DAC7822 [TI]

12 位双通道并行输入乘法数模转换器;
DAC7822
型号: DAC7822
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12 位双通道并行输入乘法数模转换器

转换器 数模转换器
文件: 总24页 (文件大小:1177K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
B
u
r
r
Ć
B
r
o
w
n
P
r
o
d
u
c
t
s
f
r
o
m
T
e
x
a
s
I
n
s
t
r
u
m
e
n
t
s
DAC7822  
SBAS374AJUNE 2006REVISED JULY 2007  
Dual, 12-Bit, Parallel Input, Multiplying  
Digital-to-Analog Converter  
FEATURES  
DESCRIPTION  
±1LSB INL  
The DAC7822 is a dual, CMOS, 12-bit, current  
output digital-to-analog converter (DAC). This device  
operates from a 2.5V to 5.5V power supply, making it  
suitable for battery-powered and many other  
applications.  
2.5V to 5.5V Supply Operation  
Fast Parallel Interface:  
17ns Write Cycle  
Update Rate of 20.4MSPS  
10MHz Multiplying Bandwidth  
±15V Reference Input  
The DAC7822 operates with a fast parallel interface.  
Data readback allows the user to read the contents  
of the DAC register via the DB pins. On power-up,  
the internal register and latches are filled with zeroes  
and the DAC outputs are at zero scale.  
Extended Temperature Range:  
–40°C to +125°C  
The  
DAC7822  
offers  
excellent  
4-quadrant  
40-Lead QFN  
multiplication characteristics, with large signal  
multiplying bandwidth of 10MHz. The applied  
external reference input voltage (VREF) determines  
the full-scale output current. An integrated feedback  
resistor (RFB) provides temperature tracking and  
full-scale voltage output when combined with an  
external current-to-voltage precision amplifier. The  
DAC7822 also includes the resistors necessary for  
4-quadrant multiplication and other configuration  
modes.  
12-Bit Monotonic  
4-Quadrant Multiplication  
Power-On Reset with Brownout Detection  
Readback Function  
Industry-Standard Pin Configuration  
Pin-Compatible with the AD5405  
APPLICATIONS  
Portable Battery-Powered Instruments  
Waveform Generators  
Analog Processing  
Programmable Amplifiers and Attenuators  
Digitally-Controlled Calibration  
Programmable Filters and Oscillators  
Ultrasound  
The DAC7822 is available in  
package.  
a 40-lead QFN  
R3A  
R2_3A  
R2A VREF  
A
R1A  
R3  
R2  
R1  
RFB  
2R  
2R  
2R  
2R  
RFBA  
VDD  
DB0  
DATA  
IOUT1A  
IOUT2A  
INPUT  
12-Bit  
INPUTS  
LATCH  
BUFFER  
R-2R DAC A  
DB11  
DAC A/B  
CS  
CONTROL  
LOGIC  
IOUT1B  
IOUT2B  
12-Bit  
R/W  
LATCH  
R-2R DAC B  
LDAC  
CLR  
R3  
R2  
2R  
R1  
RFB  
2R  
2R  
2R  
POWER-ON  
RESET  
GND  
RFB  
B
R3B  
R2_3B  
R2B VREF  
B
R1B  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2006–2007, Texas Instruments Incorporated  
DAC7822  
www.ti.com  
SBAS374AJUNE 2006REVISED JULY 2007  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be  
more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
PACKAGE/ORDERING INFORMATION  
For the most current package and ordering information, see the Package Option Addendum at the end of this  
document, or see the TI website at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range (unless otherwise noted).  
DAC7822  
–0.3 to +7.0  
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–40 to +125  
–65 to +150  
+150  
UNIT  
V
VDD to GND  
Digital input voltage to GND  
VOUT to GND  
V
V
Operating temperature range  
Storage temperature range  
Junction temperature (TJ max)  
ESD Rating, HBM  
°C  
°C  
°C  
V
2000  
ESD Rating, CDM  
1000  
V
(1) Stresses above those listed under absolute maximum ratings may cause permanent damage to the device. Exposure to absolute  
maximum conditions for extended periods may affect device reliability.  
2
Submit Documentation Feedback  
DAC7822  
www.ti.com  
SBAS374AJUNE 2006REVISED JULY 2007  
ELECTRICAL CHARACTERISTICS  
VDD = +2.5V to +5.5V; IOUT1 = Virtual GND; IOUT2 = 0V; VREF = 10V; TA = full operating temperature. All specifications –40°C  
to +125°C, unless otherwise noted.  
DAC7822  
PARAMETER  
STATIC PERFORMANCE  
Resolution  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12  
Bits  
LSB  
LSB  
nA  
Relative accuracy  
±1  
±1  
Differential nonlinearity  
Output leakage current  
Output leakage current  
Full-scale gain error  
Full-scale tempco(1)  
Data = 000h, TA = +25°C  
±1  
Data = 000h, TA = TMAX  
±15  
±25  
nA  
All ones loaded to DAC register  
±10  
±5  
mV  
ppm/°C  
mV  
Bipolar zero-code error  
Output capacitance  
Circuit configuration as shown in Figure 41  
DAC latches leaded with all 1s  
±25  
25  
30  
pF  
REFERENCE INPUT  
VREF range  
–15  
8
15  
12  
V
VREFA, VREFB, Input resistance  
R1, RFB resistance  
10  
20  
kΩ  
kΩ  
kΩ  
%
17  
17  
25  
R2, R3 resistance  
20  
25  
VREFA to VREFB Input Mismatch  
R2 to R3 Mismatch  
1.6  
0.06  
2.5  
0.18  
%
LOGIC INPUTS AND OUTPUT(1)  
VDD = +2.5V  
VDD = +5V  
VDD = +2.5V  
VDD = +5V  
0.6  
0.8  
V
V
Input low voltage  
Input high voltage  
VIL  
VIH  
2.1  
2.4  
V
V
Input leakage current  
Input capacitance  
IIL  
1
µA  
pF  
CIL  
10  
POWER REQUIREMENTS  
VDD  
2.5  
5.5  
5
V
IDD (normal operation)  
VDD = +4.5V to +5.5V  
VDD = +2.5V to +3.6V  
AC CHARACTERISTICS(1)  
Output voltage settling time  
Reference multiplying BW  
Logic inputs = 0V  
µA  
µA  
µA  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
0.8  
0.4  
5
2.5  
0.2  
µs  
VREF = 7VPP, Data = FFFh  
10  
10  
MHz  
VREF = 0V to 10V,  
Data = 7FFh to 800h to 7FFh  
DAC glitch impulse  
nV-s  
Feedthrough error VOUT/VREF  
Digital feedthrough  
Data = 000h, VREF = 100kHz  
–70  
2
dB  
nV-s  
dB  
Total harmonic distortion  
Output spot noise voltage  
–105  
25  
nV/Hz  
(1) Specified by design and characterization; not production tested.  
3
Submit Documentation Feedback  
DAC7822  
www.ti.com  
SBAS374AJUNE 2006REVISED JULY 2007  
TIMING INFORMATION  
t8  
t1  
t2  
t2  
R/W  
CS  
t9  
t3  
t5  
t4  
t10  
t11  
DACA/DACB  
t6  
t12  
t13  
t7  
DATA  
DATA VALID  
DATA VALID  
TIMING REQUIREMENTS: 2.5V to 5.5V  
At tr = tf = 1ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2; VDD = 2.5V to 5.5V, VREF = 10V,  
IOUT2 = 0V. All specifications –40°C to +125°C, unless otherwise noted.  
DAC7822  
PARAMETER(1)  
TEST CONDITIONS  
R/W to CS setup time  
MIN  
0
TYP  
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t1  
t2  
R/W to CS hold time  
CS low time (write cycle)  
Address setup time  
0
t3  
10  
10  
0
t4  
t5  
Address hold time  
t6  
Data setup time  
6
t7  
Data hold time  
0
t8  
R/W high to CS low  
CS minimum high time  
Address setup time (Read Cycle)  
Address hold time (Read Cycle)  
Data access time  
5
t9  
7
t10  
t11  
t12  
t13  
0
0
5
5
35  
10  
Bus relinquish time  
(1) Ensured by design; not production tested.  
4
Submit Documentation Feedback  
DAC7822  
www.ti.com  
SBAS374AJUNE 2006REVISED JULY 2007  
DEVICE INFORMATION  
RTA PACKAGE  
QFN-40  
(TOP VIEW)  
30  
R1B  
R2B  
R2_3  
R3B  
VREF  
VDD  
CLR  
R/W  
CS  
1
2
R1A  
R2A  
29  
28  
27  
26  
25  
24  
23  
22  
21  
3
B
B
R2_3A  
4
R3A  
5
VREF  
A
DGND  
LDAC  
DAC A/B  
NC  
DAC7822  
6
7
8
9
10  
DB0  
DB11  
TERMINAL FUNCTIONS  
PIN NO.  
PIN NAME  
R1A, R2A, R2_3A, R3A  
DESCRIPTION  
DAC A 4-Quadrant Resistors. Allows a number of configuration modes, including bipolar operation with  
minimum of external components.  
1-4  
5, 26  
6
VREFA, VREF  
DGND  
B
DAC Reference Voltage Input Terminals.  
Digital Ground Pin.  
Load DAC Input. Allows asynchronous or synchronous updates to the DAC output. The DAC is asynchronously  
updated when this signal goes low. Alternatively, if this line is held permanently low, an automatic or  
synchronous update mode is selected whereby the DAC is updated on the rising edge of CS.  
7
LDAC  
8
DAC A/B  
NC  
Selects DAC A or B. Low selects DAC A, and high selects DAC B.  
Not internally connected.  
9, 34-37  
10-21  
DB11 to DB0  
CS  
Parallel Data Bits 11 through 0.  
Chip Select Input; active low. Used in conjuction with R/W to load parallel data to the input latch or to read data  
from the DAC register. Edge sensitive; when pulled high, the DAC data is latched.  
22  
23  
Read/Write. When low, used in conjunction with CS to load parallel data. When high, used in conjunction with  
CS to read back contents of DAC register.  
R/W  
24  
25  
CLR  
VDD  
Active Low Control Input. Clears DAC output and input and DAC registers.  
Positive Power Supply Input. These parts can be operated from a supply of 2.5V to 5.5V.  
DAC B 4-Quadrant Resistors. Allow a number of configuration modes, including bipolar operation with a  
minimum of external components.  
27-30  
31, 40  
32  
R3B, R2_3B, R2B, R1B  
RFBB, RFB  
IOUT2B  
A
External Amplifier Output.  
DAC A Analog Ground. This pin typically should be tied to the analog ground of the system, but can be biased  
to achieve single-supply operation.  
33  
38  
IOUT1B  
IOUT1A  
DAC B Current Output.  
DAC A Current Output.  
DAC A Analog Ground. This pin typically should be tied to the analog ground of the system, but can be biased  
to achieve single-supply operation.  
39  
IOUT2A  
5
Submit Documentation Feedback  
DAC7822  
www.ti.com  
SBAS374AJUNE 2006REVISED JULY 2007  
TYPICAL CHARACTERISTICS: VDD = +5V  
At TA = +25°C, +VDD = +5V, unless otherwise noted.  
Channel A  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = +25°C  
VREF = +10V  
TA = +25°C  
VREF = +10V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
0
0
512 1024 1536 2048 2560 3072 3584 4096  
0
0
0
512 1024 1536 2048 2560 3072 3584 4096  
Digital Input Code  
Digital Input Code  
Figure 1.  
Figure 2.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = -40°C  
VREF = +10V  
TA = -40°C  
VREF = +10V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
512 1024 1536 2048 2560 3072 3584 4096  
512 1024 1536 2048 2560 3072 3584 4096  
Digital Input Code  
Digital Input Code  
Figure 3.  
Figure 4.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = +125°C  
VREF = +10V  
TA = +125°C  
VREF = +10V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
512 1024 1536 2048 2560 3072 3584 4096  
512 1024 1536 2048 2560 3072 3584 4096  
Digital Input Code  
Digital Input Code  
Figure 5.  
Figure 6.  
6
Submit Documentation Feedback  
DAC7822  
www.ti.com  
SBAS374AJUNE 2006REVISED JULY 2007  
TYPICAL CHARACTERISTICS: VDD = +5V (continued)  
At TA = +25°C, +VDD = +5V, unless otherwise noted.  
Channel B  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
1.0  
0.8  
TA = +25°C  
TA = +25°C  
VREF = +10V  
0.8  
V
= +10V  
REF  
0.6  
0.4  
0.6  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
0
0
512 1024 1536 2048 2560 3072 3584 4096  
Digital Input Code  
0
0
0
512 1024 1536 2048 2560 3072 3584 4096  
Digital Input Code  
Figure 7.  
Figure 8.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = -40°C  
TA = -40°C  
VREF = +10V  
VREF = +10V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
512 1024 1536 2048 2560 3072 3584 4096  
512 1024 1536 2048 2560 3072 3584 4096  
Digital Input Code  
Digital Input Code  
Figure 9.  
Figure 10.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = +125°C  
VREF = +10V  
TA = +125°C  
VREF = +10V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
512 1024 1536 2048 2560 3072 3584 4096  
512 1024 1536 2048 2560 3072 3584 4096  
Digital Input Code  
Digital Input Code  
Figure 11.  
Figure 12.  
7
Submit Documentation Feedback  
DAC7822  
www.ti.com  
SBAS374AJUNE 2006REVISED JULY 2007  
TYPICAL CHARACTERISTICS: VDD = +5V (continued)  
At TA = +25°C, +VDD = +5V, unless otherwise noted.  
SUPPLY CURRENT  
vs LOGIC INPUT VOLTAGE  
REFERENCE MULTIPLYING BANDWIDTH  
6
0
-6  
2.0  
0xFFF  
VDD = 5.0V  
0x800  
0x400  
0x200  
0x100  
0x080  
0x040  
0x020  
0x010  
0x008  
0x004  
0x002  
0x001  
1.8  
-12  
-18  
-24  
-30  
-36  
-42  
-48  
-56  
-60  
-66  
-72  
-78  
-84  
-90  
-96  
-102  
1.6  
1.4  
Applied to the CS pin.  
R/W and LDAC held at 0V.  
All other digital inputs  
1.2  
1.0  
held at supply voltage.  
0.8  
0.6  
VDD = 3.0V  
0.4  
VDD = 2.5V  
0.2  
0
0x000  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Logic Input Voltage (V)  
Bandwidth (Hz)  
Figure 13.  
Figure 14.  
MIDSCALE DAC GLITCH  
MIDSCALE DAC GLITCH  
Code 2048 to 2047  
Code 2047 to 2048  
DAC Update  
DAC Update  
Time (50ns/div)  
Time (50ns/div)  
Figure 15.  
Figure 16.  
GAIN ERROR  
vs TEMPERATURE  
DAC SETTLING TIME  
10  
VREF = +10V  
8
6
Small Signal Settling  
4
2
0
Channel B  
Channel A  
-2  
-4  
-6  
-8  
-10  
DAC Update  
Time (20ns/div)  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Figure 17.  
Figure 18.  
8
Submit Documentation Feedback  
DAC7822  
www.ti.com  
SBAS374AJUNE 2006REVISED JULY 2007  
TYPICAL CHARACTERISTICS: VDD = +5V (continued)  
At TA = +25°C, +VDD = +5V, unless otherwise noted.  
SUPPLY CURRENT  
vs TEMPERATURE  
OUTPUT LEAKAGE  
vs TEMPERATURE  
2.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
VREF = +10V  
VREF = +10V  
1.8  
1.6  
1.4  
1.2  
1.0  
VDD = +5.0V  
0.8  
0.6  
0.4  
VDD = +2.5V  
0.2  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 19.  
Figure 20.  
9
Submit Documentation Feedback  
DAC7822  
www.ti.com  
SBAS374AJUNE 2006REVISED JULY 2007  
TYPICAL CHARACTERISTICS: VDD = +2.5V  
At TA = +25°C, +VDD = +2.5V, unless otherwise noted.  
Channel A  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = +25°C  
VREF = +10V  
TA = +25°C  
VREF = +10V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
0
0
0
512 1024 1536 2048 2560 3072 3584 4096  
Digital Input Code  
Digital Input Code  
Figure 21.  
Figure 22.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = -40°C  
VREF = +10V  
TA = -40°C  
VREF = +10V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
512 1024 1536 2048 2560 3072 3584 4096  
Digital Input Code  
Digital Input Code  
Figure 23.  
Figure 24.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = +125°C  
VREF = +10V  
TA = +125°C  
VREF = +10V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
512 1024 1536 2048 2560 3072 3584 4096  
Digital Input Code  
Digital Input Code  
Figure 25.  
Figure 26.  
10  
Submit Documentation Feedback  
DAC7822  
www.ti.com  
SBAS374AJUNE 2006REVISED JULY 2007  
TYPICAL CHARACTERISTICS: VDD = +2.5V (continued)  
At TA = +25°C, +VDD = +2.5V, unless otherwise noted.  
Channel B  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
1.0  
0.8  
TA = +25°C  
TA = +25°C  
VREF = +10V  
0.8  
VREF = +10V  
0.6  
0.4  
0.6  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
0
0
512 1024 1536 2048 2560 3072 3584 4096  
Digital Input Code  
0
0
0
512 1024 1536 2048 2560 3072 3584 4096  
Digital Input Code  
Figure 27.  
Figure 28.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = -40°C  
VREF = +10V  
TA = -40°C  
VREF = +10V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
512 1024 1536 2048 2560 3072 3584 4096  
512 1024 1536 2048 2560 3072 3584 4096  
Digital Input Code  
Digital Input Code  
Figure 29.  
Figure 30.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = +125°C  
VREF = +10V  
TA = +125°C  
VREF = +10V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
512 1024 1536 2048 2560 3072 3584 4096  
512 1024 1536 2048 2560 3072 3584 4096  
Digital Input Code  
Digital Input Code  
Figure 31.  
Figure 32.  
11  
Submit Documentation Feedback  
DAC7822  
www.ti.com  
SBAS374AJUNE 2006REVISED JULY 2007  
TYPICAL CHARACTERISTICS: VDD = +2.5V (continued)  
At TA = +25°C, +VDD = +2.5V, unless otherwise noted.  
MIDSCALE DAC GLITCH  
MIDSCALE DAC GLITCH  
Code 2048 to 2047  
Code 2047 to 2048  
DAC Update  
DAC Update  
Time (50ns/div)  
Time (50ns/div)  
Figure 33.  
Figure 34.  
GAIN ERROR  
vs TEMPERATURE  
OUTPUT LEAKAGE  
vs TEMPERATURE  
10  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
VREF = +10V  
8
VREF = +10V  
6
4
2
0
Channel B  
-2  
-4  
-6  
Channel A  
-8  
-10  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 35.  
Figure 36.  
12  
Submit Documentation Feedback  
DAC7822  
www.ti.com  
SBAS374AJUNE 2006REVISED JULY 2007  
THEORY OF OPERATION  
The DAC7822 is a dual channel, current output, 12-bit, digital-to-analog converter (DAC). The architecture,  
illustrated in Figure 37, is an R-2R ladder configuration with the three MSBs segmented. Each 2R leg of the  
ladder is either switched to IOUT1 or the IOUT2 terminal. The IOUT1 terminal of the DAC is held at a virtual GND  
potential by the use of an external I/V converter op amp. The R-2R ladder is connected to an external reference  
input VREF that determines the DAC full-scale current. The R-2R ladder presents a code-independent load  
impedance to the external reference of 10kΩ ±20%. The external reference voltage can vary over a range of  
–15V to +15V, thus providing bipolar IOUT current operation. By using an external I/V converter and the  
DAC7822 RFB resistor, output voltage ranges of –VREF to VREF can be generated.  
R
R
R
R
VREF  
R1  
2R  
2R  
2R  
2R  
2R  
RFB  
IOUT  
1
2
IOUT  
DB11  
(MSB)  
DB10  
DB9  
DB0  
(LSB)  
Figure 37. Equivalent R-2R DAC Circuit  
When using an external I/V converter and the DAC7822 RFB and R1 resistors, the DAC output voltage is given  
by Equation 1:  
CODE  
4096  
VOUT + * VREF  
 
(1)  
Each DAC code determines the 2R leg switch position to either GND or IOUT. Because the DAC output  
impedance as seen looking into the IOUT1 terminal changes versus code, the external I/V converter noise gain  
also changes. Because of this, the external I/V converter op amp must have a sufficiently low offset voltage such  
that the amplifier offset is not modulated by the DAC IOUT1 terminal impedance change. External op amps with  
large offset voltages can produce INL errors in the transfer function of the DAC7822 as a result of offset  
modulation versus DAC code.  
For best linearity performance of the DAC7822, a low input offset voltage op amp (such as the OPA277) is  
recommended (see Figure 38). This circuit allows VREF swinging from –10V to +10V.  
VDD  
15V  
VDD R1 RFB  
R2  
V+  
IOUT  
1
R2/R3  
R3  
DAC7822  
GND  
VOUT  
OPA277  
IOUT2  
V-  
-15V  
VREF  
Figure 38. Voltage Output Configuration  
13  
Submit Documentation Feedback  
 
 
 
DAC7822  
www.ti.com  
SBAS374AJUNE 2006REVISED JULY 2007  
APPLICATION INFORMATION  
Stability Circuit  
For a current-to-voltage design (see Figure 39), the DAC7822 current output (IOUT) and the connection with the  
inverting node of the op amp should be as short as possible and according to correct printed circuit board (PCB)  
layout design practices. For each code change, there is a step function. If the gain bandwidth product (GBP) of  
the op amp is limited and parasitic capacitance is excessive at the inverting node, then gain peaking is possible.  
Therefore, for circuit stability, a compensation capacitor C1 (1pF to 5pF typ) can be added to the design, as  
shown in Figure 39.  
VDD  
VDD  
VREF  
RFB  
C1  
IOUT1  
VREF  
DAC7822  
U1  
VOUT  
IOUT2  
GND  
Figure 39. Gain Peaking Prevention Circuit with Compensation Capacitor  
Amplifier Selection  
There are many choices and many differences in selecting the proper operational amplifier for a multiplying DAC  
(MDAC). Making the analog signal out of the MDAC is one critical aspect. However, there are also other issues  
to take into account such as amplifier noise, input bias current, and offset voltage, as well as MDAC resolution  
and glitch energy. Table 1 and Table 2 suggest some suitable operational amplifiers for low power, fast settling,  
and high-speed applications. A greater selection of operational amplifiers can be found at www.ti.com/amplifer.  
Table 1. Suitable Precision Operational Amplifiers from Texas Instruments  
IQ  
TOTAL  
SUPPLY  
VOLTAGE  
(V) (min)  
TOTAL  
SUPPLY  
VOLTAGE  
(V) (max)  
PER  
SLEW  
OFFSET  
DRIFT  
(typ)  
CHANNEL GBW RATE  
(max)  
(mA)  
IIB  
CMRR  
(typ)  
(typ)  
(MHz) (V/μs)  
(max) (min)  
PACKAGE/  
LEAD  
PRODUCT  
Low Power  
(μV/°C)  
(pA)  
10  
(dB)  
DESCRIPTION  
SOT5-23,  
PDIP-8,  
SOIC-8  
12V, CMOS, Rail-to-Rail I/O,  
Operational Amplifier  
OPA703  
OPA735  
4
12  
12  
0.2  
1
0.6  
1.5  
4
70  
0.05μV/°C (max),  
Single-Supply CMOS  
Zero-Drift Series Operational  
Amplifier  
SOT5-23,  
SOIC-8  
2.7  
0.75  
1.6  
0.01  
200  
115  
Low Power, Single-Supply,  
Rail-To-Rail Operational  
Amplifiers MicroAmplifier  
Series  
SOT5-23,  
PDIP-8,  
SOIC-8  
OPA344  
OPA348  
2.7  
5.5  
0.25  
1
1
2.5  
10  
80  
SC5-70,  
SOT5-23,  
SOIC-8  
1MHz, 45μA, Rail-to-Rail I/O,  
Single Op Amp  
2.1  
4
5.5  
36  
0.065  
0.825  
1
1
0.5  
0.8  
2
10  
70  
PDIP-8,  
SOIC-8,  
SON-8  
High Precision Operational  
Amplifiers  
OPA277  
0.1  
1000  
130  
Fast Settling  
High-Speed, Single-Supply,  
Rail-to-Rail Operational  
Amplifiers MicroAmplifier  
Series  
MSOP-8,  
PDIP-8,  
SOIC-8  
OPA350  
2.7  
5.5  
7.5  
38  
22  
4
10  
76  
e-trim 20MHz, High  
Precision CMOS Operational  
Amplifier  
MSOP-8,  
SON-8  
OPA727  
OPA227  
4
5
12  
36  
6.5  
3.8  
20  
8
30  
0.6  
0.1  
500  
86  
PDIP-8,  
SOIC-8  
High Precision, Low Noise  
Operational Amplifiers  
2.3  
10000  
120  
14  
Submit Documentation Feedback  
 
 
DAC7822  
www.ti.com  
SBAS374AJUNE 2006REVISED JULY 2007  
Table 2. Suitable High Speed Operational Amplifiers from Texas Instruments (Multiple Channel Options)  
SUPPLY  
VOLTAGE  
(V)  
GBW  
PRODUCT  
(MHz)  
VOLTAGE  
NOISE  
nV/Hz  
GBW  
(typ)  
(MHz)  
SLEW  
RATE  
(V/μs)  
VOS  
(typ)  
(μV)  
VOS  
(max)  
(μV)  
CMRR  
(min)  
(dB)  
PACKAGE/  
LEAD  
PRODUCT  
DESCRIPTION  
Single Channel  
Very Low-Power High Speed  
Rail-To-Rail Input/Output  
Voltage Feedback  
SOT5-23,  
MSOP-8,  
SOIC-8  
THS4281  
±2.7 to ±15  
38  
12.5  
35  
500  
3500  
500  
1000  
Operational Amplifier  
CDIP-8,  
MSOP-8,  
SOIC-8  
100-MHz Low Noise  
Voltage-Feedback Amplifier  
THS4031  
THS4631  
OPA656  
±4.5 to ±16.5  
±4.5 to ±16.5  
±4 to ±6  
200  
210  
230  
1.6  
7
100  
900  
290  
500  
260  
250  
3000  
2000  
2600  
3000  
50pA  
2pA  
8000  
2
SOIC-8,  
MSOP-8  
High Speed FET-Input  
Operational Amplifier  
Wideband, Unity Gain Stable  
FET-Input Operational  
Amplifier  
SOIC-8,  
SOT5-23  
7
5pA  
Unity Gain Stable, Low  
Noise, Voltage Feedback  
Operational Amplifier  
SOIC-8,  
SOT5-23  
OPA820  
Dual Channel  
THS4032  
±2.5 to ±6  
280  
2.5  
240  
200  
1200  
900  
23,000  
100-MHz Low Noise  
Voltage-Feedback Amplifier,  
Dual  
SOIC-8,  
MSOP-8  
±4.5 to ±16.5  
±2 to ±6.3  
200  
220  
1.6  
2
100  
170  
500  
200  
3000  
1200  
3000  
9600  
8000  
SpeedPlus Dual Wideband,  
Low-Noise Operational  
Amplifier  
SOIC-8,  
MSOP-8  
OPA2822  
12000  
Positive Voltage Output Circuit  
As Figure 40 illustrates, in order to generate a positive voltage output, a negative reference is input to the  
DAC7822. This design is suggested instead of using an inverting amp to invert the output as a result of resistor  
tolerance errors. For a negative reference, VOUT and GND of the reference are level-shifted to a virtual ground  
and a –2.5V input to the DAC7822 with an op amp.  
+2.5V Reference  
VDD  
VOUT  
GND  
VIN  
VDD  
RFB  
C1  
VREF  
IOUT1  
DAC7822  
OPA277  
-2.5V  
VOUT  
OPA277  
IOUT2  
GND  
0 < VOUT < +2.5V  
Figure 40. Positive Voltage Output Circuit  
Bipolar Output Section  
The DAC7822, as a 2-quadrant multiplying DAC, can be used to generate a unipolar output. The polarity of the  
full-scale output IOUT is the inverse of the input reference voltage at VREF  
.
Some applications require full 4-quadrant multiplying capabilities or bipolar output swing. As shown in Figure 41,  
external op amp U2 is added as a summing amp and has a gain of 2X that widens the output span to 5V. A  
4-quadrant multiplying circuit is implemented by using a 2.5V offset of the reference voltage to bias U2.  
According to the circuit transfer equation given in Equation 2, input data (D) from code 0 to full-scale produce  
output voltages of VOUT = –2.5V to VOUT = +2.5V.  
D
+ ǒ  
*1Ǔ  
  VREF  
VOUT  
0.5   2N  
(2)  
15  
Submit Documentation Feedback  
 
 
DAC7822  
www.ti.com  
SBAS374AJUNE 2006REVISED JULY 2007  
External resistance mismatching is the significant error in Figure 41.  
VDD  
R1A  
R1  
RFB  
2R  
2R  
RFBA  
(2)  
C1  
R2A  
VIN  
IOUT1A  
IOUT2A  
R2  
(1)  
2R  
DAC7822  
VOUT = -VIN to +VIN  
U2  
R2_3A  
R3  
2R  
R3A  
U1  
AGND  
GND  
AGND  
VREFA  
AGND  
NOTES: (1) Similar configuration for DAC B.  
(2) C1 phase compensation (1pF to 5pF) may be  
required if U2 is a high-speed amplifier.  
Figure 41. Bipolar Output Circuit  
Parallel Interface  
Data are loaded to the DAC7822 as a 12-bit parallel word. The bi-directional bus is controlled with CS and R/W,  
allowing data to be written to or read from the DAC register. To write to the device, CS and R/W are brought  
low, and data available on the data lines fills the input register. The rising edge of CS latches the data and  
transfers the latched data-word to the DAC register. The DAC latches are not transparent; therefore, a write  
sequence must consist of a falling and rising edge on CS in order to ensure that data are loaded to the DAC  
register and its analog equivalent is reflected on the DAC output.  
To read data stored in the device, R/W is held high and CS is brought low. Data are loaded from the DAC  
register back to the input register and out onto the data line, where it can be read back to the controller.  
Cross-Reference  
The DAC7822 has an industry-standard pinout. Table 3 provides the cross-reference information.  
Table 3. Cross-Reference  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESCRIPTION  
PACKAGE  
OPTION  
CROSS-  
REFERENCE PART  
PRODUCT  
INL (LSB) DNL (LSB)  
±1 ±1  
DAC7822  
–40°C to +125°C  
40-Lead QFN  
QFN-40  
AD5405  
16  
Submit Documentation Feedback  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
DAC7822IRTAR  
DAC7822IRTARG4  
DAC7822IRTAT  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
RTA  
40  
40  
40  
40  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
DAC7822  
ACTIVE  
ACTIVE  
ACTIVE  
RTA  
RTA  
RTA  
2000  
250  
Green (RoHS  
& no Sb/Br)  
DAC7822  
DAC7822  
DAC7822  
Green (RoHS  
& no Sb/Br)  
DAC7822IRTATG4  
250  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Mar-2014  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC7822IRTAR  
DAC7822IRTAT  
WQFN  
WQFN  
RTA  
RTA  
40  
40  
2000  
250  
330.0  
180.0  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
1.5  
1.5  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Mar-2014  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC7822IRTAR  
DAC7822IRTAT  
WQFN  
WQFN  
RTA  
RTA  
40  
40  
2000  
250  
336.6  
213.0  
336.6  
191.0  
28.6  
55.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2014, Texas Instruments Incorporated  

相关型号:

DAC7822IRTAR

Dual, 12-Bit, Parallel Input, Multiplying Digital-to-Analog Converter
BB

DAC7822IRTAR

Dual, 12-Bit, Parallel Input, Multiplying Digital-to-Analog Converter
TI

DAC7822IRTAT

Dual, 12-Bit, Parallel Input, Multiplying Digital-to-Analog Converter
BB

DAC7822IRTAT

Dual, 12-Bit, Parallel Input, Multiplying Digital-to-Analog Converter
TI

DAC7822IRTATG4

12-bit, Dual Channel, Parallel Input, Multiplying Digital-to-Analog Converter 40-WQFN -40 to 125
TI

DAC8

Analog Standard Cell 8-Bit Digital to Analog Converter
AMSCO

DAC80

Monolithic 12-Bit DIGITAL-TO-ANALOG CONVERTERS
BB

DAC80-CBI-I

Monolithic 12-Bit DIGITAL-TO-ANALOG CONVERTERS
BB

DAC80-CBI-I

Monolithic 12-Bit DIGITAL-TO-ANALOG CONVERTERS
TI

DAC80-CBI-I-BI

D/A Converter, 12-Bit, 1 Func, Bipolar, CDIP24,
BB

DAC80-CBI-V

Monolithic 12-Bit DIGITAL-TO-ANALOG CONVERTERS
BB

DAC80-CBI-V

Monolithic 12-Bit DIGITAL-TO-ANALOG CONVERTERS
TI