by a value set by the RG and RSET resistors, as shown in Equation 5.  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
41  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
Typical Applications (continued)  
æ
ö
÷
÷
ø
RG  
2
VDAC - VREF  
VOUT  
=
´ ç  
ç
RSET  
è
(5)  
When configured for current mode, the XTR300 routes the internal output of its current copy circuitry to the SET  
pin. This provides feedback for the internal OPA driver based on 1 / 10th of the output current, resulting in a  
voltage-to-current transfer function. Generating bipolar current outputs from the single-ended DAC output  
voltage, VDAC, requires the application of an offset to the XTR300 SET pin. Connect the RSET resistor from the  
SET pin to VREF to apply the offset and obtain the transfer function shown in Equation 6.  
æ
ö
÷
÷
ø
VDAC - VREF  
IOUT = 10´ ç  
ç
è
R SET  
(6)  
The desired output ranges for VDAC and VREF voltages determine the RSET and RG resistor values, calculated  
using Equation 7 and Equation 8. The system design requires a VDAC voltage range of 0.04 V to 4.96 V in order  
to operate the DAC8563T in the specified linear output range from codes 512 to 65 024.  
æ
ö
VDAC - VREF  
4.96 V - 2.5 V  
æ
ö
RSET = 10´ ç  
÷ = 10´  
= 1025 Ω  
ç
÷
ç
è
÷
ø
IOUT  
0.024 A  
è
ø
(7)  
(8)  
2´ VOUT_MAX´ RSET  
2´10 V ´1020 Ω  
4.96 V - 2.5 V  
RG  
=
=
= 8292 Ω  
VDAC - VREF  
IMON and IAOUT accomplish load monitoring. The sizing of RIMON and RIA determine the monitoring output voltage  
across the resistors. Size the resistors according to Equation 9 and Equation 10 and the expected output load  
current IDRV  
.
10´ VIMON  
RIMON  
=
IDRV  
(9)  
10´ VIA  
RIA  
=
IIA  
(10)  
For more detailed information about the design procedure of this circuit and how to isolate it, see Two-Channel  
Source/Sink Combined Voltage & Current Output, Isolated, EMC/EMI Tested Reference Design (TIDU434).  
42  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
 
 
 
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
Typical Applications (continued)  
9.2.1.3 Application Curves  
Figure 97 shows the transfer function for the bipolar ±10 V voltage range. This design also supports output  
voltage ranges of 0–5 V, 0–10 V and ±5 V. Figure 98 shows the transfer function for the unipolar 0–24 mA  
current range. This design also supports output current ranges of ±24 mA and 4 mA–20 mA.  
10  
8
24  
20  
16  
12  
8
6
4
2
4
0
0
-4  
-2  
-4  
-6  
-8  
-10  
-8  
-12  
-16  
-20  
-24  
0
10k  
20k  
30k  
40k  
50k  
60k65535  
0
10k  
20k  
30k  
40k  
50k  
60k65535  
Input Code  
Input Code  
D001  
D002  
Figure 97. Output Voltage vs Input Code  
Figure 98. Output Current vs Input Code  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
43  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
Typical Applications (continued)  
9.2.2 Up to ±15-V Bipolar Output Using the DAC8562T  
The DAC8562T is designed to be operate from a single power supply providing a maximum output range of  
AVDD volts. However, the DAC can be placed in the configuration shown in Figure 99 in order to be designed into  
bipolar systems. Depending on the ratio of the resistor values, the output of the circuit can range anywhere from  
±5 V to ±15 V. The design example below shows that the DAC is configured to have its internal reference  
enabled and the DAC8562T internal gain set to 2, however, an external 2.5-V reference could also be used (with  
DAC8562T internal gain set to 2).  
R
G ´ R  
5.5 V  
18 V  
VOUT  
+
R
VREFOUT  
OPA140  
G ´ R  
DAC8562T  
–18 V  
Figure 99. Bipolar Output Range Circuit Using DAC8562T  
The transfer function shown in Equation 11 can be used to calculate the output voltage as a function of the DAC  
code, reference voltage and resistor ratio:  
DIN  
æ
ç
ö
VOUT = G × VREFOUT 2 ×  
è
-1  
÷
65,536  
ø
(11)  
where:  
DIN = decimal equivalent of the binary code that is loaded to the DAC register, ranging from 0 to 65,535 for  
DAC8562T (16 bit).  
VREFOUT = reference output voltage with the internal reference enabled from the DAC VREFIN/VREFOUT pin  
G = ratio of the resistors  
An example configuration to generate a ±10-V output range is shown below in Equation 6 with G = 4 and  
VREFOUT = 2.5 V:  
DIN  
VOUT = 20 ×  
-10 V  
65,536  
(12)  
In this example, the range is set to ±10 V by using a resistor ratio of four, VREFOUT of 2.5 V, and DAC8562T  
internal gain of 2. The resistor sizes must be selected keeping in mind the current sink or source capability of the  
DAC8562T internal reference. Using larger resistor values, for example, R = 10 kΩ or larger, is recommended.  
The operational amplifier is selectable depending on the requirements of the system.  
The DAC8562TEVM and DAC7562TEVM boards have the option to evaluate the bipolar output application by  
installing the components on the pre-placed footprints. For more information see either the DAC8562EVM or  
DAC7562EVM product folder.  
44  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
9.3 System Examples  
9.3.1 MSP430 Microprocessor Interfacing  
Figure 100 shows a serial interface between the DAC756xT, DAC816xT, or DAC856xT device and a typical  
MSP430 USI port such as the one found on the MSP430F2013. The port is configured in SPI master mode by  
setting bits 3, 5, 6, and 7 in USICTL0. The USI counter interrupt is set in USICTL1 to provide an efficient means  
of SPI communication with minimal software overhead. The serial clock polarity, source, and speed are  
controlled by settings in the USI clock control register (USICKCTL). The SYNC signal is derived from a bit-  
programmable pin on port 1; in this case, port line P1.4 is used. When data are to be transmitted to the  
DAC756xT, DAC816xT, or DAC856xT device, P1.4 is taken low. The USI transmits data in 8-bit bytes; thus, only  
eight falling clock edges occur in the transmit cycle. To load data to the DAC, P1.4 is left low after the first eight  
bits are transmitted; then, a second write cycle is initiated to transmit the second byte of data. P1.4 is taken high  
following the completion of the third write cycle.  
MSP430F2013  
DAC  
SYNC  
P1.4/GPIO  
P1.5/SCLK  
P1.6/SDO  
SCLK  
DIN  
NOTE: Additional pins omitted for clarity.  
Figure 100. DAC756xT, DAC816xT, or DAC856xT Device to MSP430 Interface  
9.3.2 TMS320 McBSP Microprocessor Interfacing  
Figure 101 shows an interface between the DAC756xT, DAC816xT, or DAC856xT device and any TMS320  
series DSP from Texas Instruments with a multi-channel buffered serial port (McBSP). Serial data are shifted out  
on the rising edge of the serial clock and are clocked into the DAC756xT, DAC816xT, or DAC856xT device on  
the falling edge of the SCLK signal.  
TMS320F28062  
DAC  
SYNC  
MFSxA  
MCLKxA  
MDxA  
SCLK  
DIN  
NOTE: Additional pins omitted for clarity.  
Figure 101. DAC756xT, DAC816xT, or DAC856xT Device to TMS320 McBSP Interface  
9.3.3 OMAP-L1x Processor Interfacing  
Figure 102 shows a serial interface between the DAC756xT, DAC816xT, or DAC856xT device and the OMAP-  
L138 processor. The transmit clock CLKx0 of the L138 drives SCLK of the DAC756xT, DAC816xT, or DAC856xT  
device, and the data transmit (Dx0) output drives the serial data line of the DAC. The SYNC signal is derived  
from the frame sync transmit (FSx0) line, similar to the TMS320 interface.  
OMAP-L138  
FSx0  
DAC  
SYNC  
CLKx0  
Dx0  
SCLK  
DIN  
NOTE: Additional pins omitted for clarity.  
Figure 102. DAC756xT, DAC816xT, or DAC856xT Device to OMAP-L1x Processor  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
45  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
 
 
 
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com  
10 Power Supply Recommendations  
These devices can operate within the specified supply voltage range of 2.7 V to 5.5 V. The power applied to  
AVDD should be well-regulated and low-noise. In order to further minimize noise from the power supplies, a  
strong recommendation is to include a pair of 100-pF and 1-nF capacitors and a 0.1-μF to 1-μF bypass  
capacitor. The current consumption of the AVDD pin, the short-circuit current limit, and the load current for these  
devices are listed in the Electrical Characteristics table. Choose the power supplies for these devices to meet the  
aforementioned current requirements.  
11 Layout  
11.1 Layout Guidelines  
A precision analog component requires careful layout, adequate bypassing, and clean, well-regulated power  
supplies. The DAC756xT, DAC816xT, and DAC856xT devices offer single-supply operation, and are often used  
in close proximity with digital logic, microcontrollers, microprocessors, and digital signal processors. The more  
digital logic present in the design and the higher the switching speed, the more difficult it is to keep digital noise  
from appearing at the output. As a result of the single ground pin of the DAC756xT, DAC816xT, and DAC856xT  
devices, all return currents (including digital and analog return currents for the DAC) must flow through a single  
point. Ideally, GND would be connected directly to an analog ground plane. This plane would be separate from  
the ground connection for the digital components until they were connected at the power-entry point of the  
system. The power applied to AVDD should be well-regulated and low noise. Switching power supplies and dc-dc  
converters often have high-frequency glitches or spikes riding on the output voltage. In addition, digital  
components can create similar high-frequency spikes as their internal logic switches states. This noise can easily  
couple into the DAC output voltage through various paths between the power connections and analog output. As  
with the GND connection, AVDD should be connected to a power-supply plane or trace that is separate from the  
connection for digital logic until they are connected at the power-entry point. In addition, a pair of 100-pF to 1-nF  
capacitors and a 0.1-µF to 1-µF bypass capacitor are strongly recommended. In some situations, additional  
bypassing may be required, such as a 100-µF electrolytic capacitor or even a pi filter made up of inductors and  
capacitors – all designed essentially to provide low-pass filtering for the supply and remove the high-frequency  
noise.  
46  
提交文档反馈意见  
Copyright © 2015, Texas Instruments Incorporated  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
11.2 Layout Example  
0.1 µF  
Bypass Capacitors  
100 pF  
AVDD  
DIN  
SCLK  
Digital Lines  
VREFIN/VREFOUT  
SYNC  
GND  
Digital Lines  
LDAC  
VOUT  
A
B
Analog Lines  
VOUT  
CLK  
Figure 103. DACxx6xT Layout Example  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
47  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
DAC7562T, DAC7563T, DAC8162T  
DAC8163T, DAC8562T, DAC8563T  
www.ti.com  
ZHCSE89A SEPTEMBER 2015REVISED OCTOBER 2015  
12 器件和文档支持  
12.1 相关链接  
下面的表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,以及样片或购买的快速访  
问。  
Table 18. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
DAC7562T  
DAC7563T  
DAC8162T  
DAC8163T  
DAC8562T  
DAC8563T  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 Trademarks  
SPI, QSPI are trademarks of Motorola, Inc.  
All other trademarks are the property of their respective owners.  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 本数据随时可能发生变更  
并且不对本文档进行修订,恕不另行通知。 要获得这份数据表的浏览器版本,请查阅左侧的导航窗格。  
Copyright © 2015, Texas Instruments Incorporated  
提交文档反馈意见  
49  
Product Folder Links: DAC7562T DAC7563T DAC8162T DAC8163T DAC8562T DAC8563T  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC7562TDGSR  
DAC7562TDGST  
DAC7562TDSCR  
DAC7562TDSCT  
DAC7563TDGSR  
DAC7563TDGST  
DAC7563TDSCR  
DAC7563TDSCT  
DAC8162TDGSR  
DAC8162TDGST  
DAC8162TDSCR  
DAC8162TDSCT  
DAC8163TDGSR  
DAC8163TDGST  
DAC8163TDSCR  
DAC8163TDSCT  
DAC8562TDGSR  
DAC8562TDGST  
DAC8562TDSCR  
DAC8562TDSCT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
DGS  
DGS  
DSC  
DSC  
DGS  
DGS  
DSC  
DSC  
DGS  
DGS  
DSC  
DSC  
DGS  
DGS  
DSC  
DSC  
DGS  
DGS  
DSC  
DSC  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
75T2  
75T2  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
7562T  
7562T  
75T3  
75T3  
7563T  
7563T  
81T2  
81T2  
8162T  
8162T  
81T3  
81T3  
8163T  
8163T  
85T2  
85T2  
8562T  
8562T  
250  
RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC8563TDGSR  
DAC8563TDGST  
DAC8563TDSCR  
DAC8563TDSCT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
WSON  
WSON  
DGS  
DGS  
DSC  
DSC  
10  
10  
10  
10  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
85T3  
85T3  
NIPDAU  
NIPDAU  
NIPDAU  
8563T  
8563T  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC7562TDGSR  
DAC7562TDGST  
DAC7562TDSCR  
DAC7562TDSCT  
DAC7563TDGSR  
DAC7563TDGST  
DAC7563TDSCR  
DAC7563TDSCT  
DAC8162TDGSR  
DAC8162TDGST  
DAC8162TDSCR  
DAC8162TDSCT  
DAC8163TDGSR  
DAC8163TDGST  
DAC8163TDSCR  
DAC8163TDSCT  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
DGS  
DGS  
DSC  
DSC  
DGS  
DGS  
DSC  
DSC  
DGS  
DGS  
DSC  
DSC  
DGS  
DGS  
DSC  
DSC  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
2500  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
3.3  
3.3  
5.3  
5.3  
3.3  
3.3  
5.3  
5.3  
3.3  
3.3  
5.3  
5.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.3  
1.3  
1.1  
1.1  
1.3  
1.3  
1.1  
1.1  
1.3  
1.3  
1.1  
1.1  
1.3  
1.3  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q2  
Q2  
Q1  
Q1  
Q2  
Q2  
Q1  
Q1  
Q2  
Q2  
Q1  
Q1  
Q2  
Q2  
3000  
250  
2500  
250  
3000  
250  
2500  
250  
3000  
250  
2500  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC8562TDGSR  
DAC8562TDGST  
DAC8562TDSCR  
DAC8562TDSCT  
DAC8563TDGSR  
DAC8563TDGST  
DAC8563TDSCR  
DAC8563TDSCT  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
DGS  
DGS  
DSC  
DSC  
DGS  
DGS  
DSC  
DSC  
10  
10  
10  
10  
10  
10  
10  
10  
2500  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
3.3  
3.3  
5.3  
5.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.3  
1.3  
1.1  
1.1  
1.3  
1.3  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q2  
Q2  
Q1  
Q1  
Q2  
Q2  
3000  
250  
2500  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC7562TDGSR  
DAC7562TDGST  
DAC7562TDSCR  
DAC7562TDSCT  
DAC7563TDGSR  
DAC7563TDGST  
DAC7563TDSCR  
DAC7563TDSCT  
DAC8162TDGSR  
DAC8162TDGST  
DAC8162TDSCR  
DAC8162TDSCT  
DAC8163TDGSR  
DAC8163TDGST  
DAC8163TDSCR  
DAC8163TDSCT  
DAC8562TDGSR  
DAC8562TDGST  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
VSSOP  
VSSOP  
DGS  
DGS  
DSC  
DSC  
DGS  
DGS  
DSC  
DSC  
DGS  
DGS  
DSC  
DSC  
DGS  
DGS  
DSC  
DSC  
DGS  
DGS  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
2500  
250  
367.0  
213.0  
346.0  
210.0  
367.0  
213.0  
346.0  
210.0  
367.0  
213.0  
346.0  
210.0  
367.0  
213.0  
346.0  
210.0  
367.0  
213.0  
367.0  
191.0  
346.0  
185.0  
367.0  
191.0  
346.0  
185.0  
367.0  
191.0  
346.0  
185.0  
367.0  
191.0  
346.0  
185.0  
367.0  
191.0  
38.0  
35.0  
33.0  
35.0  
38.0  
35.0  
33.0  
35.0  
38.0  
35.0  
33.0  
35.0  
38.0  
35.0  
33.0  
35.0  
38.0  
35.0  
3000  
250  
2500  
250  
3000  
250  
2500  
250  
3000  
250  
2500  
250  
3000  
250  
2500  
250  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC8562TDSCR  
DAC8562TDSCT  
DAC8563TDGSR  
DAC8563TDGST  
DAC8563TDSCR  
DAC8563TDSCT  
WSON  
WSON  
VSSOP  
VSSOP  
WSON  
WSON  
DSC  
DSC  
DGS  
DGS  
DSC  
DSC  
10  
10  
10  
10  
10  
10  
3000  
250  
346.0  
210.0  
367.0  
213.0  
346.0  
210.0  
346.0  
185.0  
367.0  
191.0  
346.0  
185.0  
33.0  
35.0  
38.0  
35.0  
33.0  
35.0  
2500  
250  
3000  
250  
Pack Materials-Page 4  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY