DAC82001 [TI]

单通道 16 位低干扰噪声、无缓冲电压输出数模转换器 (DAC);
DAC82001
型号: DAC82001
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

单通道 16 位低干扰噪声、无缓冲电压输出数模转换器 (DAC)

转换器 数模转换器
文件: 总31页 (文件大小:2345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC82001  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
DAC82001 16 位、低毛刺脉冲、单通道电压输出、非缓DAC  
1 特性  
3 说明  
16 位性能1-LSB DNL 2-LSB INL  
• 低毛刺脉冲能量0.5nV-s  
• 快速稳定1µs  
16 DAC82001 是一款具有非缓冲电压输出的高精  
度、低功耗、单通道数模转换(DAC)。  
DAC82001 3.3V 5V 电源供电并提供 1LSB  
DNL 2LSB INL 的线性度。高精度与微型封装相结  
使得该器件成为增益和偏移校准、电压设定点生成  
和电源控制等应用的理想选择。DAC82001 包含一个  
上电复位 (POR) 电路。POR 电路可确保 DAC 输出根  
RSTSEL 引脚的状态在零刻度或中间刻度上电并  
保持在该刻度直到将有效代码写入器件。所有内部寄  
存器都会RESET 引脚被拉低后异步复位。  
• 宽电源2.7V 5.5V  
• 宽基准范围2.0 V VDD  
• 低功耗250µA5.0 V )  
3 线制串行外设接(SPI)频率高50MHz  
• 复位至零标度或中标度  
1.62V VIH (VDD = 5.5V)  
• 温度范围40°C +85°C  
• 封装10 WSON  
DAC82001 使用一个以高50MHz 的时钟速率运行的  
多功3 线制串行外设接(SPI)。  
2 应用  
示波(DSO)  
电池测试  
半导体测试  
超声波扫描仪  
直流电源、交流电源、电子负载  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
DAC82001  
DRXWSON102.50mm × 2.50mm  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
VDD  
VREF  
0 V to +VREF  
Single-Ended  
Op  
Amp  
Input  
DAC82001  
REF  
Output  
SYNC  
SCLK  
Buffer  
Op  
Amp  
DAC  
Buffer  
DAC  
Register  
Differential  
Output  
DAC  
VOUT  
SDIN  
Single-  
Ended to  
RESET  
Differential  
Conversion  
RSTSEL  
Power On Reset  
AGND  
用于生成时间增益补(TGC) 控制DAC82001  
功能方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBASAK3  
 
 
 
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
Table of Contents  
7.4 Device Functional Modes..........................................14  
7.5 Programming............................................................ 15  
7.6 Register Maps...........................................................16  
8 Application and Implementation..................................18  
8.1 Application Information............................................. 18  
8.2 Typical Applications.................................................. 18  
8.3 Power Supply Recommendations.............................22  
8.4 Layout....................................................................... 22  
9 Device and Documentation Support............................23  
9.1 Documentation Support............................................ 23  
9.2 接收文档更新通知..................................................... 23  
9.3 支持资源....................................................................23  
9.4 Trademarks...............................................................23  
9.5 Electrostatic Discharge Caution................................23  
9.6 术语表....................................................................... 23  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Timing Requirements..................................................7  
6.7 Timing Diagram ..........................................................7  
6.8 Typical Characteristics................................................8  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................13  
Information.................................................................... 23  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (September 2022) to Revision A (November 2022)  
Page  
• 将器件状态从“预告信息预发布”更改为“量产数据正在供货.........................................................1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DAC82001  
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
5 Pin Configuration and Functions  
VDD  
VOUT  
1
2
3
4
5
10  
9
VREF  
NC  
RSTSEL  
AGND  
8
SDIN  
SYNC  
SCLK  
7
RESET  
6
Not to scale  
5-1. DRX (10-Pin WSON) Package, Top View  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
AGND  
NC  
NO.  
4
Ground  
Ground reference point for all circuitry on the device.  
Do not connect  
9
Asynchronous reset. Active low. If RESET is low, all DAC channels reset either to zero-scale  
(RSTSEL = AGND) or to midscale (RSTSEL = VDD).  
RESET  
5
3
Input  
Input  
Reset select pin.  
DAC powers up to zero scale if RSTSEL = AGND.  
RSTSEL  
DAC powers up to midscale if RSTSEL = VDD  
.
SCLK  
SDIN  
6
8
Input  
Input  
Serial interface clock of SPI.  
Serial interface data input of SPI. Data are clocked into the input shift register on each falling edge  
of the SCLK pin.  
Serial data enable of SPI. Active low. This input is the frame-synchronization signal for the serial  
data. When the signal goes low, the serial interface input shift register is enabled.  
SYNC  
7
Input  
VDD  
1
2
Power  
Output  
Input  
Analog supply voltage (2.7 V to 5.5 V)  
Analog output voltage from DAC  
VOUT  
VREF  
10  
This pin is the external reference input to the device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DAC82001  
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
10  
40  
65  
MAX  
UNIT  
VDD to AGND  
6
VDD + 0.3  
VDD + 0.3  
VDD + 0.3  
10  
VS  
Input voltage  
VREF to AGND  
V
Digital inputs to AGND  
Output voltage, VOUT to AGND  
Input current into any digital pin  
Junction temperature  
V
mA  
°C  
°C  
TJ  
150  
Tstg  
Storage temperature  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±1500  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
MAX  
UNIT  
POWER SUPPLY  
VS  
Positive supply voltage to ground, VDD to AGND  
5.5  
V
DIGITAL INPUTS  
VIH  
Input high voltage  
Input low voltage  
1.62  
V
V
VIL  
0.45  
VDD  
85  
REFERENCE INPUT  
VREF  
Reference voltage to ground, VREF to AGND  
Operating temperature  
2.0  
V
TEMPERATURE  
TA  
°C  
40  
6.4 Thermal Information  
DAC82001  
DRX (WSON)  
10 PINS  
99.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
49.9  
35.9  
1.7  
ΨJT  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DAC82001  
 
 
 
 
 
 
 
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
DAC82001  
THERMAL METRIC(1)  
DRX (WSON)  
10 PINS  
35.7  
UNIT  
Junction-to-board characterization parameter  
°C/W  
ΨJB  
(1) For information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.  
6.5 Electrical Characteristics  
all minimum and maximum values at TA = 40°C to +85°C and all typical values at TA = 25°C, 2.7 V VDD 5.5 V,  
2.0 V VREF 5.5 V , AGND = 0 V, and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
STATIC PERFORMANCE  
Resolution  
16  
2  
Bits  
LSB  
LSB  
INL  
Integral nonlinearity  
Differential nonlinearity  
Total unadjusted error  
Zero code error  
±0.6  
±0.5  
0.04  
0.5  
2
1
DNL  
TUE  
1  
0.06 %FSR  
0.06  
2.6  
2.6  
LSB  
Zero code error temperature  
coefficient  
±0.02  
ppm/°C  
Gain error  
4
20  
LSB  
20  
Gain error temperature coefficient  
±0.1  
ppm/°C  
OUTPUT CHARACTERISTICS  
VO  
ZO  
Output voltage  
0
VREF  
V
Output impedance  
6.25  
5
kΩ  
DAC at midscale; VDD = 5 V ±10%,  
VREF = 2.5 V  
PSRR DC Power supply rejection ratio (dc)  
μV/V  
DYNAMIC PERFORMANCE  
ts  
Output voltage settling time  
Output noise  
To 1/2 LSB of FS, CL = 10 pF  
1
0.1  
10  
µs  
DAC at midcode, 0.1 Hz to 10 Hz  
DAC at midcode, measured at 10 kHz  
μVPP  
nV/Hz  
Output noise density  
1-kHz sinusoid at DAC output (unbuffered,  
full scale), DAC updated at 200 kSPS with  
40-kHz low-pass filter, include up to 7th  
harmonics  
SFDR  
THD  
Spurious free dynamic range  
Total harmonic distortion  
dB  
96  
1-kHz sinusoid at DAC output (unbuffered,  
full scale), DAC updated at 200 kSPS with  
40-kHz low-pass filter, include up to 7th  
harmonics  
dB  
dB  
91  
72  
DAC at midscale, VREF = 2.5 V,  
VDD = 5 V ±200 mV at 10 kHz  
PSRR AC Power supply rejection ratio (ac)  
Code change glitch impulse  
Digital feedthrough  
±1 LSB around major carry  
0.5  
0.5  
0.8  
nV-s  
nV-s  
V
Power on glitch magnitude  
VOLTAGE REFERENCE INPUT  
Reference input voltage  
CLOAD = 10 pF  
2.0  
5
VDD  
V
ZREF  
CREF  
Reference input impedance  
Reference input capacitance  
kΩ  
pF  
75  
DIGITAL INPUTS  
Hysteresis voltage  
0.4  
V
Input current  
5
µA  
5  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DAC82001  
 
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
6.5 Electrical Characteristics (continued)  
all minimum and maximum values at TA = 40°C to +85°C and all typical values at TA = 25°C, 2.7 V VDD 5.5 V,  
2.0 V VREF 5.5 V , AGND = 0 V, and digital inputs at VDD or AGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pin capacitance  
Per pin  
10  
pF  
POWER  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
250  
250  
350  
350  
IDD  
Power-supply current  
Power  
µA  
750  
1050  
1750  
µW  
1250  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DAC82001  
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
6.6 Timing Requirements  
all input signals are specified with tR = tF = 1 ns/V and timed from a voltage level of (VIL + VIH) / 2. 2.7 V VDD 5.5 V,  
VIH = 1.62 V, VIL = 0.15 V, 2.0 V VREF 5.5 V, and TA = 40°C to +85°C (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency  
50  
tSCLKHIGH  
tSCLKLOW  
tSDIS  
SCLK high time  
9
9
SCLK low time  
ns  
SDIN setup  
5
ns  
tSDIH  
SDIN hold  
10  
13  
10  
160  
15  
1
ns  
tSYNCS  
SYNC falling edge to SCLK falling edge setup  
SCLK falling edge to SYNC rising edge  
SYNC high time  
ns  
tSYNCH  
ns  
tSYNCHIGH  
tSYNCIGNORE  
tDACWAIT  
ns  
SCLK falling edge to SYNC ignore  
Sequential DAC update wait time  
ns  
µs  
6.7 Timing Diagram  
tSYNCHIGH  
tSYNCH  
tSYNCS  
SYNC  
SCLK  
tSYNCIGNORE  
tSCLKLOW  
tSCLKHIGH  
SDIN  
Bit 23  
Bit 1  
Bit 0  
tSDIH  
tSDIS  
6-1. Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DAC82001  
 
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
6.8 Typical Characteristics  
at TA = 25°C, channel output shown, and DAC outputs unloaded (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
85 C  
25 C  
-40 C  
85 C  
25 C  
-40 C  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
8192 16384 24576 32768 40960 49152 57344 65535  
DAC Code  
0
8192 16384 24576 32768 40960 49152 57344 65535  
DAC Code  
VDD = 5.5 V, VREF = 5.0 V  
VDD = 2.7 V, VREF = 2.5 V  
6-2. Integral Linearity Error vs Digital Input Code  
6-3. Integrated Linearity Error vs Digital Input Code  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.4  
-40 C  
25 C  
85 C  
-40 C  
25 C  
85 C  
0.3  
0.2  
0.1  
0
2
1
8
6
4
2
0
2
4
6
8
1
2
.
1
8
6
4
2
0
2
4
6
.
0
8
.
1
.
.
.
.
-
.
.
-
1.  
0.  
0.  
0.  
0.  
-
0
0
0
0
1
0.  
0.  
0.  
0.  
-
0
0
0
-
-
-
-
-
-
-
Maximum/Minimum Integral Nonlinearity Error (LSB)  
VDD = 2.7 V, VREF = 2.5 V  
Maximum/Minimum Integral Nonlinearity Error (LSB)  
VDD = 5.5 V, VREF = 5.0 V  
6-5. Integrated Linearity Error Histogram  
6-4. Integral Linearity Error Histogram  
0.4  
0.3  
0.2  
0.1  
0
85 C  
25 C  
-40 C  
-0.1  
-0.2  
-0.3  
-0.4  
0
8192 16384 24576 32768 40960 49152 57344 65535  
DAC Code  
VDD = 5.5 V, VREF = 5.0 V  
VDD = 2.7 V, VREF = 2.5 V  
6-6. Differential Linearity Error vs Digital Input Code  
6-7. Differential Linearity Error vs Digital Input Code  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DAC82001  
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
6.8 Typical Characteristics (continued)  
at TA = 25°C, channel output shown, and DAC outputs unloaded (unless otherwise noted)  
5
0
-40 C  
25 C  
85 C  
-5  
-10  
-15  
-20  
-25  
-30  
0
8192 16384 24576 32768 40960 49152 57344 65535  
DAC Code  
VDD = 5.5 V, VREF = 5.0 V  
VDD = 2.7 V, VREF = 2.5 V  
6-8. Total Unadjusted Error vs Digital Input Code  
6-9. Total Unadjusted Error vs Digital Input Code  
1.5  
-8  
VREF = 2.5 V  
VREF = 5.0 V  
1.4  
1.3  
1.2  
1.1  
1
-9  
-10  
-11  
VDD = 2.7 V  
VDD = 5.5 V  
-12  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (C)  
Temperature (C)  
6-10. Zero-Code Error vs Temperature  
6-11. Gain Error vs Temperature  
280  
270  
260  
250  
240  
230  
220  
10  
8
VDD = 5.5 V  
VDD = 2.7 V  
6
4
2
VDD = 5.5 V  
VDD = 2.7 V  
0
-40  
-40  
-15  
10  
35  
60  
85  
-15  
10  
35  
60  
85  
Temperature (C)  
Temperature (C)  
6-12. Supply Current vs Temperature  
6-13. Power-down Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DAC82001  
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
6.8 Typical Characteristics (continued)  
at TA = 25°C, channel output shown, and DAC outputs unloaded (unless otherwise noted)  
SYNC  
DAC (20 mV/div)  
Time (100 ns/div)  
VDD = 5.5 V, VREF = 5.0 V,  
VDD = 5.5 V, VREF = 5.0 V,  
DAC code transition from midscale to midscale - 1 LSB  
DAC code transition from midscale 1 to midscale LSB  
6-15. Glitch Impulse, Falling Edge, 1-LSB Step  
6-14. Glitch Impulse, Rising Edge, 1-LSB Step  
SYNC  
DAC ( 0.5 V/div)  
Time (100 ns/div)  
VDD = 2.7 V, VREF = 2.5 V  
VDD = 2.7 V, VREF = 2.5 V  
6-16. Full-Scale Settling Time, Rising Edge  
6-17. Full-Scale Settling Time, Falling Edge  
6
VDD (1 V/div)  
VREF (1 V/div)  
DAC Output (50mV/div)  
VDD (V)  
VREF (V)  
DAC Output  
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
0
1
2
3
4
5
6
7
8
9
10  
Time (ms)  
Time (1 ms/div)  
VDD = 5.5 V, VREF = 5.0 V  
6-18. Power-On Glitch  
VDD = 5.5 V, VREF = 5.0 V  
6-19. Power-Off Glitch  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DAC82001  
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
6.8 Typical Characteristics (continued)  
at TA = 25°C, channel output shown, and DAC outputs unloaded (unless otherwise noted)  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
1
10  
100  
1000  
10000 100000 1000000  
Frequency (Hz)  
VDD = 5.5 V, VREF = 5.0 V  
VDD = 5.5 V, DAC code at midscale  
6-20. Power-Supply Rejection Ratio (PSRR)  
6-21. Output Noise Density vs Frequency  
700  
600  
500  
400  
300  
200  
100  
0
SCLK (2.7 V/div)  
VOUT (200 V/div)  
VREF = 2.5 V  
VREF = 5.0 V  
0
8192 16384 24576 32768 40960 49152 57344 65535  
DAC Code (LSB)  
Time (100 ns/div)  
VDD = 2.7 V, VREF = 2.5 V  
6-22. Reference Current vs Digital Input Code  
6-23. Clock Feedthrough  
6
5
SYNC (2.7 V/div)  
VOUT (150 V/div)  
RESET  
DAC Output  
4
3
2
1
0
-1  
Time (200 ns/div)  
Time (50 ns/div)  
VDD = 5.5 V, VREF = 5.0 V  
VDD = 2.7 V, VREF = 2.5 V  
6-25. RESET Response  
6-24. Control Feedthrough  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DAC82001  
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
7 Detailed Description  
7.1 Overview  
The DAC82001 device is a single-channel, unbuffered voltage output, 16bit digital-to-analog converter (DAC)  
operating from a single 3.3-V to 5-V power supply. This converter provides 1-LSB DNL and 2-LSB INL linearity.  
With a 10-pF load, the output of the DAC82001 settles to ½ LSB of full scale at 1 µs. The glitch impulse of 1-LSB  
code change around major carry is 0.5 nV-s.  
The device incorporates a power-on-reset circuit to make sure that the DAC output powers up at zero scale or  
midscale, depending on status of the RSTSEL pin, and remains at that scale until a valid code is written to the  
device. All internal registers are asynchronously reset after the RESET pin is pulled low. Similar to the power-on-  
reset, the RESET signal sets the DAC output to zero scale or midscale based on the status of the RSTSEL pin.  
The digital interface of the DAC82001 uses a 3-wire serial peripheral interface (SPI) that operates at clock rates  
of up to 50 MHz.  
7.2 Functional Block Diagram  
VDD  
VREF  
SYNC  
SCLK  
DAC  
DAC  
DAC  
VOUT  
Buffer  
Register  
SDIN  
RESET  
RSTSEL  
Power On Reset  
AGND  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DAC82001  
 
 
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
7.3 Feature Description  
7.3.1 Digital-to-Analog Converter (DAC) Architecture  
The output channel in the DAC82001 device consists of a segmented R-2R architecture. 7-1 shows a block  
diagram of the DAC architecture. The four MSBs of the 16-bit data word are decoded to drive 15 switches, E1 to  
E15. Each of these switches connects one of 15 matched resistors to either AGND or VREF. The remaining 12  
bits of the data word drive switches S0 to S11 of a 12-bit voltage mode R-2R ladder network.  
R
R
VOUT  
2R  
2R  
2R  
S1  
2R  
2R  
E1  
2R  
E2  
2R  
S0  
S11  
E15  
VREF  
GND  
4 MSBs Decoded into  
15 Equal Segments  
12-Bit R-2R Ladder  
7-1. DAC82001 DAC Block Diagram  
7.3.1.1 DAC Transfer Function  
The input data writes to the individual DAC data registers in straight binary format. After a power-on or a reset  
event, all DAC registers are set to zero code (RSTSEL = AGND) or midscale code (RSTSEL = VDD). The DAC  
transfer function is shown by 方程1.  
DAC_DATA  
V
=
× V  
(1)  
OUT  
REF  
N
2
where:  
N = 16 (resolution in bits)  
DAC_DATA = decimal equivalent of the binary code that is loaded to the DAC register (address 8h),  
DAC_DATA ranges from 0 to 2N 1  
VREF = DAC external reference voltage. VREF ranges from 2.0 V to VDD  
7.3.1.2 DAC Register Structure  
Data written to the DAC data registers are initially stored in the DAC buffer registers. The update mode of the  
DAC output is determined by the status of the DAC_SYNC_EN bit (address 2h).  
In asynchronous mode (default, DAC_SYNC_EN = 0), a write to the DAC buffer register results in an immediate  
update of the DAC active register. The DAC output (VOUT pin) updates on the rising edge of SYNC.  
In synchronous mode (DAC_SYNC_EN = 1), writing to the DAC buffer register does not automatically update  
the DAC active register. Instead, the update occurs only after a software LDAC trigger event. A software LDAC  
trigger generates through the LDAC bit in the TRIGGER register (address 5h).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DAC82001  
 
 
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
7.3.2 Power-On Reset (POR)  
The DAC82001 device includes a power-on reset function that controls the output voltage at power up. After the  
VDD supply has been established, a POR event is issued. The POR causes all registers to initialize to default  
values, and communication with the device is valid only after a 250-µs, power-on-reset delay. The default value  
for all DACs is zero code if RSTSEL = AGND, and midscale code if RSTSEL = VDD. The DAC channel remains  
at the power-up voltage until a valid command is written to the channel.  
When the device powers up, a POR circuit sets the device to the default mode. 7-2 shows that the POR  
circuit requires specific VDD levels to make sure that the internal capacitors discharge and reset the device at  
power up. To make sure that a POR occurs, VDD must be less than 0.7 V for at least 1 ms. When VDD drops to  
less than 2.2 V but remains greater than 0.7 V (shown as the undefined region in 7-2), the device may or may  
not reset under all specified temperature and power-supply conditions; in this case, initiate a POR. When VDD  
remains greater than 2.2 V, a POR does not occur.  
VDD (V)  
5.50  
Specified supply  
voltage range  
No power-on reset  
2.70  
2.20  
Undefined  
0.70  
Power-on reset  
0.00  
7-2. Threshold Levels for the VDD POR Circuit  
7.3.3 Hardware Reset  
The DAC output is asynchronously set to zero code if RSTSEL = AGND, and midscale code if RSTSEL = VDD  
,
immediately after the RESET pin is brought low. The RESET signal resets all internal registers, meaning all  
registers initialize to default values. Bring the RESET pin back to high before a write sequence starts. Similar to  
the POR delay, communication with the device is valid only after a 250µs delay. The default value for the DAC  
channel remains at the reset voltage until a valid command is written to the channel. The RSTSEL pin can be  
reconfigured without a power cycle. The DAC output always reflects the current RSTSEL status when the  
RESET pin is pulled low.  
7.3.4 Software Reset  
A device software reset event is initiated by writing the reserved code 0x1010 to the SOFT-RESET bits in the  
TRIGGER register (address 5h). A software reset initiates a POR event.  
7.4 Device Functional Modes  
The DAC82001 has one mode of operation: normal.  
In normal mode, the DAC82001 is fully operational. The device translates digital input or reset input to  
corresponding analog output.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DAC82001  
 
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
7.5 Programming  
7.5.1 Serial Peripheral Interface (SPI)  
The DAC82001 is controlled through a 3-wire serial peripheral interface (SPI) using SYNC, SCLK, and SDIN.  
The serial interface operates at up to 50 MHz. The input shift register is 24-bits wide.  
7-1 shows the SPI frame format.  
7-1. SPI Frame Format  
BIT  
23  
22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
DESC  
W
Register Address - Command Byte 16-Bit MSB-Aligned DAC Data  
Serial clock SCLK is a continuous or a gated clock. The first falling edge of SYNC starts the operation cycle.  
When SYNC is high, the SCLK and SDIN signals are blocked. The device internal registers are updated from the  
shift register on the rising edge of SYNC.  
7.5.1.1 SYNC Interrupt  
For SPI operation, the SYNC line stays low for at least 24 falling edges of SCLK, and the addressed DAC  
register updates on the SYNC rising edge. However, if the SYNC line is brought high before the 24th SCLK  
falling edge, this event acts as an interrupt to the write sequence. The shift register resets and the write  
sequence is discarded. As 7-3 shows, the data buffer contents and the DAC register contents do not update,  
and the operating mode does not change.  
SCLK  
1
2
24  
SYNC  
SDIN  
DB23  
DB0  
Invalid or interrupted write sequence  
2
SCLK  
1
24  
SYNC  
SDIN  
DB23  
DB0  
Valid write sequence  
7-3. SYNC Interrupt  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DAC82001  
 
 
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
7.6 Register Maps  
7.6.1 Registers  
7-2. DAC82001 Registers  
Offset  
0h  
Register Description  
Section  
No Operation  
Synchronization  
Trigger  
NOOP Register  
SYNC Register  
TRIGGER Register  
DAC Register  
2h  
5h  
8h  
DAC  
7.6.1.1 NOOP Register (offset = 0h) [reset = 0000h]  
7-4. NOOP Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
NOOP  
W-0h  
7-3. NOOP Register Field Descriptions  
Bit  
15-0  
Field  
NOOP  
Type  
Reset  
Description  
W
0h  
No operation command  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DAC82001  
 
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
7.6.1.2 SYNC Register (offset = 2h) [reset = 0000h]  
7-5. SYNC Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
DAC-SYNC-  
EN  
W-0h  
W-0h  
7-4. SYNC Register Field Descriptions  
Bit  
Field  
RESERVED  
DAC-SYNC-EN  
Type  
Reset  
Description  
15-1  
0
W
0h  
These bits are reserved.  
W
0h  
When set to 1, the DAC output is set to update in response to an  
LDAC trigger (synchronous mode).  
When cleared to 0, the DAC output is set to update immediately  
(asynchronous mode), default.  
7.6.1.3 TRIGGER Register (offset = 5h) [reset = 0000h]  
7-6. TRIGGER Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
W-0h  
LDAC  
W-0h  
SOFT-RESET [3:0]  
W-0h  
7-5. TRIGGER Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-5  
4
RESERVED  
LDAC  
W
0h  
These bits are reserved.  
W
0h  
Set this bit to 1 to synchronously load the DAC that is set to  
synchronous mode in the SYNC register. This bit self-resets.  
3-0  
SOFT-RESET [3:0]  
W
0h  
When set to reserved code 1010, this bit resets the device to the  
default state. This bit self-resets.  
7.6.1.4 DAC Register (offset = 8h) [reset = 0000h when RSTSEL is logic low, or reset = 8000h when  
RSTSEL is logic high]  
7-7. DAC Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DAC-DATA [15:0]  
W-0000h when RSTSEL is logic low or 8000h when RSTSEL is logic high  
7-6. DAC Data Register Field Descriptions (8h)  
Bit  
15-0  
Field  
DAC-DATA [15:0]  
Type  
Reset  
Description  
W
0000h when  
RSTSEL is  
logic low  
Data are MSB aligned in straight binary format.  
or  
8000h when  
RSTSEL is  
logic high  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DAC82001  
 
 
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
Generating accurate, stable, programmable dc voltages is a key requirement in most precision end equipment.  
The DAC82001 serves a wide range of end equipment, such as battery testers, communications equipment,  
factory automation and control, test and measurement. The DAC82001 tiny package, high resolution, fast  
settling, and simple interface makes this device an excellent choice for applications such as offset and gain  
control, arbitrary waveform generation (AWG), closed-loop control, and bipolar analog outputs. A wide variety of  
operational amplifiers can be used as output buffers for the DAC82002, allowing the user to choose components  
that best fit their design.  
8.2 Typical Applications  
8.2.1 Arbitrary Waveform Generator  
Arbitrary waveform generation (AWG) circuits are common in test and measurement equipment. These circuits  
are used to generate ac waveforms for test applications. The key performance parameters in test and  
measurement circuits are total harmonic distortion and noise (THD+N), signal-to-noise ratio (SNR), and the  
update rate. 8-1 shows a basic example of an AWG circuit using the DAC82001.  
VDD  
VREF  
100 nF  
47 pF  
5 V  
+
VOUT  
DAC82001  
OPA328  
8-1. Arbitrary Waveform Generator  
8.2.1.1 Design Requirements  
DAC output range: 0 V to 2.5 V  
THD+N at 1 kHz: < 91 dB  
Update rate: 200 kHz  
8.2.1.2 Detailed Design Procedure  
8-1 shows a simplified circuit diagram of an arbitrary waveform generator. The DAC82001 specifies a THD+N  
of 91 dB at 1 kHz. The OPA328 provides a great balance between fast settling, bandwidth, and voltage and  
current noise. The buffer must have a negative voltage supply rail or an output offset to make sure the DAC  
output is not clipped. Attach two decoupling capacitors as close as possible to the VREF pin. Use 100 nF for the  
first capacitor to provide very good noise performance for the system. Use 47 pF for the second capacitor to  
allow for a good dynamic response performance that improves any code-to-code glitch. The REF5025 is a low-  
noise, very low-drift, precise voltage reference that generates a 2.5-V reference for this application.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DAC82001  
 
 
 
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
8.2.1.3 Application Curves  
8-2 shows the THD+N plot vs frequency of the buffer output using a 20-Hz to 20-kHz sine wave sweep with a  
DAC code range of 0x81FF ± 0x7E00 to prevent voltage clipping. A 40-kHz low-pass filter is also used in the  
measurement tool.  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20-Hz to 20-kHz sine wave sweep with a code range of 0x81FF ± 0x7E00  
40-kHz low-pass filter  
8-2. THD+N vs Frequency  
8-3 shows the FFT of the buffer output using a 1-kHz sine wave with a code range of 0x81FF ± 0x7E00 to  
prevent voltage clipping. 32768 bins, 8 averages, and a 40-kHz low-pass filter are also used in the measurement  
tool.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
10  
100  
1000  
10000  
40000  
Frequency (Hz)  
1-kHz sine wave with a code range of 0x81FF ± 0x7E00  
32768 bins, 8 averages, 40-kHz low-pass filter  
8-3. FFT Amplitude vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DAC82001  
 
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
8.2.2 Bipolar Analog Output Configuration  
Programmable logic circuits (PLCs) have analog output modules that typically output ±10 V. This bipolar analog  
output circuit converts the unipolar DAC output to a bipolar ±10-V output. The key performance parameters of  
these circuits are noise and slew rate. The circuit can also be used to force voltage in semiconductor test  
applications. 8-4 shows the example configuration using the DAC82001.  
VDD VREF  
15 V  
OPA210  
DAC82001  
+
VOP  
VOUT  
–15 V  
8.25 k  
VREF  
33.2 k  
100 pF  
11 k  
8-4. Bipolar Analog Output Circuit  
8.2.2.1 Design Requirements  
DAC output range: 0 V to 2.5 V  
PLC analog output range: 10 V to +10 V  
Noise: < 3 µV/Hz  
Slew rate: > 1 V/µs  
8.2.2.2 Detailed Design Procedure  
The OPA210 output buffer provides a balance between fast settling, bandwidth, voltage and current noise, and  
wide voltage rails. The buffer uses ±15-V voltage rails to make sure there is no voltage clipping. The REF5025 is  
a low-noise, very low-drift, precise voltage reference and is used to generate a stable 2.5-V reference for this  
application. To further reduce noise, use a 100-pF capacitor between the non-inverting input pin and the output  
of the OPA210.  
8.2.2.3 Application Curves  
8-5 shows the noise on the buffer output vs frequency using a 100-Hz to 1-MHz frequency sweep with a  
grounded reference to isolate the noise in the circuit.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DAC82001  
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
8-5. Noise vs Frequency  
8-6 shows the output of the circuit rising from 10 V to +10 V, with the DAC starting at code 0x0000 and  
ending at code 0xFFFF. The measured slew rate is 2.5 V/µs. The REF5025 is used as a 2.5-V reference.  
12  
DAC SYNC  
DAC OUT  
BUFFER OUT  
10  
8
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-12  
-5  
-3  
-1  
1
3
5
7
9
11  
13  
15  
Time (µs)  
DAC at code 0x0000 rising to code 0xFFFF  
8-6. Bipolar Output Rising Slew Rate  
8-7 shows the output of the circuit falling from +10 V to 10 V, with the DAC starting at code 0xFFFF and  
ending at code 0x0000. This measured slew rate is 2.5 V/µs. The REF5025 is used as a 2.5-V reference.  
12  
DAC SYNC  
DAC OUT  
BUFFER OUT  
10  
8
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-12  
-5  
-3  
-1  
1
3
5
7
9
11  
13  
15  
Time (µs)  
DAC at code 0xFFFF falling to code 0x0000  
8-7. Bipolar Output Falling Slew Rate  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DAC82001  
 
 
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
8.3 Power Supply Recommendations  
The DAC82001 operates within the specified VDD supply range of 2.7 V to 5.5 V. The DAC82001 does not  
require specific supply sequencing, but VREF must be less than VDD, as noted in the Absolute Maximum Ratings.  
The VDD supply must be well-regulated and low-noise. Switching power supplies and DC/DC converters often  
have high-frequency glitches or spikes riding on the output voltage. Digital components also create similar high-  
frequency spikes. This noise can easily couple into the DAC output voltage through various paths between the  
power connections and analog output. To further minimize noise from the power supply, include a 1-μF to 10-  
μF capacitor and 0.1-μF bypass capacitor.  
8.4 Layout  
8.4.1 Layout Guidelines  
A precision analog component requires careful layout. The following list provides some insight into good layout  
practices.  
Bypass the VDD to ground with a low ESR ceramic bypass capacitor. The typical recommended bypass  
capacitance is 0.1-µF to 0.22-µF ceramic capacitor, with a X7R or NP0 dielectric.  
Bypass VREF to ground with low ESR ceramic bypass capacitors.  
Place power supplies and REF bypass capacitors close to the pins to minimize inductance and optimize  
performance.  
The output pin, VOUT, has relatively high impedance and is susceptible to high parasitic capacitance. Use  
short and direct traces when routing VOUT.  
8.4.2 Layout Example  
GND  
GND  
Reference  
Bypass  
Capacitor  
Decoupling  
Capacitor  
DAC82001  
VDD  
VOUT  
1
2
3
4
5
10  
9
SDIN  
8
Pull-up  
7
Resistor  
Pull-Down  
Resistor  
VDD  
6
GND  
(for Zero  
Scale Reset)  
GND  
SYNC  
SCLK  
Pull-Down  
Resistor  
Ground and Power Planes Omitted for Clarity  
8-8. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DAC82001  
 
 
DAC82001  
www.ti.com.cn  
ZHCSQ74A SEPTEMBER 2022 REVISED NOVEMBER 2022  
9 Device and Documentation Support  
9.1 Documentation Support  
9.1.1 Related Documentation  
For related documentation see the following: Texas Instruments, DAC82002EVM user's guide  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DAC82001  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC82001DRXR  
PDAC82001DRXR  
ACTIVE  
ACTIVE  
WSON  
WSON  
DRX  
DRX  
10  
10  
3000 RoHS & Green  
3000 TBD  
NIPDAUAG  
Level-2-260C-1 YEAR  
Call TI  
-40 to 85  
-40 to 85  
D821  
Samples  
Samples  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Dec-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC82001DRXR  
WSON  
DRX  
10  
3000  
178.0  
8.4  
2.75  
2.75  
0.95  
4.0  
8.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WSON DRX 10  
SPQ  
Length (mm) Width (mm) Height (mm)  
205.0 200.0 33.0  
DAC82001DRXR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRX0010A  
WSON - 0.8 mm max height  
SCALE 5.000  
PLASTIC SMALL OUTLINE - NO LEAD  
2.6  
2.4  
B
A
PIN 1 INDEX AREA  
2.6  
2.4  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
SYMM  
(0.2) TYP  
1.1  
0.9  
10X  
0.05  
0.00  
5
6
2X  
2
SYMM  
8X  
0.5  
10  
1
0.30  
0.18  
10X  
PIN 1 ID  
(45 X0.15)  
0.1  
C A B  
C
0.05  
4223856/B 01/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRX0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (1.2)  
1
10  
10X (0.24)  
8X (0.5)  
SYMM  
6
5
SYMM  
(1.7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:30X  
EXPOSED METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223856/B 01/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRX0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (1.2)  
1
10  
10X (0.24)  
8X (0.5)  
SYMM  
5
6
SYMM  
(1.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4223856/B 01/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY