DAC7731 [TI]

具有内部 +10V 基准和串行 I/F 的 16 位单通道数模转换器;
DAC7731
型号: DAC7731
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有内部 +10V 基准和串行 I/F 的 16 位单通道数模转换器

转换器 数模转换器
文件: 总23页 (文件大小:527K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC7731  
D
A
C
7
7
3
1
SBAS249B – DECEMBER 2001 – REVISED NOVEMBER 2007  
16-Bit, Voltage Output, Serial Input  
DIGITAL-TO-ANALOG CONVERTER  
DESCRIPTION  
FEATURES  
LOW POWER: 150mW MAXIMUM  
The DAC7731 is a 16-bit Digital-to-Analog Converter (DAC)  
which provides 16 bits of monotonic performance over the  
specified operating temperature range and offers a +10V  
internal reference. Designed for automatic test equipment  
and industrial process control applications, the DAC7731  
output swing can be configured in a ±10V, ±5V, or +10V  
range. The flexibility of the output configuration allows the  
DAC7731 to provide both unipolar and bipolar operation by  
pin strapping. The DAC7731 includes a high-speed output  
amplifier with a maximum settling time of 5µs to ±0.003%  
FSR for a 20V full-scale change and only consumes 100mW  
(typical) of power.  
+10V INTERNAL REFERENCE  
UNIPOLAR OR BIPOLAR OPERATION  
SETTLING TIME: 5µs to ±0.003% FSR  
16-BIT MONOTONICITY, –40°C TO +85°C  
±10V, ±5V, OR +10V CONFIGURABLE VOLTAGE  
OUTPUT  
RESET TO ZERO OR MID-SCALE  
DOUBLE-BUFFERED DATA INPUT  
DAISY-CHAIN FEATURE FOR MULTIPLE  
DAC7731s ON A SINGLE BUS  
The DAC7731 features a standard 3-wire, SPI-compatible  
serial interface with double buffering to allow asynchronous  
updates of the analog output as well as a serial data output  
line for daisy-chaining multiple DAC7731s. A user program-  
mable reset control forces the DAC output to either min-scale  
(0000h) or mid-scale (8000h), overriding both the input and  
DAC register values. The DAC7731 is available in a  
SSOP-24 package and three performance grades specified  
to operate from –40°C to +85°C.  
SMALL SSOP-24 PACKAGE  
APPLICATIONS  
PROCESS CONTROL  
ATE PIN ELECTRONICS  
CLOSED-LOOP SERVO CONTROL  
MOTOR CONTROL  
DATA ACQUISITION SYSTEMS  
REFOUT REFIN  
VREF  
VDD VSS VCC  
REFADJ  
ROFFSET  
Buffer  
RFB2  
REFEN  
RSTSEL  
RST  
+10V  
Reference  
Control  
Logic  
LDAC  
RFB1  
SJ  
SCLK  
CS  
SDO  
SDI  
Enable  
Input  
Register  
DAC  
Register  
DAC  
VOUT  
AGND  
DGND  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright © 2001-2007, Texas Instruments Incorporated  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Texas Instru-  
ments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
VCC to VSS ........................................................................... 0.3V to +32V  
V
V
CC to AGND ...................................................................... 0.3V to +16V  
SS to AGND ...................................................................... 16V to +0.3V  
AGND to DGND ................................................................... 0.3V to 0.3V  
REFIN to AGND ..............................................................0V to VCC 1.4V  
V
DD to DGND ........................................................................ 0.3V to +6V  
Digital Input Voltage to DGND ................................. 0.3V to VDD + 0.3V  
Digital Output Voltage to DGND .............................. 0.3V to VDD + 0.3V  
Operating Temperature Range ........................................40°C to +85°C  
Storage Temperature Range .........................................65°C to +150°C  
Junction Temperature (TJ Max) .................................................... +150°C  
ESD damage can range from subtle performance degradation  
tocompletedevicefailure. Precisionintegratedcircuitsmaybe  
more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
NOTE: (1) Stresses above those listed under Absolute Maximum Ratings may  
cause permanent damage to the device. Exposure to absolute maximum  
conditions for extended periods may affect device reliability.  
PACKAGE/ORDERING INFORMATION(1)  
SPECIFIED  
PACKAGE  
DESIGNATOR  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER(2)  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
PACKAGE-LEAD  
DAC7731E  
SSOP-24  
DB  
40°C to +85°C  
DAC7731E  
DAC7731E  
Rails, 60  
"
"
"
"
"
DAC7731E/1K  
Tape and Reel,1000  
DAC7731EB  
SSOP-24  
DB  
40°C to +85°C  
DAC7731EB  
DAC7731EB  
Rails, 60  
"
"
"
"
"
DAC7731EB/1K  
Tape and Reel, 1000  
DAC7731EC  
SSOP-24  
DB  
40°C to +85°C  
DAC7731EC  
DAC7731EC  
Rails, 60  
"
"
"
"
"
DAC7731EC/1K  
Tape and Reel, 1000  
NOTE: (1) For the most current package ordering information, see the Package Option Addendum at the end of this data sheet, or see the TI web site at www.ti.com.  
PIN CONFIGURATION  
PIN DESCRIPTIONS  
PIN  
NAME  
DESCRIPTION  
Top View  
SSOP  
1
2
3
4
VCC  
REFOUT  
REFIN  
Positive Analog Power Supply  
Internal Reference Output  
Reference Input  
Internal Reference Trim. (Acts as a gain adjustment  
input when the internal reference is used.)  
Buffered Output from REFIN, can be used to drive  
external devices. Internally, this pin directly drives the  
DAC's circuitry.  
REFADJ  
5
VREF  
VCC  
REFOUT  
REFIN  
REFADJ  
VREF  
VSS  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
6
7
8
ROFFSET  
AGND  
RFB2  
Offsetting Resistor  
Analog ground  
Feedback Resistor 2, used to configure DAC output  
range.  
Feedback Resistor 1, used to configure DAC output  
range.  
Summing Junction of the Output Amplifier  
DAC Voltage Output  
Digital Power Supply  
Digital Ground  
Reserved, Connect to DGND  
No Connection  
VOUT reset; active LOW, depending on the state of  
RSTSEL, the DAC register is either reset to mid-  
scale or min-scale.  
DAC register load control, rising dege triggered. Data  
is loaded from the input register to the DAC register.  
Serial Data Input. Data is latched into the input  
register on the rising edge of SCLK.  
Serial Data Output, delayed 16 SCLK clock cycles.  
Chip Select, Active LOW  
REFEN  
RSTSEL  
SCLK  
CS  
3
9
RFB1  
4
10  
11  
12  
13  
14  
15  
16  
SJ  
VOUT  
VDD  
DGND  
TEST  
NC  
5
ROFFSET  
AGND  
RFB2  
RFB1  
SJ  
SDO  
SDI  
6
DAC7731  
7
LDAC  
RST  
8
RST  
9
17  
18  
LDAC  
SDI  
NC  
10  
11  
12  
VOUT  
TEST  
DGND  
VDD  
19  
20  
21  
22  
SDO  
CS  
SCLK  
RSTSEL  
Serial Clock Input  
Reset Select; determines the action of RST. If HIGH,  
RST will reset the DAC register to mid-scale. If LOW,  
RST will reset the DAC register to min-scale.  
Enables internal +10V reference (REFOUT), active  
LOW.  
23  
24  
REFEN  
VSS  
NOTE: RST, LDAC, SDI, CS and SCK are Schmitt-triggered inputs.  
Negative Analog Power Supply  
DAC7731  
2
SBAS249B  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
All specifications at TA = TMIN to TMAX, VCC = +15V, VSS = 15V, VDD = +5V, Internal refience enabled, unless otherwise noted.  
DAC7731E  
TYP  
DAC7731EB  
TYP  
DAC7731EC  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
ACCURACY  
Linearity Error (INL)  
±6  
±5  
±4  
±4  
±3  
±2  
±3  
±2  
±1  
LSB  
LSB  
LSB  
T
A = 25°C  
Differential Linearity Error (DNL)  
Monotonicity  
14  
15  
16  
Bits  
Offset Error  
Offset Error Drift  
Gain Error  
±0.1  
% of FSR  
ppm/°C  
% of FSR  
% of FSR  
ppm/°C  
ppm/V  
±2  
With Internal REF  
With External REF  
With Internal REF  
At Full-Scale  
±0.4  
±0.25  
±0.25  
±0.1  
±0.15  
Gain Error Drift  
PSRR (VCC or VSS  
±15  
50  
±10  
±7  
)
200  
ANALOG OUTPUT(1)  
Voltage Output(2)  
+11.4/4.75  
+11.4/11.4  
+11.4/6.4  
0 to 10  
±10  
±5  
V
V
V
Output Current  
±5  
mA  
pF  
mA  
Output Impeadance  
Maximum Load Capacitance  
Short-Circuit Current  
Short-Circuit Duration  
0.1  
200  
±15  
AGND  
Indefinite  
REFERENCE  
Reference Output  
9.96  
10  
400  
±15  
10.04  
9.975  
±10  
10.025  
±7  
V
REFOUT Impedance  
REFOUT Voltage Drift  
REFOUT Voltage Adjustment(3)  
REFIN Input Range(4)  
REFIN Input Current  
REFADJ Input Range  
ppm/°C  
mV  
V
nA  
V
±25  
4.75  
VCC 1.4  
10  
Absolute Max Value that  
can be applied is VCC  
0
10  
REFADJ Input Impedance  
50  
1
kΩ  
mA  
V
V
REF Output Current  
REF Impedance  
2  
+2  
5
DYNAMIC PERFORMANCE  
Settling Time to ±0.003%  
20V Output Step  
RL = 5k, CL = 200pF,  
with external REFOUT  
to REFIN filter(5)  
3
µs  
Digital Feedthrough  
Output Noise Voltage  
2
100  
nV-s  
nV/Hz  
at 10kHz  
DIGITAL INPUT  
VIH  
VIL  
|IH| < 10µA  
|IL| < 10µA  
0.7 VDD  
V
V
0.3 VDD  
DIGITAL OUTPUT  
VOH  
VOL  
IOH = 0.8mA  
IOL = 1.6mA  
3.6  
V
V
0.4  
POWER SUPPLY  
VDD  
VCC  
VSS  
+4.75  
+11.4  
15.75  
15.75  
+5.0  
+5.25  
+15.75  
11.4  
4.75  
V
V
V
Bipolar Operation  
Unipolar Opeation  
V
IDD  
ICC  
ISS  
Power  
100  
4
2.5  
85  
µA  
mA  
mA  
mW  
mW  
Unloaded  
Unloaded  
No Load, Ext. Reference  
No Load, Int. Reference  
6
4  
100  
150  
+85  
TEMPERATURE RANGE  
Specified Performance  
40  
°C  
Specifications same as grade to the left.  
NOTES: (1) With minimum VCC/VSS requirements, internal reference enabled.  
(2) Please refer to the Theory of Operation section for more information with respect to output voltage configurations.  
(3) See Figure 11 for gain and offset adjustment connection diagrams when using the internal reference.  
(4) The minimum value for REFIN must be equal to the greater of VSS +14V and +4.75V, where +4.75V is the minimum voltage allowed.  
(5) Reference low-pass filter values: 100k, 1.0µF (see Figure 14).  
DAC7731  
SBAS249B  
3
www.ti.com  
TIMING CHARACTERISTICS  
VCC = +15V, VSS = 15V, VDD = 5V; RL = 2kto AGND; CL = 200pF to AGND; all specifications 40°C to +85°C, unless otherwise noted.  
DAC7731  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNITS  
tWH  
tWL  
SCLK HIGH Time  
25  
25  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK LOW Time  
tSDI  
Setup Time: Data in valid before rising SCLK  
Hold Time: Data in valid after rising SCLK  
Setup Time: CS falling edge before first rising SCLK  
Hold Time: CS rising edge after 16th rising SCLK  
Delay Time: CS Falling Edge to Data Out valid, CL = 20pF on SDO  
Hold Time: Data Out valid after SCLK rising edge, CL 20pF on SDO  
Delay Time: CS rising edge to SDO = High Impedance  
CS HIGH Time  
tHDI  
20  
15  
0
tSCS  
tHSC  
tDDO  
tHDO  
tDDOZ  
tWCSH  
tWLDL  
50  
50  
70  
50  
20  
LDAC LOW Time  
tWLDH  
tSLD  
LDAC HIGH Time  
20  
15  
15  
ns  
ns  
ns  
Setup Time: 16th Rising SCLK Before LDAC Rising Edge  
Delay Time: LDAC rising edge to first SCLK rising edge of next  
transfer cycle.  
tDLD  
tSCLK  
Setup Time: CS High before falling SCLK edge following 16th  
rising SCLK edge  
5
ns  
tSRS  
tHRS  
tWRL  
tS  
Setup Time: RSTSEL Valid Before RST LOW  
Hold Time: RSTSEL valid after RST HIGH  
0
ns  
ns  
20  
30  
RST LOW Time  
DAC VOUT Settling Time  
ns  
µs  
5
INTERFACE TIMING  
tSCS  
tHCS  
tWCSH  
CS  
tWH  
1
2
16  
B0  
SCLK  
tWL  
tSCLK  
tHDI  
tSDI  
B15  
B14  
B13  
C15  
B15  
C14  
C13  
B13  
C12  
B12  
SDI  
tDDO  
Word B  
A13  
Word C  
B14  
tHDO  
A14  
tDDOZ  
A0  
A15  
SDO  
tDLD  
Word B  
tWLDL  
Word A  
tWLDH  
LDAC  
VOUT  
tSLD  
tS  
±0.003% of FSR  
Error Bands  
RESET TIMING  
tSRS  
RSTSEL  
tHRS  
tWRL  
RST  
VOUT  
tS  
+FS  
(RSTSEL = LOW)  
FS  
Min-Scale  
Mid-Scale  
+FS  
(RSTSEL = HIGH)  
VOUT  
FS  
DAC7731  
4
SBAS249B  
www.ti.com  
TYPICAL CHARACTERISTICS  
TA = +25°C (unless otherwise noted).  
LINEARITY ERROR AND DIFFERENTIAL  
LINEARITY ERROR AND DIFFERENTIAL  
LINEARITY ERROR vs DIGITAL INPUT CODE  
6
4
2
0
LINEARITY ERROR vs DIGITAL INPUT CODE  
6
4
2
0
2  
2  
4  
6  
Bipolar Configuration: VOUT = 10V to +10V  
4  
Bipolar Configuration: VOUT = 10V to +10V  
T
A = 85°C, Internal Reference Enabled  
T
A = 25°C, Internal Reference Enabled  
6  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0.0  
0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
LINEARITY ERROR AND DIFFERENTIAL  
LINEARITY ERROR vs DIGITAL INPUT CODE  
6
OFFSET ERROR vs TEMPERATURE  
1.00  
4
2
0
0.75  
0.50  
V
OUT = 10 to +10V  
2  
4  
6  
VOUT = 0 to +10V  
Bipolar Configuration: VOUT = 10V to +10V  
A = 40°C, Internal Reference Enabled  
0.25  
T
0.00  
2.0  
1.5  
0.25  
0.50  
0.75  
1.00  
1.0  
0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
40  
15  
10  
35  
60  
85  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Temperature (°C)  
Digital Input Code  
VCC SUPPLY CURRENT vs DIGITAL INPUT CODE  
GAIN ERROR vs TEMPERATURE  
0.000  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
Bipolar Configuration: VOUT = 10V to +10V  
Internal Reference Enabled, TA = 25°C  
0.010  
0.020  
0.030  
0.040  
0.050  
0.060  
0.070  
0.080  
0.090  
0.100  
Ext. Ref, Unipolar Mode: VOUT = 0 to +10V  
Ext. Ref, Bipolar Mode: VOUT = 10 to +10V  
Int. Ref, Unipolar Mode: VOUT = 0 to +10V  
Int. Ref, Bipolar Mode: VOUT = 10 to +10V  
Load = 200pF, 2kΩ  
40  
15  
10  
35  
60  
85  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Temperature (°C)  
Digital Input Code  
DAC7731  
SBAS249B  
5
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
TA = +25°C (unless otherwise noted).  
VCC SUPPLY CURRENT vs DIGITAL INPUT CODE  
VSS SUPPLY CURRENT vs DIGITAL INPUT CODE  
3.4  
1.50  
1.75  
2.00  
2.25  
2.50  
2.75  
Bipolar Configuration: VOUT = 10V to +10V  
External Reference, REFEN = 5V, TA = 25°C  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
Bipolar Configuration: VOUT = 10V to +10V  
A = 25°C  
T
2.7  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
0000H 2000H 4000H 6000H 8000H A000H C000H E000H FFFFH  
Digital Input Code  
Digital Input Code  
SUPPLY CURRENT vs LOGIC INPUT VOLTAGE  
SUPPLY CURRENT vs TEMPERATURE  
1800  
7
Load Current Excluded  
TA = 25°C, Transition  
Shown for a Single  
Input (Applies to CS,  
SCLK,DIN and LDAC  
inputs)  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
6
5
V
CC = +15V, VSS = 15V  
Bipolar VOUT Configuration: 10V to +10V  
4
3
ICC  
2
1
0
1  
2  
3  
ISS  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
40  
15  
10  
35  
60  
85  
VLOGIC (V)  
Temperature (°C)  
HISTOGRAM OF VSS CURRENT CONSUMPTION  
HISTOGRAM OF VCC CURRENT CONSUMPTION  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Bipolar Output Configuration  
Internal Reference Enabled  
Code = 5555H  
Bipolar Output Configuration  
Internal Reference Enabled  
Code = 5555H  
3.50  
3.00  
2.50  
2.00  
1.50  
3.000  
3.500  
4.000  
4.500  
5.000  
ISS (mA)  
ICC (mA)  
DAC7731  
6
SBAS249B  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
TA = +25°C (unless otherwise noted).  
POWER-SUPPY REJECTION RATIO vs FREQUENCY  
(Measured at VOUT  
POWER-SUPPY REJECTION RATIO vs FREQUENCY  
)
(Measured at VOUT  
)
10  
0
10  
0
Bipolar Configuration: ±10V VOUT, Code FFFFH  
VSS, VCC = 15V + 1Vp-p, VDD = 5V + 0.5Vp-p  
Bipolar Configuration: ±10V VOUT  
Code 8000H  
10  
20  
30  
40  
50  
60  
70  
80  
VSS, VCC = 15V + 1Vp-p  
10  
20  
30  
40  
50  
60  
70  
80  
V
DD = 5V + 0.5Vp-p  
VSS  
VCC  
VSS  
VDD  
VCC  
VDD  
0.01K  
0.1K  
1K  
10K  
100K  
1M  
10M  
0.1K  
1K  
10K  
100K  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
INTERNAL REFERENCE OUTPUT vs TEMPERATURE  
INTERNAL REFERENCE START-UP  
10.015  
10.010  
10.005  
10.000  
9.995  
15V  
0V  
10V  
0V  
9.990  
9.985  
40  
15  
10  
35  
60  
85  
Time (2ms/div)  
Temperature (°C)  
OUTPUT VOLTAGE vs RLOAD  
Source  
REFOUT VOLTAGE vs LOAD  
12  
8
11.0  
Loaded to VCC  
VCC = +15V  
10.5  
10.0  
9.5  
4
0
4  
8  
12  
Sink  
9.0  
Loaded to AGND  
10  
8.5  
0.0  
0.1  
1.0  
10.0  
100.0  
1
100  
1K  
RLOAD (kΩ)  
REFOUT LOAD(k)  
DAC7731  
SBAS249B  
7
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
TA = +25°C (unless otherwise noted).  
POWER-SUPPY REJECTION RATIO vs FREQUENCY  
(Measured at REFOUT  
)
OUTPUT NOISE vs FREQUENCY  
10  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Internal Reference Enabled  
VSS, VCC = 15V + 1Vp-p,  
DD = 5V + 0.5Vp-p  
Unipolar Configuration, Internal Reference Enabled  
V
10  
20  
30  
40  
50  
60  
70  
80  
VCC  
Code FFFFH  
VDD  
VSS  
Code 0000H  
1
10  
100  
1K  
10K  
100K  
1M  
10M  
0.01K  
0.1K  
1K  
10K  
100K  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
BROADBAND NOISE  
OUTPUT NOISE vs FREQUENCY  
800  
700  
600  
500  
400  
300  
200  
100  
0
Bipolar Configuration: ±10V, Internal Reference Enabled  
Code 0000H  
Code FFFFH  
Internal Reference Enabled  
Filtered with 1.6Hz Low-Pass  
Code FFFFH, Bipolar ±10V Configuration  
10kHz Measurement BW  
Code 8000H  
0.01K  
0.1K  
1K  
10K  
100K  
1M  
10M  
Time (100µs/div)  
Frequency (Hz)  
BIPOLAR FULL-SCALE SETTLING TIME  
Large-Signal Output (5V/div)  
UNIPOLAR FULL-SCALE SETTLING TIME  
Large-Signal Output (5V/div)  
Small-Signal Error (150µV/div)  
Small-Signal Error (300µV/div)  
Bipolar Configuration: VOUT = 10 to +10V  
Full-Scale to +Full-Scale  
Unipolar Configuration: VOUT = 0 to +10V  
Zero-Scale to +Full-Scale Change  
5k, 200pF Load  
5k, 200pF Load  
Time (2µs/div)  
Time (2µs/div)  
DAC7731  
8
SBAS249B  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
TA = +25°C (unless otherwise noted).  
BIPOLAR FULL-SCALE SETTLING TIME  
UNIPOLAR FULL-SCALE SETTLING TIME  
Small-Signal Error (150µV/div)  
Small-Signal Error (300µV/div)  
Large-Signal Output (5V/div)  
Large-Signal Output (5V/div)  
Unipolar Configuration: VOUT = 0V to +10V  
+Full-Scale to Zero-Scale Change  
5k, 200pF Load  
Bipolar Configuration: VOUT = 10 to +10V  
+Full-Scale to Full-Scale  
5k, 200pF Load  
Time (2µs/div)  
Time (2µs/div)  
MID-SCALE GLITCH  
MID-SCALE GLITCH  
Code 8000H to 7FFFH  
Code 7FFFH to 8000H  
Bipolar Configuration: ±10V VOUT  
Bipolar Configuration: ±10V VOUT  
Time (1µs/div)  
Time (1µs/div)  
DAC7731  
SBAS249B  
9
www.ti.com  
The digital input is a serial word made up of the DAC code  
(MSB first) and is loaded into the DAC register using the  
LDAC input pin. The converter can be powered from ±12V  
to ±15V dual analog supplies and a +5V logic supply. The  
device offers a reset function, which immediately sets the  
DAC output voltage and DAC register to min-scale (code  
0000H) or mid-scale (code 8000H). The data I/O and reset  
functions are discussed in more detail in the following sec-  
tions.  
THEORY OF OPERATION  
The DAC7731 is a voltage output, 16-bit DAC with a +10V  
built-in internal reference. The architecture is an R-2R ladder  
configuration with the three MSBs segmented, followed by  
an operational amplifier that serves as a buffer, as shown in  
Figure 1. The output buffer is designed to allow user-  
configurable output adjustments giving the DAC7731 output  
voltage ranges of 0V to +10V, 5V to +5V, or 10V to +10V.  
Please refer to Figures 2, 3, and 4 for pin configuration  
information.  
ROFFSET  
RFB2  
REFIN  
VREF  
REFADJ  
REFOUT  
R/4  
R/4  
Buffer  
RFB1  
+10V Internal  
Reference  
R/2  
R/2  
R/4  
SJ  
R
VOUT  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
VREF  
AGND  
FIGURE 1. DAC7731 Architecture.  
VCC  
VCC  
DAC7731  
DAC7731  
VSS  
VSS  
0.1µF  
1µF  
0.1µF  
1µF  
VCC  
VSS  
REFEN  
RSTSEL  
SCLK  
CS  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VCC  
VSS  
REFEN  
RSTSEL  
SCLK  
CS  
1
2
24  
1µF  
0.1µF  
REFOUT  
REFIN  
REFADJ  
VREF  
1µF  
0.1µF  
REFOUT  
REFIN  
REFADJ  
VREF  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
3
3
4
4
5
5
Control/Data  
Bus  
Control/Data  
Bus  
ROFFSET  
AGND  
RFB2  
RFB1  
SJ  
SDO  
6
ROFFSET  
AGND  
RFB2  
RFB1  
SJ  
SDO  
6
SDI  
7
SDI  
7
LDAC  
RST  
8
LDAC  
RST  
8
9
9
NC  
10  
11  
12  
NC  
10  
11  
12  
VOUT  
TEST  
DGND  
(5V to +5V)  
VOUT  
TEST  
DGND  
(0V to +10V)  
VDD  
VDD  
VDD  
VDD  
0.1µF  
1µF  
0.1µF  
1µF  
FIGURE 3. Basic Operation: VOUT = 5V to +5V.  
FIGURE 2. Basic Operation: VOUT = 0V to +10V.  
DAC7731  
10  
SBAS249B  
www.ti.com  
DAC7731 output amplifier into one of three voltage output  
modes as discussed earlier. VREF can also be used to drive  
other system components requiring an external reference.  
VCC  
DAC7731  
VSS  
0.1µF  
1µF  
VCC  
VSS  
REFEN  
RSTSEL  
SCLK  
CS  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1µF  
0.1µF  
REFOUT  
REFIN  
REFADJ  
VREF  
REFEN  
ACTION  
3
1
Internal Reference disabled;  
REFOUT = High Impedance  
4
0
Internal Reference enabled;  
REFOUT = +10V  
5
Control/Data  
Bus  
ROFFSET  
AGND  
RFB2  
RFB1  
SJ  
SDO  
6
TABLE I. REFEN Action.  
SDI  
7
LDAC  
RST  
8
The internal reference of the DAC7731 can be disabled when  
use of an external reference is desired. When using an  
external reference, the reference input, REFIN, can be any  
voltage between 4.75V (or VSS + 14V, whichever is greater)  
and VCC 1.4V.  
9
NC  
10  
11  
12  
VOUT  
TEST  
DGND  
(10V to +10V)  
VDD  
VDD  
0.1µF  
1µF  
DIGITAL INTERFACE  
Table II shows the input data format for the DAC7731 and  
Table III illustrates the basic control logic of the device. The  
serial interface consists of a chip select input (CS), serial data  
clock input (SCLK), serial data input (SDI), serial data output  
(SDO), and load control input (LDAC). An asynchronous reset  
input (RST), which is active LOW, is provided to simplify start-  
up conditions, periodic resets, or emergency resets to a known  
state, depending on the status of the reset select (RSTSEL)  
signal. Please refer to the DAC Reset section for additional  
information regarding the reset operation.  
FIGURE 4. Basic Operation: VOUT = 10V to +10V.  
ANALOG OUTPUTS  
The output amplifier can swing to within 1.4V of the supply  
rails, specified over the 40°C to +85°C temperature range.  
This allows for a ±10V DAC voltage output operation from  
±12V supplies with a typical 5% tolerance.  
When the DAC7731 is configured for a unipolar, 0V to 10V  
output, a negative voltage supply is required. This is due to  
internal biasing of the output stage. Please refer to the  
Electrical Characteristics table (see page 3) for more infor-  
mation.  
ANALOG OUTPUT  
DIGITAL INPUT  
Unipolar Configuration  
Bipolar Configuration  
Unipolar Straight Binary  
Bipolar Offset Binary  
0x0000  
0x0001  
:
Zero (0V)  
Full-Scale (VREF or VREF/2)  
The minimum and maximum voltage output values are de-  
pendent upon the output configuration implemented and  
reference voltage applied to the DAC7731. Please note that  
VSS (the negative power supply) must be in the range of  
4.75V to 15.75V for unipolar operation. The voltage on VSS  
sets several bias points within the converter and is required  
in all modes of operation. If VSS is not in one of these two  
configurations, the bias values may be in error and proper  
operation of the device is not ensured.  
Zero + 1LSB  
Full-Scale + 1LSB  
:
1/2 Full-Scale  
1/2 Full-Scale + 1LSB  
:
:
Bipolar Zero  
Bipolar Zero + 1LSB  
:
0x8000  
0x8001  
:
0xFFFF  
Full-Scale (VREF 1LSB) +Full-Scale (+VREF 1LSB  
or +VREF/2 1LSB)  
TABLE II. DAC7731 Data Format.  
Supply sequence is important in establishing the correct  
startup of the DAC. The following supply sequence must be  
followed: VSS (device substrate) first, then VDD followed by  
CONTROL STATUS  
COMMAND  
CS RST RSTSEL LDAC SCLK  
ACTION  
H
H
X
X
X
Shift Register is disabled on the serial bus.  
VCC. In addition, each supply must reach the values specified  
Enable SDO pin from High Impedance;  
enables shift operation and I/O bus  
(SCLK, SDI, SDO).  
in the Electrical Characteristics table (see page 3) within  
100ms of its ramp start.  
L
H
X
X
X
L
H
H
H
L
X
X
X
H
L
X
X
Serial Data Shifted into Input Register  
Serial Data Shifted into Input Register(1)  
Data in Input Register is Loaded into DAC Register.  
Resets Input and DAC Registers to mid-scale.  
Resets Input and DAC Registers to min-scale.  
L
REFERENCE INPUTS  
X
X
X
X
X
X
The DAC7731 provides a built-in +10V voltage reference and  
on-chip buffer to allow external component reference drive. To  
use the internal reference, REFEN must be LOW, enabling the  
reference circuitry of the DAC7731 (as shown in Table I) and  
the REFOUT pin must be connected to REFIN. This is the input  
to the on-chip reference buffer. The buffer output is provided  
at the VREF pin. In this configuration, VREF is used to setup the  
X
X
L
NOTE: (1) In order to avoid unwanted shifting of the input register by an  
additional bit, care must be taken that a rising edge on CS only occurs  
when SCLK is HIGH.  
TABLE III. DAC7731 Logic Truth Table.  
DAC7731  
SBAS249B  
11  
www.ti.com  
The DAC code is provided via a 16-bit serial interface, as shown  
in Table II. The digital input word makes up the digital code to  
be loaded into the data input register of the device. A typical  
data transfer and DAC output update take place as follows:  
Once CS is active (LOW), the DAC7731 is enabled on the serial  
bus and the 16-bit serial data transfer can begin. The serial data  
is shifted into the device on each rising SCLK edge until all 16  
bits are transferred (1 bit per 1 rising SCLK edge). Once  
received, the data in the input register is loaded into the DAC  
register upon reception of a rising edge on the LDAC input (load  
command). This action updates the analog output, VOUT, to the  
desired voltage specified by the digital input word. A rising edge  
on LDAC is completely asynchronous to the serial interface of  
the device and can occur at any time. Care must be taken to  
ensure that the entire 16 bits of data are loaded into the input  
register before issuing a LDAC active edge. Additional load  
commands will have no effect on the DAC output if the data in  
the input register is unchanged between rising LDAC edges.  
When CS is returned HIGH, the rising edge on CS must  
occur when SCLK is HIGH. Application of a rising CS edge  
when SCLK is LOW will cause one additional shift in the  
serial input shift register, corrupting the desired input data.  
TIMING CONSIDERATIONS  
The flexible interface of the DAC7731 can operate under a  
number of different scenarios as is required by a host  
controller. Critical timing for a 16-bit data transfer cycle is  
shown in the Interface Timing section of the Timing Charac-  
teristics. While this is the most common method of writing to  
the DAC7731, the device accepts two additional modes of  
data transfer from the host. These are byte transfer mode  
and continuous transfer mode.  
Byte transfer mode is especially useful when an 8-bit host is  
communicating with the DAC. Data transfer can occur with-  
out requiring an additional general purpose I/O pin to control  
the CS input of the DAC in cycles of 16 clocks. A HIGH state  
on CS stops data from coming into and out of the internal  
shift register. This provides byte-wide support for 8-bit host  
processors. Figure 5 is an example of the timing cycle of  
such a data transfer.  
The remaining data transfer mode accepted by the DAC7731  
is continuous transfer. The CS of the DAC7731 can be tied  
LOW or held LOW by the controller for an indefinite number of  
serial clock cycles. Each clock cycle will transfer data into the  
16-Bit Data Word  
Most Significant Byte  
CS  
Least Significant Byte  
SCLK  
SDI  
1
2
8
9
10  
16  
B15  
B14  
B13  
B8  
B7  
A7  
B6  
B0  
Byte 1, Word N  
A13  
Byte 2, Word N  
A6  
A0  
A15  
A14  
A8  
SDO  
Byte 2, Word N 1  
Byte 1, Word N 1  
LDAC  
FIGURE 5. Byte-Wide Data Write Cycle.  
CS  
SCLK  
SDI  
1
2
16  
B0  
1
2
16  
1
2
B15  
B14  
B1  
C15  
C14  
C1  
C0  
D15  
D14  
Word N  
Word N + 1  
Word N  
Word N + 2  
C14  
A15  
A14  
A1  
A0  
B15  
B14  
B1  
B0  
C15  
SDO  
Word N 1  
Word N + 1  
LDAC  
FIGURE 6. Continuous Transfer Control.  
12  
DAC7731  
SBAS249B  
www.ti.com  
DAC via SDI and out of the DAC on SDO. Care must be taken  
that the LDAC signal to the DAC(s) is timed correctly so that  
valid data is transferred into the DAC register on each rising  
LDAC edge. (Valid data refers to the serial data latched on  
each of the 16 rising SCLK edges prior to the occurrence of a  
rising LDAC signal.) The rising edge of LDAC must occur  
before the first rising SCLK edge of the following 16-bit  
transfer. Figure 6 shows continuous transfer timing.  
cycle written into the chain will arrive at the last DAC7731 on  
the final cycle of the data transfer. Upon completion of the  
required number of data transfer cycles (one cycle per  
device), each DAC voltage output is updated with a rising  
edge on the LDAC inputs. Figure 7 shows the required timing  
to properly update two DAC7731s in a daisy-chained con-  
figuration, as shown in Figure 8.  
DAC RESET  
DAISY-CHAINING USING SDO  
The RST and RSTSEL inputs control the reset of the analog  
output. The reset command is level triggered by a low signal on  
RST. Once RST is LOW, the DAC output will begin settling to  
the mid-scale or min-scale code depending on the state of the  
RSTSEL input. A HIGH value on RSTSEL will cause VOUT to  
reset to the mid-scale code (8000H) and a LOW value will reset  
Multiple DAC7731s can be connected to a single serial port  
by attaching each of their control inputs in parallel and daisy-  
chaining the SDO and SDI I/Os of each device. The SDO  
output of the DAC7731 is active when CS is LOW and can  
be left unconnected when not required for use in a daisy-  
chain configuration.  
VOUT to min-scale (8000H). A change in the state of the RSTSEL  
Once a data transfer cycle begins, new data is shifted into  
SDI and data currently residing in the shift register (from  
previous cycle, power-up, or reset command) is presented  
on SDO, MSB first. One data transfer cycle for each DAC7731  
is required to update all devices in the chain. The first data  
input while RST is LOW will cause a corresponding change in  
the reset command selected internally and consequently change  
the output value of VOUT of the DAC. Note that a valid reset  
signal also resets the input register of the DAC to the value  
specified by the state of RSTSEL.  
Both DAC VOUT's  
are updated  
LSBs latched  
LSBs latched  
SCLK  
1
2
16  
1
2
16  
CS  
LDAC  
First Data Transfer Cycle  
A15 A14  
SDI  
A0  
X
B15  
A15  
B14  
A14  
B1  
A1  
B0  
A0  
Previous cycle word from host  
(to DAC7731 B SDI)  
SDO  
X
X
FIGURE 7. DAC7731 Daisy-Chain Timing for Figure 7.  
From Host  
Controller  
To next  
DAC7731  
DAC7731  
DAC7731  
VCC  
VSS  
REFEN  
RSTSEL  
SCLK  
CS  
VCC  
VSS  
REFEN  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
REFOUT  
REFIN  
REFADJ  
VREF  
REFOUT  
REFIN  
REFADJ  
VREF  
RSTSEL  
SCLK  
CS  
3
3
4
4
5
5
ROFFSET  
AGND  
RFB2  
RFB1  
SJ  
SDO  
ROFFSET  
AGND  
RFB2  
RFB1  
SJ  
SDO  
SDI  
6
6
SDI  
7
7
LDAC  
RST  
LDAC  
RST  
8
8
9
9
NC  
NC  
10  
11  
12  
10  
11  
12  
VOUT  
TEST  
DGND  
VOUT  
TEST  
DGND  
VDD  
VDD  
First Device in Chain  
Second Device in Chain  
FIGURE 8. DAC7731 Daisy-Chain Schematic.  
DAC7731  
SBAS249B  
13  
www.ti.com  
at +10V 1LSB for the 0V to +10V or ±10V output range and  
+5V 1LSB for the ±5V output range. Figure 11 shows the  
generalized external offset and gain adjustment circuitry  
using potentiometers.  
APPLICATIONS  
GAIN AND OFFSET CALIBRATION  
The architecture of the DAC7731 is designed in such a way  
as to allow for easily configurable offset and gain calibration  
using a minimum of external components. The DAC7731  
has built-in feedback resistors and output amplifier summing  
points brought out of the package in order to make the  
absolute calibration possible. Figures 9 and 10 illustrate the  
relationship of offset and gain adjustments for the DAC7731  
in a unipolar configuration and in a bipolar configuration,  
DAC7731  
Optional Gain  
Adjust  
respectively.  
RPOT1  
Optional Offset  
(+VREF  
)
ISJ  
Adjust  
+ Full Scale  
Gain Adjust  
Rotates  
(Other Connections Omitted  
for Clarity)  
R1  
1LSB  
the Line  
RS  
RPOT2  
+
VOADJ  
Input =  
0000H  
Input =  
FFFFH  
FIGURE 11. Generalized External Calibration Circuitry for  
Gain and Symmetrical Offset Adjustment.  
Zero Scale  
(AGND)  
Digital Input  
OFFSET ADJUSTMENT  
Offset Adjust Translates the Line  
Offset adjustment is accomplished by introducing a small  
current into the summing junction (SJ) of the DAC7731. The  
voltage at SJ, or VSJ, is dependent on the output configura-  
tion of the DAC7731. See Table IV for the required pin  
strapping for a given configuration and the nominal values of  
FIGURE 9. Relationship of Offset and Gain Adjustments for  
VOUT = 0V to +10V Output Configuration.  
(+VREF or +VREF/2)  
VSJ for each output range.  
+ Full  
Scale  
(1)  
REFERENCE  
OUTPUT  
PIN STRAPPING  
VSJ  
1LSB  
CONFIGURATION CONFIGURATION ROFFSET RFB1 RFB2  
Input =  
0000H  
Internal  
Reference  
0V to +10V  
10V to +10V  
5V to +5V  
to VREF to VOUT to VOUT  
NC NC  
to AGND to VOUT to VOUT +1.666V  
+5V  
Gain  
Adjust  
Rotates  
to VOUT +3.333V  
External  
Reference  
0V to VREF  
VREF to VREF  
VREF/2 to VREF/2 to AGND to VOUT to VOUT VREF/6  
to VREF to VOUT to VOUT VREF/2  
the Line  
Offset  
NC  
NC  
to VOUT VREF/3  
Adjust  
Translates  
the Line  
NOTE: (1) Voltage measured at VSJ for a given configuration.  
TABLE IV. Nominal VSJ versus VOUT and Reference Configu-  
ration.  
Input =  
FFFFH  
Input = 8000H  
Full-Scale  
(VREF OR VREF/2)  
The current level required to adjust the DAC7731s offset can  
be created by using a potentiometer divider as shown in  
Figure 11 Another alternative is to use a unipolar DAC in order  
to apply a voltage, VOADJ, to the resistor RS. A ±2uA current  
range applied to SJ will ensure offset adjustment coverage of  
the ±0.1% maximum offset specification of the DAC7731.  
Digital Input  
FIGURE 10. Relationship of Offset and Gain Adjustments for  
OUT =10Vto+10VOutputConfiguration.(Same  
V
Theory Applies for VOUT = 5V to +5V.)  
When in a unipolar configuration (VSJ = 5V), only a single  
resistor, RS, is needed for symmetrical offset adjustment with  
a 0V to 10V VOADJ range. When in one of the two bipolar  
configurations, VSJ is either +3.333V (±10V range) or +1.666V  
(±5V range), and circuit values chosen to match those given  
in Table V will provide symmetrical offset adjust. Please refer  
When calibrating the DAC output, offset should be adjusted  
first to avoid first order interaction of adjustments. In unipolar  
mode, the DAC7731 offset is adjusted from code 0000H and  
for either bipolar mode, offset adjustments are made at code  
8000H. Gain adjustment can then be made at code FFFFH for  
each configuration, where the output of the DAC should be  
to Figure 11 for component configuration.  
DAC7731  
14  
SBAS249B  
www.ti.com  
OUTPUT  
CONFIGURATION  
RPOT2  
R1  
RS  
ISJ  
RANGE  
NOMINAL  
OFFSET  
REFOUT ADJUST RANGE  
ADJUSTMENT  
40  
30  
0V to +10V  
10V to +10V  
5V to +5V  
10K  
10K  
10K  
0
5K  
20K  
2.5M  
1.5M  
1M  
±2µA  
±2.2µA  
±1.7µA  
±25mV  
±55mV  
±21mV  
Typical REFOUT  
Adjustment Range  
20  
TABLE V. Recommended External Component Values for  
Symmetrical Offset Adjustment (VREF = 10V).  
10  
Minimum REFOUT  
Adjustment Range  
0
10  
20  
30  
40  
Figure 12 illustrates the typical minimum offset adjustment  
ranges provided by forcing a current at SJ for a given output  
voltage configuration.  
0
2
4
6
8
10  
REFADJ (V)  
OFFSET ADJUST RANGE  
50  
FIGURE 13. Internal Reference Adjustment Transfer Charac-  
teristic.  
10V to +10V VOUT  
typ  
Configuration  
min (75% of typ)  
25  
VOLTAGE AT REFADJ  
REFOUT VOLTAGE  
typ  
REFADJ = 0V  
REFADJ = 5V or NC(1)  
REFADJ = 10V  
10V + 25mV (min)  
10V  
10V 25mV (max)  
0
min (75% of typ)  
0V to 10V and 5V to +5V  
VOUT Configuration  
NOTE: NC = Not Connected.  
25  
50  
TABLE VI. Minimum Internal Reference Adjustment Range.  
NOISE PERFORMANCE  
2  
1  
0
1
2
Increased noise performance of the DAC output can be  
achieved by filtering the voltage reference input to the DAC7731.  
Figure 14 shows a typical internal reference filter schematic. A  
low-pass filter applied between the REFOUT and REFIN pins can  
increase noise immunity at the DAC and output amplifier. The  
REFOUT pin can source a maximum of 50µA so care should be  
taken in order to avoid overloading the internal reference output.  
ISJ (µA)  
FIGURE 12. Offset Adjustment Transfer Characteristic.  
GAIN ADJUSTMENT  
When using the internal reference of the DAC7731, gain  
adjustment is performed by adjusting the devices internal  
reference voltage via the reference adjust pin, REFADJ. The  
effect of a reference voltage change on the gain of the DAC  
output can be seen in the generic equation (for unipolar  
configuration):  
DAC7731  
VCC  
VSS  
REFEN  
RSTSEL  
SCLK  
CS  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
Low-Pass Reference Filter  
REFOUT  
REFIN  
REFADJ  
VREF  
V
OUT = VREFIN (N/65536)  
1.0µF  
100kΩ  
3
Where N is represented in decimal format and ranges from  
0 to 65535.  
4
5
REFADJ can be driven by a low impedance voltage source  
such as a unipolar, 0V to +10V DAC or a potentiometer (less  
than 100k), see Figure 11. Since the input impedance of  
REFADJ is typically 50k, the smaller the resistance of the  
potentiometer, the more linear the adjustment will be. A 10kΩ  
potentiometer is suggested if linearity of the reference adjust-  
ment is of concern.  
ROFFSET  
AGND  
RFB2  
RFB1  
SJ  
SDO  
6
SDI  
7
LDAC  
RST  
8
9
NC  
10  
11  
12  
When the DAC7731s internal reference is not used, gain  
adjustments can be made via trimming the external refer-  
ence applied to the DAC at REFIN. This can be accomplished  
through using a potentiometer, unipolar DAC, or other means  
of precision voltage adjustment to control the voltage pre-  
sented to the DAC7731 by the external reference. Figure 13  
and Table VI summarize the range of adjustment of the  
internal reference via REFADJ.  
VOUT  
TEST  
DGND  
VDD  
(Other connections omitted for clarity.)  
FIGURE 14. Filtering the Internal Reference.  
DAC7731  
SBAS249B  
15  
www.ti.com  
The voltages applied to VCC and VSS should be well regulated  
and low noise. Switching power supplies and DC/DC convert-  
ers will often have high-frequency glitches or spikes riding on  
the output voltage. In addition, digital components can create  
similar high-frequency spikes as their internal logic switches  
states. This noise can easily couple into the DAC output  
voltage through various paths between the power connec-  
tions and analog output.  
LAYOUT  
A precision analog component requires careful layout, adequate  
bypassing, and clean, well-regulated power supplies. The  
DAC7731 offers separate digital and analog supplies, as it will  
often be used in close proximity with digital logic, microcontrollers,  
microprocessors, and digital signal processors. The more digital  
logic present in the design and the higher the switching speed,  
the more important it will become to separate the analog and  
digital ground and supply planes at the device.  
In addition, a 1µF to 10µF bypass capacitor in parallel with a  
0.1µF bypass capacitor is strongly recommended for each  
supply input. In some situations, additional bypassing may be  
required, such as a 100µF electrolytic capacitor or even a Pi  
filter made up of inductors and capacitorsall designed to  
essentially low-pass filter the analog supplies, removing any  
high frequency noise components.  
Since the DAC7731 has both analog and digital ground pins,  
return currents can be better controlled and have less effect  
on the DAC output error. Ideally, AGND would be connected  
directly to an analog ground plane and DGND to the digital  
ground plane. The analog ground plane would be separate  
from the ground connection for the digital components until  
they were connected at the power-entry point of the system.  
DAC7731  
16  
SBAS249B  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC7731E  
DAC7731E/1K  
DAC7731EB  
ACTIVE  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
SSOP  
DB  
DB  
DB  
24  
24  
24  
60  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
DAC7731E  
1000 RoHS & Green  
60 RoHS & Green  
1000 RoHS & Green  
60 RoHS & Green  
1000 RoHS & Green  
60 RoHS & Green  
NIPDAU  
Call TI  
DAC7731E  
DAC7731E  
B
DAC7731EB/1K  
DAC7731EC  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
SSOP  
SSOP  
DB  
DB  
DB  
DB  
24  
24  
24  
24  
Call TI  
Call TI  
Call TI  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
DAC7731E  
B
DAC7731E  
C
DAC7731EC/1K  
DAC7731ECG4  
DAC7731E  
C
DAC7731E  
C
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC7731E/1K  
DAC7731EB/1K  
DAC7731EC/1K  
SSOP  
SSOP  
SSOP  
DB  
DB  
DB  
24  
24  
24  
1000  
1000  
1000  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
8.2  
8.2  
8.2  
8.8  
8.8  
8.8  
2.5  
2.5  
2.5  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC7731E/1K  
DAC7731EB/1K  
DAC7731EC/1K  
SSOP  
SSOP  
SSOP  
DB  
DB  
DB  
24  
24  
24  
1000  
1000  
1000  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Feb-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DAC7731E  
DAC7731EB  
DAC7731EC  
DAC7731ECG4  
DB  
DB  
DB  
DB  
SSOP  
SSOP  
SSOP  
SSOP  
24  
24  
24  
24  
60  
60  
60  
60  
530  
530  
530  
530  
10.5  
10.5  
10.5  
10.5  
4000  
4000  
4000  
4000  
4.1  
4.1  
4.1  
4.1  
Pack Materials-Page 3  
MECHANICAL DATA  
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001  
DB (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
28 PINS SHOWN  
0,38  
0,22  
0,65  
28  
M
0,15  
15  
0,25  
0,09  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
14  
0,25  
A
0°ā8°  
0,95  
0,55  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
PINS **  
14  
16  
20  
24  
28  
30  
38  
DIM  
6,50  
5,90  
6,50  
5,90  
7,50  
8,50  
7,90  
10,50  
9,90  
10,50 12,90  
A MAX  
A MIN  
6,90  
9,90  
12,30  
4040065 /E 12/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-150  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY