DAC7563-Q1 [TI]

双路 12 位超低毛刺脉冲低功耗缓冲器电压输出 DAC;
DAC7563-Q1
型号: DAC7563-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路 12 位超低毛刺脉冲低功耗缓冲器电压输出 DAC

脉冲
文件: 总57页 (文件大小:2396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
DACxx6x-Q1 具有 2.5V4PPM/°C 内部基准的汽车类双路 16 位、14  
位、12 位低功耗、经缓冲的、  
电压输出 DAC  
1 特性  
3 说明  
1
适用于汽车电子 应用  
DAC756x-Q1DAC816x-Q1 DAC856x-Q1  
(DACxx6x-Q1) 器件分别为 12 位、14 位和 16 位低功  
耗、电压输出、双通道数模转换器 (DAC)。这些器件  
包括一个 2.5V4ppm/°C 内部基准,从而提供了一个  
2.5V 5V 的满量程输出电压范围。此内部基准有一  
±5mV 的初始精度,并且能够在 VREFIN/VREFOUT  
引脚上提供或吸收高达 20mA 的电流。  
具有符合 AEC-Q100 的下列结果:  
器件温度 1 级:-40°C 125°C 的环境运行温  
度范围  
器件人体模型 (HBM) 静电放电 (ESD) 分类等级  
2
器件组件充电模式 (CDM) ESD 分类等级 C4B  
相对精度:  
这些器件是单片器件,从而提供了出色的线性并大大降  
低了有害的代码至代码转换时的瞬态电压(毛刺脉  
冲)。它们使用一个运行时钟速率高达 50MHz 的多用  
3 线制串口。此接口与标准 SPI™QSPI  
DAC756x12 位):0.3 最低有效位 (LSB) 最  
大积分非线性 (INL)  
DAC816x14 位):1 LSB INL  
DAC856x16 位):4 LSB INL  
Microwire,以及数字信号处理器 (DSP) 接口兼  
容。DACxx62-Q1 器件配有一个上电复位电路,此电  
路可确保在一个有效编码被写入此器件前,DAC 输出  
上电并保持零量程,而 DACxx63-Q1 器件在量程中点  
上电。这些器件包含一个断电特性,此特性可将 5V 电  
压时的流耗减少至 550nA(典型值)。此低功耗、内  
部基准和小封装尺寸使得这些器件非常适合于便携式、  
电池供电运行类设备。  
毛刺脉冲:0.1 nV-s  
双向基准:输入或 2.5V 输出  
缺省情况下,输出被禁用  
±5mV 初始精度(最大值)  
4ppm/°C 温度漂移(典型值)  
10ppm/°C 温度漂移(最大值)  
20mA 拉灌电流能力  
加电复位至零量程或量程中点  
DACxx63-Q1 器件一样,DACxx62-Q1 器件之间可  
互相插接并且功能兼容。整个系列均采用 10 引脚  
VSSOP-10 (DGS) 封装。  
低功率:4mW(典型值,5V AVDD,其中包括内部  
基准电流)  
宽电源范围:2.7V 5.5V  
带有施密特触发输入的 50MHz 串行外设接口 (SPI)  
LDAC CLR 功能  
器件信息(1)  
器件型号  
DAC7562-Q1  
DAC7563-Q1  
DAC8162-Q1  
DAC8163-Q1  
DAC8562-Q1  
DAC8563-Q1  
封装  
封装尺寸(标称值)  
支持轨到轨运行的输出缓冲器  
封装:超薄小外形尺寸封装 (VSSOP)-10  
2 应用  
VSSOP (10)  
3.00mm × 3.00mm  
便携式仪表  
可编程逻辑控制器 (PLC) 模拟输出模块  
闭环伺服器控制  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
压控振荡器调谐  
数据采集系统  
可编程增益和偏移调整  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLAS950  
 
 
 
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
简化框图  
GND  
AVDD  
LDAC  
CLR  
VREFIN/VREFOUT  
Power-  
Down  
Control  
Logic  
DIN  
Buffer Control  
Register Control  
2.5-V  
Reference  
Input Control Logic  
SCLK  
SYNC  
Control Logic  
DAC Register B  
DAC Register A  
VOUT  
B
Data Buffer B  
Data Buffer A  
DAC  
DAC756x-Q1 (12-Bit)  
DAC816x-Q1 (14-Bit)  
DAC856x-Q1 (16-Bit)  
VOUTA  
DAC  
2
版权 © 2013–2015, Texas Instruments Incorporated  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
目录  
8.4 Device Functional Modes........................................ 31  
8.5 Programming........................................................... 35  
Application and Implementation ........................ 38  
9.1 Application Information............................................ 38  
9.2 Typical Applications ................................................ 40  
9.3 System Examples ................................................... 44  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 3  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements................................................ 8  
7.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 27  
8.1 Overview ................................................................. 27  
8.2 Functional Block Diagram ....................................... 27  
8.3 Feature Description................................................. 27  
9
10 Power Supply Recommendations ..................... 45  
11 Layout................................................................... 45  
11.1 Layout Guidelines ................................................. 45  
11.2 Layout Example .................................................... 46  
12 器件和文档支持 ..................................................... 47  
12.1 文档支持................................................................ 47  
12.2 相关链接................................................................ 47  
12.3 社区资源................................................................ 47  
12.4 ....................................................................... 47  
12.5 静电放电警告......................................................... 47  
12.6 Glossary................................................................ 47  
13 机械、封装和可订购信息....................................... 48  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (May 2013) to Revision A  
Page  
已更改 引脚配置和功能部分,ESD 额定值表,特性 描述部分,器件功能模式应用和实施部分,电源相关建议部  
分,布局部分,器件和文档支持部分,以及机械、封装和可订购信息部分............................................................................. 1  
已发布 DAC8563-Q1DAC8162-Q1DAC8163-Q1DAC7562-Q1 DAC7563-Q1 器件 ............................................... 1  
已添加 the code-change total glitch amplitude parameter to the Electrical Characteristics table ......................................... 6  
Copyright © 2013–2015, Texas Instruments Incorporated  
3
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
RESET TO  
5 Device Comparison Table  
MAXIMUM RELATIVE  
ACCURACY (LSB)  
MAXIMUM DIFFERENTIAL  
NONLINEARITY (LSB)  
MAXIMUM REFERENCE  
DRIFT (ppm/°C)  
PART NUMBER  
RESOLUTION  
DAC7562-Q1  
DAC7563-Q1  
DAC8162-Q1  
DAC8163-Q1  
DAC8562-Q1  
DAC8563-Q1  
Zero  
Mid-scale  
Zero  
12-bit  
±0.75  
±3  
±0.25  
±0.5  
±1  
10  
10  
10  
14-bit  
16-bit  
Mid-scale  
Zero  
±12  
Mid-scale  
6 Pin Configuration and Functions  
DGS Package  
10-Pin VSSOP  
Top View  
VOUT  
A
VREFIN/VREFOUT  
1
2
3
4
5
10  
9
VOUT  
B
AVDD  
DIN  
8
GND  
LDAC  
CLR  
7
SCLK  
SYNC  
6
Pin Functions  
PIN  
NAME  
AVDD  
DESCRIPTION  
NO.  
9
Power-supply input, 2.7 V to 5.5 V  
Asynchronous clear input. The CLR input is falling-edge sensitive. When CLR is activated, zero scale (DACxx62-  
Q1) or mid-scale (DACxx63-Q1) is loaded to all input and DAC registers. This sets the DAC output voltages  
accordingly. The part exits clear code mode on the 24th falling edge of the next write to the part. If CLR is  
activated during a write sequence, the write is aborted.  
CLR  
5
Serial data input. Data are clocked into the 24-bit input shift register on each falling edge of the serial clock input.  
Schmitt-trigger logic input  
DIN  
8
3
GND  
Ground reference point for all circuitry on the device  
In synchronous mode, data are updated with the falling edge of the 24th SCLK cycle, which follows a falling edge  
of SYNC. For such synchronous updates, the LDAC pin is not required, and it must be connected to GND  
permanently or asserted and held low before sending commands to the device.  
In asynchronous mode, the LDAC pin is used as a negative edge-triggered timing signal for simultaneous DAC  
updates. Multiple single-channel commands can be written in order to set different channel buffers to desired  
values and then make a falling edge on LDAC pin to simultaneously update the DAC output registers.  
LDAC  
4
SCLK  
SYNC  
7
6
Serial clock input. Data can be transferred at rates up to 50 MHz. Schmitt-trigger logic input  
Level-triggered control input (active-low). This input is the frame synchronization signal for the input data. When  
SYNC goes low, it enables the input shift register, and data are sampled on subsequent falling clock edges. The  
DAC output updates following the 24th clock falling edge. If SYNC is taken high before the 23rd clock edge, the  
rising edge of SYNC acts as an interrupt, and the write sequence is ignored by the DAC756x-Q1, DAC816x-Q1,  
DAC856x-Q1. Schmitt-trigger logic input  
VOUT  
A
B
1
2
Analog output voltage from DAC-A  
VOUT  
Analog output voltage from DAC-B  
VREFIN/VREFOUT  
10  
Bidirectional voltage reference pin. If internal reference is used, 2.5-V output.  
4
Copyright © 2013–2015, Texas Instruments Incorporated  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted).(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
6
UNIT  
V
AVDD to GND  
CLR, DIN, LDAC, SCLK and SYNC input voltage to GND  
VOUT[A, B] to GND  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
125  
V
V
VREFIN/VREFOUT to GND  
V
Operating temperature  
°C  
°C  
°C  
Junction temperature, TJ max  
Storage temperature, Tstg  
150  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
All pins  
V
Charged-device model (CDM), per  
AEC Q100-011  
Corner pins (1, 5, 6, and 10)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
0
NOM  
MAX  
5.5  
UNIT  
V
POWER SUPPLY  
Supply voltage  
DIGITAL INPUTS  
Digital input voltage  
REFERENCE INPUT  
AVDD to GND  
CLR, DIN, LDAC, SCLK and SYNC  
AVDD  
AVDD  
125  
V
VREFIN  
Reference input voltage  
0
V
TEMPERATURE RANGE  
TA  
Operating ambient temperature  
–40  
°C  
7.4 Thermal Information  
DACxx6x-Q1  
DGS (VSSOP)  
10 PINS  
173.8  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
48.5  
Junction-to-board thermal resistance  
79.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.7  
ψJB  
68.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
版权 © 2013–2015, Texas Instruments Incorporated  
5
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
7.5 Electrical Characteristics  
At AVDD = 2.7 V to 5.5 V and TA = –40°C to 125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
STATIC PERFORMANCE(1)  
Resolution  
16  
Bits  
Using line passing through codes 512 and  
65,024  
DAC856x-Q1  
Relative accuracy  
±4  
±12  
±1  
LSB  
Differential nonlinearity 16-bit monotonic  
Resolution  
±0.2  
LSB  
Bits  
14  
12  
Using line passing through codes 128 and  
16,256  
DAC816x-Q1  
DAC756x-Q1  
Relative accuracy  
±1  
±3  
LSB  
Differential nonlinearity 14-bit monotonic  
Resolution  
±0.1  
±0.5  
LSB  
Bits  
Relative accuracy  
Using line passing through codes 32 and 4,064  
±0.3 ±0.75  
±0.05 ±0.25  
LSB  
Differential nonlinearity 12-bit monotonic  
LSB  
Offset error  
Extrapolated from two-point line(1), unloaded  
±1  
±2  
±4  
mV  
Offset error drift  
µV/°C  
% FSR  
mV  
Full-scale error  
DAC register loaded with all 1s  
DAC register loaded with all 0s  
±0.03  
1
±0.2  
4
Zero-code error  
Zero-code error drift  
Gain error  
±2  
µV/°C  
% FSR  
ppm FSR/°C  
Extrapolated from two-point line(1), unloaded  
±0.01 ±0.15  
±1  
Gain temperature coefficient  
OUTPUT CHARACTERISTICS(2)  
Output voltage range  
0
AVDD  
V
DACs unloaded  
7
Output voltage settling time(3)  
µs  
RL = 1 MΩ  
10  
Measured between 20% - 80% of a full-scale  
transition  
Slew rate  
0.75  
V/µs  
nF  
RL = ∞  
1
3
Capacitive load stability  
RL = 2 kΩ  
Code-change glitch impulse  
Digital feedthrough  
1-LSB change around major carry  
SCLK toggling, SYNC high  
RL = 2 k, CL = 470 pF, AVDD = 5.5 V  
0.1  
0.1  
40  
nV-s  
nV-s  
mV  
Power-on glitch impulse  
1-LSB change around major carry. Includes  
glitch impulse and digital feedthrough.  
RL = 2 k, CL = 470 pF, AVDD = 5.5 V  
Code-change total glitch amplitude  
Channel-to-channel DC crosstalk  
3
5
mV  
Full-scale swing on adjacent channel,  
External reference  
µV  
Full-scale swing on adjacent channel,  
Internal reference  
15  
5
DC output impedance  
Short-circuit current  
At mid-scale input  
Ω
mA  
µs  
DAC outputs at full-scale, DAC outputs shorted  
to GND  
40  
50  
Power-up time, including settling time  
AC PERFORMANCE(2)  
Coming out of power-down mode  
DAC output noise density  
DAC output noise  
TA = 25°C, at mid-scale input, fOUT = 1 kHz  
TA = 25°C, at mid-scale input, 0.1 Hz to 10 Hz  
90  
nV/Hz  
2.6  
µVPP  
(1) 16-bit: codes 512 and 65,024; 14-bit: codes 128 and 16,256; 12-bit: codes 32 and 4,064  
(2) Specified by design or characterization  
(3) Transition time between ¼ scale and ¾ scale including settling to within ±0.024% FSR  
6
版权 © 2013–2015, Texas Instruments Incorporated  
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
Electrical Characteristics (接下页)  
At AVDD = 2.7 V to 5.5 V and TA = –40°C to 125°C (unless otherwise noted).  
PARAMETER  
LOGIC INPUTS(2)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input pin Leakage current  
–1  
0
±0.1  
1
µA  
V
Logic input LOW voltage VIN  
L
0.8  
0.7 ×  
AVDD  
Logic input HIGH voltage VIN  
H
AVDD  
3
V
Pin capacitance  
pF  
REFERENCE  
External VREF = 2.5 V (when internal reference  
is disabled), all channels active using gain = 1  
External reference current  
Reference input impedance  
15  
µA  
Internal reference disabled, gain = 1  
Internal reference disabled, gain = 2  
170  
85  
kΩ  
REFERENCE OUTPUT  
Output voltage  
TA = 25°C  
TA = 25°C  
2.495  
–5  
2.5 2.505  
V
Initial accuracy  
±0.1  
5
mV  
Output voltage temperature drift  
Output voltage noise  
4
12  
10  
ppm/°C  
µVPP  
f = 0.1 Hz to 10 Hz  
TA = 25°C, f = 1 kHz, CL = 0 µF  
TA = 25°C, f = 1 MHz, CL = 0 µF  
TA = 25°C, f = 1 MHz, CL = 4.7 µF  
TA = 25°C  
250  
30  
Output voltage noise density (high-frequency  
noise)  
nV/Hz  
10  
Load regulation, sourcing(4)  
Load regulation, sinking(4)  
Output current load capability(2)  
Line regulation  
20  
µV/mA  
µV/mA  
mA  
TA = 25°C  
185  
±20  
50  
TA = 25°C  
µV/V  
ppm  
Long-term stability and drift (aging)(4)  
TA = 25°C, time = 0 to 1900 hours  
First cycle  
100  
200  
50  
Thermal hysteresis(4)  
ppm  
Additional cycles  
POWER REQUIREMENTS(5)  
Normal mode, internal reference off  
Normal mode, internal reference on  
Power-down modes(6)  
0.25  
0.9  
0.5  
1.6  
2
mA  
µA  
AVDD = 3.6 V to 5.5 V  
0.55  
0.55  
0.2  
Power-down modes(7)  
4
IDD  
Normal mode, internal reference off  
Normal mode, internal reference on  
Power-down modes(6)  
0.4  
1.4  
2
mA  
µA  
0.73  
0.35  
0.35  
0.9  
AVDD = 2.7 V to 3.6 V  
Power-down modes(7)  
3
Normal mode, internal reference off  
Normal mode, internal reference on  
Power-down modes(6)  
2.75  
8.8  
11  
mW  
µW  
mW  
µW  
3.2  
AVDD = 3.6 V to 5.5 V  
2
Power-down modes(7)  
2
22  
Power dissipation  
Normal mode, internal reference off  
Normal mode, internal reference on  
Power-down modes(6)  
0.54  
1.97  
0.95  
0.95  
1.44  
5
AVDD = 2.7 V to 3.6 V  
7.2  
10.8  
Power-down modes(7)  
(4) See the Application Information section of this data sheet.  
(5) Input code = mid-scale, no load, VINH = AVDD, and VINL = GND  
(6) Temperature range –40°C to 105°C  
(7) Temperature range –40°C to 125°C  
版权 © 2013–2015, Texas Instruments Incorporated  
7
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
7.6 Timing Requirements(1)(2)  
At AVDD = 2.7 V to 5.5 V and over –40°C to 125°C (unless otherwise noted). See 1.  
MIN  
NOM  
MAX  
50  
UNIT  
MHz  
ns  
f(SCLK)  
t1  
Serial clock frequency  
SCLK falling edge to SYNC falling edge (for successful write operation)  
SCLK cycle time  
10  
20  
13  
80  
13  
8
t2  
ns  
t3  
SYNC rising edge to 23rd SCLK falling edge (for successful SYNC interrupt)  
ns  
t4  
Minimum SYNC HIGH time  
ns  
t5  
SYNC to SCLK falling edge setup time  
SCLK LOW time  
ns  
t6  
ns  
t7  
SCLK HIGH time  
8
ns  
t8  
SCLK falling edge to SYNC rising edge  
Data setup time  
10  
6
ns  
t9  
ns  
t10  
t11  
t12  
t13  
t14  
Data hold time  
5
ns  
SCLK falling edge to LDAC falling edge for asynchronous LDAC update mode  
LDAC pulse duration, LOW time  
5
ns  
10  
80  
ns  
CLR pulse duration, LOW time  
ns  
CLR falling edge to start of VOUT transition  
100  
ns  
(1) All input signals are specified with tR = tF = 3 ns (10% to 90% of AVDD) and timed from a voltage level of (VINL + VINH) / 2.  
(2) See the Serial Write Operation timing diagram (1).  
t(1)  
t(2)  
SCLK  
SYNC  
DIN  
t(5)  
t(6)  
t(3)  
t(7)  
t(8)  
t(4)  
t(10)  
t(9)  
DB23  
DB0  
t(11)  
t(12)  
LDAC(1)  
LDAC(2)  
t(13)  
CLR  
t(14)  
VOUT  
x
(1) Asynchronous LDAC update mode. For more information, see the LDAC Functionality section.  
(2) Synchronous LDAC update mode; LDAC remains low. For more information, see the LDAC Functionality section.  
1. Serial Write Operation  
8
版权 © 2013–2015, Texas Instruments Incorporated  
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
7.7 Typical Characteristics  
7.7.1 Tables of Graphs  
1. Typical Characteristics: Internal Reference Performance  
POWER-SUPPLY  
VOLTAGE  
MEASUREMENT  
FIGURE NUMBER  
Internal Reference Voltage vs Temperature  
2  
3  
4  
5  
6  
7  
Internal Reference Voltage Temperature Drift Histogram  
Internal Reference Voltage vs Load Current  
Internal Reference Voltage vs Time  
5.5 V  
Internal Reference Noise Density vs Frequency  
Internal Reference Voltage vs Supply Voltage  
2.7 V – 5.5 V  
2. Typical Characteristics: DAC Static Performance  
POWER-SUPPLY  
MEASUREMENT  
VOLTAGE  
FIGURE NUMBER  
FULL-SCALE, GAIN, OFFSET AND ZERO-CODE ERRORS  
Full-Scale Error vs Temperature  
Gain Error vs Temperature  
16  
17  
18  
19  
63  
64  
65  
66  
5.5 V  
Offset Error vs Temperature  
Zero-Code Error vs Temperature  
Full-Scale Error vs Temperature  
Gain Error vs Temperature  
2.7 V  
Offset Error vs Temperature  
Zero-Code Error vs Temperature  
LOAD REGULATION  
5.5 V  
30  
74  
DAC Output Voltage vs Load Current  
2.7 V  
DIFFERENTIAL NONLINEARITY ERROR  
T = –40°C  
T = 25°C  
T = 125°C  
9  
Differential Linearity Error vs Digital Input Code  
Differential Linearity Error vs Temperature  
Differential Linearity Error vs Digital Input Code  
Differential Linearity Error vs Temperature  
11  
13  
15  
56  
58  
60  
62  
5.5 V  
T = –40°C  
T = 25°C  
T = 125°C  
2.7 V  
INTEGRAL NONLINEARITY ERROR (RELATIVE ACCURACY)  
T = –40°C  
8  
Linearity Error vs Digital Input Code  
Linearity Error vs Temperature  
Linearity Error vs Digital Input Code  
Linearity Error vs Temperature  
T = 25°C  
10  
12  
14  
55  
57  
59  
61  
5.5 V  
T = 125°C  
T = –40°C  
T = 25°C  
2.7 V  
T = 125°C  
版权 © 2013–2015, Texas Instruments Incorporated  
9
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
2. Typical Characteristics: DAC Static Performance (接下页)  
POWER-SUPPLY  
VOLTAGE  
MEASUREMENT  
FIGURE NUMBER  
POWER-DOWN CURRENT  
Power-Down Current vs Temperature  
5.5 V  
2.7 V – 5.5 V  
2.7 V  
28  
29  
73  
Power-Down Current vs Power-Supply Voltage  
Power-Down Current vs Temperature  
POWER-SUPPLY CURRENT  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
External VREF  
Internal VREF  
20  
21  
22  
23  
24  
25  
26  
27  
49  
50  
51  
52  
53  
54  
67  
68  
69  
70  
71  
72  
Power-Supply Current vs Temperature  
Power-Supply Current vs Digital Input Code  
Power-Supply Current Histogram  
5.5 V  
2.7 V – 5.5 V  
3.6 V  
Power-Supply Current vs Power-Supply Voltage  
Power-Supply Current vs Temperature  
Power-Supply Current vs Digital Input Code  
Power-Supply Current Histogram  
Power-Supply Current vs Temperature  
Power-Supply Current vs Digital Input Code  
Power-Supply Current Histogram  
2.7 V  
3. Typical Characteristics: DAC Dynamic Performance  
POWER-SUPPLY  
MEASUREMENT  
VOLTAGE  
FIGURE NUMBER  
CHANNEL-TO-CHANNEL CROSSTALK  
5-V Rising Edge  
43  
44  
Channel-to-Channel Crosstalk  
Clock Feedthrough  
5.5 V  
5-V Falling Edge  
CLOCK FEEDTHROUGH  
5.5 V  
48  
87  
500 kHz, Mid-Scale  
2.7 V  
GLITCH IMPULSE  
Rising Edge, Code 7FFFh to 8000h  
Falling Edge, Code 8000h to 7FFFh  
37  
38  
39  
40  
41  
42  
Glitch Impulse, 1-LSB Step  
Glitch Impulse, 4-LSB Step  
Glitch Impulse, 16-LSB Step  
Rising Edge, Code 7FFCh to 8000h  
5.5 V  
Falling Edge, Code 8000h to 7FFCh  
Rising Edge, Code 7FF0h to 8000h  
Falling Edge, Code 8000h to 7FF0h  
10  
版权 © 2013–2015, Texas Instruments Incorporated  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
3. Typical Characteristics: DAC Dynamic Performance (接下页)  
POWER-SUPPLY  
VOLTAGE  
MEASUREMENT  
FIGURE NUMBER  
Rising Edge, Code 7FFFh to 8000h  
79  
80  
81  
82  
83  
84  
Glitch Impulse, 1-LSB Step  
Glitch Impulse, 4-LSB Step  
Glitch Impulse, 16-LSB Step  
Falling Edge, Code 8000h to 7FFFh  
Rising Edge, Code 7FFCh to 8000h  
Falling Edge, Code 8000h to 7FFCh  
Rising Edge, Code 7FF0h to 8000h  
Falling Edge, Code 8000h to 7FF0h  
NOISE  
2.7 V  
External VREF  
45  
46  
47  
DAC Output Noise Density vs  
Frequency  
Internal VREF  
5.5 V  
DAC Output Noise 0.1 Hz to 10 Hz  
External VREF  
POWER-ON GLITCH  
Reset to Zero Scale  
35  
36  
85  
86  
5.5 V  
2.7 V  
Reset to Mid-Scale  
Power-on Glitch  
Reset to Zero Scale  
Reset to Mid-Scale  
SETTLING TIME  
Rising Edge, Code 0h to FFFFh  
Falling Edge, Code FFFFh to 0h  
Rising Edge, Code 4000h to C000h  
Falling Edge, Code C000h to 4000h  
Rising Edge, Code 0h to FFFFh  
Falling Edge, Code FFFFh to 0h  
Rising Edge, Code 4000h to C000h  
Falling Edge, Code C000h to 4000h  
31  
32  
33  
34  
75  
76  
77  
78  
Full-Scale Settling Time  
Half-Scale Settling Time  
Full-Scale Settling Time  
Half-Scale Settling Time  
5.5 V  
2.7 V  
版权 © 2013–2015, Texas Instruments Incorporated  
11  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
7.7.2 Internal Reference  
At TA = 25°C, AVDD = 5.5 V, gain = 2 and VREFOUT, unloaded unless otherwise noted.  
30  
25  
20  
15  
10  
5
0
Temperature Drift (ppm/èC)  
2. Internal Reference Voltage vs Temperature  
3. Internal Reference Voltage Temperature Drift  
Histogram  
2.510  
2.505  
2.500  
2.495  
2.490  
16 units shown  
−20  
−15  
−10  
−5  
0
5
10  
15  
20  
Load Current (mA)  
5. Internal Reference Voltage vs Time  
4. Internal Reference Voltage vs Load Current  
400  
350  
300  
250  
200  
150  
100  
50  
2.505  
No Load  
4.7 µF Load  
−40°C  
+25°C  
+125°C  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
0
10  
100  
1k  
10k  
100k  
1M  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Frequency (Hz)  
AVDD (V)  
6. Internal Reference Noise Density vs Frequency  
7. Internal Reference Voltage vs Supply Voltage  
版权 © 2013–2015, Texas Instruments Incorporated  
12  
 
 
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
7.7.3 DAC at AVDD = 5.5 V  
At TA = 25°C, 5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
12  
9
1.0  
0.8  
0.6  
6
0.4  
3
0.2  
0
0.0  
−0.2  
−0.4  
−0.6  
−0.8  
−1.0  
−3  
−6  
−9  
−12  
Typical channel shown  
−40°C  
Typical channel shown  
−40°C  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8. Linearity Error vs Digital Input Code (–40°C)  
9. Differential Linearity Error vs Digital Input Code  
(–40°C)  
12  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
9
6
3
0
−0.2  
−3  
−6  
−9  
−12  
−0.4  
−0.6  
−0.8  
−1.0  
Typical channel shown  
25°C  
Typical channel shown  
25°C  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
10. Linearity Error vs Digital Input Code (25°C)  
11. Differential Linearity Error vs Digital Input Code  
(25°C)  
12  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
9
6
3
0
−0.2  
−3  
−6  
−9  
−12  
−0.4  
−0.6  
−0.8  
−1.0  
Typical channel shown  
125°C  
Typical channel shown  
125°C  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
12. Linearity Error vs Digital Input Code (125°C)  
13. Differential Linearity Error vs Digital Input Code  
(125°C)  
版权 © 2013–2015, Texas Instruments Incorporated  
13  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
DAC at AVDD = 5.5 V (接下页)  
At TA = 25°C, 5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
12  
1.0  
INL Max  
INL Min  
DNL Max  
DNL Min  
0.8  
9
0.6  
6
0.4  
3
0.2  
0
0.0  
−0.2  
−0.4  
−0.6  
−0.8  
−1.0  
−3  
−6  
−9  
−12  
Typical channel shown  
−40 −25 −10  
Typical channel shown  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
14. Linearity Error vs Temperature  
15. Differential Linearity Error vs Temperature  
0.20  
0.15  
0.15  
0.10  
Ch A  
Ch B  
Ch A  
Ch B  
0.10  
0.05  
0.05  
0.00  
0.00  
−0.05  
−0.10  
−0.15  
−0.20  
−0.05  
−0.10  
−0.15  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
16. Full-Scale Error vs Temperature  
17. Gain Error vs Temperature  
4
3
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Ch A  
Ch B  
Ch A  
Ch B  
2
1
0
−1  
−2  
−3  
−4  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
18. Offset Error vs Temperature  
19. Zero-code Error vs Temperature  
14  
版权 © 2013–2015, Texas Instruments Incorporated  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
DAC at AVDD = 5.5 V (接下页)  
At TA = 25°C, 5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
Internal reference enabled  
DACs at midscale code, Gain = 2  
DACs at midscale code  
−40 −25 −10 20 35 50 65 80 95 110 125  
Temperature (°C)  
5
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
20. Power-supply Current vs Temperature  
21. Power-supply Current vs Temperature  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
Internal reference enabled, Gain = 2  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
22. Power-Supply Current vs Digital Input Code  
23. Power-Supply Current vs Digital Input Code  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
Internal reference enabled  
Gain = 2  
0
0
Power Supply Current (mA)  
Power Supply Current (mA)  
24. Power-Supply Current Histogram  
25. Power-Supply Current Histogram  
版权 © 2013–2015, Texas Instruments Incorporated  
15  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
DAC at AVDD = 5.5 V (接下页)  
At TA = 25°C, 5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
VREFIN = 2.5 V  
DACs at midscale code, Gain = 1  
Internal reference enabled  
DACs at midscale code, Gain = 1  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
AVDD (V)  
AVDD (V)  
26. Power-Supply Current vs Power-Supply Voltage  
27. Power-Supply Current vs Power-Supply Voltage  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.60  
IDD (µA)  
IREFIN (µA)  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
AVDD (V)  
G028  
G029  
28. Power-Down Current vs Temperature  
29. Power-Down Current vs Power-Supply Voltage  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
−1.0  
Typical channel shown  
Full scale  
Mid scale  
Zero scale  
LDAC Trigger (5 V/div)  
Large Signal VOUT (2 V/div)  
Small Signal Settling  
(1.22 mV/div = 0.024% FSR)  
From Code: 0h  
To Code: FFFFh  
−20  
−15  
−10  
−5  
0
5
10  
15  
20  
ILOAD (mA)  
Time (5 μs/div)  
31. Full-Scale Settling Time: Rising Edge  
30. DAC Output Voltage vs Load Current  
16  
版权 © 2013–2015, Texas Instruments Incorporated  
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
DAC at AVDD = 5.5 V (接下页)  
At TA = 25°C, 5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
LDAC Trigger (5 V/div)  
LDAC Trigger (5 V/div)  
Large Signal VOUT (2 V/div)  
Large Signal VOUT (2 V/div)  
Small Signal Settling (1.22 mV/div = 0.024% FSR)  
Small Signal Settling (1.22 mV/div = 0.024% FSR)  
From Code: FFFFh  
To Code: 0h  
From Code: 4000h  
To Code: C000h  
Time (5 μs/div)  
Time (5 μs/div)  
32. Full-Scale Settling Time: Falling Edge  
33. Half-Scale Settling Time: Rising Edge  
LDAC Trigger (5 V/div)  
AVDD (2 V/div)  
Large Signal VOUT (2 V/div)  
Small Signal Settling (1.22 mV/div = 0.024% FSR)  
VOUTA (50 mV/div)  
VOUTB (50 mV/div)  
From Code: C000h  
To Code: 4000h  
VREFIN shorted to AVDD  
Time (5 μs/div)  
Time (1 ms/div)  
34. Half-Scale Settling Time: Falling Edge  
35. Power-On Glitch Reset to Zero Scale  
LDAC Trigger (5 V/div)  
AVDD (2 V/div)  
Glitch Impulse » 0.1 nV-s  
VOUTA (1 V/div)  
VOUTB (1 V/div)  
VOUT (100 μV/div)  
LDAC Feedthrough  
From Code: 7FFFh  
To Code: 8000h  
VREFIN shorted to AVDD  
Time (1 ms/div)  
Time (5 μs/div)  
36. Power-On Glitch Reset to Mid-Scale  
37. Glitch Impulse Rising Edge, 1-LSB Step  
版权 © 2013–2015, Texas Instruments Incorporated  
17  
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
DAC at AVDD = 5.5 V (接下页)  
At TA = 25°C, 5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
LDAC Trigger (5 V/div)  
LDAC Feedthrough  
LDAC Trigger (5 V/div)  
Glitch Impulse » 0.1 nV-s  
VOUT (100 μV/div)  
VOUT (100 μV/div)  
LDAC Feedthrough  
Glitch Impulse » 0.12 nV-s  
From Code: 8000h  
To Code: 7FFFh  
From Code: 7FFCh  
To Code: 8000h  
Time (5 μs/div)  
Time (5 μs/div)  
38. Glitch Impulse Falling Edge, 1-LSB Step  
39. Glitch Impulse Rising Edge, 4-LSB Step  
LDAC Trigger (5 V/div)  
LDAC Trigger (5 V/div)  
Glitch Impulse » 0.1 nV-s  
VOUT (500 μV/div)  
LDAC Feedthrough  
VOUT (100 μV/div)  
LDAC Feedthrough  
Glitch Impulse » 0.14 nV-s  
From Code: 8000h  
To Code: 7FFCh  
From Code: 7FF0h  
To Code: 8000h  
Time (5 μs/div)  
Time (5 μs/div)  
40. Glitch Impulse Falling Edge, 4-LSB Step  
41. Glitch Impulse Rising Edge, 16-LSB Step  
LDAC Trigger (5 V/div)  
LDAC Trigger (5 V/div)  
VOUTB (1 V/div)  
LDAC Feedthrough  
VOUTA (500 μV/div)  
Glitch Area (Between Cursors) = 1.6 nV-s  
7.3 μs  
VOUT (500 μV/div)  
VOUTA at Midscale Code  
Glitch Impulse » 0.1 nV-s  
Internal Reference Enabled  
Gain = 2  
From Code: 8000h  
To Code: 7FF0h  
Time (5 μs/div)  
Time (5 μs/div)  
42. Glitch Impulse Falling Edge, 16-LSB Step  
43. Channel-to-Channel Crosstalk 5-V Rising Edge  
18  
版权 © 2013–2015, Texas Instruments Incorporated  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
DAC at AVDD = 5.5 V (接下页)  
At TA = 25°C, 5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
1400  
Internal reference disabled  
VREFIN = 5 V, Gain = 1  
Full Scale  
Mid Scale  
Zero Scale  
LDAC Trigger (5 V/div)  
1200  
1000  
Glitch Area (Between Cursors) = 2 nV-s  
6.4 μs  
800  
VOUTA (500 μV/div)  
600  
VOUTA at Midscale Code  
400  
Internal Reference Enabled  
Gain = 2  
200  
VOUTB (1 V/div)  
0
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Time (5 μs/div)  
45. DAC Output Noise Density vs Frequency  
44. Channel-to-Channel Crosstalk 5-V Falling Edge  
1400  
1200  
1000  
800  
600  
400  
200  
0
Internal reference enabled  
Gain = 2  
Full Scale  
Mid Scale  
Zero Scale  
» 2.5 μVPP  
10  
100  
1k  
10k  
100k  
DAC = Midscale  
Frequency (Hz)  
47. DAC Output Noise 0.1 Hz TO 10 Hz  
46. DAC Output Noise Density vs Frequency  
SCLK (5 V/div)  
VOUT (500 μV/div)  
Clock Feedthrough Impulse » 0.06 nV-s  
Time (500 ns/div)  
48. Clock Feedthrough 500 kHz, Mid-Scale  
版权 © 2013–2015, Texas Instruments Incorporated  
19  
 
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
7.7.4 Typical Characteristics: DAC at AVDD = 3.6 V  
At TA = 25°C, 3.3-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
Internal reference enabled  
DACs at midscale code, Gain = 1  
DACs at midscale code  
−40 −25 −10 20 35 50 65 80 95 110 125  
Temperature (°C)  
5
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
49. Power-Supply Current vs Temperature  
50. Power-Supply Current vs Temperature  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
Internal reference enabled, Gain = 1  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
51. Power-Supply Current vs Digital Input Code  
52. Power-Supply Current vs Digital Input Code  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
Internal reference enabled  
Gain = 1  
0
0
Power Supply Current (mA)  
Power Supply Current (mA)  
53. Power-Supply Current Histogram  
54. Power-Supply Current Histogram  
20  
版权 © 2013–2015, Texas Instruments Incorporated  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
7.7.5 Typical Characteristics: DAC at AVDD = 2.7 V  
At TA = 25°C, 2.5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
12  
9
1.0  
0.8  
0.6  
6
0.4  
3
0.2  
0
0.0  
−0.2  
−0.4  
−0.6  
−0.8  
−1.0  
−3  
−6  
−9  
−12  
Typical channel shown  
−40°C  
Typical channel shown  
−40°C  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
55. Linearity Error vs Digital Input Code (–40°C)  
56. Differential Linearity Error vs Digital Input Code  
(–40°C)  
12  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
9
6
3
0
−0.2  
−3  
−6  
−9  
−12  
−0.4  
−0.6  
−0.8  
−1.0  
Typical channel shown  
25°C  
Typical channel shown  
25°C  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
57. Linearity Error vs Digital Input Code (25°C)  
58. Differential Linearity Error vs Digital Input Code  
(25°C)  
12  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
9
6
3
0
−0.2  
−3  
−6  
−9  
−12  
−0.4  
−0.6  
−0.8  
−1.0  
Typical channel shown  
125°C  
Typical channel shown  
125°C  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
59. Linearity Error vs Digital Input Code (125°C)  
60. Differential Linearity Error vs Digital Input Code  
(125°C)  
版权 © 2013–2015, Texas Instruments Incorporated  
21  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
Typical Characteristics: DAC at AVDD = 2.7 V (接下页)  
At TA = 25°C, 2.5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
12  
1.0  
INL Max  
INL Min  
DNL Max  
DNL Min  
0.8  
9
0.6  
6
0.4  
3
0.2  
0
0.0  
−0.2  
−0.4  
−0.6  
−0.8  
−1.0  
−3  
−6  
−9  
−12  
Typical channel shown  
−40 −25 −10  
Typical channel shown  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
61. Linearity Error vs Temperature  
62. Differential Linearity Error vs Temperature  
0.20  
0.15  
0.15  
0.10  
Ch A  
Ch B  
Ch A  
Ch B  
0.10  
0.05  
0.05  
0.00  
0.00  
−0.05  
−0.10  
−0.15  
−0.20  
−0.05  
−0.10  
−0.15  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
63. Full-Scale Error vs Temperature  
64. Gain Error vs Temperature  
4
3
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Ch A  
Ch B  
Ch A  
Ch B  
2
1
0
−1  
−2  
−3  
−4  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
65. Offset Error vs Temperature  
66. Zero-Code Error vs Temperature  
22  
版权 © 2013–2015, Texas Instruments Incorporated  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
Typical Characteristics: DAC at AVDD = 2.7 V (接下页)  
At TA = 25°C, 2.5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
Internal reference enabled  
DACs at midscale code, Gain = 1  
DACs at midscale code  
−40 −25 −10 20 35 50 65 80 95 110 125  
Temperature (°C)  
5
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
67. Power-Supply Current vs Temperature  
68. Power-Supply Current vs Temperature  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
Internal reference enabled, Gain = 1  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
69. Power-Supply Current vs Digital Input Code  
70. Power-Supply Current vs Digital Input Code  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
Internal reference enabled  
Gain = 1  
0
0
Power Supply Current (mA)  
Power Supply Current (mA)  
71. Power-Supply Current Histogram  
72. Power-Supply Current Histogram  
版权 © 2013–2015, Texas Instruments Incorporated  
23  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
Typical Characteristics: DAC at AVDD = 2.7 V (接下页)  
At TA = 25°C, 2.5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4
Typical channel shown  
Full scale  
Mid scale  
Zero scale  
3
2
1
0
−1  
−20  
−15  
−10  
−5  
0
5
10  
15  
20  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
ILOAD (mA)  
G073  
74. DAC Output Voltage vs Load Current  
73. Power-Down Current vs Temperature  
LDAC Trigger (5 V/div)  
LDAC Trigger (5 V/div)  
Large Signal VOUT (1 V/div)  
Large Signal VOUT (1 V/div)  
Small Signal Settling (0.61 mV/div = 0.024% FSR)  
Small Signal Settling (0.61 mV/div = 0.024% FSR)  
From Code: 0h  
To Code: FFFFh  
From Code: FFFFh  
To Code: 0h  
Time (5 μs/div)  
Time (5 μs/div)  
75. Full-Scale Settling Time: Rising Edge  
76. Full-Scale Settling Time: Falling Edge  
LDAC Trigger (5 V/div)  
LDAC Trigger (5 V/div)  
Large Signal VOUT (1 V/div)  
Large Signal VOUT (1 V/div)  
Small Signal Settling (0.61 mV/div = 0.024% FSR)  
Small Signal Settling (0.61 mV/div = 0.024% FSR)  
From Code: 4000h  
To Code: C000h  
From Code: C000h  
To Code: 4000h  
Time (5 μs/div)  
Time (5 μs/div)  
77. Half-Scale Settling Time: Rising Edge  
78. Half-Scale Settling Time: Falling Edge  
24  
版权 © 2013–2015, Texas Instruments Incorporated  
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
Typical Characteristics: DAC at AVDD = 2.7 V (接下页)  
At TA = 25°C, 2.5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
LDAC Trigger (5 V/div)  
LDAC Trigger (5 V/div)  
VOUT (100 μV/div)  
LDAC Feedthrough  
Glitch Impulse » 0.1 nV-s  
VOUT (100 μV/div)  
LDAC Feedthrough  
Glitch Impulse » 0.1 nV-s  
From Code: 7FFFh  
To Code: 8000h  
From Code: 8000h  
To Code: 7FFFh  
Time (5 μs/div)  
Time (5 μs/div)  
79. Glitch Impulse Rising Edge, 1-LSB Step  
80. Glitch Impulse Falling Edge, 1-LSB Step  
LDAC Trigger (5 V/div)  
LDAC Trigger (5 V/div)  
LDAC Feedthrough  
Glitch Impulse » 0.1 nV-s  
VOUT (100 μV/div)  
VOUT (100 μV/div)  
LDAC Feedthrough  
Glitch Impulse » 0.1 nV-s  
From Code: 7FFCh  
To Code: 8000h  
From Code: 8000h  
To Code: 7FFCh  
Time (5 μs/div)  
Time (5 μs/div)  
81. Glitch Impulse Rising Edge, 4-LSB Step  
82. Glitch Impulse Falling Edge, 4-LSB Step  
LDAC Trigger (5 V/div)  
LDAC Trigger (5 V/div)  
LDAC Feedthrough  
Glitch Impulse » 0.1 nV-s  
VOUT (200 μV/div)  
LDAC Feedthrough  
VOUT (200 μV/div)  
Glitch Impulse » 0.1 nV-s  
From Code: 7FF0h  
To Code: 8000h  
From Code: 8000h  
To Code: 7FF0h  
Time (5 μs/div)  
Time (5 μs/div)  
83. Glitch Impulse Rising Edge, 16-LSB Step  
84. Glitch Impulse Falling Edge, 16-LSB Step  
版权 © 2013–2015, Texas Instruments Incorporated  
25  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
Typical Characteristics: DAC at AVDD = 2.7 V (接下页)  
At TA = 25°C, 2.5-V external reference used, gain = 1 and DAC output not loaded, unless otherwise noted.  
AVDD (2 V/div)  
AVDD (2 V/div)  
VOUTA (500 mV/div)  
VOUTB (500 mV/div)  
VOUTA (50 mV/div)  
VOUTB (50 mV/div)  
VREFIN shorted to AVDD  
VREFIN shorted to AVDD  
Time (1 ms/div)  
Time (1 ms/div)  
85. Power-On Glitch Reset to Zero Scale  
86. Power-On Glitch Reset to Mid-Scale  
SCLK (2 V/div)  
Clock Feedthrough Impulse » 0.02 nV-s  
VOUT (500 μV/div)  
Time (500 ns/div)  
87. Clock Feedthrough 500 kHz, Mid-Scale  
26  
版权 © 2013–2015, Texas Instruments Incorporated  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
8 Detailed Description  
8.1 Overview  
The DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 devices are low-power, voltage-output, dual-channel, 12-,  
14-, and 16-bit digital-to-analog converters (DACs), respectively. These devices include a 2.5-V, 4-ppm/°C  
internal reference, giving a full-scale output voltage range of 2.5 V or 5 V. The internal reference has an initial  
accuracy of ±5 mV and can source or sink up to 20 mA at the VREFIN/VREFOUT pin.  
8.2 Functional Block Diagram  
GND  
AVDD  
LDAC  
CLR  
VREFIN/VREFOUT  
Power-  
Down  
Control  
Logic  
DIN  
Buffer Control  
Register Control  
2.5-V  
Reference  
Input Control Logic  
SCLK  
SYNC  
Control Logic  
DAC Register B  
DAC Register A  
VOUT  
B
Data Buffer B  
Data Buffer A  
DAC  
DAC756x-Q1 (12-Bit)  
DAC816x-Q1 (14-Bit)  
DAC856x-Q1 (16-Bit)  
VOUTA  
DAC  
8.3 Feature Description  
8.3.1 Digital-to-Analog Converter (DAC)  
The DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 architecture consists of two string DACs, each followed by  
an output buffer amplifier. The devices include an internal 2.5-V reference with 4-ppm/°C temperature drift  
performance. 88 shows a principal block diagram of the DAC architecture.  
VREFIN  
/
VREFOUT  
150 kW  
150 kW  
Gain  
Register  
VOUT  
REF(+)  
Resistor String  
REF(-)  
DAC  
Register  
DIN  
n
GND  
88. DAC Architecture  
The input coding to the DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 devices is straight binary, so the ideal  
output voltage is given by 公式 1:  
D
æ
ç
è
IN ö  
VOUT  
=
´ VREF ´ Gain  
÷
2n  
ø
(1)  
where:  
n = resolution in bits; either 12 (DAC756x-Q1), 14 (DAC816x-Q1) or 16 (DAC856x-Q1)  
DIN = decimal equivalent of the binary code that is loaded to the DAC register. DIN ranges from 0 to 2n – 1.  
VREF = DAC reference voltage; either VREFOUT from the internal 2.5-V reference or VREFIN from an  
aaa external reference.  
Gain = 1 by default when internal reference is disabled (using external reference), and gain = 2 by default  
aaa when using internal reference. Gain can also be manually set to either 1 or 2 using the gain register.  
aaa See the Gain Function section for more information.  
版权 © 2013–2015, Texas Instruments Incorporated  
27  
 
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
Feature Description (接下页)  
8.3.1.1 Resistor String  
The resistor string section is shown in 89. It is simply a string of resistors, each of value R. The code loaded  
into the DAC register determines at which node on the string the voltage is tapped off to be fed into the output  
amplifier by closing one of the switches connecting the string to the amplifier. The resistor string architecture  
results in monotonicity. The RDIVIDER switch is controlled by the gain registers (see the Gain Function section).  
Because the output amplifier has a gain of 2, RDIVIDER is not shorted when the DAC-n gain is set to 1 (default if  
internal reference is disabled), and is shorted when the DAC-n gain is set to 2 (default if internal reference is  
enabled).  
VREFIN/VREFOUT  
RDIVIDER  
VREF  
2
R
To Output Amplifier  
R
R
R
89. Resistor String  
8.3.1.2 Output Amplifier  
The output buffer amplifier is capable of generating rail-to-rail voltages on its output, giving a maximum output  
range of 0 V to AVDD. It is capable of driving a load of 2 kΩ in parallel with 3 nF to GND. The typical slew rate is  
0.75 V/µs, with a typical full-scale settling time of 14 µs as shown in 31, 32, 75 and 76.  
28  
版权 © 2013–2015, Texas Instruments Incorporated  
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
Feature Description (接下页)  
8.3.2 Internal Reference  
The DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 devices include a 2.5-V internal reference that is disabled by  
default. The internal reference is externally available at the VREFIN/VREFOUT pin. The internal reference output  
voltage is 2.5 V and can sink and source up to 20 mA.  
A minimum 150-nF capacitor is recommended between the reference output and GND for noise filtering.  
The internal reference of the DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 devices is a bipolar transistor-based  
precision band-gap voltage reference. 90 shows the basic band-gap topology. Transistors Q1 and Q2 are  
biased such that the current density of Q1 is greater than that of Q2. The difference of the two base-emitter  
voltages (VBE1 – VBE2) has a positive temperature coefficient and is forced across resistor R1. This voltage is  
amplified and added to the base-emitter voltage of Q2, which has a negative temperature coefficient. The  
resulting output voltage is virtually independent of temperature. The short-circuit current is limited by design to  
approximately 100 mA.  
VREFIN/VREFOUT  
Reference  
Enable  
Q1  
Q2  
R1  
R2  
90. Band-Gap Reference Simplified Schematic  
8.3.3 Power-On Reset  
8.3.3.1 Power-On Reset to Zero-Scale  
The DAC7562-Q1, DAC8162-Q1, and DAC8562-Q1 devices contain a power-on-reset circuit that controls the  
output voltage during power up. All device registers are reset as shown in 4. At power up, all DAC registers  
are filled with zeros and the output voltages of all DAC channels are set to zero volts. Each DAC channel  
remains that way until a valid load command is written to it. The power-on reset is useful in applications where it  
is important to know the state of the output of each DAC while the device is in the process of powering up. No  
device pin should be brought high before applying power to the device. The internal reference is disabled by  
default and remains that way until a valid reference-change command is executed.  
8.3.3.2 Power-On Reset to Mid-Scale  
The DAC7563-Q1, DAC8163-Q1, and DAC8563-Q1 devices contain a power-on reset circuit that controls the  
output voltage during power up. At power up, all DAC registers are reset to mid-scale code and the output  
voltages of all DAC channels are set to VREFIN / 2 V. Each DAC channel remains that way until a valid load  
command is written to it. The power-on reset is useful in applications where it is important to know the state of  
the output of each DAC while the device is in the process of powering up. No device pin should be brought high  
before applying power to the device. The internal reference is powered off or down by default and remains that  
way until a valid reference-change command is executed. If using an external reference, it is acceptable to power  
on the VREFIN pin either at the same time as or after applying AVDD  
.
版权 © 2013–2015, Texas Instruments Incorporated  
29  
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
4. DACxx62-Q1 and DACxx63-Q1 Power-On Reset Values  
REGISTER  
DEFAULT SETTING  
Zero-scale  
DACxx62-Q1  
DACxx63-Q1  
DAC and input registers  
Mid-scale  
LDAC registers  
LDAC pin enabled for both channels  
DACs powered up  
Power-down registers  
Internal reference register  
Gain registers  
Internal reference disabled  
Gain = 1 for both channels  
8.3.3.3 Power-On Reset (POR) Levels  
When the device powers up, a POR circuit sets the device in default mode as shown in 4. The POR circuit  
requires specific AVDD levels, as indicated in 91, to ensure discharging of internal capacitors and to reset the  
device on power up. In order to ensure a power-on reset, AVDD must be below 0.7 V for at least 1 ms. When  
AVDD drops below 2.2 V but remains above 0.7 V (shown as the undefined region), the device may or may not  
reset under all specified temperature and power-supply conditions. In this case, TI recommends a power-on  
reset. When AVDD remains above 2.2 V, a power-on reset does not occur.  
AVDD (V)  
5.50  
Specified Supply  
Voltage Range  
No Power-On Reset  
2.70  
2.20  
Undefined  
0.70  
Power-On Reset  
0.00  
91. Relevant Voltage Levels for POR Circuit  
30  
版权 © 2013–2015, Texas Instruments Incorporated  
 
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
8.4 Device Functional Modes  
8.4.1 Power-Down Modes  
The DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 devices have two separate sets of power-down commands.  
One set is for the DAC channels and the other set is for the internal reference. The internal reference is forced to  
a powered-down state while both DAC channels are powered down, and is only enabled if any DAC channel is  
also in the normal mode of operation. For more information on the internal reference control, see the Internal  
Reference Enable Register section.  
8.4.1.1 DAC Power-Down Commands  
The DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 DACs use four modes of operation. These modes are  
accessed by setting the serial interface command bits to 100. Once the command bits are set correctly, the four  
different power-down modes are software programmable by setting bits DB5 and DB4 in the shift register. 5  
and 6 show the different power-down options. For more information on how to set the DAC operating mode  
see 17.  
5. DAC-n Operating Modes  
DB5  
DB4  
DAC MODES OF OPERATION  
Selected DACs power up (normal mode, default)  
Selected DACs power down, output 1 kto GND  
Selected DACs power down, output 100 kto GND  
Selected DACs power down, output Hi-Z to GND  
0
0
1
1
0
1
0
1
6. DAC-n Selection for Operating Modes  
DAC-B (DB1), DAC-A (DB0)  
OPERATING MODE  
DAC-n does not change operating mode  
DAC-n operating mode set to value on PD1 and PD0  
0
1
It is possible to write to the DAC register or buffer of the DAC channel that is powered down. When the DAC  
channel is then powered up, it powers up to this new value.  
The advantage of the available power-down modes is that the output impedance of the device is known while it is  
in power-down mode. As described in 5, there are three different power-down options. VOUT can be connected  
internally to GND through a 1-kresistor, a 100-kresistor, or open-circuited (Hi-Z). The DAC power-down  
circuitry is shown in 92.  
Resistor  
String  
DAC  
Amplifier  
VOUTX  
Power-Down  
Circuitry  
Resistor  
Network  
92. Output Stage  
版权 © 2013–2015, Texas Instruments Incorporated  
31  
 
 
 
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
8.4.2 Gain Function  
The gain register controls the GAIN setting in the DAC transfer function:  
D
æ
ç
è
IN ö  
VOUT  
=
´ VREF ´ Gain  
÷
2n  
ø
(2)  
The DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 devices have a gain register for each channel. The gain for  
each channel, in 公式 2, is either 1 or 2. This gain is automatically set to 2 when using the internal reference, and  
is automatically set to 1 when the internal reference is disabled (default). However, each channel can have either  
gain by setting the registers appropriately. The gain registers are accessible by setting the serial interface  
command bits to 000, address bits to 010, and using DB1 for DAC-B and DB0 for DAC-A. See 7 and 17 for  
the full command structure. The gain registers are automatically reset to provide either gain of 1 or 2 when the  
internal reference is powered off or on, respectively. After the reference is powered off or on, the gain register is  
again accessible to change the gain.  
7. DAC-n Selection for Gain Register Command  
DB1, DB0  
VALUE  
GAIN  
DB0  
0
1
0
1
DAC-A uses gain = 2 (default with internal reference)  
DAC-A uses gain = 1 (default with external reference)  
DAC-B uses gain = 2 (default with internal reference)  
DAC-B uses gain = 1 (default with external reference)  
DB1  
8.4.3 Software Reset Function  
The DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 devices contain a software reset feature. The software reset  
function is accessed by setting the serial interface command bits to 101. The software reset command contains  
two reset modes which are software-programmable by setting bit DB0 in the shift register. 8 and 17 show  
the available software reset commands.  
8. Software Reset  
DB0  
REGISTERS RESET TO DEFAULT VALUES  
0
DAC registers  
Input registers  
1
DAC registers  
Input registers  
LDAC registers  
Power-down registers  
Internal reference register  
Gain registers  
32  
版权 © 2013–2015, Texas Instruments Incorporated  
 
 
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
8.4.4 Internal Reference Enable Register  
The internal reference in the DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 devices is disabled by default for  
debugging, evaluation purposes, or when using an external reference. The internal reference can be powered up  
and powered down by setting the serial interface command bits to 111 and configuring DB0 (see 9). The  
internal reference is forced to a powered down state while both DAC channels are powered down, and can only  
be enabled if any DAC channel is in normal mode of operation. During the time that the internal reference is  
disabled, the DAC functions normally using an external reference. At this point, the internal reference is  
disconnected from the VREFIN/VREFOUT pin (Hi-Z output).  
9. Internal Reference  
DB0  
INTERNAL REFERENCE CONFIGURATION  
Disable internal reference and reset DACs to gain = 1  
Enable internal reference and reset DACs to gain = 2  
0
1
8.4.4.1 Enabling Internal Reference  
To enable the internal reference, refer to the command structure in 17. When performing a power cycle to  
reset the device, the internal reference is switched off (default mode). In the default mode, the internal reference  
is powered down until a valid write sequence powers up the internal reference. However, the internal reference is  
forced to a disabled state while both DAC channels are powered down, and remains disabled until either DAC  
channel is returned to the normal mode of operation. See DAC Power-Down Commands for more information on  
DAC channel modes of operation.  
8.4.4.2 Disabling Internal Reference  
To disable the internal reference, refer to the command structure in 17. When performing a power cycle to  
reset the device, the internal reference is disabled (default mode).  
8.4.5 CLR Functionality  
The edge-triggered CLR pin can be used to set the input and DAC registers immediately according to 10.  
When the CLR pin receives a falling edge signal the clear mode is activated and changes the DAC output  
voltages accordingly. The device exits clear mode on the 24th falling edge of the next write to the device. If the  
CLR pin receives a falling edge signal during a write sequence in normal operation, the clear mode is activated  
and changes the input and DAC registers immediately according to 10.  
10. Clear Mode Reset Values  
DEVICE  
DAC OUTPUT ENTERING CLEAR MODE  
DAC8562-Q1, DAC8162-Q1, DAC7562-Q1  
DAC8563-Q1, DAC8163-Q1, DAC7563-Q1  
Zero-scale  
Mid-scale  
版权 © 2013–2015, Texas Instruments Incorporated  
33  
 
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
8.4.6 LDAC Functionality  
The DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 devices offer both a software and hardware simultaneous  
update and control function. The DAC double-buffered architecture has been designed so that new data can be  
entered for each DAC without disturbing the analog outputs.  
DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 data updates can be performed either in synchronous or in  
asynchronous mode.  
In asynchronous mode, the LDAC pin is used as a negative edge-triggered timing signal for simultaneous DAC  
updates. Multiple single-channel writes can be done in order to set different channel buffers to desired values  
and then make a falling edge on LDAC pin to simultaneously update the DAC output registers. Data buffers of all  
channels must be loaded with desired data before an LDAC falling edge. After a high-to-low LDAC transition, all  
DACs are simultaneously updated with the last contents of the corresponding data buffers. If the content of a  
data buffer is not changed, the corresponding DAC output remains unchanged after the LDAC pin is triggered.  
LDAC must be returned high before the next serial command is initiated.  
In synchronous mode, data are updated with the falling edge of the 24th SCLK cycle, which follows a falling edge  
of SYNC. For such synchronous updates, the LDAC pin is not required, and it must be connected to GND  
permanently or asserted and held low before sending commands to the device.  
Alternatively, all DAC outputs can be updated simultaneously using the built-in software function of LDAC. The  
LDAC register offers additional flexibility and control by allowing the selection of which DAC channel(s) should be  
updated simultaneously when the LDAC pin is being brought low. The LDAC register is loaded with a 2-bit word  
(DB1 and DB0) using command bits C2, C1, and C0 (see 17). The default value for each bit, and therefore for  
each DAC channel, is zero. If the LDAC register bit is set to 1, it overrides the LDAC pin (the LDAC pin is  
internally tied low for that particular DAC channel) and this DAC channel updates synchronously after the falling  
edge of the 24th SCLK cycle. However, if the LDAC register bit is set to 0, the DAC channel is controlled by the  
LDAC pin.  
The combination of software and hardware simultaneous update functions is particularly useful in applications  
when updating a DAC channel, while keeping the other channel unaffected; see 11 and 17 for more  
information.  
11. DAC-n Selection for LDAC Register Command  
DB1, DB0  
VALUE  
LDAC PIN FUNCTIONALITY  
DB0  
0
1
0
1
DAC-A uses LDAC pin  
DAC-A operates in synchronous mode  
DAC-B uses LDAC pin  
DB1  
DAC-B operates in synchronous mode  
34  
版权 © 2013–2015, Texas Instruments Incorporated  
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
8.5 Programming  
The DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 devices have a three-wire serial interface (SYNC, SCLK,  
and DIN; see the table) compatible with SPI, QSPI, and Microwire interface standards, as well as most DSPs.  
See the Serial Write Operation timing diagram (1) for an example of a typical write sequence.  
The DAC756x-Q1, DAC816x-Q1, or DAC856x-Q1 input shift register is 24 bits wide, consisting of two don’t care  
bits (DB23 to DB22), three command bits (DB21 to DB19), three address bits (DB18 to DB16), and 16 data bits  
(DB15 to DB0). All 24 bits of data are loaded into the DAC under the control of the serial clock input, SCLK.  
DB23 (MSB) is the first bit that is loaded into the DAC shift register. DB23 is followed by the rest of the 24-bit  
word pattern, left-aligned. This configuration means that the first 24 bits of data are latched into the shift register,  
and any further clocking of data is ignored.  
The write sequence begins by bringing the SYNC line low. Data from the DIN line are clocked into the 24-bit shift  
register on each falling edge of SCLK. The serial clock frequency can be as high as 50 MHz, making the  
DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 devices compatible with high-speed DSPs. On the 24th falling  
edge of the serial clock, the last data bit is clocked into the shift register and the shift register locks. Further  
clocking does not change the shift register data.  
After receiving the 24th falling clock edge, the DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 devices decode the  
three command bits, three address bits and 16 data bits to perform the required function, without waiting for a  
SYNC rising edge. After the 24th falling edge of SCLK is received, the SYNC line may be kept low or brought  
high. In either case, the minimum delay time from the 24th falling SCLK edge to the next falling SYNC edge must  
be met in order to begin the next cycle properly; see the Serial Write Operation timing diagram (1).  
A rising edge of SYNC before the 24-bit sequence is complete resets the SPI interface; no data transfer occurs.  
A new write sequence starts at the next falling edge of SYNC. To assure the lowest power consumption of the  
device, care should be taken that the levels are as close to each rail as possible.  
8.5.1 SYNC Interrupt  
In a normal write sequence, the SYNC line stays low for at least 24 falling edges of SCLK and the addressed  
DAC register updates on the 24th falling edge. However, if SYNC is brought high before the 23rd falling edge, it  
acts as an interrupt to the write sequence; the shift register resets and the write sequence is discarded. Neither  
an update of the data buffer contents, DAC register contents, nor a change in the operating mode occurs (as  
shown in 93).  
24th Falling Edge  
24th Falling Edge  
CLK  
SYNC  
DIN  
DB23  
DB0  
DB23  
DB0  
Invalid/Interrupted Write Sequence:  
Output/Mode Does Not Update on the Falling Edge  
Valid Write Sequence:  
Output/Mode Updates on the Falling Edge  
93. SYNC Interrupt Facility  
版权 © 2013–2015, Texas Instruments Incorporated  
35  
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
Programming (接下页)  
8.5.2 DAC Register Configuration  
When the DAC registers are being written to, the DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 devices receive  
all 24 bits of data, ignore DB23 and DB22, and decode the next three bits (DB21 to DB19) in order to determine  
the DAC operating or control mode (see 12). Bits DB18 to DB16 are used to address the DAC channels (see  
13).  
12. Commands for the DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 Devices  
C2  
(DB21)  
C1  
(DB20)  
C0  
(DB19)  
COMMAND  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Write to input register n (13)  
Software LDAC, update DAC register n (13)  
Write to input register n (13) and update all DAC registers  
Write to input register n and update DAC register n (13)  
Set DAC power-up or -down mode  
Software reset  
Set LDAC registers  
Enable or disable the internal reference  
13. Address Select for the DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1  
Devices  
A2  
(DB18)  
A1  
(DB17)  
A0  
(DB16)  
CHANNEL (n)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DAC-A  
DAC-B  
Gain (only use with command 000)  
Reserved  
Reserved  
Reserved  
Reserved  
DAC-A and DAC-B  
When writing to the DAC input registers the next 16, 14, or 12 bits of data that follow are decoded by the DAC to  
determine the equivalent analog output (see 14 through 16). The data format is straight binary, with all 0s  
corresponding to 0-V output and all 1s corresponding to full-scale output. For all documentation purposes, the  
data format and representation used here is a true 16-bit pattern (that is, FFFFh data word for full scale) that the  
DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 devices require.  
14. DAC856x-Q1 Data Input Register Format  
COMMAND  
ADDRESS  
DATA  
X(1)  
X
C2 C1 C0 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DB0  
DB23  
(1) X' denotes don't care bits.  
15. DAC816x-Q1 Data Input Register Format  
COMMAND  
ADDRESS  
DATA  
X
X
X
C2 C1 C0 A2 A1 A0 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
DB23  
DB0  
16. DAC756x-Q1 Data Input Register Format  
COMMAND  
ADDRESS  
DATA  
X
C2 C1 C0 A2 A1 A0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
DB23  
DB0  
36  
版权 © 2013–2015, Texas Instruments Incorporated  
 
 
 
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
In additon to DAC input register updates, the DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 devices support a  
number of functional mode commands (such as write to LDAC register, power down DACs and so on). The  
complete set of functional mode commands is shown in 17.  
17. Command Matrix for the DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 Devices  
COMMAND  
ADDRESS  
DATA  
DB23-  
DB22  
DESCRIPTION  
DB15-  
DB6  
DB3-  
C2  
C1  
C0  
A2  
A1  
A0  
DB5  
DB4  
DB1  
DB0  
DB2  
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
1
0
1
1
0
1
1
0
1
1
16-, 14-, or 12-bit DAC data  
16-, 14-, or 12-bit DAC data  
16-, 14-, or 12-bit DAC data  
16-, 14-, or 12-bit DAC data  
16-, 14-, or 12-bit DAC data  
16-, 14-, or 12-bit DAC data  
16-, 14-, or 12-bit DAC data  
16-, 14-, or 12-bit DAC data  
16-, 14-, or 12-bit DAC data  
X
Write to DAC-A input register  
X(1)  
0
0
1
1
0
0
Write to DAC-B input register  
Write to DAC-A and DAC-B input registers  
Write to DAC-A input register and update all DACs  
Write to DAC-B input register and update all DACs  
Write to DAC-A and DAC-B input register and update all DACs  
Write to DAC-A input register and update DAC-A  
Write to DAC-B input register and update DAC-B  
Write to DAC-A and DAC-B input register and update all DACs  
Update DAC-A  
X
0
0
0
0
1
1
X
X
X
Update DAC-B  
X
Update all DACs  
0
0
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
1
0
1
0
1
0
1
Gain: DAC-B gain = 2, DAC-A gain = 2 (default with internal VREF  
Gain: DAC-B gain = 2, DAC-A gain = 1  
Gain: DAC-B gain = 1, DAC-A gain = 2  
Gain: DAC-B gain = 1, DAC-A gain = 1 (power-on default)  
Power up DAC-A  
)
0
X
0
0
0
0
1
0
X
1
1
0
X
X
X
1
1
1
0
0
0
0
0
0
X
X
X
X
X
X
X
0
0
1
1
0
1
0
1
X
X
X
X
1
1
0
1
1
0
1
1
0
1
1
X
X
0
0
1
1
X
X
Power up DAC-B  
Power up DAC-A and DAC-B  
Power down DAC-A; 1 kto GND  
Power down DAC-B; 1 kto GND  
Power down DAC-A and DAC-B; 1 kto GND  
Power down DAC-A; 100 kto GND  
Power down DAC-B; 100 kto GND  
Power down DAC-A and DAC-B; 100 kto GND  
Power down DAC-A; Hi-Z  
X
X
1
1
0
0
0
1
X
X
Power down DAC-B; Hi-Z  
Power down DAC-A and DAC-B; Hi-Z  
Reset DAC-A and DAC-B input register and update all DACs  
Reset all registers and update all DACs (Power-on-reset update)  
LDAC pin active for DAC-B and DAC-A  
LDAC pin active for DAC-B; inactive for DAC-A  
LDAC pin inactive for DAC-B; active for DAC-A  
LDAC pin inactive for DAC-B and DAC-A  
Disable internal reference and reset DACs to gain = 1  
Enable internal reference and reset DACs to gain = 2  
X
X
X
X
X
1
1
1
1
0
1
X
X
(1) X denotes don't care bits.  
版权 © 2013–2015, Texas Instruments Incorporated  
37  
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 DAC Internal Reference  
The internal reference of the DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 devices does not require an  
external load capacitor for stability because it is stable without any capacitive load. However, for improved noise  
performance, an external load capacitor of 150 nF or larger connected to the VREFIN/VREFOUT output is  
recommended. 94 shows the typical connections required for operation of the DAC756x-Q1, DAC816x-Q1,  
and DAC856x-Q1 internal reference. A supply bypass capacitor at the AVDD input is also recommended.  
DGS  
150 nF  
1
2
3
4
5
10  
9
VOUT  
VOUT  
GND  
A
VREFIN/VREFOUT  
AVDD  
B
AVDD  
1 mF  
8
DIN  
7
LDAC  
CLR  
SCLK  
6
SYNC  
94. Typical Connection for Operating the DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 Internal  
Reference  
9.1.1.1 Supply Voltage  
The internal reference features an extremely low dropout voltage. It can be operated with a supply of only 5 mV  
above the reference output voltage in an unloaded condition. For loaded conditions, see the Load Regulation  
section. The stability of the internal reference with variations in supply voltage (line regulation, dc PSRR) is also  
exceptional. Within the specified supply voltage range of 2.7 V to 5.5 V, the variation at VREFIN/VREFOUT is  
typically 50 μV/V; see 7.  
9.1.1.2 Temperature Drift  
The internal reference is designed to exhibit minimal drift error, defined as the change in reference output voltage  
over varying temperature. The drift is calculated using the box method described by 公式 3:  
V
- VREF _MIN  
æ
ö
REF _MAX  
Drift Error =  
´106 ppm/°C  
(
)
ç
ç
÷
÷
VREF ´ TRANGE  
è
ø
(3)  
where:  
VREF_MAX = maximum reference voltage observed within temperature range TRANGE  
.
VREF_MIN = minimum reference voltage observed within temperature range TRANGE  
.
VREF = 2.5 V, target value for reference output voltage.  
TRANGE = the characterized range from –40°C to 125°C (165°C range)  
The internal reference features an exceptional typical drift coefficient of 4 ppm/°C from –40°C to 125°C.  
Characterizing a large number of units, a maximum drift coefficient of 10 ppm/°C is observed. Temperature drift  
results are summarized in 3.  
38  
版权 © 2013–2015, Texas Instruments Incorporated  
 
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
Application Information (接下页)  
9.1.1.3 Noise Performance  
Typical 0.1-Hz to 10-Hz voltage noise and noise spectral density performance are listed in the Electrical  
Characteristics. Additional filtering can be used to improve output noise levels, although care should be taken to  
ensure the output impedance does not degrade the ac performance. The output noise spectrum at the  
VREFIN/VREFOUT pin, both unloaded and with an external 4.7-µF load capacitor, is shown in 6. Internal reference  
noise impacts the DAC output noise when the internal reference is used.  
9.1.1.4 Load Regulation  
Load regulation is defined as the change in reference output voltage as a result of changes in load current. The  
load regulation of the internal reference is measured using force and sense contacts as shown in 95. The  
force and sense lines reduce the impact of contact and trace resistance, resulting in accurate measurement of  
the load regulation contributed solely by the internal reference. Measurement results are shown in 4. Force  
and sense lines should be used for applications that require improved load regulation.  
Output Pin  
Contact and  
Trace Resistance  
VOUT  
Force Line  
IL  
Sense Line  
Load  
Meter  
95. Accurate Load Regulation of the DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 Internal Reference  
9.1.1.4.1 Long-Term Stability  
Long-term stability or aging refers to the change of the output voltage of a reference over a period of months or  
years. This effect lessens as time progresses. The typical drift value for the internal reference is listed in the  
Electrical Characteristics and measurement results are shown in 5. This parameter is characterized by  
powering up multiple devices and measuring them at regular intervals.  
9.1.1.5 Thermal Hysteresis  
Thermal hysteresis for a reference is defined as the change in output voltage after operating the device at 25°C,  
cycling the device through the operating temperature range, and returning to 25°C. Hysteresis is expressed by 公  
4:  
é
ê
ê
ë
ù
ú
ú
û
V
- V  
REF_PRE  
REF_POST  
6
V
=
´ 10 (ppm/°C)  
HYST  
V
REF_NOM  
(4)  
where:  
VHYST = thermal hysteresis.  
VREF_PRE = output voltage measured at 25°C pre-temperature cycling.  
VREF_POST = output voltage measured after the device cycles through the temperature range of –40°C to  
aaa 125°C, and returns to 25°C.  
VREF_NOM = 2.5 V, target value for reference output voltage.  
9.1.2 DAC Noise Performance  
Output noise spectral density at the VOUT-n pin versus frequency is depicted in 45 and 46 for full-scale,  
mid-scale, and zero-scale input codes. The typical noise density for mid-scale code is 90 nV/Hz at 1 kHz. High-  
frequency noise can be improved by filtering the reference noise. Integrated output noise between 0.1 Hz and  
10 Hz is close to 2.5 µVPP (mid-scale), as shown in 47.  
版权 © 2013–2015, Texas Instruments Incorporated  
39  
 
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
9.2 Typical Applications  
9.2.1 Combined Voltage and Current Analog Output Module Using the XTR300  
The design features two independent outputs that can source and sink voltage and current over the standard  
industrial output ranges. The possible outputs of the design include: –24 mA to 24 mA, 4 mA–20 mA, 0 mA to 24  
mA, 0 V to 5 V, 0 V to 10 V, –5 V to5 V, and –10 V to 10 V.  
VREF  
CCOMP  
RSET  
5.5 V  
0.1 µF  
15 V  
–15 V  
0.1 µF  
0.1 µF  
4.7 µF  
XTR300 V+  
V–  
RIMON  
AVDD  
IMON  
Current  
Copy  
ICOPY  
LDAC  
SCLK  
DIN  
DRV  
IAIN+  
VDAC  
CH2  
IDRV  
V or I OUTA  
RIN  
VIN  
DAC8563-Q1  
VOUT  
A
0 V to 5 V, 0 V to 10 V, 5 to 5 V,  
–10 V to 10 V, 24 mA to 24 mA,  
0 mA to 24 mA, 4mA to 20 mA  
OPA  
SET  
SYNC  
+
VOUT  
B
IIA  
RG1  
RG2  
RIA  
VREFIN  
/
IAOUT  
IA  
RG  
VREFOUT  
GND  
GND  
VREF  
0.022 µF  
IAIN–  
DGND  
96. DAC8563-Q1 and XTR300 Discrete Analog Output Module  
9.2.1.1 Design Requirements  
The design uses a DAC and a current-or-voltage output driver to create a discrete analog output design that can  
output either voltage or current from the same pin while focusing on high-accuracy specifications. The choice of  
the DAC8563-Q1 device takes advantage of its 16-bit resolution as well as its low typical offset error of 1 mV and  
gain error of 0.01% FSR. The choice of the XTR300 device is based on its strong dc performance, having a  
typical error of 400 µV and 0.04% FSR gain error. The XTR300 device allows a variety of both current and  
voltage outputs on the same pin while providing load monitoring and error status pins.  
The power-on reset-to-midscale feature of the DAC8563-Q1 makes the bipolar output of the XTR300 power up at  
0 V or 0 A. If using a unipolar output, the recommended device to achieve a system power-on output of 0 V, 0 A  
or 4 mA is the DAC8562-Q1 device.  
A recommendation for minimizing the introduction of errors into the system is to use ±0.01% tolerance RG and  
RSET resistors. The bypass capacitors on AVDD, VREF, V+ and V– should have values between 100 nF and  
10 µF. Smaller capacitors filter fast low-energy transients, whereas the large capacitors filter the slow high-  
energy transients. If there is an expectation of both types of signals in the system, the recommendation is to use  
a pair of small and large values as shown on the AVDD pin of the DAC8563-Q1 device in 96.  
9.2.1.2 Detailed Design Procedure  
When configured for voltage mode, the output of the instrumentation amplifier (IA), internal to the XTR300  
device, is routed to the SET pin. The SET output provides feedback for the IA based on the IA input voltage. The  
feedback from the IA provides high-impedance remote sensing of the voltage at the output load. Using the output  
voltage can overcome errors from PCB traces and protection component impedances. The DAC provides a  
unipolar input voltage to the VIN pin of the XTR300 device. The XTR300 device offsets the VDAC range by a  
negative VREF and amplifies the difference by a value set by the RG and RSET resistors, as shown in 公式 5.  
40  
版权 © 2013–2015, Texas Instruments Incorporated  
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
Typical Applications (接下页)  
æ
ö
÷
÷
ø
RG  
2
VDAC - VREF  
VOUT  
=
´ ç  
ç
RSET  
è
(5)  
When configured for current mode, the XTR300 routes the internal output of its current copy circuitry to the SET  
pin. This provides feedback for the internal OPA driver based on 1 / 10th of the output current, resulting in a  
voltage-to-current transfer function. Generating bipolar current outputs from the single-ended DAC output  
voltage, VDAC, requires the application of an offset to the XTR300 SET pin. Connect the RSET resistor from the  
SET pin to VREF to apply the offset and obtain the transfer function shown in 公式 6.  
æ
ö
÷
÷
ø
VDAC - VREF  
IOUT = 10´ ç  
ç
è
R SET  
(6)  
The desired output ranges for VDAC and VREF voltages determine the RSET and RG resistor values, calculated  
using 公式 7 and 公式 8. The system design requires a VDAC voltage range of 0.04 V to 4.96 V in order to  
operate the DAC8563-Q1 in the specified linear output range from codes 512 to 65 024.  
æ
ö
VDAC - VREF  
4.96 V - 2.5 V  
æ
ö
RSET = 10´ ç  
÷ = 10´  
= 1025 Ω  
ç
÷
ç
è
÷
ø
IOUT  
0.024 A  
è
ø
(7)  
(8)  
2´ VOUT_MAX´ RSET  
2´10 V ´1020 Ω  
4.96 V - 2.5 V  
RG  
=
=
= 8292 Ω  
VDAC - VREF  
IMON and IAOUT accomplish load monitoring. The sizing of RIMON and RIA determine the monitoring output voltage  
across the resistors. Size the resistors according to 公式 9 and 公式 10 and the expected output load current  
IDRV  
.
10´ VIMON  
RIMON  
=
IDRV  
(9)  
10´ VIA  
RIA  
=
IIA  
(10)  
For more detailed information about the design procedure of this circuit and how to isolate it, see Two-Channel  
Source/Sink Combined Voltage & Current Output, Isolated, EMC/EMI Tested Reference Design (TIDU434).  
版权 © 2013–2015, Texas Instruments Incorporated  
41  
 
 
 
 
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
Typical Applications (接下页)  
9.2.1.3 Application Curves  
97 shows the transfer function for the bipolar ±10 V voltage range. This design also supports output voltage  
ranges of 0–5 V, 0–10 V and ±5 V. 98 shows the transfer function for the unipolar 0–24 mA current range.  
This design also supports output current ranges of ±24 mA and 4 mA–20 mA.  
10  
8
24  
20  
16  
12  
8
6
4
2
4
0
0
-4  
-2  
-4  
-6  
-8  
-10  
-8  
-12  
-16  
-20  
-24  
0
10k  
20k  
30k  
40k  
50k  
60k65535  
0
10k  
20k  
30k  
40k  
50k  
60k65535  
Input Code  
Input Code  
D001  
D002  
97. Output Voltage vs Input Code  
98. Output Current vs Input Code  
42  
版权 © 2013–2015, Texas Instruments Incorporated  
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
Typical Applications (接下页)  
9.2.2 Up to ±15-V Bipolar Output Using the DAC8562-Q1  
The DAC8562-Q1 is designed to be operate from a single power supply providing a maximum output range of  
AVDD volts. However, the DAC can be placed in the configuration shown in 99 in order to be designed into  
bipolar systems. Depending on the ratio of the resistor values, the output of the circuit can range anywhere from  
±5 V to ±15 V. The design example below shows that the DAC is configured to have its internal reference  
enabled and the DAC8562-Q1 internal gain set to 2, however, an external 2.5-V reference could also be used  
(with DAC8562-Q1 internal gain set to 2).  
R
G ´ R  
5.5 V  
18 V  
VOUT  
+
R
VREFOUT  
OPA140  
G ´ R  
DAC8562-Q1  
–18 V  
99. Bipolar Output Range Circuit Using DAC8562-Q1  
The transfer function shown in Equation 5 can be used to calculate the output voltage as a function of the DAC  
code, reference voltage and resistor ratio:  
DIN  
æ
ç
ö
VOUT = G × VREFOUT 2 ×  
è
-1  
÷
65,536  
ø
(11)  
where:  
DIN = decimal equivalent of the binary code that is loaded to the DAC register, ranging from 0 to 65,535 for  
DAC8562-Q1 (16 bit).  
VREFOUT = reference output voltage with the internal reference enabled from the DAC VREFIN/VREFOUT pin  
G = ratio of the resistors  
An example configuration to generate a ±10-V output range is shown below in Equation 6 with G = 4 and  
VREFOUT = 2.5 V:  
DIN  
VOUT = 20 ×  
-10 V  
65,536  
(12)  
In this example, the range is set to ±10 V by using a resistor ratio of four, VREFOUT of 2.5 V, and DAC8562-Q1  
internal gain of 2. The resistor sizes must be selected keeping in mind the current sink or source capability of the  
DAC8562-Q1 internal reference. Using larger resistor values, for example, R = 10 kΩ or larger, is recommended.  
The op amp is selectable depending on the requirements of the system.  
The DAC8562EVM and DAC7562EVM boards have the option to evaluate the bipolar output application by  
installing the components on the pre-placed footprints. For more information see either the DAC8562EVM or  
DAC7562EVM product folder.  
版权 © 2013–2015, Texas Instruments Incorporated  
43  
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
9.3 System Examples  
9.3.1 MSP430 Microprocessor Interfacing  
100 shows a serial interface between the DAC756x-Q1, DAC816x-Q1, or DAC856x-Q1 device and a typical  
MSP430 USI port such as the one found on the MSP430F2013. The port is configured in SPI master mode by  
setting bits 3, 5, 6, and 7 in USICTL0. The USI counter interrupt is set in USICTL1 to provide an efficient means  
of SPI communication with minimal software overhead. The serial clock polarity, source, and speed are  
controlled by settings in the USI clock control register (USICKCTL). The SYNC signal is derived from a bit-  
programmable pin on port 1; in this case, port line P1.4 is used. When data are to be transmitted to the  
DAC756x-Q1, DAC816x-Q1, or DAC856x-Q1 device, P1.4 is taken low. The USI transmits data in 8-bit bytes;  
thus, only eight falling clock edges occur in the transmit cycle. To load data to the DAC, P1.4 is left low after the  
first eight bits are transmitted; then, a second write cycle is initiated to transmit the second byte of data. P1.4 is  
taken high following the completion of the third write cycle.  
MSP430F2013  
DAC  
SYNC  
P1.4/GPIO  
P1.5/SCLK  
P1.6/SDO  
SCLK  
DIN  
NOTE: Additional pins omitted for clarity.  
100. DAC756x-Q1, DAC816x-Q1, or DAC856x-Q1 Device to MSP430 Interface  
9.3.2 TMS320 McBSP Microprocessor Interfacing  
101 shows an interface between the DAC756x-Q1, DAC816x-Q1, or DAC856x-Q1 device and any TMS320  
series DSP from Texas Instruments with a multi-channel buffered serial port (McBSP). Serial data are shifted out  
on the rising edge of the serial clock and are clocked into the DAC756x-Q1, DAC816x-Q1, or DAC856x-Q1  
device on the falling edge of the SCLK signal.  
TMS320F28062  
DAC  
SYNC  
MFSxA  
MCLKxA  
MDxA  
SCLK  
DIN  
NOTE: Additional pins omitted for clarity.  
101. DAC756x-Q1, DAC816x-Q1, or DAC856x-Q1 Device to TMS320 McBSP Interface  
9.3.3 OMAP-L1x Processor Interfacing  
102 shows a serial interface between the DAC756x-Q1, DAC816x-Q1, or DAC856x-Q1 device and the  
OMAP-L138 processor. The transmit clock CLKx0 of the L138 drives SCLK of the DAC756x-Q1, DAC816x-Q1,  
or DAC856x-Q1 device, and the data transmit (Dx0) output drives the serial data line of the DAC. The SYNC  
signal is derived from the frame sync transmit (FSx0) line, similar to the TMS320 interface.  
OMAP-L138  
FSx0  
DAC  
SYNC  
CLKx0  
Dx0  
SCLK  
DIN  
NOTE: Additional pins omitted for clarity.  
102. DAC756x-Q1, DAC816x-Q1, or DAC856x-Q1 Device to OMAP-L1x Processor  
44  
版权 © 2013–2015, Texas Instruments Incorporated  
 
 
 
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
10 Power Supply Recommendations  
These devices can operate within the specified supply voltage range of 2.7 V to 5.5 V. The power applied to  
AVDD should be well-regulated and low-noise. In order to further minimize noise from the power supplies, a  
strong recommendation is to include a pair of 100-pF and 1-nF capacitors and a 0.1-μF to 1-μF bypass  
capacitor. The current consumption of the AVDD pin, the short-circuit current limit, and the load current for these  
devices are listed in the Electrical Characteristics table. Choose the power supplies for these devices to meet the  
aforementioned current requirements.  
11 Layout  
11.1 Layout Guidelines  
A precision analog component requires careful layout, adequate bypassing, and clean, well-regulated power  
supplies. The DAC756x-Q1, DAC816x-Q1, and DAC856x-Q1 devices offer single-supply operation, and are often  
used in close proximity with digital logic, microcontrollers, microprocessors, and digital signal processors. The  
more digital logic present in the design and the higher the switching speed, the more difficult it is to keep digital  
noise from appearing at the output. As a result of the single ground pin of the DAC756x-Q1, DAC816x-Q1, and  
DAC856x-Q1 devices, all return currents (including digital and analog return currents for the DAC) must flow  
through a single point. Ideally, GND would be connected directly to an analog ground plane. This plane would be  
separate from the ground connection for the digital components until they were connected at the power-entry  
point of the system. The power applied to AVDD should be well-regulated and low noise. Switching power  
supplies and dc-dc converters often have high-frequency glitches or spikes riding on the output voltage. In  
addition, digital components can create similar high-frequency spikes as their internal logic switches states. This  
noise can easily couple into the DAC output voltage through various paths between the power connections and  
analog output. As with the GND connection, AVDD should be connected to a power-supply plane or trace that is  
separate from the connection for digital logic until they are connected at the power-entry point. In addition, a pair  
of 100-pF to 1-nF capacitors and a 0.1-µF to 1-µF bypass capacitor are strongly recommended. In some  
situations, additional bypassing may be required, such as a 100-µF electrolytic capacitor or even a pi filter made  
up of inductors and capacitors – all designed essentially to provide low-pass filtering for the supply and remove  
the high-frequency noise.  
版权 © 2013–2015, Texas Instruments Incorporated  
45  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
11.2 Layout Example  
0.1 µF  
Bypass Capacitors  
100 pF  
AVDD  
DIN  
SCLK  
Digital Lines  
VREFIN/VREFOUT  
SYNC  
GND  
Digital Lines  
LDAC  
VOUT  
A
B
Analog Lines  
VOUT  
CLK  
103. DACxx6x-Q1 Layout Example  
46  
版权 © 2013–2015, Texas Instruments Incorporated  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
www.ti.com.cn  
ZHCSB22A MAY 2013REVISED JUNE 2015  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档如下:  
DAC7562EVMDAC8562EVM 用户手册》(文献编号:SBAU183),或者访问以下工具文件夹:  
DAC8562 EVM  
DAC7562 EVM  
MSP430F2013《混合信号微控制器》(文献编号:SLAS491)  
OMAP-L138 C6000™ DSP+ ARM® 处理器》(文献编号:SPRS586)  
TMS320F2806x Piccolo™ 微控制器》(文献编号:SPRS698)  
XTR111《精密电压电流转换器/发送器》(文献编号:SBOS375)  
12.2 相关链接  
以下表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
18. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
DAC8562-Q1  
DAC8563-Q1  
DAC8162-Q1  
DAC8163-Q1  
DAC7562-Q1  
DAC7563-Q1  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
SPI, QSPI are trademarks of Motorola, Inc.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2013–2015, Texas Instruments Incorporated  
47  
DAC7562-Q1, DAC7563-Q1  
DAC8162-Q1, DAC8163-Q1  
DAC8562-Q1, DAC8563-Q1  
ZHCSB22A MAY 2013REVISED JUNE 2015  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
48  
版权 © 2013–2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC7562SQDGSRQ1  
DAC7563SQDGSRQ1  
DAC8162SQDGSRQ1  
DAC8163SQDGSRQ1  
DAC8562SQDGSRQ1  
DAC8563SQDGSRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
10  
10  
10  
10  
10  
10  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
ZADV  
ZAIV  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
ZAGV  
ZAHV  
ZAAQ  
ZAJV  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC7562SQDGSRQ1  
DAC7563SQDGSRQ1  
DAC8162SQDGSRQ1  
DAC8163SQDGSRQ1  
DAC8562SQDGSRQ1  
DAC8563SQDGSRQ1  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
10  
10  
10  
10  
10  
10  
2500  
2500  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC7562SQDGSRQ1  
DAC7563SQDGSRQ1  
DAC8162SQDGSRQ1  
DAC8163SQDGSRQ1  
DAC8562SQDGSRQ1  
DAC8563SQDGSRQ1  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
10  
10  
10  
10  
10  
10  
2500  
2500  
2500  
2500  
2500  
2500  
367.0  
370.0  
370.0  
370.0  
370.0  
367.0  
367.0  
355.0  
355.0  
355.0  
355.0  
367.0  
38.0  
55.0  
55.0  
55.0  
55.0  
38.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY