DAC81404 [TI]

DACx1404 Quad, 16-Bit and 12-Bit, High-Voltage-Output DACs With Internal Reference;
DAC81404
型号: DAC81404
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DACx1404 Quad, 16-Bit and 12-Bit, High-Voltage-Output DACs With Internal Reference

文件: 总53页 (文件大小:5757K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
DACx1404 Quad, 16-Bit and 12-Bit, High-Voltage-Output DACs  
With Internal Reference  
1 Features  
3 Description  
Performance:  
The 16-bit DAC81404 and 12-bit DAC61404  
(DACx1404) are pin-compatible, quad-channel,  
buffered, high-voltage-output, digital-to-analog  
converters (DACs). These devices include a low-drift,  
2.5-V internal reference that eliminates the need for  
an external precision reference in most applications.  
The devices are specified monotonic and provide  
high linearity of ±1 LSB INL. Additionally, the devices  
implement per channel sense pins to eliminate IR  
drops and sense up to ±12 V of ground bounce.  
– Specified monotonic at 16-bit resolution  
– INL: ±1 LSB maximum at 16-bit resolution  
– TUE: ±0.05% FSR, maximum  
Integrated output buffer  
– Full-scale output voltage: ±5 V, ±10 V, ±20 V,  
5 V, 10 V, 20 V, 40 V  
– High drive capability: ±15 mA  
– Per channel sense pins  
Integrated 2.5-V precision reference  
– Initial accuracy: ±2.5 mV, maximum  
– Low drift: 10 ppm/°C, maximum  
Reliability features:  
– CRC error check  
– Short circuit limit  
– Fault pin  
50-MHz, SPI-compatible serial interface  
– 4-wire mode, 1.7-V to 5.5-V operation  
– Readback and daisy-chain operations  
Temperature range: –40°C to +125°C  
Package: 5-mm × 5-mm, 32-pin QFN  
A user-selectable output configuration enables full-  
scale bipolar output voltages of ±20 V, ±10 V, and  
±5 V; and full-scale unipolar output voltages of 40 V,  
20 V, 10 V and 5 V. The full-scale output range for  
each DAC channel is independently programmable.  
The integrated DAC output buffers can sink or source  
up to 15 mA, thus limiting the need for additional  
operational amplifiers.  
The DACx1404 incorporate a power-on-reset circuit  
that connects the DAC outputs to ground at power  
up. The outputs remain in this mode until the device  
is properly configured for operation. These devices  
include additional reliability features, such as a CRC  
error check, short-circuit protection, and a thermal  
alarm.  
2 Applications  
Semiconductor test  
Lab and field Instrumentation  
Analog output module  
Data acquisition (DAQ)  
LCD test  
Communication to the devices is performed through  
a 4-wire serial interface that supports operation from  
1.7 V to 5.5 V.  
Servo drive control module  
IOVDD DVDD  
FAULT  
REFIO  
AVDD  
Device Information  
PART NUMBER  
DAC81404  
PACKAGE(1)  
BODY SIZE (NOM)  
Internal Reference  
Power On  
Reset  
REF  
BUF  
VQFN (32)  
5.00 mm × 5.00 mm  
SCLK  
SDIN  
SYNC  
SDO  
DAC61404  
REF  
DAC  
Ladder  
Buffer  
Register  
Active  
Register  
CCOMP[A:D]  
OUT[A:D]  
(1) For all available packages, see the package option  
addendum at the end of the data sheet.  
+
LDAC  
RST  
CLR  
40 k  
AVDD  
SENSEP[A:D]  
SENSEN[A:D]  
40 k  
Channel  
A
40 k  
+
40 k  
Resistor Gain  
Network  
CCOMPX  
REF  
REF  
DAC  
Ladder  
+
-
R
Current Limit  
OUTX  
40 k  
40 k  
40 k  
40 k  
GND  
AGND  
REFGND  
AVSS  
-
+
AVSS  
GND  
SENSEPX  
Resistor Gain  
Network  
Functional Block Diagram  
SENSENX  
REF  
REFGND  
High Current Drive (1 A) Application  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings ....................................... 5  
7.2 ESD Ratings .............................................................. 5  
7.3 Recommended Operating Conditions ........................6  
7.4 Thermal Information ...................................................6  
7.5 Electrical Characteristics ............................................7  
7.6 Timing Requirements: Write, IOVDD: 1.7 V to 2.7  
V .................................................................................13  
7.7 Timing Requirements: Write, IOVDD: 2.7 V to 5.5  
V .................................................................................13  
7.8 Timing Requirements: Read and Daisy Chain,  
7.13 Typical Characteristics............................................17  
8 Detailed Description......................................................25  
8.1 Overview...................................................................25  
8.2 Functional Block Diagram.........................................25  
8.3 Feature Description...................................................26  
8.4 Device Functional Modes..........................................30  
8.5 Programming............................................................ 31  
8.6 Register Map.............................................................34  
9 Application and Implementation..................................41  
9.1 Application Information............................................. 41  
9.2 Typical Application.................................................... 41  
10 Power Supply Recommendations..............................43  
11 Layout...........................................................................43  
11.1 Layout Guidelines................................................... 43  
11.2 Layout Example...................................................... 43  
12 Device and Documentation Support..........................44  
12.1 Documentation Support.......................................... 44  
12.2 Receiving Notification of Documentation Updates..44  
12.3 Support Resources................................................. 44  
12.4 Trademarks.............................................................44  
12.5 Electrostatic Discharge Caution..............................44  
12.6 Glossary..................................................................44  
13 Mechanical, Packaging, and Orderable  
FSDO = 0, IOVDD: 1.7 V to 2.7 V ............................... 14  
7.9 Timing Requirements: Read and Daisy Chain,  
FSDO = 1, IOVDD: 1.7 V to 2.7 V ............................... 14  
7.10 Timing Requirements: Read and Daisy Chain,  
FSDO = 0, IOVDD: 2.7 V to 5.5 V ............................... 15  
7.11 Timing Requirements: Read and Daisy Chain,  
FSDO = 1, IOVDD: 2.7 V to 5.5 V ............................... 15  
7.12 Timing Diagrams.....................................................16  
Information.................................................................... 44  
4 Revision History  
Changes from Revision * (November 2020) to Revision A (May 2021)  
Page  
Added DAC61404 and associated content.........................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
5 Device Comparison Table  
DEVICE  
RESOLUTION  
16-bit  
DAC81404  
DAC61404  
12-bit  
6 Pin Configuration and Functions  
OUTA  
CCOMPA  
SENSEPA  
SENSENA  
SENSENB  
SENSEPB  
CCOMPB  
OUTB  
1
2
3
4
5
6
7
8
24  
OUTD  
23  
22  
21  
20  
19  
18  
17  
CCOMPD  
SENSEPD  
SENSEND  
SENSENC  
SENSEPC  
CCOMPC  
OUTC  
Thermal pad  
Not to scale  
Figure 6-1. RHB (32-pin VQFN) Package, Top View  
Table 6-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
1
OUTA  
Output  
Input  
Channel-A analog output voltage.  
Channel-A external compensation capacitor connection.  
The addition of an external capacitor improves the output buffer stability with high capacitive  
loads at the OUTA pin by reducing the bandwidth of the output amplifier at the expense of  
increased settling time.  
2
CCOMPA  
3
4
5
6
SENSEPA  
SENSENA  
SENSENB  
SENSEPB  
Input  
Input  
Input  
Input  
Channel-A sense pin for the positive voltage output load connection.  
Channel-A sense pin for the negative voltage output load connection.  
Channel-B sense pin for the negative voltage output load connection.  
Channel-B sense pin for the positive voltage output load connection.  
Channel-B external compensation capacitor connection pin.  
The addition of an external capacitor improves the output buffer stability with high capacitive  
loads at the OUTB pin by reducing the bandwidth of the output amplifier at the expense of  
increased settling time.  
7
8
9
CCOMPB  
OUTB  
Input  
Output  
Output  
Channel-B analog output voltage.  
Serial interface data output.  
The SDO pin must be enabled before operation by setting the SDO-EN bit. Data are clocked out  
of the input shift register on either rising or falling edges of the SCLK pin as specified by the  
FSDO bit (rising edge by default).  
SDO  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DAC81404 DAC61404  
 
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
Table 6-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
10  
SCLK  
Input  
Input  
Serial interface clock.  
Serial interface data input. Data are clocked into the input shift register on each falling edge of the  
SCLK pin.  
11  
12  
13  
SDIN  
SYNC  
LDAC  
Active low serial data enable. This input is the frame synchronization signal for the serial data.  
The serial interface input shift register is enabled when SYNC is low.  
Input  
Input  
Active low synchronization signal. The DAC outputs of those channels configured in synchronous  
mode are updated simultaneously when the LDAC pin is low. Connect to IOVDD if unused.  
14  
15  
GND  
Ground  
Power  
Digital ground reference point.  
IOVDD  
IO supply voltage. This pin sets the digital I/O operating voltage for the device.  
Active-low clear input. Logic low on this pin clears all outputs to their clear code. Connect to  
IOVDD if unused.  
16  
17  
CLR  
Input  
OUTC  
Output  
Channel-C analog output voltage.  
Channel-C external compensation capacitor connection pin.  
The addition of an external capacitor improves the output buffer stability with high capacitive  
loads at the OUTC pin by reducing the bandwidth of the output amplifier at the expense of  
increased settling time.  
18  
CCOMPC  
Input  
19  
20  
21  
22  
SENSEPC  
SENSENC  
SENSEND  
SENSEPD  
Input  
Input  
Input  
Input  
Channel-C sense pin for the positive voltage output load connection.  
Channel-C sense pin for the negative voltage output load connection.  
Channel-D sense pin for the negative voltage output load connection.  
Channel-D sense pin for the positive voltage output load connection.  
Channel-D external compensation capacitor connection pin.  
The addition of an external capacitor improves the output buffer stability with high capacitive  
loads at the OUTD pin by reducing the bandwidth of the output amplifier at the expense of  
increased settling time.  
23  
CCOMPD  
Input  
24  
25  
OUTD  
Output  
Channel-D analog output voltage.  
REFGND  
Ground  
Ground reference point for the internal reference.  
Reference input to the device when operating with an external reference. Reference output  
voltage pin when using the internal reference. Connect a 150-nF capacitor to ground.  
26  
REFIO  
Input/Output  
27  
28  
29  
30  
AVSS  
AVDD  
AGND  
DVDD  
Power  
Power  
Ground  
Power  
Output buffers negative supply voltage.  
Output buffers positive supply voltage.  
Analog ground reference point.  
Digital and analog supply voltage.  
FAULT is an open-drain, fault-condition output. An external 10-kΩ pullup resistor to a voltage no  
higher than IOVDD is required.  
31  
32  
FAULT  
RST  
Output  
Input  
Active-low reset input. Logic low on this pin causes the device to issue a power-on-reset event.  
Thermal  
Pad  
The thermal pad is located on the package underside. The thermal pad should be connected to  
any internal PCB ground plane through multiple vias for good thermal performance.  
Thermal pad  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
UNIT  
DVDD to GND  
IOVDD to GND  
6
–0.3  
6
44  
Supply voltage  
AVDD to GND  
–0.3  
V
AVSS to GND  
–22  
0.3  
AVDD to AVSS  
–0.3  
44  
VOUTX to GND  
AVSS – 0.3  
AVSS – 0.3  
AVSS – 0.3  
–0.3  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
DVDD + 0.3  
+0.3  
VSENSEPX to GND  
VSENSENX to GND  
VREFIO to GND  
Pin voltage  
V
VREFGND to GND  
Digital inputs to GND  
SDO to GND  
–0.3  
–0.3  
IOVDD + 0.3  
IOVDD + 0.3  
6
–0.3  
FAULT to GND  
Current into any digital pin  
–0.3  
Input current  
–10  
10  
mA  
°C  
TJ  
Junction temperature  
Storage temperature  
–40  
150  
Tstg  
–60  
150  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per  
JEDEC specification JESD22-C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DAC81404 DAC61404  
 
 
 
 
 
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
5.5  
5.5  
41.5  
0
UNIT  
DVDD to GND  
IOVDD to GND  
1.7  
Supply voltage  
AVDD to GND  
AVSS to GND  
AVDD to AVSS  
VSENSENX to GND  
4.5  
V
–21.5  
4.5  
43  
Pin voltage  
–12  
–40  
12  
V
TA  
Ambient temperature  
125  
°C  
7.4 Thermal Information  
DACx1404  
THERMAL METRIC(1)  
RHB (VQFN)  
32 PINS  
29.3  
UNIT  
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
/W  
/W  
/W  
/W  
/W  
/W  
RΘJC(top)  
RΘJB  
17.0  
9.5  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ΨJB  
9.5  
RΘJC(bot)  
1.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
 
 
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.5 Electrical Characteristics  
all minimum/maximum specifications at TA = –40°C to +125°C and all typical specifications at TA = 25°C, AVDD = 4.5 V to  
41.5 V, AVSS = –21.5 V to 0 V, DVDD = 5.0 V, internal reference enabled, IOVDD = 1.7 V, VSENSENX = 0 V, CCOMPX floating,  
DAC outputs unloaded, and digital inputs at IOVDD or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
STATIC PERFORMANCE  
DAC81404  
16  
12  
Resolution  
Bits  
DAC61404  
DAC81404. All ranges, except 0-V to  
40-V and overranges  
–1  
1
INL  
Relative accuracy(1)  
LSB  
LSB  
DAC81404. 0-V to 40-V range  
DAC61404  
–2  
–1  
2
1
DNL  
TUE  
Differential nonlinearity(1)  
Total unadjusted error(1)  
–1  
1
Unipolar ranges, AVSS = 0 V  
–0.07  
0.07  
Unipolar ranges, AVSS = 0 V,  
0°C ≤ TA ≤ 50°  
–0.05  
–0.05  
–0.05  
0.05  
0.05  
0.05  
%FSR  
Bipolar ranges, –21.5 V ≤ AVSS < 0 V  
Unipolar ranges, AVSS = 0 V  
Bipolar ranges, –21.5 V ≤ AVSS < 0 V  
Offset error(1)  
%FSR  
Unipolar ranges, AVSS = 0 V  
Bipolar ranges, –21.5 V ≤ AVSS < 0 V  
Offset error temperature coefficient  
±2  
±2  
ppmFSR/°C  
All unipolar ranges, AVSS = 0 V  
0.15  
0.05  
Zero-code (negative full scale) error  
%FSR  
All bipolar ranges,  
–21.5 V ≤ AVSS < 0 V  
All unipolar ranges, AVSS = 0 V  
All bipolar ranges,  
–21.5 V ≤ AVSS < 0 V  
Zero-code (negative full scale) error  
temperature coefficient  
ppm of  
FSR/°C  
Full-scale error(2)  
–0.06  
–0.06  
0.06  
0.06  
%FSR  
Full-scale error temperature  
coefficient(2)  
ppm of  
FSR/°C  
±3  
±2  
Gain error(1)  
%FSR  
ppm of  
FSR/°C  
Gain error temperature coefficient  
All bipolar ranges,  
–21.5 V ≤ AVSS < 0 V  
Bipolar-zero (midscale) error  
–0.03  
0.03  
%FSR  
Bipolar-zero (midscale) error  
temperature coefficient  
All bipolar ranges,  
–21.5 V ≤ AVSS < 0 V  
ppm of  
FSR/°C  
±2  
±6  
TA = 40°C, DAC code = full scale,  
1000 hours  
Output voltage drift over time  
ppm FSR  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DAC81404 DAC61404  
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.5 Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = –40°C to +125°C and all typical specifications at TA = 25°C, AVDD = 4.5 V to  
41.5 V, AVSS = –21.5 V to 0 V, DVDD = 5.0 V, internal reference enabled, IOVDD = 1.7 V, VSENSENX = 0 V, CCOMPX floating,  
DAC outputs unloaded, and digital inputs at IOVDD or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT CHARACTERISTICS  
0
0
5
6
20% overrange  
0
10  
12  
20  
24  
40  
5
20% overrange  
20% overrange  
0
0
0
VOUT  
Output voltage  
V
0
-5  
20% overrange  
20% overrange  
-6  
6
–10  
–12  
–20  
10  
12  
20  
to AVSS and AVDD  
−10 mA ≤ load current ≤ 10 mA  
1.25  
1.5  
Output voltage headroom and  
footroom  
V
to AVSS and AVDD  
,
5.5 V < AVDD ≤ 41.5 V,  
−15 mA ≤ load current ≤ 15 mA  
Full-scale output shorted to AVSS  
40  
40  
Zero-scale output shorted to AVDD  
5.5 V < AVDD ≤ 41.5 V,  
,
,
Short circuit current(3)  
mA  
Zero-scale output shorted to AVDD  
4.5 V ≤ AVDD ≤ 5.5 V  
25  
50  
DAC at midscale,  
−15 mA ≤ load current ≤ 15 mA  
Load regulation  
µV/mA  
nF  
RLOAD = open, CCOMPX pin left floating  
0
2
1
CL  
Capacitive load(4)  
RLOAD = open,  
CCOMPX = 500 pF ± 10% to VOUTX  
µF  
5.5 V < AVDD ≤ 41.5 V  
15  
10  
Load current(4)  
mA  
Ω
4.5 V ≤ AVDD ≤ 5.5 V  
DAC code at midscale, DAC unloaded  
DAC code at full scale, DAC unloaded  
0.05  
0.05  
VOUT dc output impedance  
DAC code at negative full scale,  
DAC unloaded  
25  
DAC code at midscale, 10-V span  
DAC disabled  
55  
45  
45  
45  
VSENSEP dc output impedance  
VSENSEN dc output impedance  
kΩ  
kΩ  
DAC code at midscale, 10-V span  
DAC disabled  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.5 Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = –40°C to +125°C and all typical specifications at TA = 25°C, AVDD = 4.5 V to  
41.5 V, AVSS = –21.5 V to 0 V, DVDD = 5.0 V, internal reference enabled, IOVDD = 1.7 V, VSENSENX = 0 V, CCOMPX floating,  
DAC outputs unloaded, and digital inputs at IOVDD or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC PERFORMANCE  
5-V span, 1/4 to 3/4 scale and 3/4 to  
1/4 scale, settling time to ±2 LSB  
7
8
10-V span, 1/4 to 3/4 scale and 3/4 to  
1/4 scale, settling time to ±2 LSB  
µs  
20-V span, 1/4 to 3/4 scale and 3/4 to  
1/4 scale, settling time to ±2 LSB  
12  
22  
40-V span, 1/4 to 3/4 scale and 3/4 to  
1/4 scale, settling time to ±2 LSB  
5-V span, 1/4 to 3/4 scale and 3/4 to  
1/4 scale, settling time to ±2 LSB,  
CL = 1 µF, CCOMPX = 500 pF to VOUTX  
0.6  
0.6  
0.6  
1.2  
Output voltage settling time  
10-V span, 1/4 to 3/4 scale and 3/4 to  
1/4 scale, settling time to ±2 LSB,  
CL = 1 µF, CCOMPX = 500 pF to VOUTX  
ms  
20-V span, 1/4 to 3/4 scale and 3/4 to  
1/4 scale, settling time to ±2 LSB,  
CL = 1 µF, CCOMPX = 500 pF to VOUTX  
40-V span, 1/4 to 3/4 scale and 3/4 to  
1/4 scale, settling time to ±2 LSB,  
CL = 1 µF, CCOMPX = 500 pF to VOUTX  
0-V to 5-V range (10% to 90% of full-  
scale range)  
0.8  
4
All other output ranges except 40-V  
span (10% to 90% of full-scale range)  
Slew rate  
V/µs  
0-V to 5-V range, CL = 1 µF,  
CCOMPX = 500 pF to VOUTX  
0.04  
0.04  
All other ranges, CL = 1 µF,  
CCOMPX = 500 pF to VOUTX  
AVSS and AVDD ramped symmetrically,  
ramp rate = 18 V/ms, output unloaded,  
internal reference  
Power-on glitch magnitude  
0.1  
0.35  
25  
V
V
AVSS and AVDD ramped, output  
unloaded, internal reference, gain = 1x  
Output enable glitch magnitude  
0.1 Hz to 10 Hz, DAC code at  
midscale, 5-V span, external reference  
= 2.5 V, output unloaded  
Output noise  
µVPP  
0.1 Hz to 10 Hz, DAC code at  
midscale, 5-V span, internal reference  
= 2.5 V, output unloaded  
30  
1 kHz, DAC code at midscale, 5-  
V span, output unloaded, external  
reference  
115  
Output noise density  
nV/√Hz  
10 kHz, DAC code at midscale, 5-  
V span, output unloaded, external  
reference  
105  
88  
1-kHz sine wave on VOUTX, output  
unloaded, DAC update rate = 400 kHz  
THD  
Total harmonic distortion  
dB  
dB  
VOUTX = 0 V (midscale), output  
unloaded, ±10-V output,  
frequency = 60 Hz,  
PSRR-AC  
Power supply ac rejection ratio  
75  
amplitude 200 mVPP  
,
superimposed on AVDD, DVDD or AVSS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.5 Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = –40°C to +125°C and all typical specifications at TA = 25°C, AVDD = 4.5 V to  
41.5 V, AVSS = –21.5 V to 0 V, DVDD = 5.0 V, internal reference enabled, IOVDD = 1.7 V, VSENSENX = 0 V, CCOMPX floating,  
DAC outputs unloaded, and digital inputs at IOVDD or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOUTX = 0 V (midscale), ±10-V output,  
DVDD = 5 V, AVDD = 15 V ± 20%,  
AVSS = –15 V, output unloaded  
5
µV/V  
VOUTX = 0 V (midscale), ±10-V output,  
DVDD = 5 V, AVDD = 15 V,  
PSRR-DC  
Power supply dc rejection ratio  
10  
AVSS = –15 V ± 20%, output unloaded  
VOUTX = 0 V (midscale), ±10-V output,  
DVDD = 5 V ± 5%, AVDD = 15 V,  
AVSS = –15 V, output unloaded  
0.2  
mV/V  
nV-s  
1-LSB change around midscale,  
0-V to 5-V range, output unloaded  
1
2
2
1-LSB change around midscale,  
0-V to 10-V range, output unloaded  
Code change glitch impulse  
1-LSB change around midscale,  
–5-V to +5-V range, output unloaded  
1-LSB change around midscale,  
–10-V to +10-V range, output  
unloaded  
4
1-LSB change around midscale,  
0-V to 5-V, 0-V to 10-V, 5-V to +5-  
V and –10-V to +10-V ranges, output  
unloaded  
Code change glitch amplitude  
±10  
mV  
10-V span, full-scale swing on all  
other channel, measured channel at  
midscale, output unloaded  
Channel-to-channel ac crosstalk  
Channel-to-channel dc crosstalk  
1
1
nV-s  
LSB  
10-V span, full-scale swing on all  
other channel, measured channel at  
midscale, output unloaded  
10-V span, full-scale swing on all  
other input buffer, measured channel  
at midscale, output unloaded  
Digital crosstalk  
1
1
nV-s  
nV-s  
DAC code at midscale, fSCLK = 1 MHz,  
output unloaded  
Digital feedthrough  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.5 Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = –40°C to +125°C and all typical specifications at TA = 25°C, AVDD = 4.5 V to  
41.5 V, AVSS = –21.5 V to 0 V, DVDD = 5.0 V, internal reference enabled, IOVDD = 1.7 V, VSENSENX = 0 V, CCOMPX floating,  
DAC outputs unloaded, and digital inputs at IOVDD or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EXTERNAL REFERENCE INPUT  
VREFIO  
Reference input voltage  
Reference input current  
Reference input impedance  
Reference input capacitance  
2.49  
2.5  
50  
50  
90  
2.51  
V
µA  
kΩ  
pF  
INTERNAL REFERENCE  
Reference output voltage  
TA = 25°C  
2.4975  
2.5025  
10  
V
ppm/°C  
Ω
Reference output drift  
5
0.15  
12  
Reference output impedance  
Reference output noise  
0.1 Hz to 10 Hz  
µVPP  
nV/√Hz  
mA  
Reference output noise density  
Reference load current  
10 kHz, VREFIO = 10 nF  
240  
5
Reference load regulation  
Reference line regulation  
Reference output drift over time  
Source  
120  
100  
±300  
±125  
±25  
µV/mA  
µV/V  
µV  
TA = 40°C, 1000 hours  
First cycle  
Reference thermal hysteresis  
µV  
Additional cycle  
DIGITAL INPUTS AND OUTPUTS  
0.7 × IO  
VDD  
VIH  
VIL  
Input high voltage  
Input low voltage  
V
V
0.3  
× IOVDD  
Input current  
±2  
2
µA  
pF  
Input pin capacitance  
IOVDD  
VOH  
VOL  
SDO, high-level output voltage  
SDO load current = 0.2 mA  
V
0.2  
SDO, low-level output voltage  
FAULT, low-level output voltage  
Output pin capacitance  
SDO load current = 0.2 mA  
FAULT load current = 10 mA  
0.4  
0.4  
V
V
5
pF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.5 Electrical Characteristics (continued)  
all minimum/maximum specifications at TA = –40°C to +125°C and all typical specifications at TA = 25°C, AVDD = 4.5 V to  
41.5 V, AVSS = –21.5 V to 0 V, DVDD = 5.0 V, internal reference enabled, IOVDD = 1.7 V, VSENSENX = 0 V, CCOMPX floating,  
DAC outputs unloaded, and digital inputs at IOVDD or GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER REQUIREMENTS  
Normal mode, internal reference  
Normal mode, external reference  
Power-down mode  
8
7
mA  
AIDD  
DIDD  
AISS  
AVDD supply current(5)  
DVDD supply current(5)  
AVSS supply current(5)  
IOVDD supply current(5)  
10  
8
µA  
Digital interface static  
mA  
Normal mode, internal reference  
Normal mode, external reference  
Power-down mode  
–8  
–7  
mA  
–10  
µA  
µA  
IIOVDD  
SCLK toggling at 1 MHz  
100  
(1) End point fit between codes. 16-bit: 512 to 65024 for AVDD ≥ 5.5 V, 512 to 63488 for AVDD ≤ 5.5 V, 0.2-V headroom between VREFIO  
and AVDD; 12-bit: 32 to 4064 for AVDD ≥ 5.5 V, 32 to 3968 for AVDD ≤ 5.5 V, 0.2-V headroom between VREFIO and AVDD  
.
(2) Full-scale code written to the DAC for AVDD ≥ 5.5 V. 16-bit: code 63488 written to the DAC for AVDD ≤ 5.5 V; 12-bit: code 3968 written  
to the DAC for AVDD ≤ 5.5 V.  
(3) Temporary overload condition protection. junction temperature can be exceeded during current limit. operation above the specified  
maximum junction temperature may impair device reliability.  
(4) Specified by design and characterization, not production tested.  
(5) AVDD = +15 V, AVSS = –15 V, DVDD = 5 V, SPI static, 10-V output span, all DAC at full scale, VOUTX unloaded.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
 
 
 
 
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.6 Timing Requirements: Write, IOVDD: 1.7 V to 2.7 V  
all specifications at TA = –40°C to +125°C, input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed  
from a voltage level of (VIL + VIH) / 2, SDO loaded with 20 pF, 1.7 V ≤ IOVDD < 2.7 V  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency  
SCLK high time  
SCLK low time  
SDIN setup  
25  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
20  
20  
10  
10  
30  
10  
50  
2.4  
4
ns  
ns  
tSDIH  
SDIN hold  
ns  
tCSS  
SYNC to SCLK falling edge setup  
SCLK falling edge to SYNC rising edge  
SYNC high time  
ns  
tCSH  
ns  
tCSHIGH  
tDACWAIT  
tBCASTWAIT  
tLDACAL  
tLDACW  
tCLRW  
ns  
Sequential DAC update wait time  
Broadcast DAC update wait time  
SYNC rising edge to LDAC falling edge  
LDAC low time  
µs  
µs  
80  
20  
20  
20  
ns  
ns  
CLR low time  
ns  
tRSTW  
RST low time  
ns  
7.7 Timing Requirements: Write, IOVDD: 2.7 V to 5.5 V  
all specifications at TA = –40°C to +125°C, input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed  
from a voltage level of (VIL + VIH) / 2, SDO loaded with 20 pF, 2.7 V ≤ IOVDD ≤ 5.5 V  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency  
SCLK high time  
SCLK low time  
SDIN setup  
50  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
10  
10  
5
ns  
ns  
tSDIH  
SDIN hold  
5
ns  
tCSS  
SYNC to SCLK falling edge setup  
SCLK falling edge to SYNC rising edge  
SYNC high time  
15  
5
ns  
tCSH  
ns  
tCSHIGH  
tDACWAIT  
tBCASTWAIT  
tLDACAL  
tLDACW  
tCLRW  
25  
2.4  
4
ns  
Sequential DAC update wait time  
Broadcast DAC update wait time  
SYNC rising edge to LDAC falling edge  
LDAC low time  
µs  
µs  
40  
20  
20  
20  
ns  
ns  
CLR low time  
ns  
tRSTW  
RST low time  
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DAC81404 DAC61404  
 
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.8 Timing Requirements: Read and Daisy Chain, FSDO = 0, IOVDD: 1.7 V to 2.7 V  
all specifications at TA = –40°C to +125°C, input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed  
from a voltage level of (VIL + VIH) / 2, SDO loaded with 20 pF, 1.7 V ≤ IOVDD < 2.7 V  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency  
SCLK high time  
SCLK low time  
SDIN setup  
12.5  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
33  
33  
10  
10  
30  
10  
50  
0
ns  
ns  
tSDIH  
SDIN hold  
ns  
tCSS  
SYNC to SCLK falling edge setup  
SCLK falling edge to SYNC rising edge  
SYNC high time  
ns  
tCSH  
ns  
tCSHIGH  
tSDOZ  
ns  
SDO driven to tri-state mode  
30  
30  
ns  
tSDODLY  
SDO output delay from SCLK rising edge  
0
ns  
7.9 Timing Requirements: Read and Daisy Chain, FSDO = 1, IOVDD: 1.7 V to 2.7 V  
all specifications at TA = –40°C to +125°C, input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed  
from a voltage level of (VIL + VIH) / 2, SDO loaded with 20 pF, 1.7 V ≤ IOVDD < 2.7 V  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency  
SCLK high time  
SCLK low time  
SDIN setup  
25  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
20  
20  
10  
10  
30  
10  
50  
0
ns  
ns  
tSDIH  
SDIN hold  
ns  
tCSS  
SYNC to SCLK falling edge setup  
SCLK falling edge to SYNC rising edge  
SYNC high time  
ns  
tCSH  
ns  
tCSHIGH  
tSDOZ  
ns  
SDO driven to tri-state mode  
30  
30  
ns  
tSDODLY  
SDO output delay from SCLK rising edge  
0
ns  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
 
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.10 Timing Requirements: Read and Daisy Chain, FSDO = 0, IOVDD: 2.7 V to 5.5 V  
all specifications at TA = –40°C to +125°C, input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed  
from a voltage level of (VIL + VIH) / 2, SDO loaded with 20 pF, 2.7 V ≤ IOVDD ≤ 5.5 V  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency  
SCLK high time  
SCLK low time  
SDIN setup  
20  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
25  
25  
5
ns  
ns  
tSDIH  
SDIN hold  
5
ns  
tCSS  
SYNC to SCLK falling edge setup  
SCLK falling edge to SYNC rising edge  
SYNC high time  
20  
5
ns  
tCSH  
ns  
tCSHIGH  
tSDOZ  
25  
0
ns  
SDO driven to tri-state mode  
20  
20  
ns  
tSDODLY  
SDO output delay from SCLK rising edge  
0
ns  
7.11 Timing Requirements: Read and Daisy Chain, FSDO = 1, IOVDD: 2.7 V to 5.5 V  
all specifications at TA = –40°C to +125°C, input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed  
from a voltage level of (VIL + VIH) / 2, SDO loaded with 20 pF, 2.7 V ≤ IOVDD ≤ 5.5 V  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency  
SCLK high time  
SCLK low time  
SDIN setup  
35  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
14  
14  
5
ns  
ns  
tSDIH  
SDIN hold  
5
ns  
tCSS  
SYNC to SCLK falling edge setup  
SCLK falling edge to SYNC rising edge  
SYNC high time  
20  
5
ns  
tCSH  
ns  
tCSHIGH  
tSDOZ  
25  
0
ns  
SDO driven to tri-state mode  
20  
20  
ns  
tSDODLY  
SDO output delay from SCLK rising edge  
0
ns  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DAC81404 DAC61404  
 
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.12 Timing Diagrams  
tCSS  
tCSH  
tCSHIGH  
SYNC  
SCLK  
SDIN  
tSCLKLOW  
tSCLKHIGH  
tSDIH  
tSDIS  
Bit 23  
Bit 1  
Bit 0  
LDAC(A)  
LDAC(B)  
CLR  
tCLRW  
tLDACAL tLDACW  
tRSTW  
RST  
A. Asynchronous update.  
B. Synchronous update.  
Figure 7-1. Serial Interface Write Timing Diagram  
tCSHIGH  
tCSS  
tCSH  
SYNC  
SCLK  
tSCLKLOW  
tSCLKHIGH  
FIRST READ COMMAND  
Bit 22  
ANY COMMAND  
Bit 22  
SDIN  
SDO  
Bit 23  
Bit 0  
Bit 23  
Bit 23  
Bit 0  
tSDIH  
tSDIS  
DATA FROM FIRST  
READ COMMAND  
Bit 22  
Bit 0  
tSDOZ  
tSDODLY  
Figure 7-2. Serial Interface Read Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.13 Typical Characteristics  
at TA = 25°C, DVDD = 5.0 V, IOVDD = 1.8 V, internal reference enabled, unipolar ranges: AVSS = 0 V and AVDD ≥ VMAX + 1.5  
V for the DAC range, bipolar ranges: AVSS ≤ VMIN − 1.5 V and AVDD ≥ VMAX + 1.5 V for the DAC range, and DAC outputs  
unloaded (unless otherwise noted)  
Figure 7-3. DAC81404 INL vs Digital Input Code  
(Bipolar Outputs)  
Figure 7-4. DAC81404 INL vs Digital Input Code  
(Unipolar Outputs)  
Figure 7-5. DAC81404 DNL vs Digital Input Code  
(Bipolar Outputs)  
Figure 7-6. DAC81404 DNL vs Digital Input Code  
(Unipolar Outputs)  
Figure 7-7. DAC81404 TUE vs Digital Input Code  
(Bipolar Outputs)  
Figure 7-8. DAC81404 TUE vs Digital Input Code  
(Unipolar Outputs)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DAC81404 DAC61404  
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.13 Typical Characteristics (continued)  
at TA = 25°C, DVDD = 5.0 V, IOVDD = 1.8 V, internal reference enabled, unipolar ranges: AVSS = 0 V and AVDD ≥ VMAX + 1.5  
V for the DAC range, bipolar ranges: AVSS ≤ VMIN − 1.5 V and AVDD ≥ VMAX + 1.5 V for the DAC range, and DAC outputs  
unloaded (unless otherwise noted)  
Figure 7-9. DAC61404 INL vs Digital Input Code  
(Bipolar Outputs)  
Figure 7-10. DAC61404 INL vs Digital Input Code  
(Unipolar Outputs)  
Figure 7-11. DAC61404 DNL vs Digital Input Code  
(Bipolar Outputs)  
Figure 7-12. DAC61404 DNL vs Digital Input Code  
(Unipolar Outputs)  
Figure 7-13. DAC61404 TUE vs Digital Input Code  
(Bipolar Outputs)  
Figure 7-14. DAC61404 TUE vs Digital Input Code  
(Unipolar Outputs)  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.13 Typical Characteristics (continued)  
at TA = 25°C, DVDD = 5.0 V, IOVDD = 1.8 V, internal reference enabled, unipolar ranges: AVSS = 0 V and AVDD ≥ VMAX + 1.5  
V for the DAC range, bipolar ranges: AVSS ≤ VMIN − 1.5 V and AVDD ≥ VMAX + 1.5 V for the DAC range, and DAC outputs  
unloaded (unless otherwise noted)  
Figure 7-15. DAC81404 INL vs Temperature  
Figure 7-17. DAC61404 INL vs Temperature  
Figure 7-19. TUE vs Temperature  
Figure 7-16. DAC81404 DNL vs Temperature  
Figure 7-18. DAC61404 DNL vs Temperature  
Figure 7-20. Unipolar Offset Error vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.13 Typical Characteristics (continued)  
at TA = 25°C, DVDD = 5.0 V, IOVDD = 1.8 V, internal reference enabled, unipolar ranges: AVSS = 0 V and AVDD ≥ VMAX + 1.5  
V for the DAC range, bipolar ranges: AVSS ≤ VMIN − 1.5 V and AVDD ≥ VMAX + 1.5 V for the DAC range, and DAC outputs  
unloaded (unless otherwise noted)  
Figure 7-22. Bipolar Zero Code Error vs Temperature  
Figure 7-21. Unipolar Zero Code Error vs Temperature  
Figure 7-23. Bipolar Zero Error vs Temperature  
Figure 7-24. Gain Error vs Temperature  
Figure 7-26. Supply Current (DIDD  
)
Figure 7-25. Full-Scale Error vs Temperature  
vs Digital Input Code  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.13 Typical Characteristics (continued)  
at TA = 25°C, DVDD = 5.0 V, IOVDD = 1.8 V, internal reference enabled, unipolar ranges: AVSS = 0 V and AVDD ≥ VMAX + 1.5  
V for the DAC range, bipolar ranges: AVSS ≤ VMIN − 1.5 V and AVDD ≥ VMAX + 1.5 V for the DAC range, and DAC outputs  
unloaded (unless otherwise noted)  
Figure 7-27. Supply Current (AIDD, AISS  
vs Digital Input Code  
)
Figure 7-28. Supply Current (IIOVDD  
)
vs Supply Voltage  
DAC range: ±20 V  
DAC range: ±20 V  
Figure 7-29. Supply Current vs Temperature  
Figure 7-30. Power-Down Current vs Temperature  
Figure 7-32. Source and Sink Capability  
Figure 7-31. Headroom and Footroom from Supply  
vs Output Current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.13 Typical Characteristics (continued)  
at TA = 25°C, DVDD = 5.0 V, IOVDD = 1.8 V, internal reference enabled, unipolar ranges: AVSS = 0 V and AVDD ≥ VMAX + 1.5  
V for the DAC range, bipolar ranges: AVSS ≤ VMIN − 1.5 V and AVDD ≥ VMAX + 1.5 V for the DAC range, and DAC outputs  
unloaded (unless otherwise noted)  
DAC range: ±10 V  
DAC range: ±10 V  
Figure 7-33. Full-Scale Settling Time, Rising Edge  
Figure 7-34. Full-Scale Settling Time, Falling Edge  
DAC range: ±20 V  
DAC range: ±10 V  
Figure 7-35. DAC Output Enable Glitch  
Figure 7-36. Glitch Impulse, 1 LSB Step,  
Rising Edge  
DAC range: ±10 V  
Figure 7-37. Glitch Impulse, 1 LSB Step,  
Figure 7-38. Power-Up Response  
Falling Edge  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.13 Typical Characteristics (continued)  
at TA = 25°C, DVDD = 5.0 V, IOVDD = 1.8 V, internal reference enabled, unipolar ranges: AVSS = 0 V and AVDD ≥ VMAX + 1.5  
V for the DAC range, bipolar ranges: AVSS ≤ VMIN − 1.5 V and AVDD ≥ VMAX + 1.5 V for the DAC range, and DAC outputs  
unloaded (unless otherwise noted)  
DAC range: ±20 V  
Figure 7-39. Power-Down Response  
Figure 7-40. Clear Command Response  
DAC range: 0 V to 5 V  
Midscale code  
DAC range: 0 V to 5 V  
Midscale code  
Figure 7-41. DAC Output Noise Density vs Frequency  
Figure 7-42. DAC Output Noise  
Figure 7-44. Internal Reference Voltage  
vs Supply Voltage  
Figure 7-43. Internal Reference Voltage vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
7.13 Typical Characteristics (continued)  
at TA = 25°C, DVDD = 5.0 V, IOVDD = 1.8 V, internal reference enabled, unipolar ranges: AVSS = 0 V and AVDD ≥ VMAX + 1.5  
V for the DAC range, bipolar ranges: AVSS ≤ VMIN − 1.5 V and AVDD ≥ VMAX + 1.5 V for the DAC range, and DAC outputs  
unloaded (unless otherwise noted)  
Figure 7-46. Internal Reference Noise Density vs Frequency  
Figure 7-45. Internal Reference Voltage vs Time  
Figure 7-48. Internal Reference Temperature Drift Histogram  
Figure 7-47. Internal Reference Noise  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The 16-bit DAC81404 and 12-bit DAC61404 (DACx1404) are pin-compatible, quad-channel, high-voltage output,  
digital-to-analog converters (DACs). The DACx1404 consist of an R-2R-based ladder followed by an output  
buffer. The devices also include a precision reference and a reference buffer. The R-2R-based ladder is  
production trimmed to provide monotonicity and a linearity of ±1 LSB. The devices are also optimized to reduce  
the code-to-code change glitch to less than 2 nV-s.  
The DACx1404 output amplifier provides bipolar voltage outputs up to ±20 V, and unipolar voltage outputs up to  
40 V. Each output channel includes sense pins to eliminate the IR drop across load connections, and sense a  
difference of up to ±12 V between the load and DAC grounds. Alternatively, the sense pins can also be used for  
output offset adjustment. An external capacitor compensation pin is also provided to stabilize the output amplifier  
for high capacitive loads.  
Communication to the DACx1404 is performed through a 4-wire serial interface that supports stand-alone and  
daisy-chain operation. An optional frame-error check provides added robustness to the device serial interface.  
The DACx1404 incorporate a power-on-reset circuit that connects the DAC outputs to ground at power up. The  
outputs remain in this mode until the device is properly configured for operation. The devices include additional  
reliability features such as short-circuit protection and a thermal alarm.  
8.2 Functional Block Diagram  
IOVDD DVDD  
FAULT  
REFIO  
AVDD  
Internal Reference  
Power On  
Reset  
REF  
BUF  
SCLK  
SDIN  
SYNC  
SDO  
REF  
DAC  
Ladder  
Buffer  
Register  
Active  
Register  
CCOMP[A:D]  
OUT[A:D]  
+
LDAC  
RST  
CLR  
40 k  
SENSEP[A:D]  
SENSEN[A:D]  
40 k  
Channel  
A
40 k  
+
40 k  
Resistor Gain  
Network  
REF  
GND  
AGND  
REFGND  
AVSS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DAC81404 DAC61404  
 
 
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
8.3 Feature Description  
Each output channel in the device consists of an R-2R ladder digital-to-analog converter (DAC) with dedicated  
reference and ground buffers, and an output buffer amplifier capable of rail-to-rail operation. The device also  
includes an internal 2.5-V reference. Figure 8-1 shows a simplified diagram of the device architecture.  
DVDD  
IOVDD  
REFIO  
Internal  
Reference  
REF  
BUF  
REF  
DAC  
Ladder  
Buffer  
Register  
Active  
Register  
AVDD  
(async mode)  
CCOMPX  
OUTX  
+
-
Clear Signal  
LDAC Trigger  
(synchronous mode)  
AVSS  
40 k  
40 k  
SENSEPX  
SENSENX  
40 k  
40 k  
-
+
Resistor Gain  
Network  
REF  
GND  
AGND  
REFGND  
Figure 8-1. Device Architecture  
8.3.1 R-2R Ladder DAC  
The DAC architecture consists of a voltage-output, segmented, R-2R ladder as shown in Figure 8-2. The device  
incorporates a dedicated reference buffer per output channel that provides constant input impedance with code  
at the REFIO pin. The output of the reference buffers drives the R-2R ladders. A production trim process  
provides excellent linearity and low glitch.  
Output  
Amplifier  
R
R
R
R
OUTX  
Internal  
Reference  
REFIO  
Reference  
Buffer  
REFGND  
Figure 8-2. R-2R Ladder  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
 
 
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
8.3.2 Programmable-Gain Output Buffer  
The voltage output stage as conceptualized in Figure 8-3 provides the voltage output according to the DAC code  
and the output range setting.  
REFIO  
AVDD  
DAC  
CCOMPX  
OUTX  
+
Ladder  
-
AVSS  
40 k  
40 k  
SENSEPX  
SENSENX  
40 k  
-
+
40 k  
R
REFIO  
Resistor Gain  
Network  
REFGND  
Figure 8-3. Voltage Output Buffer  
For unipolar output mode, the output range can be programmed as:  
0 V to 5 V  
0 V to 10 V  
0 V to 20 V  
0 V to 40 V  
For bipolar output mode, the output reange can be programmed as:  
±5 V  
±10 V  
±20 V  
In addition, 20% overrange is available on all ranges except for 0 V to 40 V and ±20 V.  
The input data are written to the individual DAC data registers in straight-binary format for all output ranges. The  
output voltage (VOUTX) can be expressed as Equation 1 and Equation 2.  
For unipolar output mode  
CODE  
VOUTX = VREFIO ìGAINì  
2N  
(1)  
For bipolar output mode  
VREFIO  
CODE  
2N  
VOUTX = VREFIO ìGAINì  
where:  
- GAINì  
2
(2)  
CODE is the decimal equivalent of the binary code loaded to the DAC data register.  
N is the DAC resolution in bits.  
VREFIO is the reference voltage (internal or external).  
GAIN is the gain factor assigned to each output voltage output range as shown in Table 8-1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DAC81404 DAC61404  
 
 
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
Table 8-1. Voltage Output Range vs Gain Setting  
MODE  
VOLTAGE OUTPUT RANGE  
GAIN  
2.0  
5 V  
6 V (20% overrange)  
10 V  
2.4  
4.0  
Unipolar  
12 V (20% overrange)  
20 V  
4.8  
8.0  
24 V (20% overrange)  
40 V  
9.6  
16.0  
4.0  
±5 V  
±6 V (20% overrange)  
±10 V  
4.8  
Bipolar  
8.0  
±12 V (20% overrange)  
±20 V  
9.6  
16.0  
The output amplifiers can drive up to ±15 mA with 1.5-V supply headroom while maintaining the specified TUE  
specification for the device. The output stage has short-circuit current protection that limits the output current  
to 40 mA. The device is able to drive capacitive loads up to 1 µF. For loads greater than 2 nF, an external  
compensation capacitor must be connected between the CCOMPx and OUTx pins to keep the output voltage  
stable, but at the expense of reduced bandwidth and increased settling time.  
8.3.2.1 Sense Pins  
The SENSEPx pins are provided to enable sensing of the load by connecting to points electrically closer to  
the load. This configuration allows the internal output amplifier to make sure that the correct voltage is applied  
across the load, as long as headroom is available on the power supply. The SENSEPx pins are used to correct  
for resistive drops on the system board, and are connected to VOUTX at the pins. In some cases, both VOUTX and  
VSENSEPX are brought out through separate lines and connected remotely together at the load. In such cases, if  
the VSENSEPX line is cut, then the amplifier loop is broken; use a 5-kΩ resistor between the OUTx and SENSEPx  
pins to maintain proper amplifier operation.  
The SENSENx pins are provided as remote ground sense reference outputs from the internal VOUTX amplifier.  
The output swing of the VOUTX amplifier is relative to the voltage seen at these pins. The voltage difference  
between VSENSENX and the device ground must be lower than ±12 V.  
At device start up, the power-on-reset circuit makes sure that all registers are at default values. The voltage  
output buffer is in a Hi-Z state; however, the SENSEPx pins connect to the amplifier inputs through an internal  
40-kΩ feedback resistor (Figure 8-3). If the OUTx and SENSEPx pins are connected together, the OUTx pins are  
also connected to the same node through the feedback resistor. This node is protected by internal circuitry and  
settles to a value between GND and the reference input.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
8.3.3 DAC Register Structure  
Data written to the DAC data registers is initially stored in the DAC buffer registers. The transfer of data from the  
DAC buffer registers to the active registers can be configured to occur immediately (asynchronous mode) or be  
initiated by a DAC trigger signal (synchronous mode). After the active registers are updated, the DAC outputs  
change to the new values.  
After a power-on or reset event, all DAC registers set to zero code, the DAC output amplifiers power down, and  
the DAC outputs connect to ground.  
8.3.3.1 DAC Output Update  
The DAC double-buffered architecture enables data updates without disturbing the analog outputs. Data updates  
can be performed either in synchronous or asynchronous mode. The device offers both software and hardware  
data update control.  
The update mode for each DAC channel is determined by the status of the corresponding SYNC-EN bit. In both  
update modes, a minimum wait time of 2.4 μs is required between DAC output updates.  
8.3.3.1.1 Synchronous Update  
In synchronous mode, writing to the DAC data register does not automatically update the DAC output. Instead  
the update occurs only after a trigger event. A DAC trigger signal is generated eigher through the SOFT-LDAC  
bit or by the LDAC pin. The synchronous update mode enables simultaneous update of multiple DAC outputs.  
8.3.3.1.2 Asynchronous Update  
In asynchronous mode, a DAC data register write results in an immediate update of the DAC active register and  
DAC output on a SYNC rising edge.  
8.3.3.2 Broadcast DAC Register  
The DAC broadcast register enables a simultaneous update of multiple DAC outputs with the same value with a  
single register write.  
Each DAC channel can be configured to update or remain unaffected by a broadcast command by setting  
the corresponding DAC-BRDCAST-EN bit. A register write to the BRDCAST-DATA register forces those DAC  
channels that have been configured for broadcast operation to update their DAC buffer registers to this value.  
The DAC outputs update to the broadcast value according to their synchronous mode configuration.  
8.3.3.3 Clear DAC Operation  
The DAC outputs are set in clear mode either through the CLR pin or the SOFT-CLR bit. In clear mode, each  
DAC data register is set to either zero code (if configured for unipolar range operation) or midscale code (if set  
for bipolar range operation). A clear command forces all DAC channels to clear the contents of their buffer and  
active registers to the clear code regardless of their synchronization setting.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
8.3.4 Internal Reference  
The device includes a precision 2.5-V band-gap reference with a maximum temperature drift of 10 ppm/°C. The  
internal reference is in power-down mode by default.  
The internal reference voltage is available at the REFIO pin and can source up to 5 mA. To filter noise, place a  
minimum 150-nF capacitor between the reference output and ground.  
External reference operation is also supported. The external reference is applied to the REFIO pin. If using an  
external reference, power down the internal reference.  
8.3.5 Power-On Reset (POR)  
The device incorporates a power-on-reset function. After the supplies reach their minimum specified values, a  
POR event is issued. Additionally, a POR event can be initiated by the RST pin or a SOFT-RESET command.  
A POR event causes all registers to initialize to default values, and communication with the device is valid only  
after a 1 ms POR delay. After a POR event, the device is set to power-down mode, where all DAC channels and  
internal reference are powered down and the DAC outputs are connected to ground through a 10-kΩ internal  
resistor.  
8.3.5.1 Hardware Reset  
A device hardware reset event is initiated by a minimum 20-ns logic low on the RST pin.  
8.3.5.2 Software Reset  
The device implements a software reset feature. A device software reset is initiated by writing reserved code  
0x1010 to SOFT-RESET in the TRIGGER register. The software reset command is triggered on the SYNC rising  
edge of the instruction.  
8.3.6 Thermal Alarm  
The device incorporates a thermal shutdown that is triggered when the die temperature exceeds 140°C. A  
thermal shutdown sets the TEMP-ALM bit, and causes all DAC outputs to power-down; however, the internal  
reference remains powered on. The FAULT pin can be configured to monitor a thermal shutdown condition by  
setting the TEMPALM-EN bit. After a thermal shutdown is triggered, the device stays in shutdown even after the  
device temperature lowers.  
The die temperature must fall to less than 140°C before the device can be returned to normal operation.  
To resume normal operation, the thermal alarm must be cleared through the ALM-RESET bit while the DAC  
channels are in power-down mode.  
8.4 Device Functional Modes  
8.4.1 Power-Down Mode  
The device output amplifiers and internal reference power-down status can be individually configured and  
monitored though the PWDWN registers. Setting a DAC channel in power-down mode disables the output  
amplifier and clamps the output pin to ground through an internal 10-kΩ resistor.  
The DAC data registers are not cleared when the DAC goes into power-down mode. Therefore, upon return to  
normal operation, the DAC output voltages return to the same respective voltages prior to the device entering  
power-down mode. The DAC data registers can be updated while in power-down mode, which allows for  
changing the power-on voltage, if required.  
After a power-on or reset event, all the DAC channels and the internal reference are in power-down mode. The  
entire device can be configured into power-down or active modes through the DEV-PWDWN bit.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
8.5 Programming  
The device is controlled through an SPI-compatible, flexible, four-wire, serial interface. The interface provides  
access to the device registers, and can be configured to daisy-chain multiple devices for write operations.  
The device incorporates an optional error-checking mode to validate SPI data communication integrity in noisy  
environments.  
8.5.1 Stand-Alone Operation  
A serial interface access cycle is initiated by asserting the SYNC pin low. The serial clock, SCLK, can be a  
continuous or gated clock. SDIN data are clocked on SCLK falling edges. A regular serial interface access cycle  
is 24 bits long with error checking disabled and 32 bits long with error checking enabled. Therefore, the SYNC  
pin must stay low for at least 24 or 32 SCLK falling edges. The access cycle ends when the SYNC pin is  
deasserted high. If the access cycle contains less than the minimum clock edges, the communication is ignored.  
If the access cycle contains more than the minimum clock edges, only the first 24 or 32 bits are used by the  
device. When SYNC is high, the SCLK and SDIN signals are blocked, and SDO is in a Hi-Z state.  
Table 8-2 describes the format for an error-checking-disabled access cycle (24-bits long). The first byte input to  
SDIN is the instruction cycle. The instruction cycle identifies the request as a read or write command and the  
6-bit address that is to be accessed. The last 16 bits in the cycle form the data cycle.  
Table 8-2. Serial Interface Access Cycle  
BIT  
FIELD  
DESCRIPTION  
Identifies the communication as a read or write command to the address  
register:  
R/W = 0 sets a write operation.  
R/W = 1 sets a read operation  
23  
RW  
22  
x
Don't care bit  
Register address — specifies the register to be accessed during the read or  
write operation  
21-16  
A[5:0]  
Data cycle bits:  
If a write command, the data cycle bits are the values to be written to the  
register with address A[5:0]  
15-0  
DI[15:0]  
If a read command, the data cycle bits are don't care values  
Read operations require that the SDO pin is first enabled by setting the SDO-EN bit. A read operation is initiated  
by issuing a read command access cycle. After the read command, a second access cycle must be issued to get  
the requested data. The output data format is shown in Table 8-3. Data are clocked out on the SDO pin either on  
the falling edge or rising edge of SCLK according to the FSDO bit.  
Table 8-3. SDO Output Access Cycle  
BIT  
23  
FIELD  
DESCRIPTION  
RW  
Echo RW from previous access cycle  
22  
x
Echo bit 22 from previous access cycle  
21-16  
15-0  
A[5:0]  
DO[15:0]  
Echo address from previous access cycle  
Readback data requested on previous access cycle  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DAC81404 DAC61404  
 
 
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
8.5.2 Daisy-Chain Operation  
For systems that contain several devices, the SDO pin can be used to daisy-chain the devices together.  
Daisy-chain operation is useful in reducing the number of serial interface lines.The SDO pin must be enabled by  
setting the SDO-EN bit before initiating daisy-chain operation.  
The first falling edge on the SYNC pin starts the operation cycle (see Figure 8-4). If more than 24 clock pulses  
are applied while the SYNC pin is kept low, the data ripple out of the shift register and are clocked out on  
the SDO pin, either on the falling edge or rising edge of SCLK according to the FSDO bit. By connecting the  
SDO output of the first device to the SDIN input of the next device in the chain, a multiple-device interface is  
constructed.  
Each device in the daisy-chain system requires 24 clock pulses. As a result the total number of clock cycles  
must be equal to 24 × N, where N is the total number of devices in the daisy chain. When the serial transfer to all  
devices is complete, the SYNC signal is taken high. This action transfers the data from the SPI shift registers to  
the internal register of each device in the daisy chain, and prevents any further data from being clocked into the  
input shift register.  
SYNC  
1
8
9
24  
25  
48  
49  
72  
SCLK  
Device A command  
Device B command  
NOP  
D23  
D16  
D15  
D0  
SDIN  
D23 œ D1  
D0  
D23 œ D1  
D0  
SDO  
Device A command  
Device B command  
Figure 8-4. Serial Interface Daisy-Chain Write Cycle  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
8.5.3 Frame Error Checking  
If the device is used in a noisy environment, error checking can be used to check the integrity of SPI data  
communication between the device and the host processor. This feature is enabled by setting the CRC-EN bit.  
The error checking scheme is based on the CRC-8-ATM (HEC) polynomial: x8 + x2 + x + 1 (that is, 100000111).  
When error checking is enabled, the serial interface access cycle width is 32 bits. The normal 24-bit SPI data are  
appended with an 8-bit CRC polynomial by the host processor before feeding the data to the device. In all serial  
interface readback operations, the CRC polynomial is output on the SDO pin as part of the 32-bit cycle.  
Table 8-4. Error Checking Serial Interface Access Cycle  
BIT  
FIELD  
DESCRIPTION  
Identifies the communication as a read or write command to the address  
register.  
R/W = 0 sets a write operation.  
R/W = 1 sets a read operation.  
31  
RW  
30  
CRC-ERROR  
A[5:0]  
Reserved bit. Set to zero.  
Register address. Specifies the register to be accessed during the read or  
write operation.  
29-24  
Data cycle bits.  
If a write command, the data cycle bits are the values to be written to the  
register with address A[5:0].  
If a read command, the data cycle bits are don't care values.  
23-8  
7-0  
DI[15:0]  
CRC  
8-bit CRC polynomial.  
The device decodes the 32-bit access cycle to compute the CRC remainder on SYNC rising edges. If no error  
exists, the CRC remainder is zero and data are accepted by the device.  
A write operation failing the CRC check causes the data to be ignored by the device. After the write command, a  
second access cycle can be issued to determine the error checking results (CRC-ERROR bit) on the SDO pin.  
If there is a CRC error, the CRC-ALM bit of the status register is set to 1. The FAULT pin can be configured to  
monitor a CRC error by setting the CRCALM-EN bit.  
Table 8-5. Write Operation Error Checking Cycle  
BIT  
31  
FIELD  
DESCRIPTION  
Echo RW from previous access cycle (RW = 0).  
Returns a 1 when a CRC error is detected; otherwise, returns a 0.  
Echo address from previous access cycle.  
Echo data from previous access cycle.  
RW  
30  
CRC-ERROR  
A[5:0]  
29-24  
23-8  
7-0  
DO[15:0]  
CRC  
Calculated CRC value of bits 31:8.  
A read operation must be followed by a second access cycle to get the requested data on the SDO pin. The  
error check result (CRC-ERROR bit) from the read command is output on the SDO pin.  
As in the case of a write operation failing the CRC check, the CRC-ALM bit of the status register is set to 1, and  
the ALMOUT pin, if configured for CRC alerts, is set low.  
Table 8-6. Read Operation Error Checking Cycle  
BIT  
31  
FIELD  
DESCRIPTION  
Echo RW from previous access cycle (RW = 1).  
Returns a 1 when a CRC error is detected; otherwise, returns a 0.  
Echo address from previous access cycle.  
RW  
30  
CRC-ERROR  
A[5:0]  
29-24  
23-8  
7-0  
DO[15:0]  
CRC  
Readback data requested on previous access cycle.  
Calculated CRC value of bits 31:8.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
8.6 Register Map  
Table 8-7 lists the memory-mapped registers for the device. All register addresses not listed should be considered as reserved locations and the register  
contents should not be modified.  
Table 8-7. Register Map  
BIT DESCRIPTION  
ADDR  
(HEX)  
RESET  
(HEX)  
REGISTER  
TYPE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
00  
01  
NOP  
W
0000  
NOP[15:0]  
0A60(1)  
or  
DEVICEID  
R
DEVICEID[13:0]  
VERSIONID[1:0]  
0920(2)  
DAC-  
BUSY  
TEMP-  
ALM  
02  
03  
04  
STATUS  
R
0000  
0AA4  
4000  
RESERVED  
CRC-ALM  
SDO-EN  
TEMPALM- DACBUSY- CRCALM-  
EN EN EN  
DEV-  
PWDWN  
SPICONFIG  
GENCONFIG  
R/W  
R/W  
RESERVED  
RESERVED  
CRC-EN  
RSVD  
FSDO  
RSVD  
REF-  
PWDWN  
RSVD  
RESERVED  
DACD-  
DACC-  
DACB-  
DACA-  
05  
06  
BRDCONFIG  
R/W  
R/W  
000F  
0000  
RESERVED  
BRDCAST BRDCAST BRDCAST BRDCAST  
-EN  
-EN  
-EN  
-EN  
DACD-  
DACC-  
DACB-  
DACA-  
SYNCCONFIG  
RESERVED  
SYNC-EN SYNC-EN SYNC-EN SYNC-EN  
DACD-  
PWDWN  
DACC-  
PWDWN  
DACB-  
PWDWN  
DACA-  
PWDWN  
09  
0A  
0E  
DACPWDWN  
DACRANGE  
TRIGGER  
R/W  
W
FFFF  
0000  
0000  
RESERVED  
DACD-RANGE[3:0]  
RESERVED  
DACC-RANGE[3:0]  
DACB-RANGE[3:0]  
RESERVED  
DACA-RANGE[3:0]  
SOFT-RESET[3:0]  
ALM-  
RESET  
SOFT-  
LDAC  
R/W  
SOFT-CLR  
0F  
10  
11  
12  
13  
BRDCAST  
DACA  
W
W
W
W
W
0000  
0000  
0000  
0000  
0000  
BRDCAST-DATA[15:0]  
DACA-DATA[15:0]  
DACB-DATA[15:0]  
DACC-DATA[15:0]  
DACD-DATA[15:0]  
DACB  
DACC  
DACD  
(1) Reset code for DAC81404.  
(2) Reset code for DAC61404.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
 
 
 
 
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
8.6.1 NOP Register (address = 00h) [reset = 0000h]  
Return to Register Map.  
Figure 8-5. NOP Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NOP[15:0]  
W-0000h  
Table 8-8. NOP Register Field Descriptions  
Bit  
15-0  
Field  
NOP[15:0]  
Type  
Reset  
Description  
W
0000h  
No operation. Write 0000h for proper no-operation command.  
8.6.2 DEVICEID Register (address = 01h) [reset = 0A60h or 0920h]  
Return to Register Map.  
Figure 8-6. DEVICEID Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
DEVICEID[13:6]  
R
4
3
DEVICEID[5:0]  
R
VERSIONID[1:0]  
R-0h  
Table 8-9. DEVICEID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0298h  
0248h  
0h  
Description  
15-2  
DEVICEID[13:0]  
R
DAC81404 device ID.  
DAC61404 device ID.  
Version ID. Subject to change.  
1-0  
VERSIONID[1:0]  
R
8.6.3 STATUS Register (address = 02h) [reset = 0000h]  
Return to Register Map.  
Figure 8-7. STATUS Register  
15  
7
14  
6
13  
12  
11  
10  
9
8
0
RESERVED  
R-00h  
5
4
3
2
1
RESERVED  
R-00h  
CRC-ALM  
R-0h  
DAC-BUSY  
R-0h  
TEMP-ALM  
R-0h  
Table 8-10. STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000h  
0h  
Description  
15-3  
RESERVED  
CRC-ALM  
R
Reserved for factory use  
CRC-ALM = 1 indicates a CRC error.  
2
1
0
R
DAC-BUSY  
TEMP-ALM  
R
0h  
DAC-BUSY = 1 indicates DAC registers are not ready for updates.  
R
0h  
TEMP-ALM = 1 indicates die temperature is over 140°C. A thermal  
alarm event forces the DAC outputs to go into power-down mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
8.6.4 SPICONFIG Register (address = 03h) [reset = 0AA4h]  
Return to Register Map.  
Figure 8-8. SPICONFIG Register  
15  
14  
13  
5
12  
11  
10  
9
CRCALM-EN  
R/W-1h  
1
8
RESERVED  
R-0h  
TEMPALM-EN DACBUSY-EN  
RESERVED  
R/W-1h  
3
R/W-0h  
2
R-0h  
0
7
6
4
RESERVED  
DEV-PWDWN  
R/W-1h  
CRC-EN  
R/W-0h  
RESERVED  
R-0h  
SDO-EN  
R/W-1h  
FSDO  
RESERVED  
R-0h  
R-1h  
R-0h  
R/W-0h  
Table 8-11. SPICONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11  
RESERVED  
R
0h  
Reserved for factory use  
TEMPALM-EN  
DACBUSY-EN  
R/W  
R/W  
1h  
When set to 1, a thermal alarm triggers the FAULT pin.  
10  
0h  
When set to 1, the FAULT pin is set between DAC output updates.  
Contrary to other alarm events, this alarm resets automatically.  
9
CRCALM-EN  
RESERVED  
R/W  
R
1h  
2h  
When set to 1, a CRC error triggers the FAULT pin..  
Reserved for factory use  
8-6  
DEV-PWDWN = 1 sets the device in power-down mode.  
DEV-PWDWN = 0 sets the device in active mode.  
5
DEV-PWDWN  
R/W  
1h  
4
3
2
1
CRC-EN  
RESERVED  
SDO-EN  
FSDO  
R/W  
R
0h  
0h  
1h  
0h  
When set to 1, frame error checking is enabled.  
Reserved for factory use  
R/W  
R/W  
When set to 1, the SDO pin is operational.  
Fast SDO bit (half-cycle speedup).  
When 0, SDO updates on SCLK rising edges.  
When 1, SDO updates on SCLK falling edges.  
0
RESERVED  
R
0h  
Reserved for factory use  
8.6.5 GENCONFIG Register (address = 04h) [reset = 4000h]  
Return to Register Map.  
Figure 8-9. GENCONFIG Register  
15  
RESERVED  
R-0h  
14  
REF-PWDWN  
R/W-1h  
6
13  
5
12  
11  
10  
2
9
1
8
0
RESERVED  
R-00h  
7
4
3
RESERVED  
R-00h  
Table 8-12. GENCONFIG Register Field Descriptions  
Bit  
15  
14  
Field  
RESERVED  
Type  
Reset  
Description  
R
0h  
Reserved for factory use  
REF-PWDWN  
R/W  
1h  
REF-PWDWN = 1 powers down the internal reference.  
REF-PWDWN = 0 activates the internal reference.  
13-0  
RESERVED  
R
0000h  
Reserved for factory use  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
8.6.6 BRDCONFIG Register (address = 05h) [reset = 000Fh]  
Return to Register Map.  
Figure 8-10. BRDCONFIG Register  
15  
7
14  
6
13  
5
12  
11  
10  
9
8
RESERVED  
R-00h  
4
3
2
1
0
RESERVED  
R-0h  
DACD-  
DACC-  
DACB-  
DACA-  
BRDCAST_EN BRDCAST-EN BRDCAST-EN BRDCAST-EN  
R/W-1h R/W-1h R/W-1h R/W-1h  
Table 8-13. BRDCONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
000h  
1h  
Description  
15-4  
RESERVED  
R
Reserved for factory use  
3
2
1
0
DACD-BRDCAST-EN  
DACC-BRDCAST-EN  
DACB-BRDCAST-EN  
DACA_BRDCAST-EN  
R/W  
R/W  
R/W  
R/W  
When set to 1, the corresponding DAC is set to update the output to  
the value set in the BDCAST register.  
When cleared to 0, the corresponding DAC output remains  
unaffected by a BRDCAST command.  
1h  
1h  
1h  
8.6.7 SYNCCONFIG Register (address = 06h) [reset = 0000h]  
Return to Register Map.  
Figure 8-11. SYNCCONFIG Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
RESERVED  
R-00h  
4
3
RESERVED  
R-0h  
DACD-SYNC-  
EN  
DACC-SYNC-  
EN  
DACB-SYNC-  
EN  
DACA-SYNC-  
EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 8-14. SYNCCONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
000h  
0h  
Description  
15-4  
RESERVED  
R
Reserved for factory use  
3
2
1
0
DACD_SYNC_EN  
DACC_SYNC_EN  
DACB_SYNC_EN  
DACA_SYNC_EN  
R/W  
R/W  
R/W  
R/W  
When set to 1, the corresponding DAC is set to update in response  
to an LDAC trigger (synchronous mode).  
When cleared to 0, the corresponding DAC output is set to update  
immediately on SYNC rising edge (asynchronous mode).  
0h  
0h  
0h  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
8.6.8 DACPWDWN Register (address = 09h) [reset = FFFFh]  
Return to Register Map.  
Figure 8-12. DACPWDWN Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
RESERVED  
R-FFh  
4
3
RESERVED  
R-Fh  
DACD-PWDWN DACC-PWDWN DACB-PWDWN DACA-PWDWN  
R/W-1h R/W-1h R/W-1h R/W-1h  
Table 8-15. DACPWDWN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
FFFh  
1h  
Description  
15-4  
RESERVED  
R
Reserved for factory use  
3
2
1
0
DACD-PWDWN  
DACC-PWDWN  
DACB-PWDWN  
DACA-PWDWN  
R/W  
R/W  
R/W  
R/W  
When set to 1, the corresponding DAC is in power-down mode, and  
the output is connected to ground through a 10-kΩ internal resistor.  
1h  
1h  
1h  
8.6.9 DACRANGE Register (address = 0Ah) [reset = 0000h]  
Return to Register Map.  
Figure 8-13. DACRANGE Register  
15  
7
14  
13  
12  
11  
10  
9
8
0
DACD-RANGE[3:0]  
W-0h  
DACC-RANGE[3:0]  
W-0h  
6
5
4
3
2
1
DACB-RANGE[3:0]  
W-0h  
DACA-RANGE[3:0]  
W-0h  
Table 8-16. DACRANGE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-8  
7-4  
DACD-RANGE[3:0]  
DACC-RANGE[3:0]  
DACB-RANGE[3:0]  
DACA-RANGE[3:0]  
W
0h  
Sets the output range for the corresponding DAC.  
0000: 0 V to 5 V  
1000: 0 V to 6 V  
0001: 0 V to 10 V  
1001: 0 V to 12 V  
W
0h  
W
0h  
3-0  
W
0h  
0010: 0 V to 20 V  
1010: 0 V to 24 V  
0011: 0 V to 40 V  
0101: –5 V to +5 V  
1101: –6 V to +6 V  
0110: –10 V to +10 V  
1110: –12 V to +12 V  
0111: –20 V to +20 V  
All others: invalid  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
8.6.10 TRIGGER Register (address = 0Eh) [reset = 0000h]  
Return to Register Map.  
Figure 8-14. TRIGGER Register  
15  
7
14  
13  
5
12  
11  
10  
2
9
SOFT-CLR  
W-0h  
8
ALM-RESET  
W-0h  
RESERVED  
W-00h  
6
4
3
1
0
RESERVED  
W-0h  
SOFT-LDAC  
W-0h  
SOFT-RESET[3:0]  
W-0h  
Table 8-17. TRIGGER Register Field Descriptions  
Bit  
Field  
Type  
Reset  
00h  
0h  
Description  
15-10  
RESERVED  
SOFT-CLR  
ALM-RESET  
W
Reserved for factory use  
9
8
W
Set this bit to 1 to clear all DAC outputs.  
W
0h  
Set this bit to 1 to clear an alarm event. Not applicable for a DAC-  
BUSY alarm event.  
7-5  
4
RESERVED  
SOFT-LDAC  
W
W
0h  
0h  
Reserved for factory use  
Set this bit to 1 to synchronously load the DACs that have been set  
in synchronous mode in the SYNCCONFIG register.  
3-0  
SOFT_RESET[3:0]  
W
0h  
Set these bits to reserved code 1010 to reset the device to the  
default state.  
8.6.11 BRDCAST Register (address = 0Fh) [reset = 0000h]  
Return to Register Map.  
Figure 8-15. BRDCAST Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BRDCAST-DATA[15:0]  
W-0000h  
Table 8-18. BRDCAST Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
BRDCAST_DATA[15:0]  
W
0000h  
Writing to the BRDCAST register forces the DAC channels that have  
been set to broadcast in the BRDCONFIG register to update the data  
register data to BRDCAST-DATA.  
Data are MSB aligned in straight-binary format:  
DAC81404: { DATA[15:0] }  
DAC61404: { DATA[11:0], x, x, x, x }  
x − Don't care bits  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
8.6.12 DACn Register (address = 10h to 13h) [reset = 0000h]  
Return to Register Map.  
Figure 8-16. DACn Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DACn-DATA[15:0]  
W-0000h  
Table 8-19. DACn Register Field Descriptions  
Bit  
15-0  
Field  
DACn-DATA[15:0]  
Type  
Reset  
Description  
W
0000h  
Stores the data to be loaded to DACn in MSB-aligned, straight-binary  
format:  
DAC81404: { DATA[15:0] }  
DAC61404: { DATA[11:0], x, x, x, x }  
x − Don't care bits  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
A primary application of this device is programmable power supplies commonly used in automated test and  
laboratory equipment, where high precision and programmable voltage ranges are important considerations.  
This device, with an excellent linearity of ±1 LSB INL and inherently monotonic design, meets the criteria for  
these applications. Apart from class-leading noise and drift performance, the per-channel programmable output  
ranges make this device an excellent choice for a wide range of programmable power-supply designs.  
9.2 Typical Application  
Programmable power supplies are important building blocks in automated test equipments, semiconductor test  
and bench top instrumentation units. The DAC is used to set the programmable voltage and a power stage is  
designed to handle the output current requirements in these systems. Figure 9-1 shows a simplified diagram to  
design such a programmable power supply unit.  
VCC  
R1  
T1  
AVDD  
D1  
VSENSE  
OUTSENSE  
SENSEP  
DAC81404  
RSENSE  
Digital Control  
OUTFORCE  
FPGA  
SPI  
ISENSE  
SENSEN  
GNDFORCE  
GNDSENSE  
D2  
T2  
AVSS  
ISENSE  
GND  
ADC  
VSENSE  
R2  
VEE  
Figure 9-1. Programmable Power Supply  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DAC81404 DAC61404  
 
 
 
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
9.2.1 Design Requirements  
Voltage range : ±10 V, ±20 V, 0 V to 40 V  
Current range : 200 mA  
9.2.2 Detailed Design Procedure  
The DAC81404 is an excellent choice for this application because of the device exceptional linearity and noise  
performance. The maximum bipolar output voltage requirement is ±20 V; therefore, set the AVDD and AVSS  
supplies to 21 V and −21 V, respectively. For a unipolar output range, set the AVDD supply to 41 V for a full-scale  
output voltage of 40 V. In unipolar designs, the AVSS supply can be tied to ground. In all cases, the supply  
voltages must be selected so that the AVDD − AVSS voltage does not exceed 41.5 V.  
The output stage is designed as a standard class AB output because of the design simplicity. A current limit  
stage can be designed to limit the current in the output stage during a short-circuit event.  
A simple diode-and-resistor-based biasing is chosen for the class AB output stage. A small constant current  
flows through the series circuit of R1, D1, D2 and R2, producing symmetrical voltage drops on either side of the  
input. With no input voltage applied, the point between the two diodes is 0 V. As current flows through the chain,  
there is a forward-bias voltage drop of approximately 0.7 V across the diodes that are applied to the base-emitter  
junctions of the switching transistors. Therefore, the voltage drop across the diodes biases the base of transistor  
T1 to approximately 0.7 V, and the base of transistor T2 to approximately −0.7 V. Therefore, the two silicon  
diodes provide a constant voltage drop of approximately 1.4 V between the two bases biasing them above cutoff.  
Current and voltage is sensed and fed to an ADC to close the loop for the completion of the circuit. The device  
has sense connections for sensing the output and load ground voltages. One of the key features of this device  
is load-ground voltage compensation, which can be used in this design. The load ground and device ground  
difference must be within ±12 V.  
The R1 and R2 values are decided by how much quiescent current is required by the design biasing scheme.  
Figure 9-2 and Figure 9-3 show simulation results of the output voltage programmed from −10 V to +10 V, while  
providing a constant 100 mA current to the load.  
9.2.3 Application Curves  
Figure 9-2. DAC Code Sweep From −10 V to +10 V  
Figure 9-3. Output Error vs DAC Code  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
10 Power Supply Recommendations  
The device requires four power-supply inputs: IOVDD, DVDD, AVDD, and AVSS. A 0.1-µF ceramic capacitor  
must be connected close to each power-supply pin. In addition, a 4.7-µF or 10-µF bulk capacitor is  
recommended for each power supply. Tantalum or aluminum types can be chosen for the bulk capacitors.  
There is no sequencing requirement for the power supplies. The DAC output range is configurable; therefore,  
sufficient power-supply headroom is required to achieve linearity at codes close to the power-supply rails. When  
sourcing or sinking current from or to the DAC output, make sure to account for the effects of power dissipation  
on the temperature of the device, and ensure the device does not exceed the maximum junction temperature.  
11 Layout  
11.1 Layout Guidelines  
Printed circuit board (PCB) layout plays a significant role in achieving desired ac and dc performance from the  
device. The device has a pinout that supports easy splitting of the noisy and quiet grounds. The digital and  
analog signals are available on separate sides of the package for easy layout. Figure 11-1 shows an example  
layout where the different ground planes have been clearly demarcated, as well as the best position for the  
single-point shorts between the planes.  
For best power-supply bypassing, place the bypass capacitors close to the respective power-supply pins.  
Provide unbroken ground reference planes for the digital signal traces, especially for the SPI and LDAC signals.  
The RST and FAULT signals are static lines; therefore these lines can lie on the analog side of the ground plane.  
11.2 Layout Example  
Figure 11-1. Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DAC81404 DAC61404  
 
 
 
 
 
DAC81404, DAC61404  
SLASEH2A – NOVEMBER 2020 – REVISED MAY 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, BP-DAC81404EVM, BP-DAC61402EVM user's guide  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DAC81404 DAC61404  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-May-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC61404RHBR  
DAC61404RHBT  
DAC81404RHBR  
DAC81404RHBT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
D61404  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
D61404  
D81404  
D81404  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-May-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-May-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC61404RHBR  
DAC61404RHBT  
DAC81404RHBR  
DAC81404RHBT  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.5  
12.4  
12.5  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-May-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC61404RHBR  
DAC61404RHBT  
DAC81404RHBR  
DAC81404RHBT  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
3000  
250  
338.0  
205.0  
338.0  
205.0  
355.0  
200.0  
355.0  
200.0  
50.0  
33.0  
50.0  
33.0  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

DAC81404RHBR

DACx1404 Quad, 16-Bit and 12-Bit, High-Voltage-Output DACs With Internal Reference
TI

DAC81404RHBT

DACx1404 Quad, 16-Bit and 12-Bit, High-Voltage-Output DACs With Internal Reference
TI

DAC81404_V01

DACx1404 Quad, 16-Bit and 12-Bit, High-Voltage-Output DACs With Internal Reference
TI

DAC81408

具有集成内部基准电压的 8 通道 16 位高电压输出 DAC
TI

DAC81408RHAR

具有集成内部基准电压的 8 通道 16 位高电压输出 DAC | RHA | 40 | -40 to 125
TI

DAC81408RHAT

具有集成内部基准电压的 8 通道 16 位高电压输出 DAC | RHA | 40 | -40 to 125
TI

DAC81416

具有集成内部基准电压的 16 通道 16 位高电压输出 DAC
TI

DAC81416RHAR

具有集成内部基准电压的 16 通道 16 位高电压输出 DAC | RHA | 40 | -40 to 125
TI

DAC81416RHAT

具有集成内部基准电压的 16 通道 16 位高电压输出 DAC | RHA | 40 | -40 to 125
TI

DAC8143

12-Bit Serial Daisy-Chain CMOS D/A Converter
ADI

DAC8143AQ/883

IC SERIAL INPUT LOADING, 0.38 us SETTLING TIME, 12-BIT DAC, CDIP16, CERDIP-16, Digital to Analog Converter
ADI

DAC8143AQ/883C

DAC8143AQ/883C
ADI