DAC8560IDDGKTG4 [TI]

具有 2.5V、2ppm/°C 基准的 16 位、单通道、低功耗、超低干扰、电压输出 DAC | DGK | 8 | -40 to 105;
DAC8560IDDGKTG4
型号: DAC8560IDDGKTG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 2.5V、2ppm/°C 基准的 16 位、单通道、低功耗、超低干扰、电压输出 DAC | DGK | 8 | -40 to 105

光电二极管 转换器
文件: 总40页 (文件大小:2085K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DAC8560  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
具有 2.5V2ppm/°C 内部基准电压的 DAC856016 位、超低毛刺脉冲、  
电压输出数模转换器  
1 特性  
3 说明  
1
相对精度:4 LSB  
DAC8560 是一款低功耗、电压输出、16 位数模转换  
(DAC)DAC8560 包括 2.5V2ppm/°C 内部基准  
电压(默认为启用),可提供范围在 0V 2.5V 之间  
的满量程输出电压。内部基准电压的初始精度为  
0.02%,可在 VREF 引脚实现高达 20mA 的拉电流。此  
器件具有单调性,可提供极佳的线性度,并且大大降低  
了有害的码字间瞬态电压(毛刺脉冲)。DAC8560 使  
用一个可运行在高达 30MHz 时钟速率上的多用途 3 线  
制串行接口。该器件可与标准 SPIQSPIMicrowire  
和数字信号处理器 (DSP) 接口兼容。  
毛刺脉冲能量:0.15nV-s  
微功耗运行:510μA/2.7V  
内部基准电压:  
2.5V 基准电压(默认为启用)  
0.02% 初始精度  
2ppm/°C 温漂(典型值)  
5ppm/°C 温漂(最大值)  
20mA 灌电流/拉电流能力  
上电复位至零  
电源电压:2.7V 5.5V  
DAC8560 包含一个上电复位 (POR) 电路,此电路可  
确保 DAC 输出为零时上电,并在一段有效代码被写入  
器件前保持此状态。DAC8560 包含一个由串口访问的  
断电特性,这将器件在电压为 5V 时的功耗减少至  
1.2μA。  
在整个温度范围具有 16 位单调性  
建立时间:10μs 达到 ±0.003% FSR  
具有施密特触发输入的低功耗串口  
支持轨至轨运行的片上输出缓冲放大器  
掉电能力  
此低功耗、集成内部基准电压和小封装尺寸使得这些器  
件非常适合于便携式、电池供电类设备。电压为 5V 时  
的功耗为 2.6mW,断电模式下减少到 6μW。  
DAC8531/01DAC8550 /51直接兼容  
温度范围:-40°C +105°C  
采用超小型 8 引脚 VSSOP 封装  
DAC8560 采用 8 引脚 VSSOP 封装。  
2 应用  
器件信息(1)  
过程控制  
器件型号  
DAC8560  
封装  
VSSOP (8)  
封装尺寸(标称值)  
数据采集系统  
闭环伺服器控制  
PC 外设  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
便携式仪表  
功能方框图  
VDD  
VFB  
VREF  
VOUT  
Ref (+)  
16-Bit DAC  
2.5V  
Reference  
16  
DAC Register  
16  
SYNC  
SCLK  
DIN  
PWD  
Control  
Resistor  
Network  
Shift Register  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLAS464  
 
 
 
 
 
DAC8560  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 19  
7.4 Device Functional Modes........................................ 24  
7.5 Programming........................................................... 25  
7.6 Register Maps......................................................... 26  
Application and Implementation ........................ 27  
8.1 Application Information............................................ 27  
8.2 Typical Applications ................................................ 27  
Power Supply Recommendations...................... 32  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 7  
6.7 Typical Characteristics: Internal Reference .............. 8  
6.8 Typical Characteristics: DAC at VDD = 5 V ............. 10  
6.9 Typical Characteristics: DAC at VDD = 3.6 V .......... 15  
6.10 Typical Characteristics: DAC at VDD = 2.7 V ........ 15  
Detailed Description ............................................ 19  
7.1 Overview ................................................................. 19  
7.2 Functional Block Diagram ....................................... 19  
8
9
10 Layout................................................................... 32  
10.1 Layout Guidelines ................................................. 32  
10.2 Layout Example .................................................... 32  
11 器件和文档支持 ..................................................... 33  
11.1 文档支持................................................................ 33  
11.2 接收文档更新通知 ................................................. 33  
11.3 社区资源................................................................ 33  
11.4 ....................................................................... 33  
11.5 静电放电警告......................................................... 33  
11.6 术语表 ................................................................... 33  
12 机械、封装和可订购信息....................................... 33  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (November 2011) to Revision C  
Page  
已添加 在 TI Designs 器件信息ESD 额定值建议运行条件热性能信息表、特性 说明 部分、器件功能模式应  
用和实施 部分、电源相关建议 部分、布局 部分、器件和文档支持 部分以及机械、封装和可订购信息 部分添加了顶部  
导航链接 ................................................................................................................................................................................. 1  
Changes from Revision A (November 2011) to Revision B  
Page  
已更改 将版本日期从 2011 5 A 版本更改成了 2011 11 B 版本 ........................................................................... 1  
Changed "Zero-code error drift" in the ELEC CHARA table, TYP from ±20 to ±4................................................................. 5  
Changes from Original (December 2006) to Revision A  
Page  
Changed Output Voltage parameter min/max values from 2.4995 and 2.5005 to 2.4975 and 2.5025, respectively............. 6  
Changed Initial Accuracy parameter min/max values from –0.02 and 0.02 to –0.1 and 0.1, respectively ............................ 6  
Changes from Revision A (May 2011) to Revision B  
Page  
已更改 将版本日期从 2011 5 A 版本更改成了 2011 11 B 版本 ........................................................................... 1  
Changed "Zero-code error drift" in the ELEC CHARA table, TYP from ±20 to ±4................................................................. 5  
2
Copyright © 2006–2018, Texas Instruments Incorporated  
 
DAC8560  
www.ti.com.cn  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
5 Pin Configuration and Functions  
DGK Package  
8-Pin VSSOP  
Top View  
1
2
3
4
8
7
6
5
VDD  
VREF  
VFB  
GND  
DIN  
DAC8560  
SCLK  
SYNC  
VOUT  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
VDD  
PWR  
I/O  
I
Power supply input, 2.7 V to 5.5 V  
Reference voltage input/output  
2
VREF  
VFB  
3
Feedback connection for the output amplifier. For voltage output operation, tie to VOUT externally.  
Analog output voltage from DAC. The output amplifier has rail-to-rail operation.  
4
VOUT  
O
Level-triggered control input (active LOW). This is the frame synchronization signal for the input data.  
When SYNC goes LOW, it enables the input shift register, and data is sampled on subsequent falling  
clock edges. The DAC output updates following the 24th clock. If SYNC is taken HIGH before the  
24th clock edge, the rising edge of SYNC acts as an interrupt, and the write sequence is ignored by  
the DAC8560. Schmitt-Trigger logic input.  
5
SYNC  
I
6
7
8
SCLK  
DIN  
I
I
Serial clock input, Schmitt-Trigger logic input.  
Serial data input. Data is clocked into the 24-bit input shift register on each falling edge of the serial  
clock input. Schmitt-Trigger logic input.  
GND  
GND  
Ground reference point for all circuitry on the device.  
Copyright © 2006–2018, Texas Instruments Incorporated  
3
DAC8560  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
VDD to GND  
6
VDD + 0.3  
VDD + 0.3  
(TJ(MAX) – TA) / RθJA  
105  
V
V
V
Digital input voltage to GND  
VOUT to GND  
Power dissipation (DGK)  
Operating temperature  
Junction temperature, TJ(MAX)  
Storage temperature, Tstg  
–40  
–65  
°C  
°C  
°C  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
0
NOM  
MAX  
5.5  
UNIT  
V
VDD  
Supply voltage (VDD to GND)  
Digital input voltage (DIN, SCLK, and SYNC)  
Output amplifier feedback input  
Operating ambient temperature  
VDD  
V
VFB  
TA  
VOUT  
V
–40  
125  
°C  
6.4 Thermal Information  
DAC8560  
THERMAL METRIC(1)  
DGK (VSSOP)  
UNIT  
8 PINS  
206  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
44  
94.2  
10.2  
92.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2006–2018, Texas Instruments Incorporated  
DAC8560  
www.ti.com.cn  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
6.5 Electrical Characteristics  
VDD = 2.7 V to 5.5 V, –40°C to +105°C range (unless otherwise noted)  
PARAMETER  
STATIC PERFORMANCE(1)  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
16  
Bits  
LSB  
DAC8560A, DAC8560C  
DAC8560B, DAC8560D  
±4  
±4  
±12  
±8  
Measured by line passing through  
Relative accuracy  
codes 485 and 64714  
LSB  
Differential nonlinearity  
Zero-code error  
Full-scale error  
16-bit Monotonic  
±0.5  
±5  
±1  
LSB  
±12  
±0.5  
±0.2  
mV  
Measured by line passing through codes 485 and 64714.  
±0.2  
±0.05  
±4  
% of FSR  
% of FSR  
μV/°C  
Gain error  
Zero-code error drift  
VDD = 5 V  
±1  
ppm of  
FSR/°C  
Gain temperature coefficient  
VDD = 2.7 V  
±3  
PSRR  
Power supply rejection ratio  
Output unloaded  
1
mV/V  
OUTPUT CHARACTERISTICS(2)  
Output voltage range  
0
VREF  
10  
V
To ±0.003% FSR, 0200h to FD00h, RL = 2 k,  
0 pF < CL < 200 pF  
8
Output voltage settling time  
μs  
RL = 2 k, CL = 500 pF  
12  
1.8  
470  
1000  
0.15  
0.15  
1
Slew rate  
V/μs  
RL = ∞  
Capacitive load stability  
pF  
RL = 2 kΩ  
Code change glitch impulse  
Digital feedthrough  
1 LSB change around major carry  
SCLK toggling, SYNC high  
At mid-code input  
nV-s  
nV-s  
DC output impedance  
VDD = 5 V  
50  
Short-circuit current  
mA  
VDD = 3 V  
20  
Coming out of power-down mode VDD = 5 V  
Coming out of power-down mode VDD = 3 V  
2.5  
5
Power-up time  
μs  
AC PERFORMANCE(2)  
SNR  
88  
–77  
79  
dB  
dB  
THD  
TA = 25°C, BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz,  
1st 19 harmonics removed for SNR calculation  
SFDR  
dB  
SINAD  
77  
dB  
DAC output noise density  
DAC output noise  
TA = 25°C, at mid-code input, fOUT = 1 kHz  
TA = 25°C, at mid-code input, 0.1 Hz to 10 Hz  
170  
50  
nV/Hz  
μVPP  
(1) Linearity calculated using a reduced code range of 485 to 64714; output unloaded.  
(2) Ensured by design and characterization, not production tested.  
Copyright © 2006–2018, Texas Instruments Incorporated  
5
 
DAC8560  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
VDD = 2.7 V to 5.5 V, –40°C to +105°C range (unless otherwise noted)  
PARAMETER  
REFERENCE OUTPUT  
Output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA = 25°C  
2.4975  
–0.1%  
2.5  
2.5025  
0.1%  
25  
V
Initial accuracy  
TA = 25°C  
±0.004%  
DAC8560A, DAC8560B(3)  
DAC8560C, DAC8560D(4)  
f = 0.1 Hz to 10 Hz  
5
2
Output voltage temperature  
drift  
ppm/°C  
5
Output voltage noise  
16  
125  
20  
2
μVPP  
TA = 25°C, f = 1 MHz, CL = 0 μF  
TA = 25°C, f = 1 MHz, CL = 1 μF  
TA = 25°C, f = 1 MHz, CL = 4 μF  
TA = 25°C  
Output voltage noise density  
(high-frequency noise)  
nV/Hz  
Load regulation, sourcing(5)  
Load regulation, sinking(5)  
30  
15  
μV/mA  
μV/mA  
TA = 25°C  
Output current load  
capability(2)  
±20  
10  
mA  
μV/V  
ppm  
Line regulation  
TA = 25°C  
Long-term stability/drift  
(aging)(5)  
TA = 25°C, time = 0 to 1900 hours  
50  
First cycle  
100  
25  
Thermal hysteresis(5)  
ppm  
Additional cycles  
REFERENCE  
VDD = 5.5 V  
360  
348  
20  
Internal reference current  
consumption  
μA  
VDD = 3.6 V  
External reference current  
Reference input range  
External VREF = 2.5 V, if internal reference is disabled  
μA  
V
0
VDD  
Reference input impedance  
125  
±1  
kΩ  
(2)  
LOGIC INPUTS  
Input current  
μA  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
0.8  
0.6  
Logic input LOW  
voltage  
VIN  
VIN  
L
V
2.4  
2.1  
Logic input HIGH  
voltage  
H
V
Pin capacitance  
POWER REQUIREMENTS  
VDD  
3
pF  
2.7  
5.5  
0.85  
0.84  
2.5  
2.2  
4.7  
3
V
VDD = 3.6 V to 5.5 V, VIH = VDD and VIL = GND  
VDD = 2.7 V to 3.6 V, VIH = VDD and VIL = GND  
VDD = 3.6 V to 5.5 V, VIH = VDD and VIL = GND  
VDD = 2.7 V to 3.6 V, VIH = VDD and VIL = GND  
VDD = 3.6 V to 5.5 V  
0.53  
0.51  
1.2  
0.7  
2.6  
1.5  
6
Normal mode  
mA  
(6)  
IDD  
All power-down  
modes  
μA  
mW  
μW  
Normal mode  
Power  
VDD = 2.7 V to 3.6 V  
dissipatio  
n(6)  
VDD = 3.6 V to 5.5 V  
14  
All power-down  
modes  
VDD = 2.7 V to 3.6 V  
2
8
TEMPERATURE RANGE  
Specified performance  
–40  
105  
°C  
(3) Reference is trimmed and tested at room temperature, and is characterized from –40°C to +120°C.  
(4) Reference is trimmed and tested at two temperatures (25°C and 105°C), and is characterized from –40°C to +120°C.  
(5) Explained in more detail in Application and Implementation.  
(6) Input code = 32768, reference current included, no load.  
6
Copyright © 2006–2018, Texas Instruments Incorporated  
DAC8560  
www.ti.com.cn  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
6.6 Timing Requirements  
VDD = 2.7 V to 5.5 V, all specifications –40°C to +105°C (unless otherwise noted)(1)  
(2)  
PARAMETER  
MIN NOM  
MAX UNIT  
VDD = 2.7 V to 3.6 V  
50  
33  
13  
13  
22.5  
13  
0
(3)  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
SCLK cycle time  
ns  
VDD = 3.6 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
SCLK HIGH time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK LOW time  
SYNC to SCLK rising edge setup time  
Data setup time  
0
5
5
4.5  
4.5  
0
Data hold time  
SCLK falling edge to SYNC rising edge  
Minimum SYNC HIGH time  
24th SCLK falling edge to SYNC falling edge  
0
50  
33  
100  
100  
15  
15  
SYNC rising edge to 24th SCLK falling edge  
(for successful SYNC interrupt)  
(1) All input signals are specified with tR = tF = 3 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH) / 2.  
(2) See Figure 1.  
(3) Maximum SCLK frequency is 3 0MHz at VDD = 3.6 V to 5.5 V and 20 MHz at VDD = 2.7 V to 3.6 V.  
t9  
t1  
SCLK  
SYNC  
1
24  
t8  
t2  
t3  
t7  
t4  
t10  
t6  
t5  
DB23  
DIN  
DB0  
DB23  
Figure 1. Serial Write Operation  
Copyright © 2006–2018, Texas Instruments Incorporated  
7
 
DAC8560  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
www.ti.com.cn  
6.7 Typical Characteristics: Internal Reference  
At TA = 25°C, unless otherwise noted.  
2.503  
2.502  
2.501  
2.500  
2.499  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.498  
10 Units Shown  
100  
13 Units Shown  
80 100 120  
2.497  
-40  
-20  
0
20  
40  
60  
120  
-40  
-20  
0
20  
40  
60  
Temperature (°C)  
Temperature (°C)  
Figure 2. Internal Reference Voltage vs Temperature  
(Grades C and D)  
Figure 3. Internal Reference Voltage vs Temperature  
(Grades A and B)  
40  
30  
Typ: 5ppm/°C  
Typ: 2ppm/°C  
Max: 5ppm/°C  
Max: 25ppm/°C  
30  
20  
10  
0
20  
10  
0
0.5  
1
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
3
5
7
9
11  
13  
15  
17  
19  
Temperature Drift (ppm/°C)  
Temperature Drift (ppm/°C)  
Figure 4. Reference Output Temperature Drift (–40°C to  
120°C, Grades C and D)  
Figure 5. Reference Output Temperature Drift (–40°C to  
120°, Grades A and B)  
200  
40  
See the Applications Information  
section for more information  
Typ: 1.2ppm/°C  
Max: 3ppm/°C  
150  
100  
50  
30  
20  
10  
0
0
-50  
-100  
-150  
-200  
Average  
20 Units Shown  
1200 1500 1800  
0
300  
600  
900  
Time (Hours)  
0.5  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Temperature Drift (ppm/°C)  
Explained in more detail in Application and Implementation .  
(1)  
Figure 7. Long-Term Stability/Drift  
Figure 6. Reference Output Temperature Drift (0°C to 120°C,  
Grades C and D)  
(1)  
8
Copyright © 2006–2018, Texas Instruments Incorporated  
 
 
DAC8560  
www.ti.com.cn  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
Typical Characteristics: Internal Reference (continued)  
At TA = 25°C, unless otherwise noted.  
400  
See the Applications Information  
section for more information  
See the Applications Information  
section for more information  
VDD = 5V  
16mVPP  
300  
Reference Unbuffered  
CREF = 0mF  
200  
100  
CREF = 4mF  
0
Time (2s/div)  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Explained in more detail in Application and Implementation.  
Explained in more detail in Application and Implementation.  
Figure 9. Internal Reference Noise 0.1 Hz to 10 Hz  
Figure 8. Internal Reference Noise Density vs Frequency  
2.504  
2.504  
-40°C  
2.503  
2.503  
2.502  
2.502  
15mV/mA (sinking)  
15mV/mA (sinking) -40°C  
2.501  
2.501  
+25°C  
+25°C  
2.500  
2.499  
2.500  
2.499  
30mV/mA (sourcing)  
+120°C  
2.498  
2.498  
30mV/mA (sourcing)  
2.497  
2.497  
+120°C  
2.496  
2.496  
-25 -20 -15 -10 -5  
0
5
10  
15 20 25  
-25 -20 -15 -10 -5  
0
5
10  
15 20 25  
ILOAD (mA)  
ILOAD (mA)  
Figure 10. Internal Reference Voltage vs Load Current  
(Grades C and D)  
Figure 11. Internal Reference Voltage vs Load Current  
(Grades A and B)  
2.504  
2.504  
-40°C  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
-40°C  
+25°C  
< 10mV/V  
< 10mV/V  
+25°C  
+120°C  
+120°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
VDD (V)  
Figure 12. Internal Reference Voltage vs Supply Voltage  
(Grades C and D)  
Figure 13. Internal Reference Voltage vs Supply Voltage  
(Grades A and B)  
Copyright © 2006–2018, Texas Instruments Incorporated  
9
 
DAC8560  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
www.ti.com.cn  
6.8 Typical Characteristics: DAC at VDD = 5 V  
At TA = 25°C, external reference used, and DAC output not loaded, unless otherwise noted.  
6
4
6
4
VDD = 5V, External VREF = 4.99V  
VDD = 5V, External VREF = 4.99V  
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
1.0  
0.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-0.5  
-1.0  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Digital Input Code  
–40°C  
25°C  
Figure 14. Linearity Error and Differential Linearity Error vs  
Digital Input Code  
Figure 15. Linearity Error and Differential Linearity Error vs  
Digital Input Code  
10  
6
VDD = 5V, External VREF = 4.99V  
VDD = 5.0V  
4
2
Internal VREF = 2.5V  
0
-2  
-4  
-6  
5
1.0  
0.5  
0
0
-0.5  
-1.0  
-5  
0
8192 16384 24576 32768 40960 49152 57344 65536  
-40  
0
40  
80  
120  
Temperature (°C)  
Digital Input Code  
105°C  
Figure 17. Zero-Scale Error vs Temperature  
Figure 16. Linearity Error and Differential Linearity Error vs  
Digital Input Code  
10  
3.0  
VDD = 5.0V  
Internal VREF = 2.5V  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VDD = 5V  
Internal Reference Enabled  
DAC Loaded with FFFFh  
5
0
DAC Loaded with 0000h  
-5  
-40  
0
40  
80  
120  
0
5
10  
15  
20  
Temperature (°C)  
ISOURCE/SINK (mA)  
Figure 18. Full-Scale Error vs Temperature  
Figure 19. Source and Sink Current Capability  
10  
Copyright © 2006–2018, Texas Instruments Incorporated  
 
DAC8560  
www.ti.com.cn  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
Typical Characteristics: DAC at VDD = 5 V (continued)  
At TA = 25°C, external reference used, and DAC output not loaded, unless otherwise noted.  
650  
600  
550  
500  
450  
6
5
4
3
2
1
0
VDD = 5.5V  
Internal VREF = 2.5V  
VDD = 5V  
Internal Reference Disabled  
External VREF = 4.99V  
DAC Loaded with FFFFh  
DAC Loaded with 0000h  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
5
10  
15  
20  
ISOURCE/SINK (mA)  
Figure 20. Source and Sink Current Capability  
Figure 21. Power-Supply Current vs Digital Input Code  
700  
650  
600  
550  
500  
450  
400  
510  
VDD = 5.5V  
VDD = 2.7V to 5.5V  
Internal VREF = 2.5V  
Internal VREF Included  
505  
500  
495  
490  
485  
-40  
0
40  
80  
120  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Temperature (°C)  
VDD (V)  
Figure 22. Power-Supply Current vs Temperature  
Figure 23. Power-Supply Current vs Power-Supply Voltage  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2500  
VDD = 5.5V, Internal VREF Included,  
VDD = 2.7V to 5.5V  
Sweep from 0V to 5V  
SCLK Input  
(all other digital inputs = GND)  
2000  
1500  
1000  
500  
0
Sweep from 5V to 0V  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
0
1
2
3
4
5
VDD (V)  
VLOGIC (V)  
Figure 25. Power-Supply Current vs Logic Input Voltage  
Figure 24. Power-Down Current vs Power-Supply Voltage  
Copyright © 2006–2018, Texas Instruments Incorporated  
11  
DAC8560  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
www.ti.com.cn  
Typical Characteristics: DAC at VDD = 5 V (continued)  
At TA = 25°C, external reference used, and DAC output not loaded, unless otherwise noted.  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40  
-50  
-60  
-70  
-80  
-90  
-100  
VDD = 5V, External VREF = 4.9V  
VDD = 5.5V  
-1dB FSR Digital Input, fS = 225kSPS  
Measurement Bandwidth = 20kHz  
Internal VREF = 2.5V  
THD  
2nd Harmonic  
3rd Harmonic  
450  
475  
500  
525  
550  
575  
600  
0
1
2
3
4
5
IDD (mA)  
fOUT (kHz)  
Figure 27. Total Harmonic Distortion vs Output Frequency  
Figure 26. Power-Supply Current Histogram  
Trigger Pulse 5V/div  
Trigger Pulse 5V/div  
VDD = 5V  
Ext VREF = 4.096V  
From Code: FFFFh  
To Code: 0000h  
VDD = 5V  
Ext VREF = 4.096V  
From Code: 0000h  
To Code: FFFFh  
Falling  
Edge  
1V/div  
Rising Edge  
1V/div  
Zoomed Rising Edge  
1mV/div  
Zoomed Falling Edge  
1mV/div  
Time (2ms/div)  
Time (2ms/div)  
5-V Rising Edge  
5-V Falling Edge  
Figure 28. Full-Scale Settling Time  
Figure 29. Full-Scale Settling Time  
Trigger Pulse 5V/div  
Trigger Pulse 5V/div  
VDD = 5V  
Ext VREF = 4.096V  
From Code: CFFFh  
To Code: 4000h  
VDD = 5V  
Ext VREF = 4.096V  
From Code: 4000h  
To Code: CFFFh  
Rising  
Edge  
1V/div  
Falling  
Edge  
1V/div  
Zoomed Rising Edge  
1mV/div  
Zoomed Falling Edge  
1mV/div  
Time (2ms/div)  
Time (2ms/div)  
5-V Rising Edge  
Figure 30. Half-Scale Settling Time  
5-V Falling Edge  
Figure 31. Half-Scale Settling Time  
12  
Copyright © 2006–2018, Texas Instruments Incorporated  
DAC8560  
www.ti.com.cn  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
Typical Characteristics: DAC at VDD = 5 V (continued)  
At TA = 25°C, external reference used, and DAC output not loaded, unless otherwise noted.  
VDD = 5V  
VDD = 5V  
Ext VREF = 4.096V  
From Code: 8000h  
To Code: 7FFFh  
Glitch: 0.16nV-s  
Measured Worst Case  
Ext VREF = 4.096V  
From Code: 7FFFh  
To Code: 8000h  
Glitch: 0.08nV-s  
Time (400ns/div)  
Time (400ns/div)  
Rising Edge  
Rising Edge  
Rising Edge  
5 V  
1-LSB Step  
Falling Edge  
Falling Edge  
Falling Edge  
5 V  
1-LSB Step  
Figure 32. Glitch Energy  
Figure 33. Glitch Energy  
VDD = 5V  
Ext VREF = 4.096V  
From Code: 8010h  
To Code: 8000h  
Glitch: 0.08nV-s  
VDD = 5V  
Ext VREF = 4.096V  
From Code: 8000h  
To Code: 8010h  
Glitch: 0.04nV-s  
Time (400ns/div)  
Time (400ns/div)  
5 V  
16-LSB Step  
5 V  
16-LSB Step  
Figure 34. Glitch Energy  
Figure 35. Glitch Energy  
VDD = 5V  
Ext VREF = 4.096V  
From Code: 80FFh  
To Code: 8000h  
Glitch: Not Detected  
Theoretical Worst Case  
VDD = 5V  
Ext VREF = 4.096V  
From Code: 8000h  
To Code: 80FFh  
Glitch: Not Detected  
Theoretical Worst Case  
Time (400ns/div)  
Time (400ns/div)  
5 V  
2566-LSB Step  
5 V  
256-LSB Step  
Figure 36. Glitch Energy  
Figure 37. Glitch Energy  
Copyright © 2006–2018, Texas Instruments Incorporated  
13  
DAC8560  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
www.ti.com.cn  
Typical Characteristics: DAC at VDD = 5 V (continued)  
At TA = 25°C, external reference used, and DAC output not loaded, unless otherwise noted.  
0
98  
96  
94  
92  
90  
88  
86  
84  
VDD = 5V, External VREF = 4.9V  
VDD = 5V, External VREF = 4.9V  
-10  
fOUT = 1kHz, fS = 225kSPS  
-1dB FSR Digital Input, fS = 225kSPS  
Measurement Bandwidth = 20kHz  
-20  
Measurement Bandwidth = 20kHz  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
0
5
10  
15  
20  
0
1
2
3
4
5
Frequency (kHz)  
fOUT (kHz)  
Figure 38. Signal-to-Noise Ratio vs Output Frequency  
Figure 39. Power Spectral Density  
1800  
1000  
800  
600  
400  
200  
0
Internal Reference Enabled  
No Load at VREF Pin  
Internal Reference Enabled  
4mF vs No Load at VREF Pin  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
See the Applications Information  
section for more information  
See the Applications Information  
section for more information  
Full-Scale  
Midscale  
Zero-Scale  
CREF = 0mF  
CREF = 4mF  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
Explained in more detail in Application and Implementation.  
Explained in more detail in the Application and Implementation  
Figure 40. DAC Output Noise Density vs Frequency  
Figure 41. DAC Output Noise Density vs Frequency  
DAC = Midscale  
Internal Reference Enabled  
50mVPP  
Time (2s/div)  
0.1 Hz to 10 Hz  
Figure 42. DAC Output Noise  
14  
Copyright © 2006–2018, Texas Instruments Incorporated  
 
 
DAC8560  
www.ti.com.cn  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
6.9 Typical Characteristics: DAC at VDD = 3.6 V  
At TA = 25°C, internal reference used, and DAC output not loaded, unless otherwise noted  
700  
650  
600  
550  
500  
450  
400  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = 3.6V  
VDD = 3.6V  
Internal VREF = 2.5V  
Internal VREF = 2.5V  
-40  
0
40  
80  
120  
450  
475  
500  
525  
550  
575  
600  
Temperature (°C)  
IDD (mA)  
Figure 43. Power-Supply Current vs Temperature  
Figure 44. Power-Supply Current Histogram  
6.10 Typical Characteristics: DAC at VDD = 2.7 V  
At TA = 25°C, internal reference used, and DAC output not loaded, unless otherwise noted  
6
4
6
4
VDD = 2.7V, Internal VREF = 2.5V  
VDD = 2.7V, Internal VREF = 2.5V  
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
1.0  
0.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-0.5  
-1.0  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Digital Input Code  
–40°C  
25°C  
Figure 45. Linearity Error and Differential Linearity Error vs  
Digital Input Code  
Figure 46. Linearity Error and Differential Linearity Error vs  
Digital Input Code  
Copyright © 2006–2018, Texas Instruments Incorporated  
15  
DAC8560  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
www.ti.com.cn  
Typical Characteristics: DAC at VDD = 2.7 V (continued)  
At TA = 25°C, internal reference used, and DAC output not loaded, unless otherwise noted  
10  
6
VDD = 2.7V, Internal VREF = 2.5V  
VDD = 2.7V  
4
Internal VREF = 2.5V  
2
0
-2  
-4  
-6  
5
1.0  
0.5  
0
0
-0.5  
-1.0  
-5  
0
8192 16384 24576 32768 40960 49152 57344 65536  
-40  
0
40  
80  
120  
Temperature (°C)  
Digital Input Code  
105°C  
Figure 48. Zero-Scale Error vs Temperature  
Figure 47. Linearity Error and Differential Linearity Error vs  
Digital Input Code  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VDD = 2.7V  
Internal VREF = 2.5V  
VDD = 2.7V  
Internal Reference Enabled  
DAC Loaded with FFFFh  
5
0
DAC Loaded with 0000h  
-5  
-40  
0
40  
80  
120  
0
5
10  
15  
20  
Temperature (°C)  
ISOURCE/SINK (mA)  
Figure 49. Full-Scale Error vs Temperature  
Figure 50. Source and Sink Current Capability  
650  
600  
550  
500  
450  
1000  
900  
800  
700  
600  
500  
400  
VDD = 2.7V, Internal VREF Included,  
SCLK Input  
VDD = 2.7V  
Internal VREF = 2.5V  
(all other digital inputs = GND)  
Sweep from 0V to 2.7V  
Sweep from 2.7V to 0V  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4 2.7  
VLOGIC (V)  
Figure 51. Supply Current vs Digital Input Code  
Figure 52. Power-Supply Current vs Logic Input Voltage  
16  
Copyright © 2006–2018, Texas Instruments Incorporated  
DAC8560  
www.ti.com.cn  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
Typical Characteristics: DAC at VDD = 2.7 V (continued)  
At TA = 25°C, internal reference used, and DAC output not loaded, unless otherwise noted  
Trigger Pulse 2.7V/div  
Trigger Pulse 2.7V/div  
VDD = 2.7V  
Int VREF = 2.5V  
From Code: FFFFh  
To Code: 0000h  
Rising  
Edge  
0.5V/div  
VDD = 2.7V  
Int VREF = 2.5V  
From Code: 0000h  
To Code: FFFFh  
Zoomed Falling Edge  
1mV/div  
Falling  
Edge  
0.5V/div  
Zoomed Rising Edge  
1mV/div  
Time (2ms/div)  
Time (2ms/div)  
2.7-V Rising Edge  
2.7-V Falling Edge  
Figure 53. Full-Scale Settling Time  
Figure 54. Full-Scale Settling Time: 2.7-V Falling Edge  
Trigger Pulse 2.7V/div  
Trigger Pulse 2.7V/div  
VDD = 2.7V  
Int VREF = 2.5V  
From Code: CFFFh  
To Code: 4000h  
VDD = 2.7V  
Int VREF = 2.5V  
From Code: 4000h  
To Code: CFFFh  
Rising  
Edge  
0.5V/div  
Falling  
Edge  
0.5V/div  
Zoomed Rising Edge  
1mV/div  
Zoomed Falling Edge  
1mV/div  
Time (2ms/div)  
Time (2ms/div)  
2.7-V Rising Edge  
Figure 55. Half-Scale Settling Time  
2.7-V Falling Edge  
Figure 56. Half-Scale Settling Time  
VDD = 2.7V  
VDD = 2.7V  
Int VREF = 2.5V  
From Code: 8000h  
To Code: 7FFFh  
Glitch: 0.16nV-s  
Measured Worst Case  
Int VREF = 2.5V  
From Code: 7FFFh  
To Code: 8000h  
Glitch: 0.08nV-s  
Time (400ns/div)  
Time (400ns/div)  
Rising Edge  
2.7 V  
Figure 57. Glitch Energy  
1-LSB Step  
Falling Edge  
2.7 V  
1-LSB Step  
Figure 58. Glitch Energy  
Copyright © 2006–2018, Texas Instruments Incorporated  
17  
DAC8560  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
www.ti.com.cn  
Typical Characteristics: DAC at VDD = 2.7 V (continued)  
At TA = 25°C, internal reference used, and DAC output not loaded, unless otherwise noted  
VDD = 2.7V  
Int VREF = 2.5V  
From Code: 8010h  
To Code: 8000h  
Glitch: 0.12nV-s  
VDD = 2.7V  
Int VREF = 2.5V  
From Code: 8000h  
To Code: 8010h  
Glitch: 0.04nV-s  
Time (400ns/div)  
Time (400ns/div)  
Rising Edge  
2.7 V  
16-LSB Step  
Falling Edge  
2.7 V  
16-LSB Step  
Figure 59. Glitch Energy  
Figure 60. Glitch Energy  
VDD = 2.7V  
Int VREF = 2.5V  
From Code: 80FFh  
To Code: 8000h  
Glitch: Not Detected  
Theoretical Worst Case  
VDD = 2.7V  
Int VREF = 2.5V  
From Code: 8000h  
To Code: 80FFh  
Glitch: Not Detected  
Theoretical Worst Case  
Time (400ns/div)  
Time (400ns/div)  
Rising Edge  
2.7 V  
256-LSB Step  
Falling Edge  
2.7 V  
256-LSB Step  
Figure 61. Glitch Energy  
Figure 62. Glitch Energy  
18  
Copyright © 2006–2018, Texas Instruments Incorporated  
DAC8560  
www.ti.com.cn  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
7 Detailed Description  
7.1 Overview  
The DAC8560 is a low-power, voltage output, 16-bit digital-to-analog converter (DAC). The DAC8560 includes a  
2.5-V, 2-ppm/°C internal reference (enabled by default), giving a full-scale output voltage range of 2.5 V. The  
internal reference has an initial accuracy of 0.02% and can source up to 20 mA at the VREF pin. The device is  
monotonic, provides very good linearity, and minimizes undesired code-to-code transient voltages (glitch). The  
DAC8560 uses a versatile 3-wire serial interface that operates at clock rates up to 30 MHz. It is compatible with  
standard SPI, QSPI, Microwire, and digital-signal-processor (DSP) interfaces.  
7.2 Functional Block Diagram  
VDD  
VFB  
VREF  
VOUT  
Ref (+)  
16-Bit DAC  
2.5V  
Reference  
16  
DAC Register  
16  
SYNC  
SCLK  
DIN  
PWD  
Control  
Resistor  
Network  
Shift Register  
GND  
7.3 Feature Description  
7.3.1 Digital-to-Analog Converter (DAC)  
The DAC8560 architecture consists of a string DAC followed by an output buffer amplifier. Figure 63 shows a  
block diagram of the DAC architecture.  
VREF  
50kW  
50kW  
VFB  
62kW  
REF (+)  
VOUT  
DAC  
Register  
Register String  
REF (-)  
GND  
Figure 63. DAC8560 Architecture  
The input coding to the DAC8560 is straight binary, so the ideal output voltage is given by:  
DIN  
65536  
VOUT  
+
  VREF  
where DIN = decimal equivalent of the binary code that is loaded to the DAC register; it can range from 0 to  
65535.  
(1)  
Copyright © 2006–2018, Texas Instruments Incorporated  
19  
 
DAC8560  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
www.ti.com.cn  
Feature Description (continued)  
7.3.2 Resistor String  
The resistor string section is shown in Figure 64. It is simply a string of resistors, each of value R. The code  
loaded into the DAC register determines at which node on the string the voltage is tapped off to be fed into the  
output amplifier by closing one of the switches connecting the string to the amplifier. It is monotonic because it is  
a string of resistors.  
VREF  
RDIVIDER  
VREF  
2
R
To Output Amplifier  
R
(2x Gain)  
R
R
Figure 64. Resistor String  
7.3.3 Output Amplifier  
The output buffer amplifier is capable of generating rail-to-rail voltages on its output, giving an output range of 0  
V to VDD. It is capable of driving a load of 2 kin parallel with 1000 pF to GND. The source and sink capabilities  
of the output amplifier can be seen in the Typical Characteristics: DAC at VDD = 5 V. The slew rate is 1.8 V/μs  
with a full-scale settling time of 8 μs with the output unloaded.  
The inverting input of the output amplifier is available at the VFB pin. This feature allows better accuracy in critical  
applications by tying the VFB point and the amplifier output together directly at the load. Other signal conditioning  
circuitry may also be connected between these points for specific applications.  
20  
Copyright © 2006–2018, Texas Instruments Incorporated  
 
DAC8560  
www.ti.com.cn  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
Feature Description (continued)  
7.3.4 DAC Noise Performance  
Typical noise performance for the DAC8560 with the internal reference enabled is shown in Figure 40 to  
Figure 42. Output noise spectral density at pin VOUT versus frequency is depicted in Figure 40 for full-scale,  
midscale, and zero-scale input codes. The typical noise density for midscale code is 170 nV/Hz at 1 kHz and  
100nV/Hz at 1MHz. High-frequency noise can be improved by filtering the reference noise as shown in  
Figure 41, where a 4-μF load capacitor is connected to the VREF pin and compared to the no-load condition.  
Integrated output noise between 0.1 Hz and 10 Hz is close to 50 μVPP (midscale), as shown in Figure 42.  
7.3.5 Internal Reference  
The DAC8560 includes a 2.5-V internal reference that is enabled by default. The internal reference is externally  
available at the VREF pin. TI recommends a minimum 100-nF capacitor between the reference output and GND  
for noise filtering.  
The internal reference of the DAC8560 is a bipolar transistor-based, precision bandgap voltage reference. The  
basic bandgap topology is shown in Figure 65. Transistors Q1 and Q2 are biased such that the current density of  
Q1 is greater than that of Q2. The difference of the two base-emitter voltages (VBE1 – VBE2) has a positive  
temperature coefficient and is forced across resistor R1. This voltage is gained up and added to the base-emitter  
voltage of Q2, which has a negative temperature coefficient. The resulting output voltage is virtually independent  
of temperature. The short-circuit current is limited by design to approximately 100 mA.  
VREF  
Reference  
Disable  
Q1  
1
N
Q2  
R1  
R2  
Figure 65. Simplified Schematic of the Bandgap Reference  
7.3.5.1 Enable/Disable Internal Reference  
The DAC8560 internal reference is enabled by default; however, the reference can be disabled for debugging or  
evaluation purposes. A serial command requiring at least two additional SCLK cycles at the end of the 24-bit  
write sequence (see Serial Interface) must be used to disable the internal reference. For proper operation, a total  
of at least 26 SCLK cycles are required for each enable/disable internal reference update sequence, during  
which SYNC must be held low. To disable the internal reference, execute the write sequence illustrated in  
Table 2 followed by at least two additional SCLK falling edges while SYNC is low.  
To then enable the reference, either perform a power-cycle to reset the device, or sequentially execute the two  
write sequences in Table 3 and Table 4. Each of these write sequences must be followed by at least two  
additional SCLK falling edges while SYNC remains low.  
During the time that the internal reference is disabled, the DAC will function normally using an external reference.  
At this point, the internal reference is disconnected from the VREF pin (tri-state). Do not attempt to drive the VREF  
pin externally and internally at the same time indefinitely.  
Copyright © 2006–2018, Texas Instruments Incorporated  
21  
 
 
DAC8560  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
www.ti.com.cn  
Feature Description (continued)  
7.3.5.2 Internal Reference Load  
The DAC8560 internal reference does not require an external load capacitor for stability because it is stable with  
any capacitive load. However, for improved noise performance, TI recommends an external load capacitor of 150  
nF or larger connected to the VREF output. Figure 66 shows the typical connections required for operation of the  
DAC8560 internal reference. A supply bypass capacitor at the VDD input is also recommended.  
DAC8560  
GND  
DIN  
VDD  
1
2
3
4
VDD  
8
7
6
5
1mF  
VREF  
VFB  
SCLK  
SYNC  
VREF  
150nF  
VOUT  
Figure 66. Typical Connections for Operating the DAC8560 Internal Reference  
7.3.5.2.1 Supply Voltage  
The DAC8560 internal reference features an extremely low dropout voltage. It can be operated with a supply of  
only 5mV above the reference output voltage in an unloaded condition. For loaded conditions, refer to the Load  
Regulation section. The stability of the DAC8560 internal reference with variations in supply voltage (line  
regulation, DC PSRR) is also exceptional. Within the specified supply voltage range of 2.7 V to 5.5 V, the  
variation at VREF is smaller than 10 μV/V; see the Typical Characteristics: Internal Reference.  
7.3.5.2.2 Temperature Drift  
The DAC8560 internal reference is designed to exhibit minimal drift error, defined as the change in reference  
output voltage over varying temperature. The drift is calculated using the box method, which is described by  
Equation 2:  
VREF_MAX * VREF_MIN  
6
Drift Error + ǒ  
Ǔ
  10 (ppmń°C)  
VREF   TRANGE  
where  
VREF_MAX = maximum reference voltage observed within temperature range TRANGE  
VREF_MIN = minimum reference voltage observed within temperature range TRANGE  
VREF = 2.5 V, target value for reference output voltage  
(2)  
The DAC8560 internal reference (grades C and D) features an exceptional typical drift coefficient of 2 ppm/°C  
from –40°C to +120°C. Characterizing a large number of units, a maximum drift coefficient of 5 ppm/°C (grades  
C and D) is observed. Temperature drift results are summarized in the Typical Characteristics: Internal  
Reference.  
7.3.5.2.3 Noise Performance  
Typical 0.1-Hz to 10-Hz voltage noise can be seen in Figure 9. Additional filtering can be used to improve output  
noise levels, although care should be taken to ensure the output impedance does not degrade the AC  
performance. The output noise spectrum at VREF without any external components is depicted in Figure 8,  
Internal Reference Noise Density vs Frequency. Another noise density spectrum is also shown in Figure 8, which  
was obtained using a 4μF load capacitor at VREF for noise filtering. Internal reference noise impacts the DAC  
output noise; see the DAC Noise Performance section for more details.  
22  
Copyright © 2006–2018, Texas Instruments Incorporated  
 
 
DAC8560  
www.ti.com.cn  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
Feature Description (continued)  
7.3.5.2.4 Load Regulation  
Load regulation is defined as the change in reference output voltage as a result of changes in load current. The  
load regulation of the DAC8560 internal reference is measured using force and sense contacts as pictured in  
Figure 67. The force and sense lines reduce the impact of contact and trace resistance, resulting in accurate  
measurement of the load regulation contributed solely by the DAC8560 internal reference. Measurement results  
are summarized in the Typical Characteristics: Internal Reference. Force and sense lines should be used for  
applications requiring improved load regulation.  
Output Pin  
Contact and  
Trace Resistance  
VOUT  
Force Line  
IL  
Sense Line  
Load  
Meter  
Figure 67. Accurate Load Regulation of the DAC8560 Internal Reference  
7.3.5.2.5 Long-Term Stability  
Long-term stability/aging refers to the change of the output voltage of a reference over a period of months or  
years. This effect lessens as time progresses, as shown in Figure 7, the typical long-term stability curve. The  
typical drift value for the DAC8560 internal reference is 50 ppm from 0 hours to 1900 hours. This parameter is  
characterized by powering up and measuring 20 units at regular intervals for a period of 1900 hours.  
7.3.5.2.6 Thermal Hysteresis  
Thermal hysteresis for a reference is defined as the change in output voltage after operating the device at 25°C,  
cycling the device through the specified temperature range, and returning to 25°C. It is expressed in Equation 3:  
Ť
Ť
VREF_PRE * VREF_POST  
6
+ ǒ  
Ǔ
VHYST  
  10 (ppm)  
VREF_NOM  
where  
VHYST = thermal hysteresis  
VREF_PRE = output voltage measured at 25°C pre-temperature cycling  
VREF_POST = output voltage measured after the device has been cycled through the temperature range of –40°C  
to +120°C, and returned to 25°C  
(3)  
Copyright © 2006–2018, Texas Instruments Incorporated  
23  
 
 
DAC8560  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Power-Down Modes  
The DAC8560 supports four separate modes of operation. These modes are programmable by setting two bits  
(PD1 and PD0) in the control register. Table 1 shows how to control the operating mode with data bits PD1  
(DB17) and PD0 (DB16).  
Table 1. Operating Modes  
PD1 (DB17)  
PD0 (DB16)  
OPERATING MODE  
0
0
1
1
0
1
0
1
Normal operation  
Power-down 1 kto GND  
Power-down 100 kto GND  
Power-down High-Z  
When both bits are set to 0, the device works normally with its typical current consumption of 530 μA at 5.5 V.  
However, for the three power-down modes, the supply current falls to 1.2 μA at 5.5 V (0.7 μA at 3.6 V). Not only  
does the supply current fall, but the output stage is also internally switched from the output of the amplifier to a  
resistor network of known values.  
The advantage of this switching is that the output impedance of the device is known while it is in power-down  
mode. As shown in Table 1, there are three different power-down options. VOUT can be connected internally to  
GND through a 1-kresistor, a 100-kresistor, or open-circuited (High-Z). The output stage is shown in  
Figure 68.  
VFB  
Amplifier  
VOUT  
Resistor  
String  
DAC  
Power-Down  
Circuitry  
Resistor  
Network  
Figure 68. Output Stage During Power Down  
All analog circuitry is shut down when the power-down mode is activated. However, the contents of the DAC  
register are unaffected when in power down. The time to exit power down is typically 2.5 μs for VDD = 5 V, and 5  
μs for VDD = 3 V. See the Typical Characteristics: DAC at VDD = 5 V for more information.  
24  
Copyright © 2006–2018, Texas Instruments Incorporated  
 
 
 
DAC8560  
www.ti.com.cn  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
7.5 Programming  
7.5.1 Serial Interface  
The DAC8560 has a 3-wire serial interface ( SYNC, SCLK, and DIN) that is compatible with SPI, QSPI, and  
Microwire interface standards, as well as most DSPs. See Figure 1 for an example of a typical write sequence.  
The write sequence begins by bringing the SYNC line LOW. Data from the DIN line is clocked into the 24-bit shift  
register on each falling edge of SCLK. The serial clock frequency can be as high as 30 MHz, making the  
DAC8560 compatible with high-speed DSPs. On the 24th falling edge of the serial clock, the last data bit is  
clocked in and the programmed function is executed.  
At this point, the SYNC line may be kept LOW or brought HIGH. In either case, it must be brought HIGH for a  
minimum of 33 ns before the next write sequence so that a falling edge of SYNC can initiate the next write  
sequence. As previously mentioned, it must be brought HIGH again before the next write sequence.  
7.5.2 Input Shift Register  
The input shift register is 24 bits wide, as shown in Table 5. The first six bits must be 000000. The next two bits  
(PD1 and PD0) are control bits that set the desired mode of operation (normal mode or any one of three power-  
down modes) as indicated in Table 1.  
A more complete description of the various modes is located in Power-Down Modes. The next 16 bits are the  
data bits, which are transferred to the DAC register on the 24th falling edge of SCLK under normal operation  
(see Table 1).  
7.5.3 SYNC Interrupt  
In a normal write sequence, the SYNC line is kept LOW for at least 24 falling edges of SCLK and the DAC is  
updated on the 24th falling edge. However, if SYNC is brought HIGH before the 24th falling edge, it acts as an  
interrupt to the write sequence. The shift register is reset, and the write sequence is seen as invalid. Neither an  
update of the DAC register contents, nor a change in the operating mode occurs, as shown in Figure 69.  
7.5.4 Power-On Reset  
The DAC8560 contains a power-on-reset circuit that controls the output voltage during power up. On power up,  
all registers are filled with zeros and the output voltage is zero-scale; it remains there until a valid write sequence  
is made to the DAC. This feature is useful in applications where it is important to know the state of the output of  
the DAC while it is in the process of powering up.  
Copyright © 2006–2018, Texas Instruments Incorporated  
25  
DAC8560  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
www.ti.com.cn  
7.6 Register Maps  
7.6.1 Write Sequence for Disabling the DAC8560 Internal Reference  
Table 2. Write Sequence for Disabling the DAC8560 Internal Reference  
DB23  
0
DB0  
1
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
7.6.2 Enabling the DAC8560 Internal Reference (Write Sequence 1 of 2)  
Table 3. Enabling the DAC8560 Internal Reference (Write Sequence 1 of 2)  
DB23  
DB0  
0
0
1
0
0
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
7.6.3 Enabling the DAC8560 Internal Reference (Write Sequence 2 of 2)  
Table 4. Enabling the DAC8560 Internal Reference (Write Sequence 2 of 2)  
DB23  
DB0  
1
0
1
0
0
1
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
7.6.4 DAC8560 Data Input Register Format  
Table 5. DAC8560 Data Input Register Format  
DB23  
DB0  
D0  
0
0
0
0
0
0
PD1 PD0 D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
24th Falling Edge  
24th Falling Edge  
CLK  
SYNC  
DIN  
DB23  
DB0  
DB23  
DB0  
Invalid/Interrupted Write Sequence:  
Output/Mode Does Not Update on the 24th Falling Edge  
Valid Write Sequence:  
Output/Mode Updates on the 24th Falling Edge  
Figure 69. SYNC Interrupt Facility  
26  
Copyright © 2006–2018, Texas Instruments Incorporated  
DAC8560  
www.ti.com.cn  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The low-power consumption of the DAC8560, coupled with the ultra-low current power-down modes, makes the  
device a great choice for battery-operated and portable applications such as oscilloscopes and similar test and  
measurement equipment. In addition to the low-power requirement, these applications often require a bipolar  
output range for offset and gain calibration as described in the following sections.  
8.2 Typical Applications  
The output voltage with Figure 70 and Figure 71 for any input code can be calculated using Equation 4:  
R1 ) R2  
R2  
R1  
D
65536  
ǒ Ǔ  
ǒ Ǔ ǒ Ǔ  
VO +  
ƪ
VREF  
 
 
* VREF  
 
ƫ
R1  
where D represents the input code in decimal (0–65535).  
(4)  
(5)  
With VREF = 5 V, R1 = R2 = 10 k.  
10   D  
ǒ Ǔ* 5V  
VO +  
65536  
This result has an output voltage range of ±5 V with 0000h corresponding to a –5-V output and FFFFh  
corresponding to a 5-V output, as shown in Figure 70. Similarly, using the internal reference, a ±2.5-V output  
voltage range can be achieved, as shown in Figure 71.  
R2  
10kW  
V
V
DD  
REF  
+6V  
R1  
10kW  
±5V  
OPA703  
VDD  
VFB  
VOUT  
VREF  
DAC8560  
-6V  
10mF  
0.1mF  
GND  
Three-Wire  
Serial Interface  
Copyright © 2018, Texas Instruments Incorporated  
Figure 70. Bipolar Output Range Using External Reference at 5 V  
Copyright © 2006–2018, Texas Instruments Incorporated  
27  
 
 
DAC8560  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
www.ti.com.cn  
Typical Applications (continued)  
R2  
10kW  
V
DD  
+6V  
R1  
10kW  
±2.5V  
OPA703  
VDD  
VFB  
VREF  
VOUT  
DAC8560  
-6V  
150nF  
GND  
Three-Wire  
Serial Interface  
Copyright © 2018, Texas Instruments Incorporated  
Figure 71. Bipolar Output Range Using Internal Reference  
RG1  
RFB  
CCOMP  
VREF  
RG2  
VOUT  
+
DAC8560  
RISO  
CLOAD  
OPA188  
Copyright © 2018, Texas Instruments Incorporated  
Figure 72. Bipolar Output Range > ±VREF  
8.2.1 Design Requirements  
The design requirements and performance goals are summarized as follows:  
DAC Supply Voltage: +5-V DC  
Amplifier Supply Voltage: ±15-V DC  
Input: 3-wire, 24-bit SPI  
Output: ±10-V DC  
Capacitance Load: 20 nF  
Table 6. Comparison of Design Goal, Simulation, and Measured Performance  
GOAL  
SIMULATED  
MEASURED  
0.0939  
Total unadjusted error (%FSR)  
0.25  
0.23  
28  
Copyright © 2006–2018, Texas Instruments Incorporated  
 
 
DAC8560  
www.ti.com.cn  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
8.2.2 Detailed Design Procedure or Bipolar Operation > ±VREF  
8.2.2.1 Bipolar Operation Greater Than ±VREF  
The DAC8560 has been designed for single-supply operation; a bipolar output range is also possible using the  
circuit in Figure 71. This unipolar-to-bipolar signal conditioning circuit uses an operational amplifier (op amp) with  
negative feedback and three resistors in a modified summing amplifier configuration to generate high-voltage  
bipolar outputs. The DC transfer function is based on the ratio of the feedback resistor RFB and gain setting  
resistors RG1 and RG2. This design takes consideration for generating voltage outputs and for driving reactive  
loads such as long cables common in industrial process control applications. The circuit shown in Figure 72 gives  
an output voltage range greater than ±VREF  
.
The DC transfer function for this design is defined as:  
÷
RFB RFB  
+
RFB  
RG2  
VOUT = 1+  
V
-
VREF  
DAC  
RG2 RG1  
«
(6)  
8.2.2.1.1 Passive Component Selection  
The amplifier in this circuit uses negative feedback to ensure that the voltages at the inverting and non-inverting  
terminals are equal. When the DAC output is at zero scale (0 V) the inverting terminal is a virtual ground so no  
current flows across RG1; this causes the circuit to function as an inverting amplifier with gain equal to RFB / RG2  
.
When the DAC output is full-scale (VREF) the inverting terminal potential is equal to VREF so no current flows  
across RG2; this causes the circuit to function as a non-inverting amplifier with gain equal to (1 + RFB / RG1). A  
simple three-step process can be used to select the resistor values used to realize any bipolar output range  
using DAC8560. The internal VREF value is 2.5 V. The desired output range for this design is ±10 V. First, using  
the transfer function shown in Equation 6, consider the negative full-scale output case when VDAC is equal to 0 V,  
VREF is equal to 2.5 V, and VOUT is equal to –10 V. This case is used to calculate the ratio of RFB to RG2 and is  
shown explicitly in Equation 7.  
÷
RFB RFB  
+
RFB  
RG2  
-10 V = 1+  
0 -  
( )  
2.5 V  
(
)
RG2 RG1  
«
RFB  
RG2  
-10 V = -  
2.5 V  
(
)
RFB = 4 ì RG2  
(7)  
Second, consider the positive full-scale output case when VDAC is equal to 2.5 V, VREF is equal to 2.5 V, and  
VOUT is equal to 10 V. This case is used to calculate the ratio of RFB to RG1 and is shown explicitly in Equation 8.  
÷
RFB RFB  
+
RFB  
RG2  
10 V = 1+  
2.5 -  
2.5 V  
(
)
(
)
RG2 RG1  
«
RFB  
RG1  
10 V = 1+  
2.5 V  
(
)
÷
«
RFB  
RG1  
=
3
(8)  
Finally, seed the ideal value of RG2 to calculate the ideal values of RFB and RG2. The key considerations for  
seeding the value of RG2 should be the drive strength of the reference source as well as choosing small resistor  
values to minimize noise contributed by the resistor network. For this design RG2 of 8.25 kΩ was chosen, which  
limits the peak current drawn from the reference source to approximately 333 µA under nominal conditions, well  
within the 20-mA limit of the DAC8560. In this case the nearest, 0.1% tolerance, 0603 package values for each  
resistor are ideal.  
Copyright © 2006–2018, Texas Instruments Incorporated  
29  
 
 
 
DAC8560  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
www.ti.com.cn  
Standard values for 0.1% resistors can be an obstacle for this design and it may take multiple iterations of  
seeding the values to find real components or they may not exist. Workarounds can include utilizing multiple  
resistors in series and/or parallel, using potentiometers for analog trim calibration, or providing extra gain in the  
output circuit and applying digital calibration. In systems where the output voltage must reach the design-goal  
end-points (±10 V) it may be desirable to apply additional gain to the circuit. This approach may contribute  
additional overall system error since the end-point errors vary from system to system. For this design, use the  
exact values calculated in the design process to keep error analysis easy to follow.  
To deliver a near-universal cable drive solution, choose CLOAD to be relatively large compared to typical cable  
capacitance such that its capacitance dominates the reactive load seen by the output amplifier. To drive larger  
capacitive loads RISO, CCOMP, and CLOAD may need to be adjusted. An RISO of 70 Ω and CCOMP of 150 pF are  
used for this design.  
Resistor matching for the op amp resistor network is critical for the success of this design; choose components  
with tight tolerances. For this design 0.1% resistor values are implemented but this constraint may be adjusted  
based on application specific design goals. Resistor matching contributes to both offset error and gain error in  
this design. The tolerance of stability components RISO and CCOMP is not critical and 1% components are  
acceptable.  
Table 7. Values of Resistor Network  
RESISTOR  
VALUE  
11 kΩ  
RG1  
RG2  
8.25 kΩ  
33 kΩ  
RFB  
8.2.2.1.2 Amplifier Selection  
Amplifier input offset voltage (VOS) is a key consideration for this design. VOS of an op amp is a typical data-sheet  
specification but in-circuit performance is also impacted by drift over temperature, the common-mode rejection  
ratio (CMRR), and power supply rejection ratio (PSRR). Thus, consider these parameters as well. For AC  
operation also consider slew rate and settling time. Input-bias current (IB) can also be a factor, but typically the  
resistor network is implemented with sufficiently small resistor values that the effects of input-bias current are  
negligible.  
8.2.2.2 Microprocessor Interfacing  
8.2.2.2.1 DAC8560 to 8051 Interface  
See Figure 73 for a serial interface between the DAC8560 and a typical 8051-type microcontroller. The setup for  
the interface is as follows: TXD of the 8051 drives SCLK of the DAC8560, while RXD drives the serial data line of  
the device. The SYNC signal is derived from a bit-programmable pin on the port of the 8051. In this case, port  
line P3.3 is used. When data is to be transmitted to the DAC8560, P3.3 is taken LOW. The 8051 transmits data  
in 8-bit bytes; thus, only eight falling clock edges occur in the transmit cycle. To load data to the DAC, P3.3 is left  
LOW after the first eight bits are transmitted, then a second write cycle is initiated to transmit the second byte of  
data. P3.3 is taken HIGH following the completion of the third write cycle. The 8051 outputs the serial data in a  
format which has the LSB first. The DAC8560 requires its data with the MSB as the first bit received. The 8051  
transmit routine must therefore take this into account, and mirror the data as needed.  
DAC8560 (1)  
SYNC  
80C51/80L51(1)  
P3.3  
TXD  
RXD  
SCLK  
DIN  
NOTE: (1) Additional pins omitted for clarity.  
Figure 73. DAC8560 to 80C51/80L51 Interface  
8.2.2.2.2 DAC8560 to Microwire Interface  
Figure 74 shows an interface between the DAC8560 and any Microwire compatible device. Serial data is shifted  
out on the falling edge of the serial clock and is clocked into the DAC8560 on the rising edge of the SK signal.  
30  
Copyright © 2006–2018, Texas Instruments Incorporated  
 
DAC8560  
www.ti.com.cn  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
MicrowireTM  
CS  
DAC8560(1)  
SYNC  
SCLK  
DIN  
SK  
SO  
NOTE: (1) Additional pins omitted for clarity.  
Figure 74. DAC8560 to Microwire Interface  
8.2.2.2.3 DAC8560 to 68HC11 Interface  
Figure 75 shows a serial interface between the DAC8560 and the 68HC11 microcontroller. SCK of the 68HC11  
drives the SCLK of the DAC8560, while the MOSI output drives the serial data line of the DAC. The SYNC signal  
is derived from a port line (PC7), similar to the 8051 diagram.  
DAC8560 (1)  
SYNC  
68HC11(1)  
PC7  
SCK  
SCLK  
DIN  
MOSI  
NOTE: (1) Additional pins omitted for clarity.  
Figure 75. DAC8560 to 68HC11 Interface  
Configure the 68HC11 so that its CPOL bit is 0, and its CPHA bit is 1. This configuration causes data appearing  
on the MOSI output to be valid on the falling edge of SCK. When data is being transmitted to the DAC, the SYNC  
line is held LOW (PC7). Serial data from the 68HC11 is transmitted in 8-bit bytes with only eight falling clock  
edges occurring in the transmit cycle. (Data is transmitted MSB first.) In order to load data to the DAC8560, PC7  
is left LOW after the first eight bits are transferred, then a second and third serial write operation is performed to  
the DAC. PC7 is taken HIGH at the end of this procedure.  
8.2.3 Application Curves  
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
0
10000 20000 30000 40000 50000 60000  
Input Code (Decimal)  
D001  
Figure 77. Full-Scale Step Response  
Figure 76. Output Voltage Error vs Input Code  
Copyright © 2006–2018, Texas Instruments Incorporated  
31  
 
DAC8560  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
www.ti.com.cn  
9 Power Supply Recommendations  
The DAC8560 can operate within the specified supply voltage range of 2.7 V to 5.5 V. The power applied to VDD  
must be well-regulated and low-noise. Switching power supplies and DC-DC converters often have high-  
frequency glitches or spikes riding on the output voltage. In addition, digital components can create similar high-  
frequency spikes. This noise can easily couple into the DAC output voltage through various paths between the  
power connections and analog output. In order to further minimize noise from the power supply, TI strongly  
recommends a 1-μF to 10-μF capacitor and 0.1-μF bypass capacitor. The current consumption on the VDD pin,  
the short-circuit current limit, and the load current for the device is listed in Electrical Characteristics. The power  
supply must meet the aforementioned current requirements.  
10 Layout  
10.1 Layout Guidelines  
A precision analog component requires careful layout, adequate bypassing, and clean, well-regulated power  
supplies.  
The DAC8560 offers single-supply operation, and it often is used in close proximity with digital logic,  
microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and  
the higher the switching speed, the more difficult it is to keep digital noise from appearing at the output.  
As a result of the single ground pin of the DAC8560, all return currents, including digital and analog return  
currents for the DAC, must flow through a single point. Ideally, connect GND directly to an analog ground plane.  
This plane would be separate from the ground connection for the digital components until they were connected at  
the power-entry point of the system.  
The power applied to VDD must be well regulated and low noise. Switching power supplies and DC-DC  
converters often have high-frequency glitches or spikes riding on the output voltage. In addition, digital  
components can create similar high-frequency spikes as their internal logic switches states. This noise can easily  
couple into the DAC output voltage through various paths between the power connections and analog output.  
As with the GND connection, connect VDD to a power-supply plane or trace that is separate from the connection  
for digital logic until they are connected at the power-entry point. In addition, a 1-μF to 10-μF capacitor and 0.1-  
μF bypass capacitor are strongly recommended. In some situations, additional bypassing may be required, such  
as a 100-μF electrolytic capacitor or even a Pi filter made up of inductors and capacitors – all designed to  
essentially low-pass filter the supply, removing the high-frequency noise.  
10.2 Layout Example  
Figure 78. DAC8560 Layout Example  
32  
版权 © 2006–2018, Texas Instruments Incorporated  
DAC8560  
www.ti.com.cn  
ZHCSBK1C DECEMBER 2006REVISED JANUARY 2018  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
CMOS,轨至轨,I/O 运算放大器  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
版权 © 2006–2018, Texas Instruments Incorporated  
33  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC8560IADGKR  
DAC8560IADGKRG4  
DAC8560IADGKT  
DAC8560IBDGKR  
DAC8560IBDGKT  
DAC8560ICDGKR  
DAC8560ICDGKT  
DAC8560ICDGKTG4  
DAC8560IDDGKR  
DAC8560IDDGKT  
DAC8560IDDGKTG4  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
DGK  
8
8
8
8
8
8
8
8
8
8
8
2500 RoHS & Green  
2500 RoHS & Green  
Call TI  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
D860  
D860  
D860  
D860  
D860  
D860  
D860  
D860  
D860  
D860  
D860  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
250  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
RoHS & Green  
250  
250  
RoHS & Green  
RoHS & Green  
2500 RoHS & Green  
250  
250  
RoHS & Green  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC8560IADGKR  
DAC8560IBDGKR  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC8560IADGKR  
DAC8560IBDGKR  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
2500  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY