DAC8168A [TI]

12-/14-/16-Bit, Octal-Channel, Ultra-Low Glitch, Voltage Output DIGITAL-TO-ANALOG CONVERTERS with 2.5V, 2ppm/°C Internal Reference; 12位/ 14位/ 16位,八通道,超低短时脉冲波形干扰,电压输出数字 - 模拟转换器具有2.5V , 2ppm的/ ° C内部参考
DAC8168A
型号: DAC8168A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12-/14-/16-Bit, Octal-Channel, Ultra-Low Glitch, Voltage Output DIGITAL-TO-ANALOG CONVERTERS with 2.5V, 2ppm/°C Internal Reference
12位/ 14位/ 16位,八通道,超低短时脉冲波形干扰,电压输出数字 - 模拟转换器具有2.5V , 2ppm的/ ° C内部参考

转换器 脉冲
文件: 总58页 (文件大小:2096K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
12-/14-/16-Bit, Octal-Channel, Ultra-Low Glitch, Voltage Output  
DIGITAL-TO-ANALOG CONVERTERS with 2.5V, 2ppm/°C Internal Reference  
1
FEATURES  
APPLICATIONS  
Portable Instrumentation  
Closed-Loop Servo-Control/Process Control  
Data Acquisition Systems  
Programmable Attenuation, Digital Gain, and  
Offset Adjustment  
Programmable Voltage and Current Sources  
234  
Relative Accuracy:  
– DAC7568 (12-Bit): 0.3 LSB INL  
– DAC8168 (14-Bit): 1 LSB INL  
– DAC8568 (16-Bit): 4 LSB INL  
Glitch Energy: 0.1nV-s  
Internal Reference:  
– 2.5V Reference Voltage (disabled by  
default)  
DESCRIPTION  
The DAC7568, DAC8168, and DAC8568 are  
low-power, voltage-output, eight-channel, 12-, 14-,  
and 16-bit digital-to-analog converters (DACs),  
respectively. These devices include a 2.5V, 2ppm/°C  
internal reference (disabled by default), giving a  
full-scale output voltage range of 2.5V or 5V. The  
internal reference has an initial accuracy of 0.004%  
and can source up to 20mA at the VREFIN/VREFOUT  
pin. These devices are monotonic, providing excellent  
linearity and minimizing undesired code-to-code  
transient voltages (glitch). They use a versatile 3-wire  
serial interface that operates at clock rates up to  
50MHz. The interface is compatible with standard  
SPI™, QSPI™, Microwire™, and digital signal  
processor (DSP) interfaces.  
– 0.004% Initial Accuracy (typ)  
– 2ppm/°C Temperature Drift (typ)  
– 5ppm/°C Temperature Drift (max)  
– 20mA Sink/Source Capability  
Power-On Reset to Zero Scale or Midscale  
Ultra-Low Power Operation: 1.25mA at 5V  
Including Internal Reference Current  
Wide Power-Supply Range: +2.7V to +5.5V  
Monotonic Over Entire Temperature Range  
Low-Power Serial Interface with  
Schmitt-Triggered Inputs: Up to 50MHz  
On-Chip Output Buffer Amplifier with  
Rail-to-Rail Operation  
The DAC7568, DAC8168, and DAC8568 incorporate  
a power-on-reset circuit that ensures the DAC output  
powers up at either zero scale or midscale until a  
valid code is written to the device. These devices  
contain a power-down feature, accessed over the  
serial interface, that reduces current consumption to  
typically 0.18µA at 5V. Power consumption (including  
internal reference) is typically 2.9mW at 3V, reducing  
to less than 1µW in power-down mode. The low  
power consumption, internal reference, and small  
footprint make these devices ideal for portable,  
battery-operated equipment.  
Temperature Range: –40°C to +125°C  
AVDD  
VREFIN/VREFOUT  
DAC7568  
DAC8168  
DAC8568  
2.5V  
Reference  
12-/14-/16-Bit  
DAC  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
H
G
F
DAC Register H  
DAC Register G  
DAC Register F  
DAC Register E  
DAC Register D  
DAC Register C  
DAC Register B  
DAC Register A  
Data Buffer H  
Data Buffer G  
Data Buffer F  
Data Buffer E  
Data Buffer D  
Data Buffer C  
Data Buffer B  
Data Buffer A  
12-/14-/16-Bit  
DAC  
12-/14-/16-Bit  
DAC  
12-/14-/16-Bit  
DAC  
E
D
C
B
A
12-/14-/16-Bit  
DAC  
12-/14-/16-Bit  
DAC  
The DAC7568, DAC8168, and DAC8568 are drop-in  
and function-compatible with each other, and are  
available in TSSOP-16 and TSSOP-14 packages.  
12-/14-/16-Bit  
DAC  
12-/14-/16-Bit  
DAC  
SYNC  
SCLK  
DIN  
32-Bit Shift Register  
Buffer Control  
Register Control  
Power-Down  
Control Logic  
DEVICE COMPARISON  
12-BIT  
14-BIT  
16-BIT  
Control Logic  
Pin- and  
Function-Compatible  
DAC7568  
DAC8168  
DAC8568  
GND  
LDAC  
CLR  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
4
SPI, QSPI are trademarks of Motorola, Inc.  
Microwire is a trademark of National Semiconductor.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009, Texas Instruments Incorporated  
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
PACKAGE/ORDERING INFORMATION(1)  
MAXIMUM  
RELATIVE  
ACCURACY  
(LSB)  
MAXIMUM  
DIFFERENTIAL  
NONLINEARITY  
(LSB)  
MAXIMUM  
REFERENCE  
DRIFT  
OUTPUT  
VOLTAGE  
FULL-SCALE  
RANGE  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
PRODUCT  
DAC8568A  
DAC8568B  
DAC8568C  
DAC8568D  
DAC8168A  
DAC8168C  
DAC7568A  
DAC7568C  
(ppm/°C)  
RESET TO  
Zero  
±12  
±12  
±12  
±12  
±4  
±1  
±1  
25  
25  
5
2.5V  
2.5V  
5V  
TSSOP-16  
TSSOP-16  
TSSOP-16  
TSSOP-16  
TSSOP-14  
TSSOP-16  
TSSOP-14  
TSSOP-16  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
DA8568A  
DA8568B  
DA8568C  
DA8568D  
DA8168A  
DA8168C  
DA7568A  
DA7568C  
Midscale  
Zero  
±1  
±1  
5
5V  
Midscale  
Zero  
±0.5  
±0.5  
±0.25  
±0.25  
25  
5
2.5V  
5V  
±4  
Zero  
±1  
25  
5
2.5V  
5V  
Zero  
±1  
Zero  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
DAC7568/DAC8168/DAC8568  
–0.3 to +6  
UNIT  
V
AVDD to GND  
Digital input voltage to GND  
VOUT to GND  
–0.3 to +AVDD + 0.3  
–0.3 to +AVDD + 0.3  
–0.3 to +AVDD + 0.3  
–40 to +125  
V
V
VREF to GND  
V
Operating temperature range  
Storage temperature range  
°C  
–65 to +150  
°C  
Junction temperature range (TJ max)  
Power dissipation  
+150  
°C  
(TJ max – TA)/θJA  
+118  
W
Thermal impedance, θJA  
Thermal impedance, θJC  
°C/W  
°C/W  
+29  
(1) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute  
maximum conditions for extended periods may affect device reliability.  
2
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
ELECTRICAL CHARACTERISTICS  
At AVDD = 2.7V to 5.5V and over –40°C to +125°C (unless otherwise noted).  
DAC7568/DAC8168/DAC8568  
PARAMETER  
STATIC PERFORMANCE(1)  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
16  
Bits  
Measured by the line passing through codes 485 and  
64714  
DAC8568  
DAC8168  
DAC7568  
Relative accuracy  
±4  
±12  
±1  
LSB  
Differential nonlinearity  
Resolution  
16-bit monotonic  
±0.2  
LSB  
Bits  
14  
12  
Measured by the line passing through codes 120 and  
16200  
Relative accuracy  
±1  
±4  
LSB  
Differential nonlinearity  
Resolution  
14-bit monotonic  
±0.1  
±0.5  
LSB  
Bits  
Measured by the line passing through codes 30 and  
4050  
Relative accuracy  
±0.3  
±1  
LSB  
Differential nonlinearity  
12-bit monotonic  
Extrapolated from two-point line(1), unloaded  
±0.05  
±1  
±0.25  
±4  
LSB  
mV  
Offset error  
Offset error drift  
Full-scale error  
Zero-code error  
±0.5  
±0.03  
1
µV/°C  
% of FSR  
mV  
DAC register loaded with all '1's  
DAC register loaded with all '0's  
±0.2  
4
Zero-code error drift  
Gain error  
±2  
µV/°C  
% of FSR  
Extrapolated from two-point line(1), unloaded  
±0.01  
±0.15  
ppm of  
FSR/°C  
Gain temperature coefficient  
±1  
OUTPUT CHARACTERISTICS(2)  
AVDD 2.7V; grades A and B: maximum output  
voltage 2.5V when using internal reference  
Output voltage range  
0
AVDD  
10  
V
AVDD 5V; grades C and D: maximum output voltage  
5V when using internal reference  
DACs unloaded; 1/4 scale to 3/4 scale to ±0.024%  
5
10  
Output voltage settling time  
Slew rate  
µs  
V/µs  
pF  
RL = 1MΩ  
0.75  
1000  
3000  
0.1  
RL = ∞  
Capacitive load stability  
RL = 2kΩ  
Code change glitch impulse  
Digital feedthrough  
1LSB change around major carry  
SCLK toggling, SYNC high  
RL = 2k, CL = 470pF, AVDD = 5.5V  
RL = 2k, CL = 470pF, AVDD = 2.7V  
Full-scale swing on adjacent channel  
nV-s  
nV-s  
mV  
0.1  
10  
Power-on glitch impulse  
6
mV  
Channel-to-channel dc crosstalk  
Channel-to-channel ac crosstalk  
DC output impedance  
0.1  
LSB  
RL = 2k, CL = 420pF, 1kHz full-scale sine wave,  
outputs unloaded  
–109  
4
dB  
At mid-code input  
DAC outputs at full-scale, DAC outputs shorted to  
GND  
Short-circuit current  
11  
mA  
µs  
Power-up time, including settling time  
Coming out of power-down mode  
50  
(1) 16-bit: codes 485 and 64714; 14-bit: codes 120 and 16200; 12-bit: codes 30 and 4050  
(2) Specified by design or characterization; not production tested.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
At AVDD = 2.7V to 5.5V and over –40°C to +125°C (unless otherwise noted).  
DAC7568/DAC8168/DAC8568  
PARAMETER  
AC PERFORMANCE(3)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SNR  
83  
–63  
63  
dB  
dB  
TA = +25°C, BW = 20kHz, AVDD = 5V, fOUT = 1kHz,  
first 19 harmonics removed for SNR calculation,  
at 16-bit level  
THD  
SFDR  
dB  
SINAD  
62  
dB  
DAC output noise density  
DAC output noise  
REFERENCE  
TA = +25°C, at zero-code input, fOUT = 1kHz  
TA = +25°C, at mid-code input, 0.1Hz to 10Hz  
90  
nV/Hz  
µVPP  
2.6  
AVDD = 5.5V  
AVDD = 3.6V  
360  
348  
µA  
µA  
Internal reference current consumption  
External reference current  
External VREF = 2.5V (when internal reference is  
disabled), all eight channels active  
80  
µA  
Grades A/B, AVDD = 2.7V to 5.5V  
Grades C/D, AVDD = 5.0V to 5.5V  
0
0
AVDD  
V
V
VREFIN  
Reference input range  
AVDD/2  
Reference input impedance  
REFERENCE OUTPUT  
Output voltage  
8
kΩ  
TA = +25°C; all grades  
2.4995  
–0.02  
2.5  
±0.004  
5
2.5005  
0.02  
25  
V
Initial accuracy  
TA = +25°C, all grades  
%
DAC7568/DAC8168/DAC8568(4),grades A/B  
DAC7568/DAC8168/DAC8568(5), grades C/D  
f = 0.1Hz to 10Hz  
Output voltage temperature drift  
Output voltage noise  
ppm/°C  
2
5
12  
µVPP  
TA = +25°C, f = 1MHz, CL = 0µF  
TA = +25°C, f = 1MHz, CL = 1µF  
TA = +25°C, f = 1MHz, CL = 4µF  
TA = +25°C  
50  
Output voltage noise density  
(high-frequency noise)  
20  
nV/Hz  
16  
Load regulation, sourcing(6)  
Load regulation, sinking(6)  
Output current load capability(3)  
Line regulation  
30  
µV/mA  
µV/mA  
mA  
TA = +25°C  
15  
±20  
10  
TA = +25°C  
µV/V  
ppm  
Long-term stability/drift (aging)(6)  
TA = +25°C, time = 0 to 1900 hours  
First cycle  
50  
100  
25  
Thermal hysteresis(6)  
ppm  
Additional cycles  
LOGIC INPUTS(3)  
Input current  
±1  
µA  
V
VINL  
Logic input LOW voltage  
Logic input HIGH voltage  
2.7V AVDD 5.5V  
2.7V AVDD 5.5V  
0.8  
3
VINH  
1.8  
V
Pin capacitance  
pF  
(3) Specified by design or characterization; not production tested.  
(4) Reference is trimmed and tested at room temperature, and is characterized from –40°C to +125°C.  
(5) Reference is trimmed and tested at two temperatures (+25°C and +105°C), and is characterized from –40°C to +125°C.  
(6) Explained in more detail in the Application Information section of this data sheet.  
4
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
ELECTRICAL CHARACTERISTICS (continued)  
At AVDD = 2.7V to 5.5V and over –40°C to +125°C (unless otherwise noted).  
DAC7568/DAC8168/DAC8568  
PARAMETER  
POWER REQUIREMENTS  
AVDD  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
2.7  
5.5  
1.4  
V
AVDD = 3.6V to 5.5V  
VINH = AVDD and VINL = GND  
0.95  
0.81  
1.25  
1.1  
Normal mode, internal  
reference switched off  
mA  
mA  
µA  
AVDD = 2.7V to 3.6V  
VINH = AVDD and VINL = GND  
1.3  
2.0  
1.9  
3
AVDD = 3.6V to 5.5V  
VINH = AVDD and VINL = GND  
Normal mode, internal  
reference switched on  
(7)  
IDD  
AVDD = 2.7V to 3.6V  
VINH = AVDD and VINL = GND  
AVDD = 3.6V to 5.5V  
VINH = AVDD and VINL = GND  
0.18  
0.10  
3.4  
All power-down modes  
AVDD = 2.7V to 3.6V  
VINH = AVDD and VINL = GND  
2.5  
7.7  
4.7  
11  
6.8  
16  
9
AVDD = 3.6V to 5.5V  
VINH = AVDD and VINL = GND  
Normal mode, internal  
reference switched off  
mW  
mW  
AVDD = 2.7V to 3.6V  
VINH = AVDD and VINL = GND  
2.2  
AVDD = 3.6V to 5.5V  
VINH = AVDD and VINL = GND  
4.5  
Power  
Normal mode, internal  
reference switched on  
dissipation(7)  
AVDD = 2.7V to 3.6V  
VINH = AVDD and VINL = GND  
2.9  
AVDD = 3.6V to 5.5V  
VINH = AVDD and VINL = GND  
0.6  
All power-down modes  
µW  
AVDD = 2.7V to 3.6V  
VINH = AVDD and VINL = GND  
0.3  
TEMPERATURE RANGE  
Specified performance  
–40  
+125  
°C  
(7) Input code = midscale, no load.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
PIN CONFIGURATIONS  
PW PACKAGE  
PW PACKAGE  
TSSOP-16  
TSSOP-14  
(TOP VIEW)  
(TOP VIEW)  
1
2
3
4
5
6
7
8
16  
15 DIN  
14  
SCLK  
LDAC  
SYNC  
AVDD  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
SCLK  
DIN  
SYNC  
AVDD  
GND  
VOUT  
VOUT  
VOUT  
VOUT  
VREFIN/VREFOUT  
A
GND  
DAC7568  
DAC8168  
DAC7568  
DAC8168  
DAC8568  
13 VOUT  
12 VOUT  
11 VOUT  
10 VOUT  
B
D
F
VOUT  
VOUT  
VOUT  
VOUT  
VREFIN/VREFOUT  
A
C
VOUT  
VOUT  
VOUT  
VOUT  
B
C
E
D
F
E
G
H
G
8
H
9
CLR  
PIN DESCRIPTIONS  
16-PIN 14-PIN  
NAME  
DESCRIPTION  
1
LDAC  
Load DACs.  
Level-triggered control input (active low). This input is the frame synchronization signal for the input  
data. When SYNC goes low, it enables the input shift register, and data are sampled on subsequent  
falling clock edges. The DAC output updates following the 32nd clock. If SYNC is taken high before  
the 31st clock edge, the rising edge of SYNC acts as an interrupt, and the write sequence is ignored  
by the DAC7568/DAC8168/DAC8568. Schmitt-Trigger logic input.  
2
1
SYNC  
AVDD  
3
4
5
6
7
2
3
4
5
6
Power-supply input, 2.7V to 5.5V  
Analog output voltage from DAC A  
Analog output voltage from DAC C  
Analog output voltage from DAC E  
Analog output voltage from DAC G  
VOUT  
VOUT  
VOUT  
A
C
E
VOUT  
G
VREFIN/  
VREFOUT  
8
7
Positive reference input / reference output 2.5V if internal reference used.(1)  
9
8
CLR  
Asynchronous clear input.  
10  
11  
12  
13  
14  
VOUT  
H
Analog output voltage from DAC H  
Analog output voltage from DAC F  
Analog output voltage from DAC D  
Analog output voltage from DAC B  
Ground reference point for all circuitry on the device  
9
VOUT  
F
10  
11  
12  
VOUT  
D
B
VOUT  
GND  
Serial data input. Data are clocked into the 32-bit input shift register on each falling edge of the serial  
clock input. Schmitt-Trigger logic input.  
15  
16  
13  
14  
DIN  
SCLK  
Serial clock input. Data can be transferred at rates up to 50MHz. Schmitt-Trigger logic input.  
(1) Grades A and B, external VREFIN (max) AVDD; grades C and D, external VREFIN (max) AVDD/2.  
6
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
TIMING DIAGRAM  
t1  
t2  
t3  
SCLK  
t6  
t7  
t8  
t4  
t5  
SYNC  
DIN  
t10  
t9  
DB31  
DB0  
t11  
t12  
LDAC(1)  
LDAC(2)  
t13  
t14  
t15  
CLR  
(1) Asynchronous LDAC update mode. For more information and details, see the LDAC Functionality section.  
(2) Synchronous LDAC update mode. For more information and details, see the LDAC Functionality section.  
Figure 1. Serial Write Operation  
TIMING REQUIREMENTS(1)(2)  
At AVDD = 2.7V to 5.5V and over –40°C to +125°C (unless otherwise noted).  
DAC7568/DAC8168/DAC8568  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SCLK falling edge to SYNC falling edge (for  
successful write operation)  
t1  
t2  
t3  
AVDD = 2.7V to 5.5V  
10  
ns  
ns  
ns  
(3)  
SCLK cycle time  
AVDD = 2.7V to 5.5V  
AVDD = 2.7V to 5.5V  
20  
13  
SYNC rising edge to 31st SCLK falling edge  
(for successful SYNC interrupt)  
t4  
t5  
t6  
t7  
t8  
t9  
Minimum SYNC HIGH time  
SYNC to SCLK falling edge setup time  
SCLK LOW time  
AVDD = 2.7V to 5.5V  
AVDD = 2.7V to 5.5V  
AVDD = 2.7V to 5.5V  
AVDD = 2.7V to 5.5V  
AVDD = 2.7V to 5.5V  
AVDD = 2.7V to 5.5V  
AVDD = 2.7V to 5.5V  
80  
13  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK HIGH time  
8
SCLK falling edge to SYNC rising edge  
Data setup time  
10  
6
t10 Data hold time  
SCLK falling edge to LDAC falling edge for  
asynchronous LDAC update mode  
4
t11  
AVDD = 2.7V to 5.5V  
AVDD = 2.7V to 5.5V  
AVDD = 2.7V to 5.5V  
40  
80  
ns  
ns  
ns  
t12 LDAC pulse width LOW time  
LDAC falling edge to SCLK falling edge for  
synchronous LDAC update mode  
t13  
4 × t1  
t14 32nd SCLK falling edge to LDAC rising edge  
t15 CLR pulse width LOW time  
AVDD = 2.7V to 5.5V  
AVDD = 2.7V to 5.5V  
40  
80  
ns  
ns  
(1) All input signals are specified with tR = tF = 3ns (10% to 90% of AVDD) and timed from a voltage level of (VIL + VIH)/2.  
(2) See the Serial Write Operation timing diagram.  
(3) Maximum SCLK frequency is 50MHz at AVDD = 2.7V to 5.5V.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
 
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: Internal Reference  
At TA = +25°C, unless otherwise noted.  
INTERNAL REFERENCE VOLTAGE  
vs TEMPERATURE (Grades C and D)  
INTERNAL REFERENCE VOLTAGE  
vs TEMPERATURE (Grades A and B)  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
10 Units Shown  
13 Units Shown  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (°C)  
Figure 2.  
Figure 3.  
REFERENCE OUTPUT TEMPERATURE DRIFT  
(–40°C to +125°C, Grades C and D)  
REFERENCE OUTPUT TEMPERATURE DRIFT  
(–40°C to +125°, Grades A and B)  
40  
30  
20  
10  
0
30  
20  
10  
0
Typ: 5ppm/°C  
Typ: 2ppm/°C  
Max: 5ppm/°C  
Max: 25ppm/°C  
0.5  
1
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Temperature Drift (ppm/°C)  
Figure 4.  
3
5
7
9
11  
13  
15  
17  
19  
Temperature Drift (ppm/°C)  
Figure 5.  
LONG-TERM  
REFERENCE OUTPUT TEMPERATURE DRIFT  
(0°C to +125°C, Grades C and D)  
STABILITY/DRIFT(1)  
200  
150  
100  
50  
40  
30  
20  
10  
0
Typ: 1.2ppm/°C  
Max: 3ppm/°C  
0
-50  
-100  
-150  
-200  
Average  
20 Units Shown  
1200 1500 1800  
0
300  
600  
900  
0.5  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Temperature Drift (ppm/°C)  
Figure 6.  
Time (Hours)  
Figure 7.  
(1) See the Application Information section of this data sheet for more details.  
Submit Documentation Feedback  
8
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
TYPICAL CHARACTERISTICS: Internal Reference (continued)  
At TA = +25°C, unless otherwise noted.  
INTERNAL REFERENCE NOISE DENSITY  
vs FREQUENCY  
INTERNAL REFERENCE NOISE  
0.1Hz TO 10Hz  
300  
250  
200  
150  
100  
50  
12mV (peak-to-peak)  
Reference Unbuffered  
CREF = 0mF  
CREF = 4.8mF  
0
Time (2s/div)  
10  
100  
1k  
10k  
100k  
1M  
20 25  
5.5  
Frequency (Hz)  
Figure 8.  
Figure 9.  
INTERNAL REFERENCE VOLTAGE  
vs LOAD CURRENT (Grades C and D)  
INTERNAL REFERENCE VOLTAGE  
vs LOAD CURRENT (Grades A and B)  
2.505  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
2.505  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
+125°C  
-40°C  
+25°C  
+25°C  
+125°C  
-40°C  
-25 -20 -15 -10 -5  
0
5
10  
15  
-25 -20 -15 -10 -5  
0
5
10  
15  
20 25  
ILOAD (mA)  
ILOAD (mA)  
Figure 10.  
Figure 11.  
INTERNAL REFERENCE VOLTAGE  
vs SUPPLY VOLTAGE (Grades C and D)  
INTERNAL REFERENCE VOLTAGE  
vs SUPPLY VOLTAGE (Grades A and B)  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
+125°C  
+125°C  
-40°C  
+25°C  
+25°C  
-40°C  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
AVDD (V)  
AVDD (V)  
Figure 12.  
Figure 13.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: DAC at AVDD = 5.5V  
Channel-specific information provided as examples. At TA = +25°C, external reference used, DAC output not loaded, and all  
DAC codes in straight binary data format, unless otherwise noted.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (–40°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (–40°C)  
6
4
6
4
Channel B  
Channel C  
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
AVDD = 5.5V, Ext. Ref. = 5.0V  
AVDD = 5.5V, Ext. Ref. = 5.0V  
1.0  
0.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-0.5  
-1.0  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 14.  
Figure 15.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (–40°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (–40°C)  
6
4
6
4
Channel F  
Channel G  
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
AVDD = 5.5V, Ext. Ref. = 5.0V  
AVDD = 5.5V, Ext. Ref. = 5.0V  
1.0  
0.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-0.5  
-1.0  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 16.  
Figure 17.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (+25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (+25°C)  
6
4
6
4
Channel B  
Channel C  
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
AVDD = 5.5V, Ext. Ref. = 5.0V  
AVDD = 5.5V, Ext. Ref. = 5.0V  
1.0  
0.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-0.5  
-1.0  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 18.  
Figure 19.  
10  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
TYPICAL CHARACTERISTICS: DAC at AVDD = 5.5V (continued)  
Channel-specific information provided as examples. At TA = +25°C, external reference used, DAC output not loaded, and all  
DAC codes in straight binary data format, unless otherwise noted.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (+25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (+25°C)  
6
4
6
4
Channel F  
Channel G  
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
AVDD = 5.5V, Ext. Ref. = 5.0V  
AVDD = 5.5V, Ext. Ref. = 5.0V  
1.0  
0.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-0.5  
-1.0  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 20.  
Figure 21.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (+125°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (+125°C)  
6
4
6
4
Channel B  
Channel C  
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
AVDD = 5.5V, Ext. Ref. = 5.0V  
AVDD = 5.5V, Ext. Ref. = 5.0V  
1.0  
0.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-0.5  
-1.0  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 22.  
Figure 23.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (+125°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (+125°C)  
6
4
6
4
Channel F  
Channel G  
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
AVDD = 5.5V, Ext. Ref. = 5.0V  
AVDD = 5.5V, Ext. Ref. = 5.0V  
1.0  
0.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-0.5  
-1.0  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 24.  
Figure 25.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: DAC at AVDD = 5.5V (continued)  
Channel-specific information provided as examples. At TA = +25°C, external reference used, DAC output not loaded, and all  
DAC codes in straight binary data format, unless otherwise noted.  
OFFSET ERROR  
vs TEMPERATURE  
POWER-SUPPLY CURRENT  
vs TEMPERATURE  
1.6  
1.2  
1100  
1000  
900  
AVDD = 5.5V  
Internal Reference Disabled  
0.8  
0.4  
0
-0.4  
-0.8  
-1.2  
-1.6  
Ch A  
Ch E  
Ch F  
Ch G  
Ch H  
800  
Ch B  
Ch C  
Ch D  
AVDD = 5.5V  
External Reference = 5V  
Internal Reference Disabled  
700  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (°C)  
Figure 26.  
Figure 27.  
FULL-SCALE ERROR  
vs TEMPERATURE  
POWER-SUPPLY CURRENT  
vs TEMPERATURE  
0.020  
0.015  
0.010  
0.005  
0
1600  
1400  
1200  
1000  
AVDD = 5.5V  
Internal Reference Enabled  
AVDD = 5.5V  
External VREF = 5V  
Internal Reference Disabled  
Ch A  
Ch B  
Ch C  
Ch D  
Ch E  
Ch F  
Ch G  
Ch H  
-0.005  
-0.010  
-0.015  
-0.020  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (°C)  
Figure 28.  
Figure 29.  
GAIN ERROR  
vs TEMPERATURE  
POWER-DOWN CURRENT  
vs TEMPERATURE  
0.045  
0.035  
1..5  
1.0  
0.5  
0
AVDD = 5.5V  
External VREF = 5V  
Internal Reference Disabled  
AVDD = 5.5V  
Ch A  
Ch B  
Ch C  
Ch D  
Ch E  
Ch F  
Ch G  
Ch H  
0.025  
0.015  
0.005  
-0.005  
-0.015  
-0.025  
-0.035  
-0.045  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (°C)  
Figure 30.  
Figure 31.  
12  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
TYPICAL CHARACTERISTICS: DAC at AVDD = 5.5V (continued)  
Channel-specific information provided as examples. At TA = +25°C, external reference used, DAC output not loaded, and all  
DAC codes in straight binary data format, unless otherwise noted.  
SOURCE CURRENT AT POSITIVE RAIL  
(Grades C and D)  
SINK CURRENT AT NEGATIVE RAIL  
(All Grades)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
0.6  
0.4  
0.2  
0
Channel C  
Channel C  
AVDD = 5.5V  
Internal Reference Enabled  
DAC Loaded with FFFFh  
AVDD = 5.5V  
Internal Reference Enabled  
DAC Loaded with 0000h  
0
0
0
1
2
3
4
5
6
7
8
9
9
9
10  
10  
10  
0
0
0
1
2
3
4
5
6
7
8
9
10  
ISOURCE (mA)  
ISINK (mA)  
Figure 32.  
Figure 33.  
SOURCE CURRENT AT POSITIVE RAIL  
(Grades C and D)  
SINK CURRENT AT NEGATIVE RAIL  
(All Grades)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
0.6  
0.4  
0.2  
0
Channel D  
Channel D  
AVDD = 5.5V  
Internal Reference Enabled  
DAC Loaded with FFFFh  
AVDD = 5.5V  
Internal Reference Enabled  
DAC Loaded with 0000h  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
10  
ISOURCE (mA)  
ISINK (mA)  
Figure 34.  
Figure 35.  
SOURCE CURRENT AT POSITIVE RAIL  
(Grades C and D)  
SINK CURRENT AT NEGATIVE RAIL  
(All Grades)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
0.6  
0.4  
0.2  
0
Channel H  
Channel H  
AVDD = 5.5V  
Internal Reference Enabled  
DAC Loaded with FFFFh  
AVDD = 5.5V  
Internal Reference Enabled  
DAC Loaded with 0000h  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
10  
ISOURCE (mA)  
ISINK (mA)  
Figure 36.  
Figure 37.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: DAC at AVDD = 5.5V (continued)  
Channel-specific information provided as examples. At TA = +25°C, external reference used, DAC output not loaded, and all  
DAC codes in straight binary data format, unless otherwise noted.  
POWER-SUPPLY CURRENT  
vs DIGITAL INPUT CODE  
POWER-SUPPLY CURRENT  
vs DIGITAL INPUT CODE  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
AVDD = 5.5V  
External Reference = 5V  
AVDD = 5.5V  
Internal Reference Enabled and Included,  
Code Loaded to all Eight DAC Channels  
Internal Reference Disabled,  
Code Loaded to all Eight DAC Channels  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 38.  
Figure 39.  
POWER-SUPPLY CURRENT  
vs POWER-SUPPLY VOLTAGE  
POWER-SUPPLY CURRENT  
vs POWER-SUPPLY VOLTAGE  
1000  
900  
800  
700  
1300  
1200  
1100  
1000  
AVDD = 2.7V to 5.5V  
Internal Reference Disabled  
AVDD = 2.7V to 5.5V  
Internal Reference Enabled  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
AVDD (V)  
AVDD (V)  
Figure 40.  
Figure 41.  
POWER-DOWN CURRENT  
vs POWER-SUPPLY VOLTAGE  
0.20  
AVDD = 2.7V to 5.5V  
0.15  
0.10  
0.05  
0
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
AVDD (V)  
Figure 42.  
14  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
TYPICAL CHARACTERISTICS: DAC at AVDD = 5.5V (continued)  
Channel-specific information provided as examples. At TA = +25°C, external reference used, DAC output not loaded, and all  
DAC codes in straight binary data format, unless otherwise noted.  
POWER-SUPPLY CURRENT  
vs LOGIC INPUT VOLTAGE  
POWER-SUPPLY CURRENT  
vs LOGIC INPUT VOLTAGE  
2800  
2400  
2000  
1600  
1200  
800  
3200  
2800  
2400  
2000  
1600  
1200  
800  
AVDD = 5.5V  
Internal Reference Disabled  
SYNC Input (All other digital inputs = GND)  
AVDD = 5.5V  
Internal Reference Enabled  
SYNC Input (All other digital inputs = GND)  
Sweep from 0V to 5.5V  
Sweep from 0V to 5.5V  
Sweep from  
5.5V to 0V  
Sweep from  
5.5V to 0V  
400  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Logic Input Voltage (V)  
Logic Input Voltage (V)  
Figure 43.  
Figure 44.  
POWER-SUPPLY CURRENT  
HISTOGRAM  
POWER-SUPPLY CURRENT  
HISTOGRAM  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
AVDD = 5.5V  
Internal Reference Disabled  
AVDD = 5.5V  
Internal Reference Enabled  
VREF = 2.5V  
0
0
IDD (mA)  
IDD (mA)  
Figure 45.  
Figure 46.  
SIGNAL-TO-NOISE RATIO  
vs OUTPUT FREQUENCY  
95  
93  
91  
89  
87  
85  
83  
81  
79  
77  
75  
Ch A  
Ch B  
Ch C  
Ch D  
Ch E  
Ch F  
Ch G  
Ch H  
AVDD = 5.5V, External VREF = 5V  
fS = 225kSPS, -1dB FSR Digital Input  
Measurement Bandwidth = 20kHz  
0
1
2
3
4
5
fOUT (kHz)  
Figure 47.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: DAC at AVDD = 5.5V (continued)  
Channel-specific information provided as examples. At TA = +25°C, external reference used, DAC output not loaded, and all  
DAC codes in straight binary data format, unless otherwise noted.  
SECOND HARMONIC DISTORTION  
POWER SPECTRAL DENSITY  
vs OUTPUT FREQUENCY  
0
-20  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
AVDD = 5.5V, External VREF = 5V  
OUT = 1kHz, fS = 225kSPS  
Measurement Bandwidth = 20kHz  
f
-40  
Ch A  
Ch B  
Ch C  
Ch D  
Ch E  
Ch F  
Ch G  
Ch H  
-60  
-80  
-100  
-120  
-140  
AVDD = 5.5V, External VREF = 5V  
fS = 225kSPS, -1dB FSR Digital Input  
Measurement Bandwidth = 20kHz  
0
5
10  
15  
20  
0
1
2
3
4
5
Frequency (Hz)  
fOUT (kHz)  
Figure 48.  
Figure 49.  
THIRD HARMONIC DISTORTION  
vs OUTPUT FREQUENCY  
TOTAL HARMONIC DISTORTION  
vs OUTPUT FREQUENCY  
-50  
-60  
-40  
-50  
-60  
-70  
-80  
-90  
AVDD = 5.5V, External VREF = 5V  
fS = 225kSPS, -1dB FSR Digital Input  
Measurement Bandwidth = 20kHz  
AVDD = 5.5V, External VREF = 5V  
fS = 225kSPS, -1dB FSR Digital Input  
Measurement Bandwidth = 20kHz  
-70  
-80  
Ch A  
Ch B  
Ch C  
Ch D  
Ch E  
Ch F  
Ch G  
Ch H  
Ch A  
Ch B  
Ch C  
Ch D  
Ch E  
Ch F  
Ch G  
Ch H  
-90  
-100  
0
1
2
3
4
5
0
1
2
3
4
5
fOUT (kHz)  
fOUT (kHz)  
Figure 50.  
Figure 51.  
FULL-SCALE SETTLING TIME:  
5V RISING EDGE  
FULL-SCALE SETTLING TIME:  
5V FALLING EDGE  
AVDD = 5.5V  
From Code: FFFFh  
To Code: 0000h  
Zoomed Rising Edge  
200mV/div  
Zoomed Falling Edge  
200mV/div  
Falling  
Edge  
1V/div  
Internal Reference Enabled  
Rising  
Edge  
1V/div  
AVDD = 5.5V  
From Code: 0000h  
To Code: FFFFh  
Internal Reference Enabled  
Trigger Pulse 5V/div  
Trigger Pulse 5V/div  
Time (2ms/div)  
Time (2ms/div)  
Figure 52.  
Figure 53.  
16  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
TYPICAL CHARACTERISTICS: DAC at AVDD = 5.5V (continued)  
Channel-specific information provided as examples. At TA = +25°C, external reference used, DAC output not loaded, and all  
DAC codes in straight binary data format, unless otherwise noted.  
HALF-SCALE SETTLING TIME:  
5V RISING EDGE  
HALF-SCALE SETTLING TIME:  
5V FALLING EDGE  
AVDD = 5.5V  
AVDD = 5.5V  
Zoomed Rising Edge  
200mV/div  
Zoomed Falling Edge  
200mV/div  
From Code: 4000h  
To Code: C000h  
Internal Reference Enabled  
From Code: C000h  
To Code: 4000h  
Internal Reference Enabled  
Falling  
Edge  
1V/div  
Rising  
Edge  
1V/div  
Trigger Pulse 5V/div  
Trigger Pulse 5V/div  
Time (2ms/div)  
Time (2ms/div)  
Figure 54.  
Figure 55.  
CLOCK FEEDTHROUGH  
2MHz, MIDSCALE  
POWER-ON GLITCH  
RESET TO ZERO SCALE  
AVDD = 5.5V  
Clock Feedthrough Impulse ~0.5nV-s  
Internal Reference Enabled  
~18mVPP  
Channel C  
Channel D  
~4mVPP  
AVDD = 5.5V  
External Reference = 2.5V  
DAC = Zero Scale  
Load = 470pF || 2kW  
Time (1ms/div)  
Time (4ms/div)  
Figure 56.  
Figure 57.  
POWER-ON GLITCH  
RESET TO MIDSCALE  
POWER-OFF GLITCH  
~4mVPP  
Channels A/B  
AVDD  
Channel C  
Channel D  
AVDD = 5.5V  
External Reference = 2.5V  
DAC = Midscale  
AVDD = 5.5V  
DAC = Zero Scale  
Load = 470pF || 2kW  
Load = 470pF || 2kW  
Time (20ms/div)  
Time (4ms/div)  
Figure 58.  
Figure 59.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: DAC at AVDD = 5.5V (continued)  
Channel-specific information provided as examples. At TA = +25°C, external reference used, DAC output not loaded, and all  
DAC codes in straight binary data format, unless otherwise noted.  
GLITCH ENERGY:  
5V, 1LSB STEP, RISING EDGE  
GLITCH ENERGY:  
5V, 1LSB STEP, FALLING EDGE  
AVDD = 5.5V  
AVDD = 5.5V  
LDAC/Clock Feedthrough  
From Code:7FFFh  
To Code: 8000h  
Channel C as Example  
From Code:8000h  
To Code: 7FFFh  
Channel C as Example  
Glitch Impulse  
~0.15nV-s  
Glitch Impulse  
~0.1nV-s  
LDAC/Clock Feedthrough  
LDAC Trigger Pulse 5V/div  
LDAC Trigger Pulse 5V/div  
Time (5ms/div)  
Time (5ms/div)  
Figure 60.  
Figure 61.  
GLITCH ENERGY:  
5V, 4LSB STEP, RISING EDGE  
GLITCH ENERGY:  
5V, 4LSB STEP, FALLING EDGE  
AVDD = 5.5V  
From Code:7FFCh  
To Code: 8000h  
Channel D as Example  
LDAC/Clock Feedthrough  
Glitch Impulse  
~0.15nV-s  
AVDD = 5.5V  
From Code:8000h  
To Code: 7FFCh  
Channel D as Example  
Glitch Impulse  
~0.1nV-s  
LDAC/Clock Feedthrough  
LDAC Trigger Pulse 5V/div  
LDAC Trigger Pulse 5V/div  
Time (5ms/div)  
Time (5ms/div)  
Figure 62.  
Figure 63.  
GLITCH ENERGY:  
5V, 16LSB STEP, RISING EDGE  
GLITCH ENERGY:  
5V, 16LSB STEP, FALLING EDGE  
AVDD = 5.5V  
From Code:7FF0h  
To Code: 8000h  
Channel H as Example  
LDAC/Clock Feedthrough  
Glitch Impulse  
~0.06nV-s  
AVDD = 5.5V  
LDAC/Clock Feedthrough  
From Code:8000h  
To Code: 7FF0h  
Channel H as Example  
Glitch Impulse  
~0.01nV-s  
LDAC Trigger Pulse 5V/div  
LDAC Trigger Pulse 5V/div  
Time (5ms/div)  
Time (5ms/div)  
Figure 64.  
Figure 65.  
18  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
TYPICAL CHARACTERISTICS: DAC at AVDD = 5.5V (continued)  
Channel-specific information provided as examples. At TA = +25°C, external reference used, DAC output not loaded, and all  
DAC codes in straight binary data format, unless otherwise noted.  
DAC OUTPUT NOISE DENSITY  
vs FREQUENCY(1)  
DAC OUTPUT NOISE  
0.1Hz TO 10Hz  
600  
500  
400  
300  
200  
100  
0
AVDD = 5.5V  
AVDD = 5V  
DAC VOUTA Unloaded  
Internal Reference Enabled  
DAC = Midscale, No Load  
Internal Reference = 2.5V  
Channel D  
Full Scale  
Midscale  
~3mVPP  
Zero Scale  
Time (2s/div)  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Figure 66.  
Figure 67.  
(1) See the Application Information section of this data sheet for more details.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: DAC at AVDD = 3.6V  
Channel-specific information provided as examples. At TA = +25°C, internal reference used, and DAC output not loaded, all  
DAC codes in straight binary data format, unless otherwise noted  
POWER-SUPPLY CURRENT  
vs DIGITAL INPUT CODE  
POWER-SUPPLY CURRENT  
vs TEMPERATURE  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
900  
800  
700  
600  
AVDD = 3.6V  
Internal Reference Disabled  
AVDD = 3.6V  
Internal Reference Enabled and Included,  
Code Loaded to all Eight DAC Channels  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Figure 68.  
Figure 69.  
POWER-SUPPLY CURRENT  
vs LOGIC INPUT VOLTAGE  
POWER-SUPPLY CURRENT  
vs TEMPERATURE  
1600  
1400  
1200  
1000  
800  
1400  
1300  
1200  
1100  
1000  
900  
AVDD = 3.6V  
Internal Reference Enabled  
AVDD = 3.6V  
Internal Reference Disabled  
SYNC Input (All other digital inputs = GND)  
Sweep from 0V to 3.6V  
600  
Sweep from  
3.6V to 0V  
400  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Logic Input Voltage (V)  
Temperature (°C)  
Figure 70.  
Figure 71.  
POWER-SUPPLY CURRENT  
vs LOGIC INPUT VOLTAGE  
POWER-DOWN CURRENT  
vs TEMPERATURE  
2000  
1800  
1600  
1400  
1200  
1000  
800  
1.0  
0.8  
0.6  
0.4  
0.2  
0
AVDD = 3.6V  
AVDD = 3.6V  
Internal Reference Enabled  
SYNC Input (All other digital inputs = GND)  
Sweep from 0V to 3.6V  
Sweep from  
3.6V to 0V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Logic Input Voltage (V)  
Temperature (°C)  
Figure 72.  
Figure 73.  
20  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
 
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
TYPICAL CHARACTERISTICS: DAC at AVDD = 3.6V (continued)  
Channel-specific information provided as examples. At TA = +25°C, internal reference used, and DAC output not loaded, all  
DAC codes in straight binary data format, unless otherwise noted  
POWER-SUPPLY CURRENT  
HISTOGRAM  
POWER-SUPPLY CURRENT  
HISTOGRAM  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
AVDD = 3.6V  
Internal Reference Disabled  
AVDD = 3.6V  
Internal Reference Enabled  
VREF = 2.5V  
0
0
IDD (mA)  
IDD (mA)  
Figure 74.  
Figure 75.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: DAC at AVDD = 2.7V  
Channel-specific information provided as examples. At TA = +25°C, internal reference used, and DAC output not loaded, all  
DAC codes in straight binary data format, unless otherwise noted  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (–40°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (–40°C)  
6
4
6
4
Channel A  
Channel D  
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
AVDD = 2.7V, Int. Ref. = 2.5V  
AVDD = 2.7V, Int. Ref. = 2.5V  
1.0  
0.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-0.5  
-1.0  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 76.  
Figure 77.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (–40°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (–40°C)  
6
4
6
4
Channel E  
Channel H  
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
AVDD = 2.7V, Int. Ref. = 2.5V  
AVDD = 2.7V, Int. Ref. = 2.5V  
1.0  
0.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-0.5  
-1.0  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 78.  
Figure 79.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (+25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (+25°C)  
6
4
6
4
Channel A  
Channel D  
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
AVDD = 2.7V, Int. Ref. = 2.5V  
AVDD = 2.7V, Int. Ref. = 2.5V  
1.0  
0.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-0.5  
-1.0  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 80.  
Figure 81.  
22  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
TYPICAL CHARACTERISTICS: DAC at AVDD = 2.7V (continued)  
Channel-specific information provided as examples. At TA = +25°C, internal reference used, and DAC output not loaded, all  
DAC codes in straight binary data format, unless otherwise noted  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (+25°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (+25°C)  
6
4
6
4
Channel E  
Channel H  
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
AVDD = 2.7V, Int. Ref. = 2.5V  
AVDD = 2.7V, Int. Ref. = 2.5V  
1.0  
0.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-0.5  
-1.0  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 82.  
Figure 83.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (+105°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (+105°C)  
6
4
6
4
Channel A  
Channel D  
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
AVDD = 2.7V, Int. Ref. = 2.5V  
AVDD = 2.7V, Int. Ref. = 2.5V  
1.0  
0.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-0.5  
-1.0  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 84.  
Figure 85.  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (+105°C)  
LINEARITY ERROR AND  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE (+105°C)  
6
4
6
4
Channel E  
Channel H  
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
AVDD = 2.7V, Int. Ref. = 2.5V  
AVDD = 2.7V, Int. Ref. = 2.5V  
1.0  
0.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-0.5  
-1.0  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 86.  
Figure 87.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: DAC at AVDD = 2.7V (continued)  
Channel-specific information provided as examples. At TA = +25°C, internal reference used, and DAC output not loaded, all  
DAC codes in straight binary data format, unless otherwise noted  
OFFSET ERROR  
vs TEMPERATURE  
POWER-SUPPLY CURRENT  
vs TEMPERATURE  
1.6  
1.2  
900  
800  
700  
600  
500  
AVDD = 2.7V  
Internal Reference Disabled  
0.8  
0.4  
0
-0.4  
-0.8  
-1.2  
-1.6  
Ch A  
Ch E  
Ch F  
Ch G  
Ch H  
Ch B  
Ch C  
Ch D  
AVDD = 2.7V  
Internal VREF = 2.5V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (°C)  
Figure 88.  
Figure 89.  
FULL-SCALE ERROR  
vs TEMPERATURE  
POWER-SUPPLY CURRENT  
vs TEMPERATURE  
0.040  
1300  
1200  
1100  
1000  
900  
AVDD = 2.7V  
Internal Reference Enabled  
0.030  
0.020  
0.010  
0
-0.010  
Ch A  
Ch E  
Ch F  
Ch G  
Ch H  
-0.020  
Ch B  
Ch C  
Ch D  
-0.030 AVDD = 2.7V  
Internal VREF = 2.5V  
-0.040  
800  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (°C)  
Figure 90.  
Figure 91.  
POWER-DOWN CURRENT  
vs TEMPERATURE  
vs  
0.045  
0.035  
1.0  
0.8  
0.6  
0.4  
0.2  
0
AVDD = 2.7V  
Ch A  
Ch B  
Ch C  
Ch D  
Ch E  
Ch F  
Ch G  
Ch H  
AVDD = 2.7V  
Internal VREF = 2.5V  
0.025  
0.015  
0.005  
-0.005  
-0.015  
-0.025  
-0.035  
-0.045  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (°C)  
Figure 92.  
Figure 93.  
24  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
TYPICAL CHARACTERISTICS: DAC at AVDD = 2.7V (continued)  
Channel-specific information provided as examples. At TA = +25°C, internal reference used, and DAC output not loaded, all  
DAC codes in straight binary data format, unless otherwise noted  
SOURCE CURRENT AT POSITIVE RAIL  
(Grades A and B)  
SINK CURRENT AT NEGATIVE RAIL  
(All Grades)  
2.7  
2.5  
2.3  
2.1  
1.9  
0.6  
0.4  
0.2  
0
Channel A  
Channel A  
AVDD = 2.7V  
Internal Reference Enabled  
DAC Loaded with FFFFh  
AVDD = 2.7V  
Internal Reference Enabled  
DAC Loaded with 0000h  
0
0
0
1
2
3
4
5
6
7
8
9
9
9
10  
10  
10  
0
0
0
1
2
3
4
5
6
7
8
9
10  
ISOURCE (mA)  
ISINK (mA)  
Figure 94.  
Figure 95.  
SOURCE CURRENT AT POSITIVE RAIL  
(Grades A and B)  
SINK CURRENT AT NEGATIVE RAIL  
(All Grades)  
2.7  
2.5  
2.3  
2.1  
1.9  
0.6  
0.4  
0.2  
0
Channel B  
Channel B  
AVDD = 2.7V  
Internal Reference Enabled  
DAC Loaded with FFFFh  
AVDD = 2.7V  
Internal Reference Enabled  
DAC Loaded with 0000h  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
10  
ISOURCE (mA)  
ISINK (mA)  
Figure 96.  
Figure 97.  
SOURCE CURRENT AT POSITIVE RAIL  
(Grades A and B)  
SINK CURRENT AT NEGATIVE RAIL  
(All Grades)  
2.7  
2.5  
2.3  
2.1  
1.9  
0.6  
0.4  
0.2  
0
Channel G  
Channel G  
AVDD = 2.7V  
Internal Reference Enabled  
DAC Loaded with FFFFh  
AVDD = 2.7V  
Internal Reference Enabled  
DAC Loaded with 0000h  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
10  
ISOURCE (mA)  
ISINK (mA)  
Figure 98.  
Figure 99.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: DAC at AVDD = 2.7V (continued)  
Channel-specific information provided as examples. At TA = +25°C, internal reference used, and DAC output not loaded, all  
DAC codes in straight binary data format, unless otherwise noted  
POWER-SUPPLY CURRENT  
vs DIGITAL INPUT CODE  
POWER-SUPPLY CURRENT  
vs DIGITAL INPUT CODE  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1000  
900  
800  
700  
600  
500  
400  
AVDD = 2.7V  
AVDD = 2.7V  
Internal Reference Enabled and Included,  
Code Loaded to all Eight DAC Channels  
External Reference = 2.5V  
Internal Reference Disabled and Not Included  
Code Loaded to all Eight DAC Channels  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 100.  
Figure 101.  
POWER-SUPPLY CURRENT  
vs LOGIC INPUT VOLTAGE  
POWER-SUPPLY CURRENT  
vs LOGIC INPUT VOLTAGE  
1100  
1000  
900  
800  
700  
600  
500  
400  
1400  
1300  
1200  
1100  
1000  
900  
AVDD = 2.7V  
Internal Reference Disabled  
SYNC Input (All other digital inputs = GND)  
AVDD = 2.7V  
Internal Reference Enabled  
SYNC Input (All other digital inputs = GND)  
Sweep from  
0V to 2.7V  
Sweep from  
0V to 2.7V  
Sweep from  
2.7V to 0V  
Sweep from  
2.7V to 0V  
800  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Logic Input Voltage (V)  
Logic Input Voltage (V)  
Figure 102.  
Figure 103.  
POWER-SUPPLY CURRENT  
HISTOGRAM  
POWER-SUPPLY CURRENT  
HISTOGRAM  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
AVDD = 2.7V  
Internal Reference Disabled  
AVDD = 2.7V  
Internal Reference Enabled  
VREF = 2.5V  
0
0
IDD (mA)  
IDD (mA)  
Figure 104.  
Figure 105.  
26  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
TYPICAL CHARACTERISTICS: DAC at AVDD = 2.7V (continued)  
Channel-specific information provided as examples. At TA = +25°C, internal reference used, and DAC output not loaded, all  
DAC codes in straight binary data format, unless otherwise noted  
FULL-SCALE SETTLING TIME:  
2.7V RISING EDGE  
FULL-SCALE SETTLING TIME:  
2.7V FALLING EDGE  
Zoomed Rising Edge  
200mV/div  
Falling  
Edge  
1V/div  
AVDD = 2.7V  
From Code: FFFFh  
To Code: 0000h  
Rising  
Edge  
1V/div  
Zoomed Falling Edge  
200mV/div  
AVDD = 2.7V  
From Code: 0000h  
To Code: FFFFh  
Trigger  
Pulse  
5V/div  
Trigger Pulse  
5V/div  
Time (2ms/div)  
Time (2ms/div)  
Figure 106.  
Figure 107.  
HALF-SCALE SETTLING TIME:  
2.7V RISING EDGE  
HALF-SCALE SETTLING TIME:  
2.7V FALLING EDGE  
AVDD = 2.7V  
From Code: C000h  
To Code: 4000h  
Rising  
Edge  
1V/div  
Falling  
Edge  
1V/div  
Zoomed Rising Edge  
200mV/div  
Zoomed Falling Edge  
200mV/div  
AVDD = 2.7V  
From Code: 4000h  
To Code: C000h  
Trigger  
Pulse  
5V/div  
Trigger  
Pulse  
5V/div  
Time (2ms/div)  
Time (2ms/div)  
Figure 108.  
Figure 109.  
CLOCK FEEDTHROUGH  
2.7V, 2MHz, MIDSCALE  
POWER-ON GLITCH  
RESET TO ZERO SCALE  
AVDD = 2.7V  
Clock Feedthrough Impulse ~0.4nV-s  
Internal Reference Enabled  
~8mVPP  
~4mVPP  
Channel E  
Channel F  
AVDD = 2.7V  
External Reference = 2.5V  
DAC = Zero Scale  
Load = 470pF || 2kW  
Time (1ms/div)  
Time (4ms/div)  
Figure 110.  
Figure 111.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS: DAC at AVDD = 2.7V (continued)  
Channel-specific information provided as examples. At TA = +25°C, internal reference used, and DAC output not loaded, all  
DAC codes in straight binary data format, unless otherwise noted  
POWER-ON GLITCH  
RESET TO MIDSCALE  
POWER-OFF GLITCH  
Channels G/H  
Channel C  
Channel D  
AVDD  
AVDD = 2.7V  
External Reference = 2.5V  
DAC = Midscale  
AVDD = 2.7V  
DAC = Zero Scale  
Load = 470pF || 2kW  
Load = 470pF || 2kW  
Time (20ms/div)  
Time (4ms/div)  
Figure 112.  
Figure 113.  
GLITCH ENERGY:  
2.7V, 1LSB STEP, RISING EDGE  
GLITCH ENERGY:  
2.7V, 1LSB STEP, FALLING EDGE  
AVDD = 2.7V  
AVDD = 2.7V  
LDAC/Clock Feedthrough  
From Code:7FFFh  
To Code: 8000h  
Channel E as Example  
From Code:8000h  
To Code: 7FFFh  
Channel E as Example  
Glitch Impulse  
~0.15nV-s  
Glitch Impulse  
~0.2nV-s  
LDAC/Clock Feedthrough  
LDAC Trigger Pulse 5V/div  
LDAC Trigger Pulse 5V/div  
Time (5ms/div)  
Time (5ms/div)  
Figure 114.  
Figure 115.  
GLITCH ENERGY:  
2.7V, 4LSB STEP, RISING EDGE  
GLITCH ENERGY:  
2.7V, 4LSB STEP, FALLING EDGE  
AVDD = 2.7V  
AVDD = 2.7V  
LDAC/Clock Feedthrough  
From Code:8000h  
To Code: 7FFCh  
Channel A as Example  
From Code:7FFCh  
To Code: 8000h  
Channel A as Example  
Glitch Impulse  
~0.1nV-s  
LDAC/Clock Feedthrough  
LDAC Trigger Pulse 5V/div  
Glitch Impulse  
~0.08nV-s  
LDAC Trigger Pulse 5V/div  
Time (5ms/div)  
Time (5ms/div)  
Figure 116.  
Figure 117.  
28  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
TYPICAL CHARACTERISTICS: DAC at AVDD = 2.7V (continued)  
Channel-specific information provided as examples. At TA = +25°C, internal reference used, and DAC output not loaded, all  
DAC codes in straight binary data format, unless otherwise noted  
GLITCH ENERGY:  
2.7V, 16LSB STEP, RISING EDGE  
GLITCH ENERGY:  
2.7V, 16LSB STEP, FALLING EDGE  
AVDD = 2.7V  
LDAC/Clock Feedthrough  
From Code:7FF0h  
To Code: 8000h  
Channel B as Example  
Glitch Impulse  
~0.2nV-s  
AVDD = 2.7V  
LDAC/Clock Feedthrough  
LDAC Trigger Pulse 5V/div  
From Code:8000h  
To Code: 7FF0h  
Channel B as Example  
Glitch Impulse  
~0.04nV-s  
LDAC Trigger Pulse 5V/div  
Time (5ms/div)  
Time (5ms/div)  
Figure 118.  
Figure 119.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
THEORY OF OPERATION  
DIGITAL-TO-ANALOG CONVERTER (DAC)  
VREF  
The DAC7568, DAC8168, and DAC8568 architecture  
consists of eight string DACs each followed by an  
output buffer amplifier. The devices include an  
internal 2.5V reference with 2ppm/°C temperature  
drift performance, and offer either 5V or 2.5V full  
scale output voltage. Figure 120 shows a principal  
block diagram of the DAC architecture.  
RDIVIDER  
VREF  
2
R
VREFH  
50kW  
50kW  
To Output Amplifier  
(2x Gain)  
R
62kW  
VOUTX  
REF(+)  
Resistor String  
REF(-)  
DAC  
Register  
VREFL  
Figure 120. Device Architecture  
The input coding to the DAC7568, DAC8168, and  
DAC8568 is straight binary, so the ideal output  
voltage is given by Equation 1:  
R
R
DIN  
VOUT  
=
´ VREF ´ Gain  
2n  
(1)  
Where:  
DIN = decimal equivalent of the binary code that  
is loaded to the DAC register. It can range from 0  
to 4095 for DAC7568 (12 bit), 0 to 16,383 for  
DAC8168 (14 bit), and 0 to 65535 for DAC8568  
(16 bit).  
n = resolution in bits; either 12 (DAC7568), 14  
(DAC8168) or 16 (DAC8568)  
Figure 121. Resistor String  
OUTPUT AMPLIFIER  
The output buffer amplifier is capable of generating  
rail-to-rail voltages on its output, giving a maximum  
output range of 0V to AVDD. It is capable of driving a  
load of 2kin parallel with 3000pF to GND. The  
source and sink capabilities of the output amplifier  
can be seen in the Typical Characteristics. The  
typical slew rate is 0.75V/µs, with a typical full-scale  
settling time of 5µs with the output unloaded.  
Gain = 1 for A/B grades or 2 for C/D grades.  
RESISTOR STRING  
The resistor string section is shown in Figure 121. It  
is simply a string of resistors, each of value R. The  
code loaded into the DAC register determines at  
which node on the string the voltage is tapped off to  
be fed into the output amplifier by closing one of the  
switches connecting the string to the amplifier. It is  
monotonic because it is a string of resistors.  
30  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
 
 
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
Enable/Disable Internal Reference  
INTERNAL REFERENCE  
The internal reference in the DAC7568, DAC8168,  
and DAC8568 is disabled by default for debugging,  
evaluation purposes, or when using an external  
reference. The internal reference can be powered up  
and powered down using a serial command that  
requires a 32-bit write sequence (see the Serial  
Interface section), as shown in Table 1 and Table 3.  
During the time that the internal reference is disabled,  
the DAC functions normally using an external  
reference. At this point, the internal reference is  
disconnected from the VREFIN/VREFOUT pin (3-state  
output). Do not attempt to drive the VREFIN/VREFOUT  
pin externally and internally at the same time  
indefinitely.  
The DAC7568, DAC8168, and DAC8568 include a  
2.5V internal reference that is disabled by default.  
The internal reference is externally available at the  
VREFIN/VREFOUT pin. A minimum 100nF capacitor is  
recommended between the reference output and  
GND for noise filtering.  
The internal reference of the DAC7568, DAC8168,  
and DAC8568 is a bipolar, transistor-based, precision  
bandgap voltage reference. Figure 122 shows the  
basic bandgap topology. Transistors Q1 and Q2 are  
biased such that the current density of Q1 is greater  
than that of Q2. The difference of the two  
base-emitter voltages (VBE1 – VBE2) has a positive  
temperature coefficient and is forced across resistor  
R1. This voltage is gained up and added to the  
base-emitter voltage of Q2, which has a negative  
temperature coefficient. The resulting output voltage  
is virtually independent of temperature. The  
short-circuit current is limited by design to  
approximately 100mA.  
There are two modes that allow communication with  
the internal reference: Static and Flexible. In Flexible  
mode, DB19 must be set to '1'.  
Static Mode (see Table 1 and Table 2)  
Enabling Internal Reference:  
To enable the internal reference, write the 32-bit  
serial command shown in Table 1. When performing  
a power cycle to reset the device, the internal  
reference is switched off (default mode). In the  
default mode, the internal reference is powered down  
until a valid write sequence is applied to power up the  
internal reference. If the internal reference is powered  
up, it automatically powers down when all DACs  
power down in any of the power-down modes (see  
the Power Down Modes section). The internal  
reference automatically powers up when any DAC is  
powered up.  
VREF  
Reference  
Disable  
Q1  
1
N
Q2  
R1  
Disabling Internal Reference:  
To disable the internal reference, write the 32-bit  
serial command shown in Table 2. When performing  
a power cycle to reset the device, the internal  
reference is put back into its default mode and  
switched off (default mode).  
R2  
Figure 122. Bandgap Reference Simplified  
Schematic  
Table 1. Write Sequence for Enabling Internal Reference (Static Mode)  
(Internal Reference Powered On—08000001h)  
DB31  
DB27  
1
DB23  
DB19  
DB4  
X
DB0  
1
0
0
X
X
X
X
X
X
0
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
|-- Prefix Bits --| |- Control Bits -| | Address Bits | |-------------------------------------- Data Bits --------------------------------------| | Feature Bits |  
Table 2. Write Sequence for Disabling Internal Reference (Static Mode)  
(Internal Reference Powered On—08000000h)  
DB31  
DB27  
1
DB23  
DB19  
DB4  
X
DB0  
0
0
0
X
X
X
X
X
X
0
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
|-- Prefix Bits --| |- Control Bits -| | Address Bits | |-------------------------------------- Data Bits --------------------------------------| | Feature Bits |  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
 
 
 
 
 
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
Flexible Mode (see Table 3, Table 4, and Table 5)  
performing a power cycle to reset the device, the  
internal reference is switched off (default mode). In  
the default mode, the internal reference is powered  
down until a valid write sequence is applied to power  
up the internal reference. When the internal reference  
is powered up, it remains powered up, regardless of  
the state of the DACs.  
Enabling Internal Reference:  
Method 1) To enable the internal reference, write the  
32-bit serial command shown in Table 3. When  
performing a power cycle to reset the device, the  
internal reference is switched off (default mode). In  
the default mode, the internal reference is powered  
down until a valid write sequence is applied to power  
up the internal reference. If the internal reference is  
powered up, it automatically powers down when all  
DACs power down in any of the power-down modes  
(see the Power Down Modes section). The internal  
reference powers up automatically when any DAC is  
powered up.  
Disabling Internal Reference:  
To disable the internal reference, write the 32-bit  
serial command shown in Table 5. When performing  
a power cycle to reset the device, the internal  
reference is switched off (default mode).  
When the internal reference is operated in Flexible  
mode, Static mode is disabled and does not work. To  
switch from Flexible mode to Static mode, use the  
command shown in Table 6.  
Method 2) To always enable the internal reference,  
write the 32-bit serial command shown in Table 4.  
When the internal reference is always enabled, any  
power-down command to the DAC channels does not  
change the internal reference operating mode. When  
Table 3. Write Sequence for Enabling Internal Reference (Flexible Mode)  
(Internal Reference Powered On—09080000h)  
DB31  
DB27  
DB23  
DB19  
DB4  
X
DB0  
X
0
0
X
X
X
X
X
X
1
0
0
1
X
X
X
X
1
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
|-- Prefix Bits --| |- Control Bits -| | Address Bits | |-------------------------------------- Data Bits --------------------------------------| | Feature Bits |  
Table 4. Write Sequence for Enabling Internal Reference (Flexible Mode)  
(Internal Reference Always Powered On—090A0000h)  
DB31  
DB27  
DB23  
DB19  
DB4  
X
DB0  
X
0
0
X
X
X
X
X
X
1
0
0
1
X
X
X
X
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
|-- Prefix Bits --| |- Control Bits -| | Address Bits | |-------------------------------------- Data Bits --------------------------------------| | Feature Bits |  
Table 5. Write Sequence for Disabling Internal Reference (Flexible Mode)  
(Internal Reference Always Powered Down—090C0000h)  
DB31  
DB27  
DB23  
DB19  
DB4  
X
DB0  
X
0
0
X
X
X
X
X
X
1
0
0
1
X
X
X
X
1
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
|-- Prefix Bits --| |- Control Bits -| | Address Bits | |-------------------------------------- Data Bits --------------------------------------| | Feature Bits |  
Table 6. Write Sequence for Switching from Flexible Mode to Static Mode for Internal Reference  
(Internal Reference Always Powered Down—09000000h)  
DB31  
DB27  
DB23  
DB19  
DB4  
DB0  
X
0
0
X
X
X
X
X
X
1
0
0
1
X
X
X
X
0
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
|-- Prefix Bits --| |- Control Bits -| | Address Bits | |-------------------------------------- Data Bits --------------------------------------| | Feature Bits |  
32  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
 
 
 
 
 
 
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
SERIAL INTERFACE  
The data format is straight binary with all '0's  
corresponding to 0V output and all '1's corresponding  
to full-scale output. For all documentation purposes,  
the data format and representation used here is a  
true 16-bit pattern (that is, FFFFh for data word for  
full-scale) that the DAC7568, DAC8168, and  
DAC8568 require.  
The DAC7568, DAC8168, and DAC8568 have a  
3-wire serial interface (SYNC, SCLK, and DIN; see the  
Pin Configurations) compatible with SPI, QSPI, and  
Microwire interface standards, as well as most DSPs.  
See the Serial Write Operation timing diagram  
(Figure 1) for an example of a typical write sequence.  
The write sequence begins by bringing the SYNC line  
low. Data from the DIN line are clocked into the 32-bit  
shift register on each falling edge of SCLK. The serial  
clock frequency can be as high as 50MHz, making  
the DAC7568, DAC8168, and DAC8568 compatible  
with high-speed DSPs. On the 32nd falling edge of  
the serial clock, the last data bit is clocked into the  
shift register and the shift register locks. Further  
clocking does not change the shift register data. After  
receiving the 32nd falling clock edge, the DAC7568,  
DAC8168, and DAC8568 decode the four control bits  
and four address bits and 16/14/12 data bits to  
perform the required function, without waiting for a  
SYNC rising edge. A new write sequence starts at the  
next falling edge of SYNC. A rising edge of SYNC  
before the 31st-bit sequence is complete resets the  
SPI interface; no data transfer occurs. After the 32nd  
falling edge of SCLK is received, the SYNC line may  
be kept low or brought high. In either case, the  
minimum delay time from the 32nd falling SCLK edge  
to the next falling SYNC edge must be met in order to  
properly begin the next cycle; see the Serial Write  
Operation timing diagram (Figure 1). To assure the  
lowest power consumption of the device, care should  
be taken that the levels are as close to each rail as  
possible. Refer to the 5.5V, 3.6V, and 2.7V Typical  
Characteristics sections for the Power-Supply Current  
vs Logic Input Voltage graphs (Figure 43, Figure 44,  
Figure 70, Figure 72, Figure 102, and Figure 103).  
The DAC7568, DAC8168, and DAC8568 input shift  
register is 32-bits wide, consisting of four prefix bits  
(DB31 to DB28), four control bits (DB27 to DB24), 16  
data bits (DB23 to DB4), and four feature bits. The 16  
data bits comprise the 16-, 14-, or 12-bit input code.  
When writing to the DAC register (data transfer), bits  
DB0 to DB3 (for 16-bit operation), DB0 to DB5 (for  
14-bit operation), and DB0 to DB7 (for 12-bit  
operation) are ignored by the DAC and should be  
treated as don't care bits (see Table 7 to Table 9). All  
32 bits of data are loaded into the DAC under the  
control of the serial clock input, SCLK.  
DB31 (MSB) is the first bit that is loaded into the DAC  
shift register and must be always set to '0'. It is  
followed by the rest of the 32-bit word pattern,  
left-aligned. This configuration means that the first 32  
bits of data are latched into the shift register and any  
further clocking of data is ignored. When the DAC  
registers are being written to, the DAC7568,  
DAC8168, and DAC8568 receive all 32 bits of data,  
ignore DB31 to DB28, and decode the second set of  
four bits (DB27 to DB24) in order to determine the  
DAC operating/control mode (see Table 10). Bits  
DB23 to DB20 are used to address selected DAC  
channels. The next 16/14/12 bits of data that follow  
are decoded by the DAC to determine the equivalent  
analog output. The last four data bits (DB0 to DB3 for  
DAC8568), last data six bits (DB0 to DB5 for  
DAC8168), or last eight data bits (DB0 to DB7 for  
DAC7568) are ignored in this case. For more details  
on these and other commands (such as write to  
LDAC register, power down DACs, etc.), see  
Table 10.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
INPUT SHIFT REGISTER  
DB4), and four additional feature bits. The 16 data  
bits comprise the 16-, 14-, or 12-bit input code.  
The input shift register (SR) of the DAC7568,  
DAC8168, and DAC8568 is 32 bits wide (as shown in  
Table 7, Table 8, and Table 9, respectively), and  
consists of four Prefix bits (DB31 to DB28), four  
control bits (DB27 to DB24), 16 data bits (DB23 to  
The DAC7568, DAC8168, and DAC8568 support a  
number of different load commands. The load  
commands are summarized in Table 10.  
Table 7. DAC8568 Data Input Register Format  
DB31  
DB27  
DB23  
DB19  
DB4  
DB0  
0
X
X
X
|-- Prefix Bits --| |- Control Bits -| | Address Bits | |-------------------------------------- Data Bits --------------------------------------| | Feature Bits |  
Table 8. DAC8168 Data Input Register Format  
DB31  
DB27  
DB23  
DB19  
DB4  
X
DB0  
0
X
X
X
X
X
|-- Prefix Bits --| |- Control Bits -| | Address Bits | |-------------------------------- Data Bits --------------------------------|  
| Feature Bits |  
Table 9. DAC7568 Data Input Register Format  
DB23  
DB31  
DB27  
DB19  
DB4  
X
DB0  
0
X
X
X
X
X
|-- Prefix Bits --| |- Control Bits -| | Address Bits | |-------------------------- Data Bits --------------------------|  
| Feature Bits |  
34  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
 
 
DAC7568  
DAC8168  
DAC8568  
www.ti.com.................................................................................................................................................................................................................................................. SBAS430AJANUARY 2009REVISED APRIL 2009  
Table 10. Control Matrix for the DAC7568, DAC8168, and DAC8568  
DB30-  
DB28  
DB16-  
DB31  
DB27  
C3  
DB26  
C2  
DB25  
C1  
DB24  
C0  
DB23  
A3  
DB22  
A2  
DB21  
A1  
DB20  
A0  
DB19  
D16  
D14  
D12  
X
DB18  
D15  
D13  
D11  
X
DB17  
D14  
D12  
D10  
X
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DESCRIPTION  
Don't  
Care  
D13-  
D7  
0
0
0
1
D6  
D4  
D2  
X
D5  
D3  
D1  
X
D4  
D2  
X
D3  
D1  
X
D2  
X
D1  
X
F3  
F3  
F3  
X
F2  
F2  
F2  
X
F1  
F1  
F1  
X
F0 GENERAL DATA FORMAT FOR 16-BIT DAC8568  
F0 GENERAL DATA FORMAT FOR 14-BIT DAC8168  
F0 GENERAL DATA FORMAT FOR 12-BIT DAC7568  
Don't  
Care  
D11-  
D5  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
Don't  
Care  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D9-D3  
X
X
Reserved Bit - Not valid; device does not perform  
to specified conditions  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Write to Selected DAC Input Register  
0
0
0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
X
1
0
0
1
1
0
0
1
1
X
1
0
1
0
1
0
1
0
1
X
1
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Write to input register - DAC Channel A  
Write to input register - DAC Channel B  
Write to input register - DAC Channel C  
Write to input register - DAC Channel D  
Write to input register - DAC Channel E  
Write to input register - DAC Channel F  
Write to input register - DAC Channel G  
Write to input register - DAC Channel H  
Invalid code - No DAC channel is updated  
Broadcast mode - Write to all DAC channels  
Data  
Update Selected DAC Registers  
0
0
0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
X
1
0
0
1
1
0
0
1
1
X
1
0
1
0
1
0
1
0
1
X
1
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Update DAC register - DAC Channel A  
Update DAC register - DAC Channel B  
Update DAC register - DAC Channel C  
Update DAC register - DAC Channel D  
Update DAC register - DAC Channel E  
Update DAC register - DAC Channel F  
Update DAC register - DAC Channel G  
Update DAC register - DAC Channel H  
Invalid code - No DAC channel is updated  
Broadcast mode - Update all DAC registers  
Data  
Write to Clear Code Register  
0
0
0
0
X
X
X
X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
1
1
0
1
0
1
Write to clear code register; clear to zero scale  
Write to clear code register; clear to midscale  
Write to clear code register; clear to full-scale  
Write to clear code register; ignore CLR pin  
Write to LDAC Register  
Write to LDAC register. Default setting of these bits  
is '0'. If bit is set to '1', the LDAC pin is overridden.  
See the LDAC Functionality section for details.  
DAC DAC DAC DAC DAC DAC DAC DAC  
0
X
0
0
1
1
1
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
G
F
E
D
C
B
A
Software Reset  
0
X
X
X
X
X
X
X
X
X
Software reset (power-on reset)  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009.................................................................................................................................................................................................................................................. www.ti.com  
Table 10. Control Matrix for the DAC7568, DAC8168, and DAC8568 (continued)  
DB30-  
DB28  
DB16-  
DB31  
DB27  
C3  
DB26  
C2  
DB25  
C1  
DB24  
C0  
DB23  
A3  
DB22  
A2  
DB21  
A1  
DB20  
A0  
DB19  
D16  
D14  
D12  
DB18  
D15  
D13  
D11  
DB17  
D14  
D12  
D10  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DESCRIPTION  
Don't  
Care  
D13-  
D7  
0
0
0
D6  
D4  
D2  
D5  
D3  
D1  
D4  
D2  
X
D3  
D1  
X
D2  
X
D1  
X
F3  
F3  
F3  
F2  
F2  
F2  
F1  
F1  
F1  
F0 GENERAL DATA FORMAT FOR 16-BIT DAC8568  
F0 GENERAL DATA FORMAT FOR 14-BIT DAC8168  
F0 GENERAL DATA FORMAT FOR 12-BIT DAC7568  
Don't  
Care  
D11-  
D5  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
Don't  
Care  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D9-D3  
X
X
Write to Selected DAC Input Register and Update All DAC Registers  
Write to DAC input register Ch A and update all  
DAC registers (SW LDAC)  
0
0
0
0
0
0
0
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
Data  
Data  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Write to DAC Input Register Ch B and update all  
DAC registers (SW LDAC)  
X
Write to DAC Input Register Ch C and update all  
DAC registers (SW LDAC)  
0
1
0
1
0
Data  
Data  
Data  
Data  
Data  
X
X
X
X
X
X
Write to DAC Input Register Ch D and update all  
DAC registers (SW LDAC)  
X
Write to DAC Input Register Ch E and update all  
DAC registers (SW LDAC)  
X
Write to DAC Input Register Ch F and update all  
DAC registers (SW LDAC)  
X
Write to DAC Input Register Ch G and update all  
DAC registers (SW LDAC)  
X
Write to DAC Input Register Ch H and update all  
DAC registers (SW LDAC)  
0
0
0
X
X
X
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
X
1
1
X
1
1
X
1
Data  
X
X
X
X
X
X
X
X
X
X
X
X
X
Invalid code - No DAC Channel is updated  
Broadcast mode - Write to all DAC input registers  
and update all DAC registers (SW LDAC)  
Data  
Write to Selected DAC Input Register and Update Respective DAC Register  
Write to DAC input register Ch A and update DAC  
register Ch A  
0
0
0
0
0
0
0
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Data  
Data  
Data  
Data  
Data  
Data  
Data  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Write to DAC Input Register Ch B and update DAC  
register Ch B  
0
0
Write to DAC Input Register Ch C and update DAC  
register Ch C  
Write to DAC Input Register Ch D and update DAC  
register Ch D  
0
1
1
1
Write to DAC Input Register Ch E and update DAC  
register Ch E  
Write to DAC Input Register Ch F and update DAC  
register Ch F  
Write to DAC Input Register Ch G and update DAC  
register Ch G  
Write to DAC Input Register Ch H and update DAC  
register Ch H  
0
0
0
X
X
X
0
0
0
0
0
0
1
1
1
1
1
1
0
1
1
1
X
1
1
X
1
1
X
1
Data  
X
X
X
X
X
X
X
X
X
X
X
X
X
Invalid code - No DAC channel is updated  
Broadcast mode - Write to all DAC input registers  
and update all DAC registers (SW LDAC)  
Data  
36  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
www.ti.com.................................................................................................................................................................................................................................................. SBAS430AJANUARY 2009REVISED APRIL 2009  
Table 10. Control Matrix for the DAC7568, DAC8168, and DAC8568 (continued)  
DB30-  
DB28  
DB16-  
DB31  
DB27  
C3  
DB26  
C2  
DB25  
C1  
DB24  
C0  
DB23  
A3  
DB22  
A2  
DB21  
A1  
DB20  
A0  
DB19  
D16  
D14  
D12  
DB18  
D15  
D13  
D11  
DB17  
D14  
D12  
D10  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DESCRIPTION  
Don't  
Care  
D13-  
D7  
0
0
0
D6  
D4  
D2  
D5  
D3  
D1  
D4  
D2  
X
D3  
D1  
X
D2  
X
D1  
X
F3  
F3  
F3  
F2  
F2  
F2  
F1  
F1  
F1  
F0 GENERAL DATA FORMAT FOR 16-BIT DAC8568  
F0 GENERAL DATA FORMAT FOR 14-BIT DAC8168  
F0 GENERAL DATA FORMAT FOR 12-BIT DAC7568  
Don't  
Care  
D11-  
D5  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
Don't  
Care  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D9-D3  
X
X
Power-Down Commands  
0
0
DAC DAC DAC DAC DAC DAC DAC DAC Power-up DAC A, B, C, D, E, F, G, H by setting  
respective bit to '1'  
0
0
0
0
X
X
X
X
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
G
F
E
D
C
B
A
DAC DAC DAC DAC DAC DAC DAC DAC Power-down DAC A, B, C, D, E, F, G, H, 1kto  
GND by setting respective bit to '0'  
0
1
1
1
0
1
H
G
F
E
D
C
B
A
DAC DAC DAC DAC DAC DAC DAC DAC Power-down DAC A, B, C, D, E, F, G, H, 100kto  
GND by setting respective bit to '0'  
H
G
F
E
D
C
B
A
DAC DAC DAC DAC DAC DAC DAC DAC Power-down DAC A, B, C, D, E, F, G, H, High-Z to  
H
X
X
G
X
X
F
X
X
E
X
X
D
X
X
C
X
X
B
X
X
A
0
1
GND by setting respective bit to '0'  
Internal Reference Commands  
Power down internal reference - static mode  
(default), must use external reference to operate  
device; see Table 2  
0
0
X
X
1
1
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Power up internal reference - static mode; see  
Table 1 (NOTE: When all DACs power down, the  
reference powers down; when any DAC powers up,  
the reference powers up)  
Power up internal reference - flexible mode; see  
Table 3 (NOTE: When all DACs power down, the  
reference powers down; when any DAC powers up,  
the reference powers up)  
0
0
0
0
X
X
X
X
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
1
1
0
0
0
1
0
0
1
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Power up internal reference all the time regardless  
of state of DACs - flexible mode; see Table 4  
Power down internal reference all the time  
regardless of state of DACs - flexible mode; see  
Table 5 (NOTE: External reference must be used to  
operate device)  
Switching internal reference mode from flexible  
mode to static mode  
Reserved Bits  
Reserved Bit - not valid; device does not perform to  
specified conditions  
0
0
0
0
0
0
X
X
X
X
X
X
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Reserved Bit - not valid; device does not perform to  
specified conditions  
Reserved Bit - not valid; device does not perform to  
specified conditions  
Reserved Bit - not valid; device does not perform to  
specified conditions  
Reserved Bit - not valid; device does not perform to  
specified conditions  
Reserved Bit - not valid; device does not perform to  
specified conditions  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
SYNC INTERRUPT  
In synchronous mode, data are updated with the  
In a normal write sequence, the SYNC line stays low  
for at least 32 falling edges of SCLK and the  
addressed DAC register updates on the 32nd falling  
edge. However, if SYNC is brought high before the  
31st falling edge, it acts as an interrupt to the write  
sequence; the shift register resets and the write  
sequence is discarded. Neither an update of the data  
buffer contents, DAC register contents, nor a change  
in the operating mode occurs (as shown in  
Figure 123).  
falling edge of the 32nd SCLK cycle, which follows a  
falling edge of SYNC. For such synchronous updates,  
the LDAC pin is not required and it must be  
connected to GND permanently.  
In asynchronous mode, the LDAC pin is used as a  
negative  
edge  
triggered  
timing  
signal  
for  
simultaneous DAC updates. Multiple single-channel  
updates can be done in order to set different channel  
buffers to desired values and then make a falling  
edge on LDAC pin to simultaneously update the DAC  
output registers. Data buffers of all channels must be  
loaded with desired data before an LDAC falling  
edge. After a high-to-low LDAC transition, all DACs  
are simultaneously updated with the last contents of  
the corresponding data buffers. If the content of a  
data buffer is not changed, the corresponding DAC  
output remains unchanged after the LDAC pin is  
triggered.  
POWER-ON RESET TO ZERO SCALE OR  
MIDSCALE  
The DAC7568, DAC8168, and DAC8568 contain a  
power-on reset circuit that controls the output voltage  
during power-up. For device grades A and C on  
power-up, all DAC registers are filled with zeros and  
the output voltages of all DAC channels are set to  
zero scale. For device grades B and D all DAC  
registers are set to have all DAC channels power up  
in midscale. All DAC channels remain that way until a  
valid write sequence and load command are made to  
the respective DAC channel. The power-on reset is  
useful in applications where it is important to know  
the state of the output of each DAC while the device  
is in the process of powering up. No device pin  
should be brought high before power is applied to the  
device. The internal reference is powered off / down  
by default and remains that way until a valid  
reference-change command is executed.  
Alternatively, all DAC outputs can be updated  
simultaneously using the built-in software function of  
LDAC. The LDAC register offers additional flexibility  
and control by allowing the selection of which DAC  
channel(s) should be updated simultaneously when  
the LDAC pin is being brought low. The LDAC  
register is loaded with an 8-bit word (DB0 to DB7)  
using control bits C3, C2, C1, and C0 (see Table 10).  
The default value for each bit, and therefore for each  
DAC channel, is zero. The external LDAC pin  
operates in normal mode. If the LDAC register bit is  
set to '1', it overrides the LDAC pin (the LDAC pin is  
internally tied low for that particular DAC channel)  
and this DAC channel updates synchronously after  
the falling edge of the 32nd SCLK cycle. However, if  
the LDAC register bit is set to '0', the DAC channel is  
controlled by the LDAC pin.  
LDAC FUNCTIONALITY  
The DAC7568, DAC8168, and DAC8568 offer both a  
software and hardware simultaneous update and  
control  
function.  
The  
DAC  
double-buffered  
architecture has been designed so that new data can  
be entered for each DAC without disturbing the  
analog outputs.  
The combination of software and hardware  
simultaneous update functions is particularly useful in  
applications when updating only selective DAC  
channels simultaneously, while keeping the other  
channels unaffected and updating those channels  
synchronously; see Table 10 for more information.  
DAC7568, DAC8168, and DAC8568 data updates  
can be performed either in synchronous or in  
asynchronous mode.  
31st Falling Edge  
32nd Falling Edge  
CLK  
SYNC  
DB31  
DB0  
DB31  
DB0  
DIN  
Invalid/Interrupted Write Sequence:  
Output/Mode Does Not Update on the 32nd Falling Edge  
Valid Write Sequence:  
Output/Mode Updates on the 32nd Falling Edge  
Figure 123. SYNC Interrupt Facility  
38  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
POWER-DOWN MODES  
DACs. However, for the three power-down modes,  
the supply current falls to 0.18µA at 5.5V (0.10µA at  
3.6V). Not only does the supply current fall, but the  
output stage also switches internally from the output  
of the amplifier to a resistor network of known values.  
The DAC7568, DAC8168, and DAC8568 have two  
separate sets of power-down commands. One set is  
for the DAC channels and the other set is for the  
internal reference. For more information on powering  
down the reference, see the Enable/Disable Internal  
Reference section.  
The advantage of this switching is that the output  
impedance of the device is known while it is in  
power-down mode. As described in Table 11, there  
are three different power-down options. VOUT can be  
connected internally to GND through a 1kresistor, a  
100kresistor, or open circuited (High-Z). The output  
stage is shown in Figure 124. In other words, DB27,  
DB26, DB25, and DB24 = '0100' and DB9 and DB8 =  
'11' represent a power-down condition with High-Z  
output impedance for a selected channel. DB9 and  
DB8 = '01' represents a power-down condition with  
1koutput impedance, and '10' represents a  
power-down condition with 100koutput impedance.  
DAC Power-Down Commands  
The DAC7568, DAC8168, and DAC8568 use four  
modes of operation. These modes are accessed by  
setting control bits C3, C2, C1, and C0, and  
power-down register bits DB8 and DB9. The control  
bits must be set to '0100'. Once the control bits are  
set correctly, the four different power down modes  
are software programmable by setting bits DB8 and  
DB9 in the control register. Table 10 and Table 11  
shows how to control the operating mode with data  
bits PD0 (DB8), and PD1 (DB9).  
Table 11. DAC Operating Modes  
Resistor  
Amplifier  
VOUTX  
String  
DAC  
PD1  
(DB9)  
PD0  
(DB8)  
DAC OPERATING MODES  
Power up selected DACs  
0
0
1
1
0
1
0
1
Power down selected DACs 1kto GND  
Power down selected DACs 100kto GND  
Power down selected DACs High-Z to GND  
Power-Down  
Circuitry  
Resistor  
Network  
The DAC7568, DAC8168, and DAC8568 treat the  
power-down condition as data; all the operational  
modes are still valid for power-down. It is possible to  
Figure 124. Output Stage During Power-Down  
broadcast  
a
power-down condition to all the  
All analog channel circuits are shut down when the  
power-down mode is exercised. However, the  
contents of the DAC register are unaffected when in  
power down. By setting both bits, DB8 and DB9, to  
different values, any combination of DAC channels  
can be powered down or powered up. If a DAC  
channel is being powered up from a previously power  
down situation, this DAC channel powers up to the  
value in its DAC register. The time required to exit  
power-down is typically 2.5µs for AVDD = 5V, and 4µs  
for AVDD = 3V. See the Typical Characteristics for  
more information.  
DAC8568, DAC8168, DAC7568s in a system. It is  
also possible to power-down a channel and update  
data on other channels. Furthermore, it is possible to  
write to the DAC register/buffer of the DAC channel  
that is powered down. When the DAC channel is then  
powered up, it will power up to this new value (see  
the Operating Examples section).  
When both the PD0 and PD1 bits are set to '0', the  
device works normally with its typical current  
consumption of 1.25mA at 5.5V. The reference  
current is included with the operation of all eight  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
 
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
CLEAR CODE REGISTER and CLR PIN  
sequence, this write sequence is aborted and the  
DAC registers and DAC buffers are cleared as  
described previously.  
The DAC7568, DAC8168, and DAC8568 contain a  
clear code register. The clear code register can be  
accessed via the serial peripheral interface (SPI) and  
is user-configurable. Bringing the CLR pin low clears  
the content of all DAC registers and all DAC buffers,  
and replaces the code with the code determined by  
the clear code register. The clear code register can  
be written to by applying the commands showed in  
Table 12. The control bits must be set as follows to  
access the clear code register that is programmed via  
the feature bits, F0 and F1: C3 = '0', C2 = '1', C1 =  
'0', and C0 = '1'. The default setting of the clear code  
register sets the output of all DAC channels to 0V  
when CLR pin is brought low. The CLR pin is  
falling-edge triggered; therefore, the device exits clear  
code mode on the 32nd falling edge of the next write  
sequence. If CLR pin is brought low during a write  
When performing a software reset of the device, the  
clear code register is set back to its default mode  
(DB1 = DB0 = '0'). Setting the clear code register to  
DB1 = DB0 = '1' ignores any activity on the external  
CLR pin.  
SOFTWARE RESET FUNCTION  
The DAC7568, DAC8168, and DAC8568 contain a  
software reset feature. If the software reset feature is  
executed, all registers inside the device are reset to  
default settings; that is, all DAC channels are reset to  
the power-on reset code (power on reset to zero  
scale for grades A and C; power on reset to midscale  
for grades B and D).  
Table 12. Clear Code Register  
DB30-  
DB28  
DB19-  
DB10  
DESCRIPTION  
Don't  
D16-  
D7  
0
Care C3 C2 C1 C0 A3 A2 A1 A0  
D6 D5 D4 D3 D2 D1 F3 F2 F1 F0  
GENERAL DATA FORMAT  
Clear all DAC outputs to zero scale (default  
mode)  
0
X
0
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
X
X
X
0
0
0
1
1
1
0
0
0
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
1
1
0
1
Clear all DAC outputs to midscale  
Clear all DAC outputs to full-scale  
Ignore external CLR pin  
Table 13. Software Reset  
DB30-  
DB28  
DB19-  
DB10  
DESCRIPTION  
Don't  
D16-  
D7  
0
Care C3 C2 C1 C0 A3 A2 A1 A0  
D6 D5 D4 D3 D2 D1 F3 F2 F1 F0  
GENERAL DATA FORMAT  
0
X
0
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Software reset  
40  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
OPERATING EXAMPLES: DAC7568/DAC8168/DAC8568  
For the following examples X = don't care; value can be either '0' or '1'.  
Example 1: Write to Data Buffer A, B, G, H; Load DAC A, B, G, H Simultaneously  
1st: Write to data buffer A:  
DB30-  
DB28  
DB19-  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Don't  
Care  
D16-  
D7  
0
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D6  
D5  
D4  
D3  
D2  
D1  
F3  
F2  
F1  
F0  
0
X
0
0
0
0
0
0
0
0
DATA  
X
X
X
X
2nd: Write to data buffer B:  
DB30-  
DB28  
DB19-  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Don't  
D16-  
0
Care  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
F3  
F2  
F1  
F0  
0
X
0
0
0
0
0
0
0
1
DATA  
X
X
X
X
3rd: Write to data buffer G:  
DB30-  
DB28  
DB19-  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Don't  
D16-  
0
Care  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
F3  
F2  
F1  
F0  
0
X
0
0
0
0
0
1
1
0
DATA  
X
X
X
X
4th: Write to data buffer H and simultaneously update all DACs:  
DB30-  
DB28  
DB19-  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Don't  
Care  
D16-  
D7  
0
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D6  
D5  
D4  
D3  
D2  
D1  
F3  
F2  
F1  
F0  
0
X
0
0
1
0
0
1
1
1
DATA  
X
X
X
X
The DAC A, DAC B, DAC G, and DAC H analog outputs simultaneously settle to the specified values upon  
completion of the 4th write sequence. (The DAC voltages update simultaneously after the 32nd SCLK falling  
edge of the fourth write cycle).  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
Example 2: Load New Data to DAC C, D, E, F Sequentially  
1st: Write to data buffer C and load DAC C: DAC C output settles to specified value upon completion:  
DB30-  
DB28  
DB19-  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Don't  
Care  
D16-  
D7  
0
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D6  
D5  
D4  
D3  
D2  
D1  
F3  
F2  
F1  
F0  
0
X
0
0
1
1
0
0
1
0
DATA  
X
X
X
X
2nd: Write to data buffer D and load DAC D: DAC D output settles to specified value upon completion:  
DB30-  
DB28  
DB19-  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Don't  
Care  
D16-  
D7  
0
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D6  
D5  
D4  
D3  
D2  
D1  
F3  
F2  
F1  
F0  
0
X
0
0
1
1
0
0
1
1
DATA  
X
X
X
X
3rd: Write to data buffer E and load DAC E: DAC E output settles to specified value upon completion:  
DB30-  
DB28  
DB19-  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Don't  
Care  
D16-  
D7  
0
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D6  
D5  
D4  
D3  
D2  
D1  
F3  
F2  
F1  
F0  
0
X
0
0
1
1
0
1
0
0
DATA  
X
X
X
X
4th: Write to data buffer F and load DAC F: DAC F output settles to specified value upon completion:  
DB30-  
DB28  
DB19-  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Don't  
Care  
D16-  
D7  
0
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D6  
D5  
D4  
D3  
D2  
D1  
F3  
F2  
F1  
F0  
0
X
0
0
1
1
0
1
0
1
DATA  
X
X
X
X
After completion of each write cycle, the DAC analog output settles to the voltage specified.  
42  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
Example 3: Power-Down DAC A, DAC B and DAC H to 1kand Power-Down DAC C, DAC D, and DAC F  
to 100kΩ  
1st: Write power-down command to DAC channel A and DAC channel B: DAC A and DAC B to 1k.  
DB30-  
DB28  
DB19-  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Don't  
Care  
D16-  
D7  
0
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D6  
D5  
D4  
D3  
D2  
D1  
F3  
F2  
F1  
F0  
0
X
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
2nd: Write power-down command to DAC channel H: DAC H to 1k.  
DB30-  
DB28  
DB19-  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Don't  
Care  
D16-  
D7  
0
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D6  
D5  
D4  
D3  
D2  
D1  
F3  
F2  
F1  
F0  
0
X
0
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
3rd: Write power-down command to DAC channel C and DAC channel D: DAC C and DAC D to 100k.  
DB30-  
DB28  
DB19-  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Don't  
Care  
D16-  
D7  
0
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D6  
D5  
D4  
D3  
D2  
D1  
F3  
F2  
F1  
F0  
0
X
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
0
0
4th: Write power-down command to DAC channel F: DAC F to 100k.  
DB30-  
DB28  
DB19-  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Don't  
Care  
D16-  
D7  
0
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D6  
D5  
D4  
D3  
D2  
D1  
F3  
F2  
F1  
F0  
0
X
0
1
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
The DAC A, DAC B, DAC C, DAC D, DAC F, and DAC H analog outputs power-down to each respective  
specified mode.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
Example 4: Power-Down All Channels Simultaneously while Reference is Always Powered Up  
1st: Write sequence for enabling the DAC7568, DAC8168, and DAC8568 internal reference all the time:  
DB30-  
DB28  
DB16-  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Don't  
Care  
D13-  
D4  
0
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0 D16 D15 D14  
D3  
D2  
D1  
F3  
F2  
F1  
F0  
0
X
1
0
0
1
X
X
X
X
1
0
1
X
X
X
X
X
X
X
X
2nd: Write sequence to power-down all DACs to high-impedance:  
DB30-  
DB28  
DB19-  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Don't  
Care  
D16-  
D7  
0
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D6  
D5  
D4  
D3  
D2  
D1  
F3  
F2  
F1  
F0  
0
X
0
1
0
0
X
X
X
X
X
1
1
1
1
1
1
1
1
1
1
The DAC A, DAC B, DAC C, DAC D, DAC E, DAC F, DAC G, and DAC H analog outputs simultaneously  
power-down to high-impedance upon completion of the first and second write sequences, respectively.  
Example 5: Write a Specific Value to All DACs while Reference is Always Powered Down  
1st: Write sequence for disabling the DAC7568, DAC8168, and DAC8568 internal reference all the time  
(after this sequence, these devices require an external reference source to function):  
DB30-  
DB28  
DB16-  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Don't  
Care  
D13-  
D4  
0
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0 D16 D15 D14  
D3  
D2  
D1  
F3  
F2  
F1  
F0  
0
X
1
0
0
1
X
X
X
X
1
1
0
X
X
X
X
X
X
X
X
2nd: Write sequence to write specified data to all DACs:  
DB30-  
DB28  
DB19-  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Don't  
Care  
D16-  
D7  
0
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D6  
D5  
D4  
D3  
D2  
D1  
F3  
F2  
F1  
F0  
0
X
0
0
1
1
1
1
1
1
DATA  
X
X
X
X
The DAC A, DAC B, DAC C, DAC D, DAC E, DAC F, DAC G, and DAC H analog outputs simultaneously settle  
to the specified values upon completion of the second write sequence. (The DAC voltages update simultaneously  
after the 32nd SCLK falling edge of the second write cycle). Reference is always powered-down (External  
reference must be used for proper operation).  
44  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
APPLICATION INFORMATION  
INTERNAL REFERENCE  
Temperature Drift  
The internal reference of the DAC7568, DAC8168,  
The internal reference is designed to exhibit minimal  
and DAC8568 does not require an external load  
drift error, defined as the change in reference output  
capacitor for stability because it is stable with any  
voltage over varying temperature. The drift is  
capacitive load. However, for improved noise  
calculated using the box method described by  
Equation 2:  
performance, an external load capacitor of 150nF or  
larger connected to the VREFH/VREFOUT output is  
recommended. Figure 125 shows the typical  
V
REF_MAX - VREF_MIN  
´ 106 (ppm/°C)  
connections required for operation of the DAC7568,  
DAC8168, and DAC8568 internal reference. A supply  
bypass capacitor at the AVDD input is also  
recommended.  
Drift Error =  
VREF ´ TRANGE  
(2)  
Where:  
VREF_MAX = maximum reference voltage observed  
within temperature range TRANGE  
VREF_MIN = minimum reference voltage observed  
within temperature range TRANGE  
VREF = 2.5V, target value for reference output  
voltage.  
DAC7568  
DAC8168  
DAC8568  
.
.
SCLK  
DIN  
1
2
3
4
5
6
7
8
LDAC  
SYNC  
AVDD  
16  
15  
14  
13  
12  
11  
10  
9
The internal reference (grade C only) features an  
exceptional typical drift coefficient of 2ppm/°C from  
–40°C to +125°C. Characterizing a large number of  
units, a maximum drift coefficient of 5ppm/°C (grade  
C only) is observed. Temperature drift results are  
summarized in the Typical Characteristics.  
GND  
AVDD  
1mF  
VOUT  
VOUT  
VOUT  
VOUT  
CLR  
B
VOUT  
VOUT  
VOUT  
VOUT  
A
C
E
G
D
F
H
Noise Performance  
VREFIN/VREFOUT  
150nF  
Typical 0.1Hz to 10Hz voltage noise can be seen in  
Figure 9, Internal Reference Noise. Additional filtering  
can be used to improve output noise levels, although  
care should be taken to ensure the output impedance  
does not degrade the ac performance. The output  
noise spectrum at VREFH/VREFOUT without any  
external components is depicted in Figure 8, Internal  
Reference Noise Density vs Frequency. A second  
noise density spectrum is also shown in Figure 8.  
This spectrum was obtained using a 4.8µF load  
capacitor at VREFH/VREFOUT for noise filtering.  
Internal reference noise impacts the DAC output  
noise; see the DAC Noise Performance section for  
more details.  
Figure 125. Typical Connections for Operating the  
DAC7568/DAC8168/DAC8568 Internal Reference  
(16-Pin Version Shown)  
Supply Voltage  
The internal reference features an extremely low  
dropout voltage. It can be operated with a supply of  
only 5mV above the reference output voltage in an  
unloaded condition. For loaded conditions, refer to  
the Load Regulation section. The stability of the  
internal reference with variations in supply voltage  
(line regulation, dc PSRR) is also exceptional. Within  
the specified supply voltage range of 2.7V to 5.5V,  
the variation at VREFH/VREFOUT is less than 10µV/V;  
see the Typical Characteristics.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
 
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
Load Regulation  
Thermal Hysteresis  
Load regulation is defined as the change in reference  
output voltage as a result of changes in load current.  
The load regulation of the internal reference is  
measured using force and sense contacts as shown  
in Figure 126. The force and sense lines reduce the  
impact of contact and trace resistance, resulting in  
accurate measurement of the load regulation  
contributed solely by the internal reference.  
Measurement results are summarized in the Typical  
Characteristics. Force and sense lines should be  
used for applications that require improved load  
regulation.  
Thermal hysteresis for a reference is defined as the  
change in output voltage after operating the device at  
+25°C, cycling the device through the operating  
temperature range, and returning to +25°C.  
Hysteresis is expressed by Equation 3:  
|VREF_PRE - VREF_POST  
|
´ 106 (ppm/°C)  
VHYST  
=
VREF_NOM  
(3)  
Where:  
VHYST = thermal hysteresis.  
VREF_PRE = output voltage measured at +25°C  
pre-temperature cycling.  
Output Pin  
Contact and  
VREF_POST = output voltage measured after the  
device cycles through the temperature range of  
–40°C to +125°C, and returns to +25°C.  
Trace Resistance  
VOUT  
Force Line  
IL  
DAC NOISE PERFORMANCE  
Sense Line  
Typical noise performance for the DAC7568,  
DAC8168, and DAC8568 with the internal reference  
enabled is shown in Figure 66 to Figure 67. Output  
noise spectral density at the VOUT pin versus  
frequency is depicted in Figure 66 for full-scale,  
midscale, and zero-scale input codes. The typical  
noise density for midscale code is 120nV/Hz at  
1kHz and 100nV/Hz at 1MHz. High-frequency noise  
can be improved by filtering the reference noise.  
Integrated output noise between 0.1Hz and 10Hz is  
close to 6µVPP (midscale), as shown in Figure 67.  
Load  
Meter  
Figure 126. Accurate Load Regulation of the  
DAC7568/DAC8168/DAC8568 Internal Reference  
Long-Term Stability  
Long-term stability/aging refers to the change of the  
output voltage of a reference over a period of months  
or years. This effect lessens as time progresses (see  
Figure 7, the typical long-term stability curve). The  
typical drift value for the internal reference is 50ppm  
from 0 hours to 1900 hours. This parameter is  
characterized by powering-up 20 units and measuring  
them at regular intervals for a period of 1900 hours.  
46  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
 
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
BIPOLAR OPERATION USING THE  
DAC7568/DAC8168/DAC8568  
DIN = decimal equivalent of the binary code that  
is loaded to the DAC register. It can range from 0  
to 4095 for DAC7568 (12 bit), 0 to 16,383 for  
DAC8168 (14 bit), and 0 to 65535 for DAC8568  
(16 bit).  
n = resolution in bits; either 12 (DAC7568), 14  
(DAC8168) or 16 (DAC8568)  
The DAC7568, DAC8168, and DAC8568 are  
designed for single-supply operation, but a bipolar  
output range is also possible using the circuit in either  
Figure 127 or Figure 128. The circuit shown gives an  
output voltage range of ±VREF. Rail-to-rail operation at  
the amplifier output is achievable using an OPA703  
as the output amplifier.  
Gain = 1 for A/B grades or 2 for C/D grades.  
With VREFIN/VREFOUT = 5V, R1 = R2 = 10k, for  
grades A and B.  
The output voltage for any input code can be  
calculated with Equation 4:  
10 ´ DIN  
VOUT  
=
- 5V  
2n  
R2  
R1  
R1 + R2  
R1  
DIN  
2n  
(5)  
VOUT  
=
VREF ´ Gain ´  
´
- VREF  
´
This result has an output voltage range of ±5V with  
0000h corresponding to a –5V output and FFFFh  
corresponding to a +5V output for the 16-bit  
DAC8568, as shown in Figure 127. Similarly, using  
the internal reference, a ±2.5V output voltage range  
can be achieved, as Figure 128 shows.  
(4)  
Where:  
R2  
10kW  
AV  
DD  
V
EXT  
REF  
+6V  
R1  
10kW  
±5V  
OPA703  
AVDD  
VOUT  
DAC7568  
DAC8168  
DAC8568  
VREFIN/  
-6V  
VREFOUT  
10mF  
0.1mF  
GND  
3-Wire  
Serial Interface  
Figure 127. Bipolar Output Range Using External Reference at 5V  
R2  
10kW  
AV  
DD  
+6V  
R1  
10kW  
±2.5V  
OPA703  
AVDD  
VOUT  
DAC7568  
DAC8168  
DAC8568  
VREFIN/  
VREFOUT  
-6V  
150nF  
GND  
3-Wire  
Serial Interface  
Figure 128. Bipolar Output Range Using Internal Reference  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
 
 
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
MICROPROCESSOR INTERFACING  
DAC8568(1)  
SYNC  
Microwireä  
CS  
DAC7568/DAC8168/DAC8568 to an 8051 Interface  
SK  
SO  
SCLK  
DIN  
Figure 129 shows a serial interface between the  
DAC7568, DAC8168, and DAC8568 and a typical  
8051-type microcontroller. The setup for the interface  
is as follows: TXD of the 8051 drives SCLK of the  
DAC7568, DAC8168, or DAC8568, while RXD drives  
the serial data line of the device. The SYNC signal is  
derived from a bit-programmable pin on the port of  
the 8051; in this case, port line P3.3 is used. When  
data are to be transmitted to the DAC7568,  
DAC8168, and DAC8568, P3.3 is taken low. The  
8051 transmits data in 8-bit bytes; thus, only eight  
falling clock edges occur in the transmit cycle. To  
load data to the DAC, P3.3 is left low after the first  
eight bits are transmitted; then, a second write cycle  
is initiated to transmit the second byte of data. P3.3 is  
taken high following the completion of the third write  
cycle. The 8051 outputs the serial data in a format  
that has the LSB first. The DAC7568, DAC8168, and  
DAC8568 require the data with the MSB as the first  
bit received. Therefore, the 8051 transmit routine  
must take this requirement into account, and mirror  
the data as needed.  
NOTE: (1) Also applies to DAC7568 and DAC8168. Additional pins omitted for clarity.  
Figure 130. DAC7568/DAC8168/DAC8568 to  
Microwire Interface  
DAC7568/DAC8168/DAC8568 to 68HC11 Interface  
Figure 131 shows a serial interface between the  
DAC7568/DAC8168/DAC8568 and the 68HC11  
microcontroller. SCK of the 68HC11 drives the SCLK  
of the DAC7568, DAC8168, and DAC8568, while the  
MOSI output drives the serial data line of the DAC.  
The SYNC signal derives from a port line (PC7),  
similar to the 8051 diagram.  
68HC11(1)  
PC7  
DAC8568(1)  
SYNC  
SCK  
SCLK  
DIN  
MOSI  
NOTE: (1) Also applies to DAC7568 and DAC8168. Additional pins omitted for clarity.  
80C51/80L51(1)  
P3.3  
DAC8568(1)  
SYNC  
Figure 131. DAC7568/DAC8168/DAC8568 to  
68HC11 Interface  
TXD  
SCLK  
RXD  
DIN  
The 68HC11 should be configured so that its CPOL  
bit is '0' and its CPHA bit is '1'. This configuration  
causes data appearing on the MOSI output to be  
valid on the falling edge of SCK. When data are  
being transmitted to the DAC, the SYNC line is held  
low (PC7). Serial data from the 68HC11 are  
transmitted in 8-bit bytes with only eight falling clock  
edges occurring in the transmit cycle. (Data are  
transmitted MSB first.) In order to load data to the  
DAC7568, DAC8168, and DAC8568, PC7 is left low  
after the first eight bits are transferred; then, a second  
and third serial write operation are performed to the  
DAC. PC7 is taken high at the end of this procedure.  
NOTE: (1) Also applies to DAC7568 and DAC8168. Additional pins omitted for clarity.  
Figure 129. DAC7568/DAC8168/DAC8568 to  
80C51/80L51 Interface  
DAC7568/DAC8168/DAC8568 to Microwire  
Interface  
Figure 130 shows an interface between the  
DAC7568, DAC8168, and DAC8568 and any  
Microwire-compatible device. Serial data are shifted  
out on the falling edge of the serial clock and are  
clocked into the DAC7568, DAC8168, and DAC8568  
on the rising edge of the SK signal.  
48  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
 
 
 
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
LAYOUT  
The power applied to AVDD should be well-regulated  
and low noise. Switching power supplies and dc/dc  
converters often have high-frequency glitches or  
spikes riding on the output voltage. In addition, digital  
components can create similar high-frequency spikes  
as their internal logic switches states. This noise can  
easily couple into the DAC output voltage through  
various paths between the power connections and  
analog output.  
A precision analog component requires careful layout,  
adequate bypassing, and clean, well-regulated power  
supplies.  
The DAC7568, DAC8168, and DAC8568 offer  
single-supply operation, and are often used in close  
proximity with digital logic, microcontrollers,  
microprocessors, and digital signal processors. The  
more digital logic present in the design and the higher  
the switching speed, the more difficult it is to keep  
digital noise from appearing at the output.  
As with the GND connection, AVDD should be  
connected to a power-supply plane or trace that is  
separate from the connection for digital logic until  
they are connected at the power-entry point. In  
addition, a 1µF to 10µF capacitor and 0.1µF bypass  
capacitor are strongly recommended. In some  
situations, additional bypassing may be required,  
such as a 100µF electrolytic capacitor or even a Pi  
filter made up of inductors and capacitors—all  
designed to essentially low-pass filter the supply and  
remove the high-frequency noise.  
As a result of the single ground pin of the DAC7568,  
DAC8168, and DAC8568, all return currents  
(including digital and analog return currents for the  
DAC) must flow through a single point. Ideally, GND  
would be connected directly to an analog ground  
plane. This plane would be separate from the ground  
connection for the digital components until they were  
connected at the power-entry point of the system.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
PARAMETER DEFINITIONS  
With the increased complexity of many different  
specifications listed in product data sheets, this  
Full-Scale Error  
section summarizes selected specifications related to  
digital-to-analog converters.  
Full-scale error is defined as the deviation of the real  
full-scale output voltage from the ideal output voltage  
while the DAC register is loaded with the full-scale  
STATIC PERFORMANCE  
code (0xFFFF). Ideally, the output should be AVDD  
1 LSB. The full-scale error is expressed in percent of  
full-scale range (%FSR).  
Static performance parameters are specifications  
such as differential nonlinearity (DNL) or integral  
nonlinearity (INL). These are dc specifications and  
provide information on the accuracy of the DAC. They  
are most important in applications where the signal  
changes slowly and accuracy is required.  
Offset Error  
The offset error is defined as the difference between  
actual output voltage and the ideal output voltage in  
the linear region of the transfer function. This  
difference is calculated by using a straight line  
defined by two codes (code 485 and 64714). Since  
the offset error is defined by a straight line, it can  
have a negative or positive value. Offset error is  
measured in mV.  
Resolution  
Generally, the DAC resolution can be expressed in  
different forms. Specifications such as IEC 60748-4  
recognize the numerical, analog, and relative  
resolution. The numerical resolution is defined as the  
number of digits in the chosen numbering system  
necessary to express the total number of steps of the  
transfer characteristic, where a step represents both  
a digital input code and the corresponding discrete  
analogue output value. The most commonly-used  
definition of resolution provided in data sheets is the  
numerical resolution expressed in bits.  
Zero-Code Error  
The zero-code error is defined as the DAC output  
voltage, when all '0's are loaded into the DAC  
register. Zero-scale error is a measure of the  
difference between actual output voltage and ideal  
output voltage (0V). It is expressed in mV. It is  
primarily caused by offsets in the output amplifier.  
Least Significant Bit (LSB)  
Gain Error  
The least significant bit (LSB) is defined as the  
smallest value in a binary coded system. The value of  
the LSB can be calculated by dividing the full-scale  
output voltage by 2n, where n is the resolution of the  
converter.  
Gain error is defined as the deviation in the slope of  
the real DAC transfer characteristic from the ideal  
transfer function. Gain error is expressed as a  
percentage of full-scale range (%FSR).  
Most Significant Bit (MSB)  
Full-Scale Error Drift  
The most significant bit (MSB) is defined as the  
largest value in a binary coded system. The value of  
the MSB can be calculated by dividing the full-scale  
output voltage by 2. Its value is one-half of full-scale.  
Full-scale error drift is defined as the change in  
full-scale error with  
a change in temperature.  
Full-scale error drift is expressed in units of  
%FSR/°C.  
Relative Accuracy or Integral Nonlinearity (INL)  
Offset Error Drift  
Relative accuracy or integral nonlinearity (INL) is  
defined as the maximum deviation between the real  
transfer function and a straight line passing through  
the endpoints of the ideal DAC transfer function. DNL  
is measured in LSBs.  
Offset error drift is defined as the change in offset  
error with a change in temperature. Offset error drift  
is expressed in µV/°C.  
Zero-Code Error Drift  
Zero-code error drift is defined as the change in  
zero-code error with a change in temperature.  
Zero-code error drift is expressed in µV/°C.  
Differential Nonlinearity (DNL)  
Differential nonlinearity (DNL) is defined as the  
maximum deviation of the real LSB step from the  
ideal 1LSB step. Ideally, any two adjacent digital  
codes correspond to output analog voltages that are  
exactly one LSB apart. If the DNL is less than 1LSB,  
the DAC is said to be monotonic.  
50  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
www.ti.com ..................................................................................................................................................... SBAS430AJANUARY 2009REVISED APRIL 2009  
Gain Temperature Coefficient  
Digital Feedthrough  
The gain temperature coefficient is defined as the  
change in gain error with changes in temperature.  
The gain temperature coefficient is expressed in ppm  
of FSR/°C.  
Digital feedthrough is defined as impulse seen at the  
output of the DAC from the digital inputs of the DAC.  
It is measured when the DAC output is not updated. It  
is specified in nV-s, and measured with a full-scale  
code change on the data bus; that is, from all '0's to  
all '1's and vice versa.  
Power-Supply Rejection Ratio (PSRR)  
Power-supply rejection ratio (PSRR) is defined as the  
ratio of change in output voltage to a change in  
supply voltage for a full-scale output of the DAC. The  
PSRR of a device indicates how the output of the  
DAC is affected by changes in the supply voltage.  
PSRR is measured in decibels (dB).  
Channel-to-Channel DC Crosstalk  
Channel-to-channel dc crosstalk is defined as the dc  
change in the output level of one DAC channel in  
response to a change in the output of another DAC  
channel. It is measured with a full-scale output  
change on one DAC channel while monitoring  
another DAC channel remains at midscale. It is  
expressed in LSB.  
Monotonicity  
Monotonicity is defined as a slope whose sign does  
not change. If a DAC is monotonic, the output  
changes in the same direction or remains at least  
constant for each step increase (or decrease) in the  
input code.  
Channel-to-Channel AC Crosstalk  
AC crosstalk in a multi-channel DAC is defined as the  
amount of ac interference experienced on the output  
of a channel at a frequency (f) (and its harmonics),  
when the output of an adjacent channel changes its  
value at the rate of frequency (f). It is measured with  
one channel output oscillating with a sine wave of  
1kHz frequency, while monitoring the amplitude of  
1kHz harmonics on an adjacent DAC channel output  
(kept at zero scale). It is expressed in dB.  
DYNAMIC PERFORMANCE  
Dynamic performance parameters are specifications  
such as settling time or slew rate, which are important  
in applications where the signal rapidly changes  
and/or high frequency signals are present.  
Slew Rate  
Signal-to-Noise Ratio (SNR)  
The output slew rate (SR) of an amplifier or other  
electronic circuit is defined as the maximum rate of  
change of the output voltage for all possible input  
signals.  
Signal-to-noise ratio (SNR) is defined as the ratio of  
the root mean-squared (RMS) value of the output  
signal divided by the RMS values of the sum of all  
other spectral components below one-half the output  
frequency, not including harmonics or dc. SNR is  
measured in dB.  
DV  
(t)  
OUT  
SR = max  
Dt  
Total Harmonic Distortion (THD)  
Where ΔVOUT(t) is the output produced by the  
amplifier as a function of time t.  
Total harmonic distortion + noise is defined as the  
ratio of the RMS values of the harmonics and noise  
to the value of the fundamental frequency. It is  
expressed in a percentage of the fundamental  
frequency amplitude at sampling rate fS.  
Output Voltage Settling Time  
Settling time is the total time (including slew time) for  
the DAC output to settle within an error band around  
its final value after a change in input. Settling times  
are specified to within ±0.003% (or whatever value is  
specified) of full-scale range (FSR).  
Spurious-Free Dynamic Range (SFDR)  
Spurious-free dynamic range (SFDR) is the usable  
dynamic range of a DAC before spurious noise  
interferes or distorts the fundamental signal. SFDR is  
the measure of the difference in amplitude between  
the fundamental and the largest harmonically or  
non-harmonically related spur from dc to the full  
Nyquist bandwidth (half the DAC sampling rate, or  
fS/2). A spur is any frequency bin on a spectrum  
analyzer, or from a Fourier transform, of the analog  
output of the DAC. SFDR is specified in decibels  
relative to the carrier (dBc).  
Code Change/Digital-to-Analog Glitch Energy  
Digital-to-analog glitch impulse is the impulse injected  
into the analog output when the input code in the  
DAC register changes state. It is normally specified  
as the area of the glitch in nanovolt-seconds (nV-s),  
and is measured when the digital input code is  
changed by 1LSB at the major carry transition.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
DAC7568  
DAC8168  
DAC8568  
SBAS430AJANUARY 2009REVISED APRIL 2009..................................................................................................................................................... www.ti.com  
Signal-to-Noise plus Distortion (SINAD)  
DAC Output Noise  
SINAD includes all the harmonic and outstanding  
spurious components in the definition of output noise  
power in addition to quantizing any internal random  
noise power. SINAD is expressed in dB at a specified  
input frequency and sampling rate, fS.  
DAC output noise is defined as any voltage deviation  
of DAC output from the desired value (within a  
particular frequency band). It is measured with a DAC  
channel kept at midscale while filtering the output  
voltage within a band of 0.1Hz to 10Hz and  
measuring its amplitude peaks. It is expressed in  
terms of peak-to-peak voltage (Vpp).  
DAC Output Noise Density  
Output  
noise  
density  
is  
defined  
as  
Full-Scale Range (FSR)  
internally-generated random noise. Random noise is  
characterized as a spectral density (nV/Hz). It is  
measured by loading the DAC to midscale and  
measuring noise at the output.  
Full-scale range (FSR) is the difference between the  
maximum and minimum analog output values that the  
DAC is specified to provide; typically, the maximum  
and minimum values are also specified. For an n-bit  
DAC, these values are usually given as the values  
matching with code 0 and 2n.  
52  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): DAC7568 DAC8168 DAC8568  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-May-2009  
PACKAGING INFORMATION  
Orderable Device  
DAC7568IAPW  
DAC7568IAPWR  
DAC7568ICPW  
DAC7568ICPWR  
DAC8168IAPW  
DAC8168IAPWR  
DAC8168ICPW  
DAC8168ICPWR  
DAC8568IAPW  
DAC8568IAPWR  
DAC8568IBPW  
DAC8568IBPWR  
DAC8568ICPW  
DAC8568ICPWR  
DAC8568IDPW  
DAC8568IDPWR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TSSOP  
PW  
14  
14  
16  
16  
14  
14  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-May-2009  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Jul-2009  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
DAC8168ICPWR  
TSSOP  
PW  
16  
2000  
330.0  
12.4  
6.8  
5.4  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Jul-2009  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
346.0 346.0 29.0  
DAC8168ICPWR  
2000  
Pack Materials-Page 2  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

DAC8168C

12-/14-/16-Bit, Octal-Channel, Ultra-Low Glitch, Voltage Output DIGITAL-TO-ANALOG CONVERTERS with 2.5V, 2ppm/°C Internal Reference
TI

DAC8168IAPW

12-/14-/16-Bit, Octal-Channel, Ultra-Low Glitch, Voltage Output DIGITAL-TO-ANALOG CONVERTERS with 2.5V, 2ppm/°C Internal Reference
TI

DAC8168IAPWR

12-/14-/16-Bit, Octal-Channel, Ultra-Low Glitch, Voltage Output DIGITAL-TO-ANALOG CONVERTERS with 2.5V, 2ppm/°C Internal Reference
TI

DAC8168ICPW

12-/14-/16-Bit, Octal-Channel, Ultra-Low Glitch, Voltage Output DIGITAL-TO-ANALOG CONVERTERS with 2.5V, 2ppm/°C Internal Reference
TI

DAC8168ICPWR

12-/14-/16-Bit, Octal-Channel, Ultra-Low Glitch, Voltage Output DIGITAL-TO-ANALOG CONVERTERS with 2.5V, 2ppm/°C Internal Reference
TI

DAC82001

单通道 16 位低干扰噪声、无缓冲电压输出数模转换器 (DAC)
TI

DAC82001DRXR

单通道 16 位低干扰噪声、无缓冲电压输出数模转换器 (DAC) | DRX | 10 | -40 to 85
TI

DAC82002

双通道 16 位低干扰噪声、无缓冲电压输出数模转换器 (DAC)
TI

DAC82002DRXR

双通道 16 位低干扰噪声、无缓冲电压输出数模转换器 (DAC) | DRX | 10 | -40 to 85
TI

DAC8212AV

IC PARALLEL, WORD INPUT LOADING, 12-BIT DAC, CDIP24, CERDIP-24, Digital to Analog Converter
ADI

DAC8212AV883C

PARALLEL, WORD INPUT LOADING, 250us SETTLING TIME, 12-BIT DAC, CDIP24, CERDIP-24
ADI

DAC8212AV883C

PARALLEL, WORD INPUT LOADING, 250 us SETTLING TIME, 12-BIT DAC, CDIP24, CERDIP-24
ROCHESTER