DAC7821IRGPR [TI]

12-Bit, Parallel Input, Multiplying Digital-to-Analog Converter; 12位并行输入,乘法数位类比转换器
DAC7821IRGPR
型号: DAC7821IRGPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12-Bit, Parallel Input, Multiplying Digital-to-Analog Converter
12位并行输入,乘法数位类比转换器

转换器 数模转换器
文件: 总18页 (文件大小:1611K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC7821  
DAC7821  
www.ti.com  
SBAS365AOCTOBER 2005REVISED FEBRUARY 2006  
12-Bit, Parallel Input, Multiplying  
Digital-to-Analog Converter  
FEATURES  
DESCRIPTION  
2.5 V to 5.5 V Supply Operation  
The DAC7821 is a CMOS 12-bit current output  
digital-to-analog converter (DAC). This device  
operates from a single 2.5 V to 5.5 V power supply,  
making it suitable to battery-powered and many other  
applications.  
Fast Parallel Interface:  
17ns Write Cycle  
Update Rate of 20.4 MSPS  
10 MHz Multiplying Bandwidth  
±10 V Reference Input  
This DAC operates with a fast parallel interface. Data  
readback allows the user to read the contents of the  
DAC register via the DB pins. On power-up, the  
internal register and latches are filled with zeroes and  
the DAC outputs are at zero scale.  
Low Glitch Energy: 5 nV-s  
Extended Temperature Range:  
–40°C to +125°C  
The  
DAC7821  
offers  
excellent  
4-quadrant  
20-Lead QFN and 20-Lead TSSOP Packages  
12-Bit Monotonic  
multiplication characteristics, with large signal  
multiplying bandwidth of 10 MHz. The applied  
external reference input voltage (VREF) determines  
the full-scale output current. An integrated feedback  
resistor (RFB) provides temperature tracking and  
full-scale voltage output when combined with an  
external current-to-voltage precision amplifier.  
±1 LSB INL  
4-Quadrant Multiplication  
Power-On Reset with Brownout Detection  
Readback Function  
Industry-Standard Pin Configuration  
The DAC7821 is available in a 20-lead TSSOP  
package as well as a small 20-lead QFN package  
(available Q2 2006).  
APPLICATIONS  
Portable Battery-Powered Instruments  
Waveform Generators  
Analog Processing  
Programmable Amplifiers and Attenuators  
Digitally-Controlled Calibration  
Programmable Filters and Oscillators  
Composite Video  
V
DD  
V
REF  
R
DAC7821  
R
FB  
I 1  
OUT  
12-Bit  
Power-On  
Reset  
R-2R DAC  
I 2  
OUT  
Ultrasound  
DAC Register  
Input Latch  
CS  
Control  
Logic  
R/W  
Parallel Bus  
DB0  
DB11  
GND  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005–2006, Texas Instruments Incorporated  
DAC7821  
www.ti.com  
SBAS365AOCTOBER 2005REVISED FEBRUARY 2006  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
SPECIFIED  
PACKAGE  
DESIGNATOR  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT MEDIA,  
QUANTITY  
PRODUCT  
PACKAGE  
DAC7821IPW  
DAC7821IPWR  
DAC7821IRGPT  
DAC7821IRGPR  
70, Tube  
DAC7821  
20-TSSOP  
PW  
–40°C to +125°C  
–40°C to +125°C  
DAC7821  
DAC7821  
2000, Tape and Reel  
250, Tape and Reel  
3000, Tape and Reel  
DAC7821  
20-QFN(2)  
RGP  
(1) For the most current specifications and package information, see the Package Option Addendum located at the end of this data sheet or  
refer to our web site at www.ti.com.  
(2) Available 2Q 2006.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
DAC7821  
–0.3 to +7.0  
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–40 to +125  
–65 to +150  
+150  
UNIT  
V
VDD to GND  
Digital input voltage to GND  
VOUT to GND  
V
V
Operating temperature range  
Storage temperature range  
Junction temperature (TJ max)  
ESD Rating, HBM  
°C  
°C  
°C  
V
3000  
ESD Rating, CDM  
1000  
V
(1) Stresses above those listed under absolute maximum ratings may cause permanent damage to the device. Exposure to absolute  
maximum conditions for extended periods may affect device reliability.  
2
DAC7821  
www.ti.com  
SBAS365AOCTOBER 2005REVISED FEBRUARY 2006  
ELECTRICAL CHARACTERISTICS  
VDD = +2.5 V to +5.5 V; IOUT1 = Virtual GND; IOUT2 = 0V; VREF = +10 V; TA = full operating temperature. All specifications  
–40°C to +125°C, unless otherwise noted.  
DAC7821  
PARAMETER  
STATIC PERFORMANCE  
Resolution  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12  
Bits  
LSB  
LSB  
nA  
Relative accuracy  
±1  
±1  
Differential nonlinearity  
Output leakage current  
Output leakage current  
Full-scale gain error  
Full-scale tempco  
Data = 000h, TA = +25°C  
±10  
±20  
±10  
Data = 000h, TA = TMAX  
nA  
All ones loaded to DAC register  
±5  
±5  
30  
mV  
ppm/°C  
pF  
Output capacitance  
REFERENCE INPUT  
VREF range  
Code dependent  
–15  
8
15  
12  
12  
V
Input resistance  
10  
10  
kΩ  
kΩ  
RFB resistance  
8
LOGIC INPUTS AND OUTPUT(1)  
Input low voltage  
VIL VDD = +2.7V  
0.6  
0.8  
V
V
VIL VDD = +5V  
VIH VDD = +2.7V  
VIH VDD = +5V  
IIL  
Input high voltage  
2.1  
2.4  
V
V
Input leakage current  
Input capacitance  
10  
10  
µA  
pF  
CIL  
POWER REQUIREMENTS  
VDD  
2.7  
5.5  
5
V
IDD (normal operation)  
VDD = +4.5 V to +5.5 V  
VDD = +2.5 V to +3.6 V  
AC CHARACTERISTICS  
Output voltage settling time  
Reference multiplying BW  
Logic inputs = 0 V  
µA  
µA  
µA  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
0.8  
0.4  
5
2.5  
0.2  
µs  
VREF = 7 VPP, Data = FFFh  
10  
5
MHz  
VREF = 0 V to 10 V,  
Data = 7FFh to 800h to 7FFh  
DAC glitch impulse  
nV-s  
Feedthrough error VOUT/VREF  
Digital feedthrough  
Data = 000h, VREF = 100kHz  
–70  
2
dB  
nV-s  
dB  
Total harmonic distortion  
Output spot noise voltage  
–105  
18  
nV/Hz  
(1) Specified by design and characterization; not production tested.  
3
DAC7821  
www.ti.com  
SBAS365AOCTOBER 2005REVISED FEBRUARY 2006  
TIMING INFORMATION  
t
1
t
6
t
t
2
2
R/W  
t
7
t
3
CS  
t
4
t
8
t
9
t
5
DATA  
DATA VALID  
DATA VALID  
TIMING REQUIREMENTS: 2.5 V to 4.5 V  
At tr = tf = 1 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2; VDD = +2.5 V to +4.5 V, VREF = +10 V,  
IOUT2 = 0 V. All specifications –40°C to +125°C, unless otherwise noted.  
DAC7821  
PARAMETER(1)  
TEST CONDITIONS  
R/W to CS setup time  
MIN  
0
TYP  
MAX  
UNIT  
ns  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
R/W to CS hold time  
CS low time (write cycle)  
Data setup time  
0
ns  
10  
6
ns  
ns  
Data hold time  
0
ns  
R/W high to CS low  
CS min high time  
Data access time  
Bus relinquish time  
5
ns  
9
ns  
20  
5
40  
10  
ns  
ns  
(1) Ensured by design; not production tested.  
TIMING REQUIREMENTS: 4.5 V to 5.5 V  
At tr = tf = 1 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2; VDD = +4.5 V to +5.5 V, VREF = +10 V,  
IOUT2 = 0 V. All specifications –40°C to +125°C, unless otherwise noted.  
DAC7821  
PARAMETER(1)  
TEST CONDITIONS  
R/W to CS setup time  
MIN  
0
TYP  
MAX  
UNIT  
ns  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
R/W to CS hold time  
CS low time (write cycle)  
Data setup time  
0
ns  
10  
6
ns  
ns  
Data hold time  
0
ns  
R/W high to CS low  
CS min high time  
Data access time  
Bus relinquish time  
5
ns  
7
ns  
10  
5
20  
10  
ns  
ns  
(1) Ensured by design; not production tested.  
4
DAC7821  
www.ti.com  
SBAS365AOCTOBER 2005REVISED FEBRUARY 2006  
DEVICE INFORMATION  
I
1
1
2
3
4
5
6
7
8
9
20  
19  
18  
R
OUT  
FB  
I
2
V
OUT  
REF  
GND  
DB11 (MSB)  
DB10  
V
DD  
GND  
1
2
3
4
5
15 R/W  
14 CS  
17 R/W  
16 CS  
DB11  
DB10  
DB9  
DAC7821  
13 DB0  
12 DB1  
11 DB2  
DAC7821  
DB9  
15 DB0 (LSB)  
14 DB1  
13 DB2  
12 DB3  
11 DB4  
DB8  
DB8  
DB7  
DB6  
DB5 10  
(1)  
QFN-20  
TSSOP-20  
(1)  
QFN-20 package available 2Q 2006.  
TERMINAL FUNCTIONS  
TERMINAL  
TSSOP  
NO.  
QFN  
NO.  
NAME  
DESCRIPTION  
1
2
19  
IOUT  
IOUT  
1
2
DAC current output.  
20  
DAC analog ground. This pin is normally tied to the analog ground of the system.  
Ground pin.  
3
1
GND  
4–15  
2–13  
DB11 – DB0 Parallel data bits 11 to 0.  
Chip select input. Active low. Used in conjunction with R/W to load parallel data to the input  
latch or read data from the DAC register. Rising edge of CS loads data.  
16  
17  
14  
15  
CS  
Read/Write. When low, use in conjunction with CS to load parallel data. When high, use with  
CS to read back contents of DAC register.  
R/W  
18  
19  
16  
17  
VDD  
Positive power supply input. These parts can be operated from a supply of 2.5 V to 5.5 V.  
DAC reference voltage input.  
VREF  
DAC feedback resistor pin. Establish voltage output for the DAC by connecting to external  
amplifier output.  
20  
18  
RFB  
5
DAC7821  
www.ti.com  
SBAS365AOCTOBER 2005REVISED FEBRUARY 2006  
TYPICAL CHARACTERISTICS: VDD = +5 V  
At TA = +25°C, unless otherwise noted.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
T
A
= +25°C  
T = +25°C  
A
V
REF  
= +10 V  
V
REF  
= +10 V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
0
0
512 1024 1536 2048 2560 3072 3584 4095  
0
0
0
512 1024 1536 2048 2560 3072 3584 4095  
Digital Input Code  
Digital Input Code  
Figure 1.  
Figure 2.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
T
A
= -40°C  
= +10 V  
T
A
= -40°C  
= +10 V  
REF  
V
V
REF  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
512 1024 1536 2048 2560 3072 3584 4095  
512 1024 1536 2048 2560 3072 3584 4095  
Digital Input Code  
Digital Input Code  
Figure 3.  
Figure 4.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
T
A
= +125°C  
= +10 V  
T
A
= +125°C  
V = +10 V  
REF  
V
REF  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
512 1024 1536 2048 2560 3072 3584 4095  
512 1024 1536 2048 2560 3072 3584 4095  
Digital Input Code  
Digital Input Code  
Figure 5.  
Figure 6.  
6
DAC7821  
www.ti.com  
SBAS365AOCTOBER 2005REVISED FEBRUARY 2006  
TYPICAL CHARACTERISTICS: VDD = +5 V (continued)  
At TA = +25°C, unless otherwise noted.  
SUPPLY CURRENT  
vs LOGIC INPUT VOLTAGE  
REFERENCE MULTIPLYING BANDWIDTH  
3.0  
6
0
0xFFF  
0x800  
0x400  
0x200  
0x100  
0x080  
0x040  
0x020  
0x010  
0x008  
0x004  
0x002  
0x001  
V
= 5.0 V  
DD  
-6  
2.5  
2.0  
1.5  
1.0  
0.5  
0
-12  
-18  
-24  
-30  
-36  
-42  
-48  
-56  
-60  
-66  
-72  
-78  
-84  
-90  
-96  
-102  
V
DD  
= 3.0 V  
V
= 2.5 V  
DD  
0x000  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
10  
100  
10k  
100k  
10M  
100M  
1k  
1M  
Logic Input Voltage (V)  
Bandwidth (Hz)  
Figure 7.  
Figure 8.  
MIDSCALE DAC GLITCH  
MIDSCALE DAC GLITCH  
Code 2047 to 2048  
Code 2048 to 2047  
DAC Update  
DAC Update  
Time (50ns/div)  
Time (50ns/div)  
Figure 9.  
Figure 10.  
DAC SETTLING TIME  
GAIN ERROR  
vs TEMPERATURE  
0
V
= I  
OUT  
x 100 W  
OUT  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
-1.8  
--2.0  
Small Signal Settling  
DAC Update  
V
= +10 V  
REF  
Time (20 ns/div)  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Figure 11.  
Figure 12.  
7
DAC7821  
www.ti.com  
SBAS365AOCTOBER 2005REVISED FEBRUARY 2006  
TYPICAL CHARACTERISTICS: VDD = +5 V (continued)  
At TA = +25°C, unless otherwise noted.  
SUPPLY CURRENT  
vs TEMPERATURE  
LEAKAGE CURRENT  
vs TEMPERATURE  
2.0  
0.2  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
= +10 V  
REF  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= +5.0 V  
DD  
V
= +2.5 V  
DD  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 13.  
Figure 14.  
8
DAC7821  
www.ti.com  
SBAS365AOCTOBER 2005REVISED FEBRUARY 2006  
TYPICAL CHARACTERISTICS: VDD = +2.5 V  
At TA = +25°C, unless otherwise noted.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
1.0  
0.8  
T
A
= +25°C  
T = +25°C  
A
0.8  
V
REF  
= +10 V  
V
REF  
= +10 V  
0.6  
0.4  
0.6  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
0
0
512 1024 1536 2048 2560 3072 3584 4095  
0
0
0
512 1024 1536 2048 2560 3072 3584 4095  
Digital Input Code  
Digital Input Code  
Figure 15.  
Figure 16.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
T
A
= -40°C  
= +10 V  
T
A
= -40°C  
= +10 V  
REF  
V
V
REF  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
512 1024 1536 2048 2560 3072 3584 4095  
512 1024 1536 2048 2560 3072 3584 4095  
Digital Input Code  
Digital Input Code  
Figure 17.  
Figure 18.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
T
A
= +125°C  
= +10 V  
T
A
= +125°C  
V = +10 V  
REF  
V
REF  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
512 1024 1536 2048 2560 3072 3584 4095  
512 1024 1536 2048 2560 3072 3584 4095  
Digital Input Code  
Digital Input Code  
Figure 19.  
Figure 20.  
9
DAC7821  
www.ti.com  
SBAS365AOCTOBER 2005REVISED FEBRUARY 2006  
TYPICAL CHARACTERISTICS: VDD = +2.5 V (continued)  
At TA = +25°C, unless otherwise noted.  
MIDSCALE DAC GLITCH  
MIDSCALE DAC GLITCH  
Code 2047 to 2048  
Code 2048 to 2047  
DAC Update  
DAC Update  
Time (50ns/div)  
Time (50ns/div)  
Figure 21.  
Figure 22.  
GAIN ERROR  
vs TEMPERATURE  
LEAKAGE CURRENT  
vs TEMPERATURE  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
REF  
= +10 V  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 23.  
Figure 24.  
10  
DAC7821  
www.ti.com  
SBAS365AOCTOBER 2005REVISED FEBRUARY 2006  
THEORY OF OPERATION  
The DAC7821 is a single channel current output, 12-bit digital-to-analog converter (DAC). The architecture,  
illustrated in Figure 25, is an R-2R ladder configuration with the three MSBs segmented. Each 2R leg of the  
ladder is either switched to IOUT1 or the IOUT2 terminal. The IOUT1 terminal of the DAC is held at a virtual GND  
potential by the use of an external I/V converter op amp. The R-2R ladder is connected to an external reference  
input VREF that determines the DAC full-scale current. The R-2R ladder presents a code-independent load  
impedance to the external reference of 10 kΩ ±20%. The external reference voltage can vary over a range of  
–15 V to +15 V, thus providing bipolar IOUT current operation. By using an external I/V converter and the  
DAC7821 RFB resistor, output voltage ranges of –VREF to VREF can be generated.  
R
R
R
R
V
REF  
2R  
2R  
2R  
2R  
2R  
R
FB  
I
1
OUT  
I
2
OUT  
DB11  
(MSB)  
DB10  
DB9  
DB0  
(LSB)  
Figure 25. Equivalent R-2R DAC Circuit  
When using an external I/V converter and the DAC7821 RFB resistor, the DAC output voltage is given by  
Equation 1:  
CODE  
4096  
(VOUT + ) VREF  
 
(1)  
Each DAC code determines the 2R leg switch position to either GND or IOUT. Because the DAC output  
impedance as seen looking into the IOUT1 terminal changes versus code, the external I/V converter noise gain  
will also change. Because of this, the external I/V converter op amp must have a sufficiently low offset voltage  
such that the amplifier offset is not modulated by the DAC IOUT1 terminal impedance change. External op amps  
with large offset voltages can produce INL errors in the transfer function of the DAC7821 as a result of offset  
modulation versus DAC code.  
For best linearity performance of the DAC7821, an op amp with a low input offset voltage (OPA277) is  
recommended (see Figure 26). This circuit allows VREF swinging from –10 V to +10 V.  
V
DD  
15V  
V
DD  
R
FB  
V+  
OPA277  
V-  
DAC7821  
I
1
V
OUT  
REF  
V
OUT  
I
2
GND  
OUT  
-15V  
Figure 26. Voltage Output Configuration  
11  
 
 
 
DAC7821  
www.ti.com  
SBAS365AOCTOBER 2005REVISED FEBRUARY 2006  
APPLICATION INFORMATION  
Stability Circuit  
For a current-to-voltage design (see Figure 27), the DAC7821 current output (IOUT) and the connection with the  
inverting node of the op amp should be as short as possible and according to correct printed circuit board (PCB)  
layout design. For each code change, there is a step function. If the gain bandwidth product (GBP) of the op amp  
is limited and parasitic capacitance is excessive at the inverting node, then gain peaking is possible. Therefore,  
for circuit stability, a compensation capacitor C1 (1 pF to 5 pF typ) can be added to the design, as shown in  
Figure 27.  
V
DD  
U1  
V
DD  
R
FB  
C
1
I
1
V
V
REF  
OUT  
REF  
V
OUT  
I
2
GND  
OUT  
U2  
Figure 27. Gain Peaking Prevention Circuit with Compensation Capacitor  
Positive Voltage Output Circuit  
As Figure 28 illustrates, in order to generate a positive voltage output, a negative reference is input to the  
DAC7821. This design is suggested instead of using an inverting amp to invert the output as a result of resistor  
tolerance errors. For a negative reference, VOUT and GND of the reference are level-shifted to a virtual ground  
and a –2.5 V input to the DAC7821 with an op amp.  
+2.5 V Reference  
V
DD  
V
V
IN  
OUT  
GND  
V
DD  
R
FB  
C
1
V
REF  
DAC7821  
I
1
OPA277  
OUT  
-2.5V  
OPA277  
V
OUT  
I
2
GND  
OUT  
0 < V  
< +2.5 V  
OUT  
Figure 28. Positive Voltage Output Circuit  
Bipolar Output Section  
The DAC7821, as a 2-quadrant multiplying DAC, can be used to generate a unipolar output. The polarity of the  
full-scale output IOUT is the inverse of the input reference voltage at VREF  
.
Some applications require full 4-quadrant multiplying capabilities or bipolar output swing. As shown in Figure 29,  
external op amp U4 is added as a summing amp and has a gain of 2X that widens the output span to 5 V. A  
4-quadrant multiplying circuit is implemented by using a 2.5 V offset of the reference voltage to bias U4.  
According to the circuit transfer equation given in Equation 2, input data (D) from code 0 to full-scale produces  
output voltages of VOUT = –2.5 V to VOUT = +2.5 V.  
D
(VOUT  
+
)1   VREF  
0.5   2N  
(2)  
12  
 
 
 
DAC7821  
www.ti.com  
SBAS365AOCTOBER 2005REVISED FEBRUARY 2006  
APPLICATION INFORMATION (continued)  
External resistance mismatching is the significant error in Figure 29.  
10 kW  
10 kW  
C
2
V
DD  
5 kW  
U4  
OPA277  
V
OUT  
V
R
FB  
C
DD  
1
V
I
1
+2.5 V  
(+10 V)  
DAC7821  
REF  
OUT  
U2  
OPA277  
I
2
GND  
OUT  
-2.5 V £ V  
£ +2.5 V  
OUT  
(-10 V £ V  
£ +10 V)  
OUT  
Figure 29. Bipolar Output Circuit  
Programmable Current Source Circuit  
A DAC7821 can be integrated into the circuit in Figure 30 to implement an improved Howland current pump for  
precise voltage-to-current conversions. Bidirectional current flow and high voltage compliance are two features of  
the circuit. With a matched resistor network, the load current of the circuit is shown by Equation 3:  
(
)
R2 R3 R1  
IL +  
  VREF   D  
R3  
(3)  
The value of R3 in the previous equation can be reduced to increase the output current drive of U3. U3 can drive  
±20 mA in both directions with voltage compliance limited up to 15 V by the U3 voltage supply. Elimination of the  
circuit compensation capacitor C1 in the circuit is not suggested as a result of the change in the output  
impedance ZO, according to Equation 4:  
(
)
R1 R3 R1 R2  
ZO +  
(
)
(
)
R1 R2Ȁ R3Ȁ ) R1Ȁ R2 R3  
(4)  
As shown in Equation 4, with matched resistors, ZO is infinite and the circuit is optimum for use as a current  
source. However, if unmatched resistors are used, ZO is positive or negative with negative output impedance  
being a potential cause of oscillation. Therefore, by incorporating C1 into the circuit, possible oscillation problems  
are eliminated. The value of C1 can be determined for critical applications; for most applications, however, a  
value of several pF is suggested.  
R2¢  
15 kW  
C1  
10 pF  
R1¢  
V
R3¢  
DD  
150 kW  
50 W  
U3  
V
OUT  
OPA277  
V
R
FB  
DD  
U1  
R3  
DAC7821  
I
1
V
OUT  
REF  
U2  
OPA277  
R1  
R2  
50 W  
I
2
GND  
OUT  
150 kW  
15 kW  
I
L
LOAD  
Figure 30. Programmable Bidirectional Current Source Circuit  
13  
 
 
 
 
DAC7821  
www.ti.com  
SBAS365AOCTOBER 2005REVISED FEBRUARY 2006  
APPLICATION INFORMATION (continued)  
Parallel Interface  
Data is loaded to the DAC7821 as a 12-bit parallel word. The bi-directional bus is controlled with CS and R/W,  
allowing data to be written to or read from the DAC register. To write to the device, CS and R/W are brought low,  
and data available on the data lines fills the input register. The rising edge of CS latches the data and transfers  
the latched data-word to the DAC register. The DAC latches are not transparent; therefore, a write sequence  
must consist of a falling and rising edge on CS in order to ensure that data is loaded to the DAC register and its  
analog equivalent is reflected on the DAC output.  
To read data stored in the device, R/W is held high and CS is brought low. Data is loaded from the DAC register  
back to the input register and out onto the data line, where it can be read back to the controller.  
Cross-Reference  
The DAC7821 has an industry-standard pinout. Table 1 provides the cross-reference information.  
Table 1. Cross-Reference  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESCRIPTION  
PACKAGE  
OPTION  
CROSS-  
REFERENCE PART  
PRODUCT  
DAC7821  
DAC7821  
INL (LSB)  
DNL (LSB)  
±1  
±1  
±1  
±1  
–40°C to +125°C  
–40°C to +125°C  
20-Lead TSSOP  
20-Lead QFN(1)  
TSSOP-20  
QFN-20  
AD5445  
AD5445  
(1) Available 2Q 2006.  
14  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Apr-2006  
PACKAGING INFORMATION  
Orderable Device  
DAC7821IPW  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TSSOP  
PW  
20  
20  
20  
20  
78 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
DAC7821IPWG4  
DAC7821IPWR  
DAC7821IPWRG4  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
78 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
DAC7821IRGPR  
DAC7821IRGPT  
PREVIEW  
PREVIEW  
QFN  
QFN  
RGP  
RGP  
20  
20  
3000  
250  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY