DAC8775IRWFT [TI]

16 位四通道可编程电流输出和电压输出数模转换器 (DAC) | RWF | 72 | -40 to 125;
DAC8775IRWFT
型号: DAC8775IRWFT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16 位四通道可编程电流输出和电压输出数模转换器 (DAC) | RWF | 72 | -40 to 125

转换器 数模转换器
文件: 总79页 (文件大小:7789K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
DAC8775 四通道、16 位可编程电流输出和电压输出  
具有自适应电源管理功能的数模转换器  
1 特性  
3 说明  
1
输出电流:  
DAC8775是一款四通道、精密全集成 16 位、数模转  
换器 (DAC),具有自适应电源管理功能,设计用于满  
足工业控制 应用的各项要求。自适应电源管理电路在  
使能后能够最大程度降低芯片功耗。通过编程设定为电  
流输出后,电流输出驱动器的电源电压根据电流输出引  
脚处电压的连续反馈,通过集成降压/升压转换器在  
4.5V 32V 范围内进行调节。通过编程设定为电压输  
出后,该电路为电压输出级 (±15V) 生成可编程电源电  
压。DAC8775 还包括一个 LDO,用于从单电源引脚生  
成数字电源 (5V)。  
0mA 24mA3.5mA 23.5mA0mA 至  
20mA4mA 20mA±24mA  
输出电压(超出/不超出范围的 20%):  
0V 5V0V 10V±5V±10V  
0V 6V0V 12V±6V±12V  
自适应电源管理  
电压范围较宽的单电源(12V 36V)引脚  
±0.1% 满量程范围 (FSR) 总未调节误差 (TUE)  
微分非线性 (DNL)±1 最低有效位 (LSB) 最大值  
5V 内部基准(10ppm/°C 最大值)  
5V 内部数字电源输出  
DAC8775 还实现了一种高速可寻址远程传感器  
(HART) 信号接口,支持在电流输出中叠加外部 HART  
信号。电流输出 DAC 转换率由寄存器通过编程设定。  
在禁用降压/升压转换器时,该器件可将集成降压/升压  
转换器或外部电源作为 +12V +36V 单一外部电源供  
电运行。  
CRC/帧错误检查,看门狗定时器  
保障系统可靠性的过热报警、开路/短路保护  
报警条件下的安全操作  
自动学习负载检测  
宽温度范围:-40°C +125°C  
器件信息(1)  
2 应用范围  
器件型号  
DAC8775  
封装  
封装尺寸(标称值)  
VQFN (72)  
10.00mm x 10.00mm  
4mA 20mA 电流环路  
模拟输出模块  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
可编程逻辑控制器 (PLC)  
楼宇自动化  
传感器发送器  
过程控制  
框图  
PVDD_X  
AVDD  
DVDD ALARM  
REFIN  
VNEG_IN_X  
LP_X  
REFOUT DVDD_EN  
LN_X  
VPOS_IN_X  
Lnternal  
weference  
CHANNEL - A  
PVSS_X  
AGND_X  
!mp  
.uckꢁ.oost /onverters  
IRANGE  
5ë55  
[5ꢃ  
Üser  
/alibration  
wegister  
L!mp  
IENABLE  
ó
5!/  
/urrent  
{ource  
LDAC  
SCLK  
SDIN  
IOUT_X  
HART_IN_x  
CCOMP_X  
5!/ Lnput  
wegister  
!larm  
VENABLE  
RESET  
CLR  
ë!mp  
VOUT_X  
íatchdog  
Çimer  
{leꢀ wate  
/ontrol  
VSENSEN_x  
VSENSEP_X  
SYNC  
Ceedback  
SDO  
CHANNEL - B  
CHANNEL - C  
CHANNEL - D  
ꢂoꢀer ꢃn  
weset  
AGND1  
AGND3  
AGND2  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSBY7  
 
 
 
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 43  
8.5 Register Maps ........................................................ 47  
Application and Implementation ........................ 60  
9.1 Application Information............................................ 60  
9.2 Typical Application ................................................. 63  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics........................................... 7  
7.6 Timing Requirements: Write and Readback Mode . 13  
7.7 Typical Characteristics............................................ 15  
Detailed Description ............................................ 34  
8.1 Overview ................................................................. 34  
8.2 Functional Block Diagram ....................................... 34  
8.3 Feature Description................................................. 34  
9
10 Power Supply Recommendations ..................... 67  
11 Layout................................................................... 69  
11.1 Layout Guidelines ................................................. 69  
11.2 Layout Example .................................................... 70  
12 器件和文档支持 ..................................................... 72  
12.1 文档支持 ............................................................... 72  
12.2 接收文档更新通知 ................................................. 72  
12.3 社区资源................................................................ 72  
12.4 ....................................................................... 72  
12.5 静电放电警告......................................................... 72  
12.6 Glossary................................................................ 72  
13 机械、封装和可订购信息....................................... 73  
8
4 修订历史记录  
日期  
修订版本  
注释  
2017 2 月  
*
最初发布版本。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
5 Device Comparison Table  
DIFFERENTIAL  
NONLINEARITY (LSB)  
PRODUCT  
RESOLUTION  
DAC8775  
16  
±1  
6 Pin Configuration and Functions  
RWF Package  
72-Pin VQFN  
Top View  
PVDD_D  
LP_D  
1
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
IOUT_D  
2
VPOS_IN_D  
VOUT_D  
VNEG_IN_C  
IOUT_C  
PVSS_D  
LN_D  
3
4
PVDD_C  
LP_C  
5
6
VPOS_IN_C  
VOUT_C  
REFOUT  
REFIN  
PVSS_C  
LN_C  
7
8
DCDC_AGND_AB  
LN_B  
9
Thermal  
Pad  
10  
11  
12  
13  
14  
15  
16  
17  
18  
REFGND  
AVDD  
PVSS_B  
LP_B  
VOUT_B  
VPOS_IN_B  
IOUT_B  
PVDD_B  
LN_A  
PVSS_A  
LP_A  
VNEG_IN_B  
VOUT_A  
VPOS_IN_A  
IOUT_A  
PVDD_A  
PBKG  
Not to scale  
(1) Thermal pad should be connected to ground.  
Copyright © 2017, Texas Instruments Incorporated  
3
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Pin Functions  
PIN  
NAME  
DESCRIPTION  
NO.  
1
PVDD_D  
LP_D  
Buck-Boost Converter power switch supply D  
External Inductor terminal - positive D  
2
PVSS_D  
LN_D  
3
Ground for Buck-Boost converter switches D  
External Inductor terminal - negative D  
Buck-Boost Converter power switch supply C  
External Inductor terminal - positive C  
4
PVDD_C  
LP_C  
5
6
PVSS_C  
LN_C  
7
Ground for Buck-Boost converter switches C  
External Inductor terminal - negative C  
8
DCDC_AGND_AB  
LN_B  
9
Analog GND Buck-Boost converter Channels A and B  
External Inductor terminal - negative B  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PVSS_B  
LP_B  
Ground for Buck-Boost converter switches B  
External Inductor terminal - positive B  
PVDD_B  
LN_A  
Buck-Boost Converter power switch supply B  
External Inductor terminal - negative A  
PVSS_A  
LP_A  
Ground for Buck-Boost converter switches A  
External Inductor terminal - positive A  
PVDD_A  
PBKG  
Buck-Boost Converter power switch supply A  
Chip substrate, connect to 0 V  
VNEG_IN_A  
VNEG_IN_B  
Negative power supply for VOUT_A and IOUT_A  
Negative power supply for VOUT_B and IOUT_A  
Serial clock input of serial peripheral interface (SPI™). Data can be transferred at rates up to 25 MHz.  
Schmitt-Trigger logic input.  
SCLK  
SDIN  
21  
22  
Serial data input. Data are clocked into the 24-bit input shift register on the falling edge of the serial clock  
input. Schmitt-Trigger logic input.  
Load DAC latch control input. A logic low on this pin loads the input shift register data into the DAC  
register and updates the DAC output.  
LDAC  
SDO  
23  
24  
25  
Serial data output. Data are valid on the falling edge of SCLK.  
SPI bus chip select input (active low). Data bits are not clocked into the serial shift register unless SYNC  
is low. When SYNC is high, SDO is in high-impedance status.  
SYNC  
Level Triggered clear pin (Active High). Clears all DAC channel to zero code or mid code (see DAC clear  
section)  
CLR  
26  
27  
HARTIN_B  
Input pin for HART modulation. for IOUT_B  
External compensation capacitor connection pin for VOUT_B . Addition of the external capacitor improves  
the stability with high capacitive loads at the VOUT_B pin by reducing the bandwidth of the output  
amplifier at the expense of increased settling time.  
CCOMP_B  
HARTIN_A  
CCOMP_A  
28  
29  
30  
Input pin for HART modulation. for IOUT_A  
External compensation capacitor connection pin for VOUT_A . Addition of the external capacitor improves  
the stability with high capacitive loads at the VOUT_A pin by reducing the bandwidth of the output  
amplifier at the expense of increased settling time.  
VSENSEP_B  
VSENSEN_B  
VSENSEP_A  
VSENSEN_A  
DAC_AGND_AB  
VNEG_IN_A  
IOUT_A  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Sense output pin for the positive voltage output (channel B) load connection.  
Sense output pin for the negative voltage output (channel B) load connection.  
Sense output pin for the positive voltage output (channel A) load connection.  
Sense output pin for the negative voltage output (channel A) load connection.  
Analog GND DAC Channels A and B  
Negative power supply for VOUT_A and IOUT_A  
Current Output Pin (Channel A)  
VPOS_IN_A  
VOUT_A  
Positive power supply for VOUT_A and IOUT_A  
Voltage Output Pin (Channel A)  
VNEG_IN_B  
Negative power supply for VOUT_B and IOUT_B  
4
Copyright © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Pin Functions (continued)  
PIN  
DESCRIPTION  
NAME  
IOUT_B  
NO.  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Current Output Pin (Channel B)  
VPOS_IN_B  
VOUT_B  
Positive power supply for VOUT_B and IOUT_B  
Voltage Output Pin (Channel B)  
AVDD  
Power supply for all analog circuitry of the device except buck-boost converters and output amplifiers  
Reference ground  
REFGND  
REFIN  
Reference input  
REFOUT  
VOUT_C  
Internal reference output. Connects to REFIN when using internal reference.  
Voltage Output Pin (Channel C)  
VPOS_IN_C  
IOUT_C  
Positive power supply for VOUT_C and IOUT_C  
Current Output Pin (Channel C)  
VNEG_IN_C  
VOUT_D  
Negative power supply for VOUT_C and IOUT_C  
Voltage Output Pin (Channel D)  
VPOS_IN_D  
IOUT_D  
Positive power supply for VOUT_D and IOUT_D  
Current Output Pin (Channel D)  
VNEG_IN_D  
Negative power supply for VOUT_D and IOUT_D  
Analog GND DAC Channels C and D  
DAC_AGND_CD  
VSENSEN_D  
VSENSEP_D  
VSENSEN_C  
VSENSEP_C  
Sense output pin for the negative voltage output (channel D) load connection.  
Sense output pin for the positive voltage output (channel D) load connection.  
Sense output pin for the negative voltage output (channel C) load connection.  
Sense output pin for the positive voltage output (channel C) load connection.  
External compensation capacitor connection pin for VOUT_D . Addition of the external capacitor improves  
the stability with high capacitive loads at the VOUT_D pin by reducing the bandwidth of the output  
amplifier at the expense of increased settling time.  
CCOMP_D  
HARTIN_D  
CCOMP_C  
HARTIN_C  
DVDD_EN  
61  
62  
63  
64  
65  
Input pin for HART modulation. for IOUT_D  
External compensation capacitor connection pin for VOUT_C . Addition of the external capacitor improves  
the stability with high capacitive loads at the VOUT_C pin by reducing the bandwidth of the output  
amplifier at the expense of increased settling time.  
Input pin for HART modulation. for IOUT_C  
Internal power-supply enable pin. Connect this pin to PBKG to disable the internal DVDD, or leave this  
pin unconnected to enable the internal DVDD. When this pin is connected to PBKG, an external supply  
must be connected to the DVDD pin.  
Digital Supply pin (Input/Output) Internal DVDD enabled when DVDD_EN is floating, External DVDD must  
be supplied when DVDD_EN is connected to PBKG  
DVDD  
66  
67  
68  
ALARM pin. Open drain output. External pull-up resistor required (10 kΩ). The pin goes low (active) when  
the ALARM condition is detected on any of the outputs (OUT_A through OUT_D) (open circuit, over  
temperature, watchdog timeout, and others).  
ALARM  
RESET  
Reset input (active low). Logic low on this pin causes the device to perform a reset. A hardware reset  
must be issued using this pin after power up.  
PBKG  
69  
70  
71  
72  
Chip substrate, connect to 0 V  
VNEG_IN_C  
VNEG_IN_D  
DCDC_AGND_CD  
Negative power supply for VOUT_C  
Negative power supply for VOUT_D  
Analog GND Buck-Boost converter Channels C and D  
Copyright © 2017, Texas Instruments Incorporated  
5
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
PVDD_x/AVDD to PBKG  
-0.3  
40  
PVSS_x/REFGND/DCDC_AGND_x/DAC_AGND_x  
to PBKG  
-0.3  
0.3  
VPOS_IN_x to VNEG_IN_x  
VPOS_IN_x to PBKG  
-0.3  
-0.3  
40  
33  
0.3  
VNEG_IN_x to PBKG  
VSENSEN_x to PBKG  
VSENSEP_x to PBKG  
DVDD to PBKG  
-20  
Input voltage  
V
VNEG_IN_x  
VNEG_IN_x  
-0.3  
VPOS_IN_x  
VPOS_IN_x  
6
REFOUT/REFIN to PBKG  
Digital input voltage to PBKG  
VOUT_x to PBKG  
-0.3  
6
-0.3  
DVDD+0.3  
VPOS_IN_x  
VPOS_IN_x  
DVDD+0.3  
10  
VNEG_IN_x  
VNEG_IN_x  
-0.3  
Output voltage  
IOUT_x to PBKG  
V
SDO, ALARM to PBKG  
Current into any digital input pin  
Input current  
-10  
mA  
W
Power dissipation  
(TJmax – TA)/θJA  
150  
Operating junction temperature, TJ  
Junction temperature range, TJmax  
Storage temperature, Tstg  
-40  
-65  
150  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
12  
NOM  
MAX  
36  
UNIT  
V
POWER SUPPLY  
PVDD_x/AVDD_x to  
PBKG/PVSS_x(1)  
Positive supply voltage to ground range  
Positive supply voltage to ground range  
VPOS_IN_x to  
PBKG(1)  
12  
33  
V
Negative supply voltage to substrate for current output mode  
Negative supply voltage to substrate for voltage output mode  
-18  
-18  
0
V
V
VNEG_IN_x to  
PBKG(1)  
-5  
VPOS_IN_x to  
VNEG_IN_x(1)  
12  
-7  
36  
7
V
V
VSENSEN_x to PBKG The minimum headroom spec for voltage output stage must be met  
(1) The minimum headroom spec for voltage output stage and the compliance voltage for current output stage should be met. When Buck-  
Boost converter is enabled VPOS_IN_x/VNEG_IN_x are generated internally to meet headroom and compliance specs. When Buck-  
Boost converter is disabled VPOS_IN_x, AVDD, and PVDD must be tied together.  
6
Copyright © 2017, Texas Instruments Incorporated  
 
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
DVDD to PBKG  
DIGITAL INPUTS  
VIH  
Digital supply voltage to substrate  
2.7  
5.5  
V
Input high voltage  
Input low voltage  
2
V
V
VIL  
0.6  
5.05  
125  
REFERENCE INPUT  
REFIN to PBKG  
TEMPERATURE RANGE  
TA  
Reference input to substrate  
Operating temperature  
4.95  
-40  
V
°C  
7.4 Thermal Information  
DAC8775  
THERMAL METRIC(1)  
RWF (VQFN)  
UNIT  
72 PINS  
21.7  
3.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
1.9  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ΨJB  
1.9  
RθJC(bot)  
0.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = -15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 2.7 V.  
VOUT : RL = 1 kΩ, CL = 200 pF, IOUT : RL = 250 Ω; all specifications -40to +125, unless otherwise noted. REFIN= +5 V  
external;, Buck-Boost Converter disabled unless otherwise stated  
PARAMETER  
CURRENT OUTPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0
0
24  
20  
mA  
mA  
mA  
mA  
mA  
IOUT  
Output Current Ranges  
3.5  
-24  
4
23.5  
24  
20  
Accuracy  
Resolution  
16  
-12  
Bits  
LSB  
All ranges except bipolar range  
Bipolar range only  
Ensured monotonic  
-40to +125℃  
12  
16  
INL  
Relative Accuracy(1)  
Differential Nonlinearity(1)  
-16  
LSB  
DNL  
-1  
1
LSB  
-0.14  
-0.4  
-0.2  
-0.12  
-0.1  
-0.05  
0.14  
0.4  
0.2  
0.12  
0.1  
0.05  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
ppm FSR/ºC  
-40to +125, 4 to 20 mA  
TA = +25, 4 to 20 mA  
TA = +25°C  
TUE  
Total Unadjusted Error(1)  
-40to +125℃  
OE  
Offset Error(1)  
TA = +25°C  
OE-TC  
Offset Error Temperature Coefficient  
-40to +125℃  
4
(1) For current output all ranges except ±24 mA, low code of 256d and a high code of 65535d are used, for ±24 mA range low code of 0d  
and a high code of 65535d. For voltage output, low code of 256d and a high code of 65535d are used  
Copyright © 2017, Texas Instruments Incorporated  
7
 
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = -15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 2.7 V.  
VOUT : RL = 1 kΩ, CL = 200 pF, IOUT : RL = 250 Ω; all specifications -40to +125, unless otherwise noted. REFIN= +5 V  
external;, Buck-Boost Converter disabled unless otherwise stated  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
-40to +125, 0x0000h into DAC  
-15  
15  
uA  
-40to +125, 0x0000h into DAC, 4  
to 20 mA  
-18  
18  
uA  
ZCE  
Zero Code Error  
TA = 25, 0x0000h into DAC  
1.2  
1.8  
m%FSR  
m%FSR  
TA = 25, 0x0000h into DAC, 4 to 20  
mA  
Zero Code Error Temperature  
Coefficient  
ZCE-TC  
0x0000h into DAC, -40to +125℃  
4
ppm/ºC  
-40to +125℃  
-0.125  
-0.25  
-0.2  
0.125  
0.25  
0.2  
%FSR  
%FSR  
-40to +125, 4 to 20 mA  
TA = +25, 4 to 20 mA  
TA = +25°C  
GE  
Gain Error(2)  
%FSR  
-0.12  
0.12  
%FSR  
GE-TC  
Gain Error Temperature Coefficient  
-40to +125℃  
3
ppm FSR/ºC  
%FSR  
0xFFFFh into DAC, -40to +125℃  
-0.125  
-0.25  
0.125  
0.25  
0xFFFFh into DAC, -40to +125, 4  
to 20 mA  
%FSR  
%FSR  
%FSR  
PFSE  
NFSE  
Positive Full Scale Error  
Negative Full Scale Error  
0xFFFFh into DAC, TA = 25℃  
0.016  
0.024  
0xFFFFh into DAC, TA = 25, 4 to 20  
mA  
0x0000h into DAC, Bipolar range only,  
-40to +125℃  
-0.125  
0.125  
%FSR  
%FSR  
0x0000h into DAC, Bipolar range only,  
TA = 25℃  
0.02  
5
Positive Full Scale Error Temperature  
Coefficient  
PFSE-TC  
NFSE-TC  
ppm FSR/ºC  
ppm FSR/ºC  
Negative Full Scale Error Temperature  
Coefficient  
Bipolar range only  
5
Bipolar range only, 0x8000h into DAC  
-40to +125℃  
-0.05  
-0.02  
0.05  
0.02  
BPZE  
Bipolar Zero Error  
%FSR  
Bipolar range only, 0x8000h into DAC,  
TA = +25°C  
Bipolar Zero Error Temperature  
Coefficient  
BPZE-TC  
VCL  
0x8000h into DAC,-40to +125℃  
Output = 24 mA  
4
ppm/ºC  
VPOS_I  
N_x-3  
V
V
Compliance Voltage  
Resistive Load  
|VNEG_  
IN_x|+3  
VPOS_I  
N_x-3  
Output = ±24 mA  
All except ±24 mA range  
±24 mA range  
1.2  
RL  
KΩ  
0.625  
DC-PSRR DC Power Supply Rejection Ratio  
Code = 0x8000, 20 mA range  
Code = 0x8000  
0.1  
10  
1
µA/V  
MΩ  
nA  
ZO  
Output Impedance  
IOLEAK  
Output Current Leakage  
Iout is disabled or in power-down  
HART INTERFACE  
VHART-IN HART Input  
400  
500  
1
600  
mVpp  
mApp  
Corresponding Output  
HART In = 500 mVpp 1.2 KHz  
(2) No load, DVDD supply ramps up before VPOS_IN_x,and VNEG_IN_x, ramp rate of VPOS_IN_x,and VNEG_IN_x limited to 18 V/msec  
8
Copyright © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Electrical Characteristics (continued)  
AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = -15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 2.7 V.  
VOUT : RL = 1 kΩ, CL = 200 pF, IOUT : RL = 250 Ω; all specifications -40to +125, unless otherwise noted. REFIN= +5 V  
external;, Buck-Boost Converter disabled unless otherwise stated  
PARAMETER  
VOLTAGE OUTPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0
0
5
10  
5
V
V
V
V
V
V
V
V
Voltage Output Ranges (normal mode)  
-5  
-10  
0
10  
6
VOUT  
0
12  
6
Voltage Output Ranges (Overrange  
mode)  
-6  
-12  
12  
Accuracy  
Resolution  
16  
-12  
Bits  
LSB  
INL  
Relative Accuracy, INL(1)  
Differential Nonlinearity, DNL(1)  
12  
1
DNL  
Ensured monotonic  
-1  
LSB  
-40to +125, VOUT unloaded  
-0.1  
±0.05  
0.1  
%FSR  
%FSR  
TUE  
Total Unadjusted Error, TUE(1)  
TA = +25°C, VOUT unloaded  
-0.075  
0.075  
Unipolar ranges only, VOUT unloaded,  
-40to +125℃  
-2.5  
2.5  
mV  
mV  
ZCE  
Zero Code Error(3)  
Unipolar ranges only, VOUT unloaded,  
TA = 25℃  
0.14  
2
Zero Code Error Temperature  
Coefficient  
ZCE-TC  
BPZE  
Unipolar ranges only, -40to +125℃  
ppm FSR/ºC  
%FSR  
Bipolar range only, 0x8000h into DAC  
-40to +125, VOUT unloaded  
-0.03  
0.03  
Bipolar Zero Error  
Bipolar range only, 0x8000h into DAC,  
TA = +25°C, VOUT unloaded  
-0.025  
0.025  
%FSR  
Bipolar Zero Error Temperature  
Coefficient  
Bipolar range only, 0x8000h into DAC,  
-40to +125, VOUT unloaded  
BPZE-TC  
1
ppm FSR/ºC  
-40to +125, VOUT unloaded  
TA = +25°C, VOUT unloaded  
-40to +125℃  
-0.1  
0.1  
%FSR  
%FSR  
GE  
Gain Error(1)  
-0.07  
0.07  
GE-TC  
Gain Error Temperature Coefficient  
3
ppm FSR/ºC  
0xFFFFh into DAC, -40to +125,  
VOUT unloaded  
-0.1  
0.1  
%FSR  
%FSR  
PFSE  
Positive Full Scale Error  
0xFFFFh into DAC, TA = 25, VOUT  
unloaded  
0.03  
Bipolar ranges only, 0x0000h into  
DAC, -40to +125, VOUT  
unloaded  
-0.06  
0.06  
%FSR  
NFSE  
Negative Full Scale Error(3)  
Bipolar ranges only, 0x0000h into  
DAC, TA = 25, VOUT unloaded  
0.002  
%FSR  
Positive Full Scale Error Temperature  
Coefficient  
PFSE-TC  
VOUT unloaded, -40to +125℃  
2
2
ppm FSR/ºC  
ppm FSR/ºC  
NFSE-TC Negative Full Scale Error Temperature VOUT unloaded, -40to +125℃  
Coefficient  
Output unloaded, VPOS_IN_x with  
respect to VOUT_x, 0xFFFFh into  
DAC, No load  
0.5  
3
V
V
Headroom  
Output unloaded, VPOS_IN_x with  
respect to VOUT_x, 0xFFFFh into  
DAC, 1 kload  
(3) DAC code at 0d, this error includes offset error of the DAC since the DAC is linear between 0d to 65535d  
Copyright © 2017, Texas Instruments Incorporated  
9
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = -15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 2.7 V.  
VOUT : RL = 1 kΩ, CL = 200 pF, IOUT : RL = 250 Ω; all specifications -40to +125, unless otherwise noted. REFIN= +5 V  
external;, Buck-Boost Converter disabled unless otherwise stated  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Bipolar, ranges only, VNEG_IN_x with  
respect to VOUT_x, 0x0000h into DAC  
3
V
Footroom  
Unipolar ranges only, VNEG_IN_x with  
respect to VOUT_x, 0x0000h into DAC  
5
V
SCLIM[1:0] = "00" (see register map)  
SCLIM[1:0] = "01" (see register map)  
SCLIM[1:0] = "10" (see register map)  
SCLIM[1:0] = "11" (see register map)  
17  
8
23  
11  
28  
34  
mA  
mA  
mA  
mA  
kΩ  
Short-Circuit Current  
22  
26  
1
RL  
CL  
Load  
RL = Open  
20  
20  
nF  
RL = 1 kΩ  
nF  
Capacitive Load Stability  
RL = 1 kΩ with External compensation  
capacitor (150 pF) connected  
1
µF  
Voltage output enabled, VOUT = Mid  
Scale, UP10V range  
0.01  
Ω
ZO  
DC Output Impedance  
Voltage output disabled (POC = '1')  
Voltage output disabled (POC = '0')  
Voltage output disabled (POC = '1')  
No output load  
50  
30  
MΩ  
kΩ  
ILEAK  
Output Leakage (VOUT_x Pin)  
1
nA  
DC-PSRR DC Power Supply Rejection Ratio  
VSENSEP Impedance  
10  
µV/V  
kΩ  
VOUT enabled Mid-Scale UP10  
VOUT enabled Mid-Scale UP10  
240  
120  
VSENSEN Impedance  
kΩ  
EXTERNAL REFERENCE INPUT  
VOUT = Full scale, BP12V range, per  
channel  
IREF  
External Reference Current  
Reference Input Capacitance  
0.35  
100  
mA  
pF  
INTERNAL REFERENCE OUTPUT  
VREF Reference Output  
TA = 25°C  
4.99  
-13  
5.01  
13  
V
TA = -40to +125℃  
TA = -25to +125℃  
ppm/°C  
ppm/°C  
VREF-TC Reference TC  
-10  
10  
DAC Voltage Output Total Unadjusted -40°C to +125°C, VOUT_x unloaded,  
0.2  
0.2  
0.5  
%FSR  
%FSR  
%FSR  
Error(1)  
Internal reference enabled  
-40°C to +125°C, Internal reference  
enabled  
TUE  
DAC Current Output Total Unadjusted  
Error(1)  
-40°C to +125°C, Internal reference  
enabled, 4 mA to 20 mA range  
Output Noise (0.1 Hz to 10 Hz)  
Noise Spectral Density  
Capacitive Load  
TA = 25°C  
13  
µV p-p  
nV/sqrtHz  
nF  
At 10 kHz, At 25°C  
200  
CL  
IL  
600  
Load Current  
±5  
20  
5
mA  
Short Circuit Current  
Load Regulation  
Ref-Out shorted to PBKG  
Sourcing and Sinking, TA = +25°C  
TA = +25°C  
mA  
µV/mA  
uV/V  
Line Regulation  
2
BUCK BOOST CONVERTER  
RON  
ILEAK  
L
Switch On Resistanvce  
TA = +25°C  
3
20  
Ω
Switch Leakage Current  
Inductor  
TA = +25°C  
nA  
µH  
Between LP_x and LN_x  
100  
10  
Copyright © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Electrical Characteristics (continued)  
AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = -15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 2.7 V.  
VOUT : RL = 1 kΩ, CL = 200 pF, IOUT : RL = 250 Ω; all specifications -40to +125, unless otherwise noted. REFIN= +5 V  
external;, Buck-Boost Converter disabled unless otherwise stated  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA = +25°C, PVDD = AVDD = 36 V,  
Buck-Boost Converter enabled  
ILMAX  
Peak Inductor Current  
0.5  
A
VPOS_IN_x minimum  
VPOS_IN_x maximum  
VNEG_IN_x minimum  
VNEG_IN_x maximum  
VPOS_IN_x and VNEG_IN_x  
4
32  
-18  
-5  
V
V
VO  
VO  
Output Voltage  
Output Voltage  
V
V
CL  
Load Capacitor  
Start Up Time  
10  
µF  
After enabling VPOS_IN_x and  
VNEG_IN_x with 10 µF load capacitor  
on these pins  
3
5
ms  
DVDD LDO  
VO  
Output Voltage  
Load Current  
V
ILOAD  
CL  
10  
mA  
nF  
Load Capacitor  
0.2  
THERMAL ALARM  
Trip Point  
Hysteresis  
DIGITAL INPUTS  
150  
15  
°C  
°C  
Hysteresis Voltage  
Input Current  
0.4  
10  
V
-5  
5
µA  
µA  
pF  
Input Current (DVDD_EN)  
Pin Capacitance  
-10  
10  
Per pin  
DIGITAL OUTPUTS  
SDO  
VOL  
Output Low Voltage  
Output High Voltage  
Sinking 200 µA  
Sourcing 200 µA  
0.4  
5
V
V
DVDD-  
0.5  
VOH  
ILEAK  
High Impedance Leakage  
-5  
µA  
pF  
High Impedance Output Capacitance  
10  
ALARM  
VOL  
Output Low Voltage  
At 2.5 mA  
0.4  
50  
10  
V
ILEAK  
High Impedance Leakage  
High Impedance Output Capacitance  
µA  
pF  
POWER REQUIREMENTS  
All Buck-Boost converter positive  
output enabled, IOUT_x mode  
operation, All IOUT channels enabled,  
0 mA, PVDD = AVDD = 12 V, Internal  
reference, VNEG_IN_x = 0 V  
5
mA  
IAVDD+IP  
VDD  
Current Flowing into AVDD and PVDD  
All IOUT Active, 0 mA, 0 to 24 mA  
range, VNEG_IN_x = 0 V  
3.5  
5
mA  
A
Buck-Boost converter enabled, Peak  
current  
0.5  
IPVDD_x  
IDVDD  
Current Flowing into PVDD  
Current Flowing into DVDD  
Current Flowing into VPOS_IN_x  
Buck-Boost converter disabled  
0.1  
1.8  
mA  
mA  
mA  
All digital pins at DVDD, DVDD = 5.5 V  
IOUT active, 0 mA, 0 to 24 mA range  
1.2  
3
IVPOS_IN  
_x  
VOUT active, No load, 0 to 10 V  
range, Mid scale code  
mA  
Copyright © 2017, Texas Instruments Incorporated  
11  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = -15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 2.7 V.  
VOUT : RL = 1 kΩ, CL = 200 pF, IOUT : RL = 250 Ω; all specifications -40to +125, unless otherwise noted. REFIN= +5 V  
external;, Buck-Boost Converter disabled unless otherwise stated  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IOUT active, 0 mA, ±24 mA range  
1.2  
mA  
IVNEG_IN  
_x  
Current Flowing into VNEG_IN_x  
VOUT active, No load, 0 to 10 V range,  
Mid scale code  
3
mA  
All Buck-Boost converter positive  
output enabled, IOUT_x mode  
operation, All IOUT channels enabled,  
Rload = 1 Ω, 24 mA, PVDD = AVDD =  
12 V, Internal reference, VNEG_IN_x =  
0 V  
PDISS  
Power Dissipation (PVDD+AVDD)  
0.86  
1.1  
W
IVSENSE  
P
Current Flowing into VSENSEP  
Current Flowing into VSENSEN  
VOUT disabled  
VOUT disabled  
40  
20  
nA  
nA  
IVSENSE  
N
DYNAMIC PERFORMANCE  
Voltage Output  
0 to10 V, to ±0.03% FSR RL = 1K||CL  
= 200 pF  
15  
10  
15  
30  
µs  
µs  
µs  
µs  
0 to 5 V, to ±0.03% FSR RL = 1K||CL  
= 200 pF  
Tsett  
Output Voltage Settling Time  
-5 to 5 V, to ±0.03% FSR RL = 1K||CL  
= 200 pF  
-10 to 10 V, to ±0.03% FSR RL =  
1K||CL = 200 pF  
Buck-Boost converter enabled, 50  
KHz, 20dB/decade filter on  
VPOS_IN_x  
Output Voltage Ripple  
2
mVpp  
SR  
Slew Rate  
RL = 1K||CL = 200 pF  
1
0.1  
0.8  
2
V/µs  
V
Power-On Glitch Magnitude(2)  
Power-off Glitch Magnitude(4)  
Channel to Channel DC Crosstalk  
Code-to-Code Glitch  
V
Full scale swing on adjacent channel  
m%FSR  
µV-sec  
nV-sec  
0.15  
1
Digital Feedthrough  
Output Noise (0.1 Hz to 10 Hz  
bandwidth)  
UP10V, Mid scale  
0.1  
LSB p-p  
Output Noise (100 kHz bandwidth)  
Output Noise Spectral Density  
UP10V, Mid scale  
200  
200  
µVrms  
BP20V Measured at 10 kHz, Mid scale  
nV/sqrtHz  
200 mV 50/60Hz Sine wave  
superimposed on power supply  
voltage. (AC analysis)  
AC-PSRR AC Power Supply Rejection Ratio  
-75  
dB  
Current Output  
24 mA Step, to 0.1% FSR, no L  
10  
50  
µs  
µs  
Tsett  
Output Current Settling Time  
24 mA Step, to 0.1% FSR , L = 1 mH,  
CL = 22 nF  
Buck-Boost converter enabled, 50  
KHz, 20dB/decade filter on  
VPOS_IN_x  
Output Current Ripple  
Inductive Load(5)  
8
µApp  
mH  
dB  
L
50  
200 mV 50/60Hz Sine wave  
superimposed on power supply  
voltage.  
AC-PSRR AC Power Supply Rejection Ratio  
-75  
(4) Vout disabled, no load, ramp rate of VPOS_IN_x,and VNEG_IN_x limited to 18 V/msec  
(5) 680 nF is required at IOUT pin for 50 mH pure inductor load.  
12  
Copyright © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
7.6 Timing Requirements: Write and Readback Mode  
At TA = –40°C to +125°C and DVDD = +2.7 V to +5.5 V, unless otherwise noted.  
PARAMETER  
Max clock frequency  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
MHz  
ns  
fSCLK  
t1  
25  
SCLK cycle time  
40  
18  
18  
15  
13  
40  
8
t2  
SCLK high time  
ns  
t3  
SCLK low time  
ns  
t4  
SYNC falling edge to SCLK falling edge setup time  
24th/32nd SCLK falling edge to SYNC rising edge  
SYNC high time  
ns  
t5  
ns  
t6  
ns  
t7  
Data setup time  
ns  
t8  
Data hold time  
5
ns  
t9  
SYNC rising edge to LDAC falling edge  
LDAC pulse width low  
33  
10  
ns  
t10  
t11  
ns  
LDAC falling edge to DAC output response time  
50  
ns  
See Electrical  
Characteristics  
t12  
DAC output settling time  
µs  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
CLR high time  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLR activation time  
50  
SCLK rising edge to SDO valid  
SYNC rising edge to DAC output response time  
LDAC falling edge to SYNC rising edge  
RESET pulse width  
14  
50  
100  
10  
SYNC rising edge to CLR falling/rising edge  
60  
t1  
{/[Y  
1
2
24  
t6  
t3  
t2  
t5  
t4  
{òb/  
{5Lb  
t8  
t19  
t7  
a{.  
[{.  
[5!/ = 0  
ëhÜÇ_x  
t12  
t16  
t10  
t9  
[5!/  
t17  
t11  
ëhÜÇ_x  
t13  
t19  
t19  
/[w  
ëhÜÇ_x  
w9{9Ç  
t14  
t18  
ëhÜÇ_x  
1. Write Mode Timing  
版权 © 2017, Texas Instruments Incorporated  
13  
 
 
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
{/[Y  
1
2
24  
1
2
24  
{òb/  
{5Lb  
weꢀd /ommꢀnd  
D!w.!D9  
bht /ommꢀnd  
weꢀdꢁꢀck 5ꢀꢂꢀ  
a{.  
[{.  
a{.  
a{.  
[{.  
[{.  
{5h  
t15  
2. Readback Mode Timing  
14  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
7.7 Typical Characteristics  
AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V, VOUT disabled,  
IOUT RL = 250 Ω, TA = 25, REFIN = +5 V external, Buck-Boost Converter disabled, unless otherwise stated.  
8
6
1.0  
0.8  
3.5 mA to 23.5 mA  
0 mA to 24 mA  
±24 mA  
4 mA to 20 mA  
0 mA to 20 mA  
3.5 mA to 23.5 mA  
0 mA to 24 mA  
±24 mA  
4 mA to 20 mA  
0 mA to 20 mA  
0.6  
4
0.4  
2
0.2  
0
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-2  
-4  
-6  
-8  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
DAC Code  
DAC Code  
C002  
C001  
3. IOUT Linearity Error vs Digital Input Code  
4. IOUT Differential Linearity Error vs Digital Input Code  
20  
15  
10  
5
8.0  
3.5 mA to 23.5 mA  
0 mA to 24 mA  
±24 mA  
4 mA to 20 mA  
0 mA to 20 mA  
6.0  
4.0  
2.0  
0
0.0  
-5  
-2.0  
-4.0  
-6.0  
-8.0  
-10  
-15  
-20  
3.5 mA to 23.5 mA  
0 mA to 24 mA  
±24 mA  
4 mA to 20 mA  
0 mA to 20 mA  
0
8192 16384 24576 32768 40960 49152 57344 65536  
5
20  
35  
50  
65  
80  
95 110 125  
œ40 œ25 œ10  
DAC Code  
Temperature (oC)  
C003  
C007  
5. IOUT Total Unadjusted Error vs Digital Input Code  
6. IOUT Linearity Error vs Temperature  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
-10.0  
-20.0  
-30.0  
-40.0  
-50.0  
3.5 mA to 23.5 mA  
0 mA to 24 mA  
±24 mA  
4 mA to 20 mA  
0 mA to 20 mA  
-0.6  
-0.8  
-1.0  
3.5 mA to 23.5 mA  
0 mA to 24 mA  
±24 mA  
4 mA to 20 mA  
0 mA to 20 mA  
5
20  
35  
50  
65  
80  
95 110 125  
5
20  
35  
50  
65  
80  
95 110 125  
œ40 œ25 œ10  
œ40 œ25 œ10  
Temperature (oC)  
Temperature (oC)  
C007  
C007  
7. IOUT Differential Linearity Error vs Temperature  
8. IOUT Total Unadjusted Error vs Temperature  
版权 © 2017, Texas Instruments Incorporated  
15  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V VOUT disabled,  
IOUT RL = 250 Ω, TA = 25, REFIN= +5 V external, Buck-Boost Converter disabled, unless otherwise stated.  
50  
40  
50  
40  
30  
30  
20  
20  
10  
10  
0
0
œ10  
œ20  
œ30  
œ40  
œ50  
œ10  
œ20  
œ30  
œ40  
œ50  
3.5 mA to 23.5 mA  
0 mA to 24 mA  
±24 mA  
4 mA to 20 mA  
0 mA to 20 mA  
3.5 mA to 23.5 mA  
0 mA to 24 mA  
±24 mA  
4 mA to 20 mA  
0 mA to 20 mA  
5
20  
35  
50  
65  
80  
95 110 125  
5
20  
35  
50  
65  
80  
95 110 125  
œ40 œ25 œ10  
œ40 œ25 œ10  
Temperature (oC)  
Temperature (oC)  
C007  
C007  
9. IOUT Offset Error vs Temperature  
10. IOUT Gain Error vs Temperature  
5.0  
4.0  
50  
40  
3.0  
30  
2.0  
20  
1.0  
10  
0.0  
0
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
œ10  
œ20  
œ30  
œ40  
œ50  
3.5 mA to 23.5 mA  
0 mA to 24 mA  
±24 mA  
4 mA to 20 mA  
0 mA to 20 mA  
0 mA to 24 mA  
0 mA to 20 mA  
5
20  
35  
50  
65  
80  
95 110 125  
5
20  
35  
50  
65  
80  
95 110 125  
œ40 œ25 œ10  
œ40 œ25 œ10  
Temperature (oC)  
Temperature (oC)  
C007  
C007  
11. IOUT Zero Code Error vs Temperature  
12. IOUT Full Scale Error vs Temperature  
30  
24  
50  
40  
18  
30  
12  
20  
6
10  
0
0
œ6  
œ10  
œ20  
œ30  
œ40  
œ50  
œ12  
œ18  
œ24  
œ30  
±24 mA  
±24 mA  
5
20  
35  
50  
65  
80  
95 110 125  
5
20  
35  
50  
65  
80  
95 110 125  
œ40 œ25 œ10  
œ40 œ25 œ10  
Temperature (oC)  
Temperature (oC)  
C007  
C007  
13. IOUT Bipolar Zero Error vs Temperature  
14. IOUT Negative Full Scale Error vs Temperature  
16  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Typical Characteristics (接下页)  
AVDD/PVDD_x = VPOS_IN_x , VNEG_IN_x = PBKG = PVSS_x = 0 V, External DVDD = 5 V VOUT disabled, IOUT RL = 250  
Ω, TA = 25, REFIN = +5 V external, Buck-Boost Converter disabled, unless otherwise stated.  
8.0  
6.0  
1.0  
0.8  
0.6  
4.0  
0.4  
2.0  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-2.0  
-4.0  
-6.0  
-8.0  
3.5 mA to 23.5 mA  
0 mA to 24 mA  
4 mA to 20 mA  
0 mA to 20 mA  
3.5 mA to 23.5 mA  
0 mA to 24 mA  
4 mA to 20 mA  
0 mA to 20 mA  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
VPOS (V)  
VPOS (V)  
C015  
C015  
15. IOUT Linearity Error vs Power Supplies  
16. IOUT Differential Linearity Error vs Power Supplies  
8.0  
6.0  
1.0  
0.8  
0.6  
4.0  
0.4  
2.0  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-2.0  
-4.0  
-6.0  
-8.0  
±24 mA  
±24 mA  
-0.8  
-1.0  
12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18  
VPOS (V)  
12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18  
VPOS (V)  
C015  
C015  
|VPOS_IN_x| = |VNEG_IN_x|  
|VPOS_IN_x| = |VNEG_IN_x|  
17. IOUT Linearity Error vs Power Supplies  
18. IOUT Differential Linearity Error vs Power Supplies  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
-10.0  
-20.0  
-30.0  
-40.0  
-50.0  
-10.0  
-20.0  
3.5 mA to 23.5 mA  
0 mA to 24 mA  
4 mA to 20 mA  
0 mA to 20 mA  
-30.0  
±24 mA  
-40.0  
-50.0  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18  
VPOS (V)  
VPOS (V)  
C015  
C015  
|VPOS_IN_x| = |VNEG_IN_x|  
19. IOUT Total Unadjusted Error vs Power Supplies  
20. IOUT Total Unadjusted Error vs Power Supplies  
版权 © 2017, Texas Instruments Incorporated  
17  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V VOUT disabled,  
IOUT RL = 250 Ω, TA = 25, REFIN = +5 V external, Buck-Boost Converter disabled, unless otherwise stated.  
30  
20  
2.5  
2.0  
1.5  
1.0  
10  
0.5  
0
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
œ10  
œ20  
œ30  
IDD-VPOS  
IDD-VNEG  
IDD-VPOS  
IDD-VNEG  
0
8192 16384 24576 32768 40960 49152 57344 65536  
5
20  
35  
50  
65  
80  
95 110 125  
œ40 œ25 œ10  
DAC Code  
Temperature (oC)  
C001  
C001  
±24 mA Range  
±24 mA Range, Mid Scale Code  
21. IOUT Power Supply Current vs Digital Input Code  
22. IOUT Power Supply Current vs Temperature  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
IDD-VPOS  
IDD-VNEG  
12  
13  
14  
15  
16  
17  
18  
VPOS (V)  
C001  
|VPOS_IN_x| = |VNEG_IN_x|, ±24 mA Range, Mid Scale Code  
23. IOUT Power Supply Current vs Power Supplies Voltages  
18  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Typical Characteristics (接下页)  
AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V VOUT disabled,  
IOUT RL = 250 Ω, TA = 25, REFIN = +5 V external, Buck-Boost Converter disabled, unless otherwise stated.  
0 mA to 24 mA (5 mA/div)  
SYNC (5 V/div)  
small signal settling (0.1 %FSR/div)  
-24 mA to +24 mA (10 mA/div)  
SYNC (5 V/div)  
Time (2 µs/div)  
Time (2µs/ div)  
C001  
C001  
0-24 mA Range  
AVDD/PVDD_x/VPOS_IN_x = +18 V, VNEG_IN_x = –18 V,  
IOUT RL = 625 Ω  
24. IOUT Full-Scale Settling Time, Rising Edge  
25. IOUT Full-Scale Settling Time, Rising Edge  
+24 mA to -24 mA (10 mA/div)  
SYNC (5 V/div)  
24 mA to 0 mA (5 mA/div)  
SYNC (5 V/div)  
small signal settling (0.1 %FSR/div)  
Time (2 µs/div)  
Time (2 µs/div)  
C001  
C001  
0-24 mA Range  
AVDD/PVDD_x/VPOS_IN_x = +18 V, VNEG_IN_x = –18 V,  
IOUT RL = 625 Ω  
26. IOUT Full-Scale Settling Time, Falling Edge  
27. IOUT Full-Scale Settling Time, Falling Edge  
IOUT (400 µA/div)  
SYNC (5 V/div)  
IOUT (200 µA/div)  
SYNC (5 V/div)  
Time (800 ns/div)  
Time (800 ns/div)  
C005  
C005  
0-24 mA Range, 8000h - 7FFFh  
29. IOUT Glitch Impulse, Falling Edge, 1LSB Step  
0-24 mA Range, 7FFFh - 8000h  
28. IOUT Glitch Impulse, Rising Edge, 1LSB Step  
版权 © 2017, Texas Instruments Incorporated  
19  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V VOUT disabled,  
IOUT RL = 250 Ω, TA = 25, REFIN = +5 V external, Buck-Boost Converter disabled, unless otherwise stated.  
IOUT (8 µA/div)  
SYNC (5 V/div)  
AVDD (5 V/div)  
IOUT (300 nA/div)  
Time (2 ms/div)  
Time (800 ns/div)  
C005  
C004  
0-24 mA Range  
30. IOUT Power-On Glitch  
31. IOUT Enable Glitch  
2500  
2000  
1500  
1000  
500  
IOUT (20 nA/div)  
IOUT = 24 mA  
IOUT = 12 mA  
IOUT = 0 mA  
0
Time (1 s/div)  
10  
100  
1000  
10000  
100000  
1000000  
Frequency (Hz)  
C001  
C001  
0-24 mA Range  
0-24mA Range, Mid Scale Code  
33. IOUT Noise Density vs Frequency  
32. IOUT Noise, 0.1 Hz to 10 Hz  
IOUT (3 µA/div)  
SCLK (5 V/div)  
Time (4 µs/div)  
C004  
0-24 mA Range, Mid Scale Code, SCLK = 1 MHz  
34. Clock Feedthrough IOUT, 1MHz  
20  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Typical Characteristics (接下页)  
AVDD/PVDD_x = +15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V, VOUT disabled, IOUT RL = 250 Ω, TA = 25, REFIN  
= +5 V external, Buck-Boost Converter enabled (Full Tracking Mode), unless otherwise stated.  
8
6
1.0  
0.8  
3.5 mA to 23.5 mA  
0 mA to 24 mA  
±24 mA  
4 mA to 20 mA  
0 mA to 20 mA  
0.6  
4
0.4  
2
0.2  
0
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-2  
-4  
-6  
-8  
3.5 mA to 23.5 mA  
0 mA to 24 mA  
±24 mA  
4 mA to 20 mA  
0 mA to 20 mA  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
DAC Code  
DAC Code  
C002  
C001  
35. IOUT Linearity Error vs Digital Input Code  
36. IOUT Differential Linearity Error vs Digital Input Code  
20  
3.5 mA to 23.5 mA  
4 mA to 20 mA  
0 mA to 20 mA  
15  
10  
5
0 mA to 24 mA  
±24 mA  
0
-5  
-10  
-15  
-20  
0
8192 16384 24576 32768 40960 49152 57344 65536  
DAC Code  
C003  
37. IOUT Total Unadjusted Error vs Digital Input Code  
版权 © 2017, Texas Instruments Incorporated  
21  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
AVDD/PVDD_x = +15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V, VOUT disabled, IOUT RL = 250 Ω, TA = 25, REFIN  
= +5 V external, Buck-Boost Converter enabled (Full Tracking Mode), unless otherwise stated.  
-24 mA to +24 mA (8 mA/div)  
VNEG (5 V/div)  
0 mA to 24 mA (8 mA/div)  
VPOS (5 V/div)  
VPOS (2 V/div)  
Time (200 µs/div)  
Time (1 ms/div)  
C001  
C001  
0-24 mA Range  
IOUT RL = 625 Ω  
38. IOUT Full-Scale Settling Time, Rising Edge  
39. IOUT Full-Scale Settling Time, Rising Edge  
+24 mA to -24 mA (8 mA/div)  
VNEG (5 V/div)  
VPOS (5 V/div)  
24 mA to 0 mA (8 mA/div)  
VPOS (2 V/div)  
Time (2 µs/div)  
Time (1 ms/div)  
C001  
C001  
0-24 mA Range  
40. IOUT Full-Scale Settling Time, Falling Edge  
IOUT RL = 625 Ω  
41. IOUT Full-Scale Settling Time, Falling Edge  
2500  
VPOS (20 mV/div)  
IOUT (4 µA/div)  
2000  
1500  
1000  
500  
0
IOUT = 24 mA  
IOUT = 12 mA  
IOUT = 0 mA  
Time (1 µs/div)  
10  
100  
1000  
10000  
100000  
1000000  
Frequency (Hz)  
C001  
C001  
0-24 mA Range  
42. IOUT Noise Density vs Frequency  
0-24 mA Range, Mid Scale Code  
43. IOUT Ripple  
22  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Typical Characteristics (接下页)  
AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 5 V.  
VOUT No load, IOUT disabled; TA = 25, REFIN = +5 V external;, Buck-Boost Converter disabled unless otherwise stated.  
8
6
1.0  
0.8  
0.6  
4
0.4  
2
0.2  
0
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-2  
-4  
-6  
-8  
±10 V  
±5 V  
±10 V  
±5 V  
0 V to 10 V  
0 V to 5 V  
0 V to 10 V  
0 V to 5 V  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
DAC Code  
DAC Code  
C002  
C001  
44. VOUT Linearity Error vs Digital Input Code  
45. VOUT Differential Linearity Error vs Digital Input Code  
8.0  
20  
6.0  
4.0  
15  
10  
5
2.0  
0.0  
0
-2.0  
-4.0  
-5  
-10  
-15  
-20  
±10 V  
±5 V  
±10 V  
±5 V  
-6.0  
-8.0  
0 V to 10 V  
0 V to 5 V  
0 V to 10 V  
0 V to 5 V  
5
20  
35  
50  
65  
80  
95 110 125  
œ40 œ25 œ10  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Temperature (oC)  
DAC Code  
C007  
C003  
47. VOUT Linearity Error vs Temperature  
46. VOUT Total Unadjusted Error vs Digital Input Code  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
±10 V  
±5 V  
0 V to 10 V  
0 V to 5 V  
-10.0  
-20.0  
-30.0  
-40.0  
-50.0  
±10 V  
±5 V  
-0.6  
-0.8  
-1.0  
0 V to 10 V  
0 V to 5 V  
5
20  
35  
50  
65  
80  
95 110 125  
5
20  
35  
50  
65  
80  
95 110 125  
œ40 œ25 œ10  
œ40 œ25 œ10  
Temperature (oC)  
Temperature (oC)  
C007  
C007  
48. VOUT Differential Linearity Error vs Temperature  
49. VOUT Total Unadjusted Error vs Temperature  
版权 © 2017, Texas Instruments Incorporated  
23  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 5 V.  
VOUT No load, IOUT disabled; TA = 25, REFIN = +5 V external; Buck-Boost Converter disabled unless otherwise stated.  
50  
40  
2.0  
1.6  
±10 V  
±5 V  
30  
1.2  
0 V to 10 V  
0 V to 5 V  
20  
0.8  
10  
0.4  
0
0.0  
œ10  
œ20  
œ30  
œ40  
œ50  
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
0 V to 10 V  
0 V to 5 V  
5
20  
35  
50  
65  
80  
95 110 125  
5
20  
35  
50  
65  
80  
95 110 125  
œ40 œ25 œ10  
œ40 œ25 œ10  
Temperature (oC)  
Temperature (oC)  
C007  
C007  
50. VOUT Gain Error vs Temperature  
51. VOUT Zero Code Error vs Temperature  
50  
40  
30  
24  
±10 V  
±5 V  
30  
18  
0 V to 10 V  
0 V to 5 V  
20  
12  
10  
6
0
0
œ10  
œ20  
œ30  
œ40  
œ50  
œ6  
œ12  
œ18  
œ24  
œ30  
±10 V  
±5 V  
5
20  
35  
50  
65  
80  
95 110 125  
5
20  
35  
50  
65  
80  
95 110 125  
œ40 œ25 œ10  
œ40 œ25 œ10  
Temperature (oC)  
Temperature (oC)  
C007  
C007  
52. VOUT Full Scale Error vs Temperature  
53. VOUT Bipolar Zero Error vs Temperature  
50  
40  
25  
20  
30  
15  
20  
10  
10  
5
0
0
œ10  
œ20  
œ30  
œ40  
œ50  
œ5  
œ10  
œ15  
œ20  
œ25  
±10 V  
5
±5 V  
SCLM = b'00  
SCLM = b'11  
SCLM = b'10  
SCLM = b'01  
20  
35  
50  
65  
80  
95 110 125  
0
8
16  
24  
32  
40  
œ40 œ25 œ10  
œ40 œ32 œ24 œ16  
œ8  
Temperature (oC)  
VOUT Load Current (mA)  
C007  
C001  
±10-V Range, Full Scale Code for VOUT sourcing & Zero Scale  
Code for VOUT Sinking  
54. VOUT Negative Full Scale Error vs Temperature  
55. VOUT Output Voltage vs Load Current  
24  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Typical Characteristics (接下页)  
AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 5 V.  
VOUT No load, IOUT disabled; TA = 25, REFIN = +5 V external; Buck-Boost Converter disabled unless otherwise stated.  
8.0  
6.0  
1.0  
0.8  
0.6  
4.0  
0.4  
2.0  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-2.0  
-4.0  
-6.0  
-8.0  
±10 V  
±5 V  
±10 V  
±5 V  
0 V to 10 V  
0 V to 5 V  
0 V to 10 V  
0 V to 5 V  
12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18  
VPOS (V)  
12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18  
VPOS (V)  
C015  
C015  
|VPOS_IN_x| = VNEG_IN_x  
|VPOS_IN_x| = VNEG_IN_x  
56. VOUT Linearity Error vs Power Supplies  
57. VOUT Differential Linearity Error vs Power Supplies  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
4
3
2
1
IDD-VPOS  
0
IDD-VNEG  
-10.0  
-20.0  
-30.0  
-40.0  
-50.0  
œ1  
œ2  
œ3  
œ4  
±10 V  
±5 V  
0 V to 10 V  
0 V to 5 V  
12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18  
VPOS (V)  
0
8192 16384 24576 32768 40960 49152 57344 65536  
DAC Code  
C015  
C001  
|VPOS_IN_x| = VNEG_IN_x  
|VPOS_IN_x| = VNEG_IN_x, 10-V Range  
58. VOUT Total Unadjusted Error vs Power Supplies  
59. VOUT Power Supply Current vs Digital Input Code  
5
4
3
2
5.0  
4.0  
3.0  
2.0  
IDD-VPOS  
1
1.0  
IDD-VPOS  
0
œ1  
œ2  
œ3  
œ4  
œ5  
0.0  
IDD-VNEG  
IDD-VNEG  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
5
20  
35  
50  
65  
80  
95 110 125  
12  
13  
14  
15  
16  
17  
18  
œ40 œ25 œ10  
Temperature (oC)  
VPOS (V)  
C001  
C001  
|VPOS_IN_x| = VNEG_IN_x, 10-V Range, Mid Scale Code  
|VPOS_IN_x| = VNEG_IN_x, 10-V Range, Mid Scale Code  
60. VOUT Power Supply Current vs Temperature  
61. VOUT Power Supply Current vs Power Supplies  
Voltages  
版权 © 2017, Texas Instruments Incorporated  
25  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 5 V.  
VOUT No load, IOUT disabled; TA = 25, REFIN = +5 V external;, Buck-Boost Converter disabled unless otherwise stated.  
VOUT (2 V/div)  
VOUT (2 V/div)  
SYNC (5 V/div  
SYNC (5 V/div)  
small signal settling (0.1 %FSR/div)  
small signal settling (0.1 %FSR/div)  
Time (4 µs/div)  
Time (4 µs/div)  
C001  
C001  
10-V Range, Load 1K//200pF  
10-V Range, Load 1K//200pF  
62. VOUT Full-Scale Settling Time, Rising Edge  
63. VOUT Full-Scale Settling Time, Falling Edge  
VOUT (50 mV/div)  
SYNC (5 V/div)  
VOUT (50 mV/div)  
SYNC (2 V/div)  
Time (800 ns/div)  
Time (800 ns/div)  
C005  
C005  
10-V Range, 7FFFh - 8000h  
10-V Range, 8000h - 7FFFh  
64. VOUT Glitch Impulse, Rising Edge, 1LSB Step  
65. VOUT Glitch Impulse, Falling Edge, 1LSB Step  
VOUT (0.2 V/div)  
SYNC (5 V/div)  
AVDD (5 V/div)  
VOUT (2 mV/div)  
Time (1 ms/div)  
Time (2 µs/div)  
C005  
C004  
10V Range  
66. VOUT Power-On Glitch  
67. VOUT Enable Glitch  
26  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Typical Characteristics (接下页)  
AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 5 V.  
VOUT No load, IOUT disabled; TA = 25, REFIN = +5 V external; Buck-Boost Converter disabled unless otherwise stated.  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VOUT = 10 V  
VOUT = 5 V  
VOUT = 0 V  
VOUT (5 µv/div)  
Time (1 s/div)  
10  
100  
1000  
10000  
100000  
1000000  
Frequency (Hz)  
C001  
C001  
10-V Range  
10-V Range, Mid Scale Code  
68. VOUT Noise, 0.1 Hz to 10 Hz  
69. VOUT Noise Density vs Frequency  
VOUT (2 mV/div)  
SCLK (5 V/div)  
Time (4 µs/div)  
C004  
10-V Range, Mid Scale Code, SCLK = 1MHz  
70. Clock Feedthrough VOUT, 1MHz  
版权 © 2017, Texas Instruments Incorporated  
27  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
AVDD/PVDD_x = +15 V, VSENSEN_x = PBKG = PVSS_x = 0 V, External DVDD = 5 V. VOUT No load, IOUT disabled; TA =  
25, REFIN = +5 V external; Buck-Boost Converter enabled (Full Tracking Mode), unless otherwise stated.  
8
6
1.0  
0.8  
±10 V  
±5 V  
0 V to 10 V  
0 V to 5 V  
0.6  
4
0.4  
2
0.2  
0
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-2  
-4  
-6  
-8  
±10 V  
±5 V  
0 V to 10 V  
0 V to 5 V  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
DAC Code  
DAC Code  
C002  
C001  
71. VOUT Linearity Error vs Digital Input Code  
72. VOUT Differential Linearity Error vs Digital Input Code  
20  
3500  
15  
10  
5
3000  
VOUT = 10 V  
2500  
VOUT = 5 V  
2000  
VOUT = 0 V  
0
1500  
1000  
500  
0
-5  
-10  
-15  
-20  
±10 V  
±5 V  
0 V to 10 V  
0 V to 5 V  
0
8192 16384 24576 32768 40960 49152 57344 65536  
10  
100  
1000  
10000  
100000  
1000000  
DAC Code  
Frequency (Hz)  
C003  
C001  
10-V Range  
73. VOUT Total Unadjusted Error vs Digital Input Code  
74. VOUT Noise Density vs Frequency  
VNEG (0.2 V/div)  
VOUT (1 mV/div)  
VPOS (0.2 V/div)  
Time (1 ms/div)  
C001  
10-V Range, Mid Scale Code  
75. VOUT Ripple  
28  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Typical Characteristics (接下页)  
AVDD/PVDD_x/VPOS_IN_x = +15 V, VNEG_IN_x = –15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V. VOUT disabled,  
IOUT disabled, TA = 25, Buck-Boost Converter disabled, unless otherwise stated.  
5.004  
5.002  
5.000  
4.998  
4.996  
4.994  
4.992  
4.990  
4.988  
4.986  
4.984  
5.015  
5.012  
5.009  
5.006  
5.003  
5.000  
4.997  
4.994  
4.991  
4.988  
4.985  
VREF  
5
20  
35  
50  
65  
80  
95 110 125  
0
1
2
3
4
5
œ40 œ25 œ10  
œ5  
œ4  
œ3  
œ2  
œ1  
Temperature (oC)  
Load Current (mA)  
C001  
C001  
30 Units  
76. Internal Reference Voltage vs Temperature  
77. Internal Reference Voltage vs Load Current  
5.015  
2500  
5.012  
5.009  
5.006  
5.003  
5.000  
4.997  
4.994  
4.991  
4.988  
4.985  
2000  
1500  
1000  
500  
0
VREF  
VREF  
12  
15  
18  
21  
24  
27  
30  
33  
36  
10  
100  
1000  
10000  
100000  
1000000  
AVDD (V)  
Frequency (Hz)  
C001  
C001  
78. Internal Reference Voltage vs Power Supply  
79. Internal Reference Noise Density vs Frequency  
VREF (5 µv/div)  
Time (1 s/div)  
C001  
80. Internal Reference Noise, 0.1 Hz to 10 Hz  
版权 © 2017, Texas Instruments Incorporated  
29  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
AVDD/PVDD_x = +15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V, VOUT disabled, IOUT RL = 250, TA = 25, Buck-  
Boost Converter enabled (Full Tracking Mode), unless otherwise stated.  
2500  
VPOS (20 mV/div)  
2000  
1500  
1000  
500  
0
VREF  
VREF (1mV/ div)  
Time (1 µs/div)  
10  
100  
1000  
10000  
100000  
1000000  
Frequency (Hz)  
C001  
C001  
0-24 mA Range, Full Scale Code on all channels  
81. Internal Reference Noise Density vs Frequency  
0-24 mA Range, Full Scale Code on all channels  
82. Internal Reference Ripple  
30  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Typical Characteristics (接下页)  
AVDD/PVDD_x = +15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V, TA = 25, Buck-Boost Converter enabled (Full  
Tracking Mode), unless otherwise stated.  
VNEG (2 V/div)  
VPOS (1 V/div)  
SYNC (5 V/div)  
VNEG (2 V/div)  
VPOS (1 V/div)  
SYNC (5 V/div)  
Time (2 ms/div)  
Time (2 ms/div)  
C001  
C001  
83. Buck-Boost Converter Power-On (IOUT Mode)  
84. Buck-Boost Converter Power-On (VOUT Mode)  
180  
4000  
IOUT = 24 mA, 1k  
IOUT = 12 mA, 1kꢀ  
IOUT = 24 mA, 250ꢀ  
IOUT = 12 mA, 250 ꢀ  
IOUT = 0 mA  
160  
140  
120  
100  
80  
3500  
3000  
2500  
2000  
1500  
1000  
500  
VOUT = 10 V  
VOUT = 5 V  
VOUT = 0 V  
60  
40  
20  
0
œ20  
0
10  
100  
1000  
10000  
100000  
1000000  
10  
100  
1000  
10000  
100000  
1000000  
Frequency (Hz)  
Frequency (Hz)  
C001  
C001  
0-24 mA Range, RL = 250 Ω  
10-V Range, No Load  
85. VPOS Noise Density (IOUT Mode) vs Frequency  
86. VPOS Noise Density (VOUT Mode) vs Frequency  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VOUT = 10 V  
VOUT = 5 V  
VOUT = 0 V  
0
10  
100  
1000  
10000  
100000  
1000000  
Frequency (Hz)  
C001  
10-V Range, No Load  
87. VNEG Noise Density (VOUT Mode) vs Frequency  
版权 © 2017, Texas Instruments Incorporated  
31  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
AVDD/PVDD_x = +15 V, VNEG_IN_x = PBKG = PVSS_x = 0 V, External DVDD = 5 V, VOUT disabled, IOUT enabled 0-24  
mA Range, TA = 25, REFIN = +5 V external, Buck-Boost Converter VPOS_IN_x enabled (Full Tracking Mode), unless  
otherwise stated.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD =12V, RL=250  
PVDD=24V, RL=250ꢀ  
PVDD =36V, RL=250ꢀ  
PVDD =12V, RL=1kꢀ  
PVDD=24V, RL=1kꢀ  
PVDD =36V, RL=1kꢀ  
PVDD =12V, RL=250  
PVDD =12V, RL=1kꢀ  
PVDD=24V, RL=250ꢀ  
PVDD=24V, RL=1kꢀ  
PVDD =36V, RL=250ꢀ  
PVDD =36V, RL=1kꢀ  
0
2
4
6
8
10 12 14 16 18 20 22 24  
IOUT (mA)  
0
2
4
6
8
10 12 14 16 18 20 22 24  
IOUT (mA)  
C001  
C001  
88. IOUT Efficiency vs Load Current  
89. VPOS Efficiency (IOUT Mode) vs Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
PVDD =12V, RL=250  
PVDD=24V, RL=250ꢀ  
PVDD =36V, RL=250ꢀ  
PVDD =12V, RL=1kꢀ  
PVDD=24V, RL=1kꢀ  
PVDD =36V, RL=1kꢀ  
PVDD =12V, RL=250  
PVDD=24V, RL=250ꢀ  
PVDD =36V, RL=250ꢀ  
PVDD =12V, RL=1kꢀ  
PVDD=24V, RL=1kꢀ  
PVDD =36V, RL=1kꢀ  
30  
20  
10  
0
5
20  
35  
50  
65  
80  
95 110 125  
5
20  
35  
50  
65  
80  
95 110 125  
œ40 œ25 œ10  
œ40 œ25 œ10  
Temperature (oC)  
Temperature (oC)  
C001  
C001  
Full Scale Code  
IOUT = 24 mA  
Full Scale Code  
IOUT = 24 mA  
90. IOUT Efficiency vs Temperature  
91. VPOS Efficiency (IOUT Mode) vs Temperature  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
4000  
3600  
3200  
2800  
2400  
2000  
1600  
1200  
800  
PVDD=12V, RL=250  
PVDD=12V, RL=1kꢀ  
PVDD=24V, RL=250ꢀ  
PVDD=24V, RL=1kꢀ  
PVDD=36V, RL=250ꢀ  
PVDD=36V, RL=1kꢀ  
PVDD=12V, RL=250  
PVDD=24V, RL=250ꢀ  
PVDD=36V, RL=250ꢀ  
PVDD=12V, RL=1kꢀ  
PVDD=24V, RL=1kꢀ  
PVDD=36V, RL=1kꢀ  
500  
250  
400  
0
0
0
2
4
6
8
10 12 14 16 18 20 22 24  
IOUT (mA)  
5
20  
35  
50  
65  
80  
95 110 125  
œ40 œ25 œ10  
Temperature (oC)  
C001  
C001  
Full Scale Code  
IOUT = 24 mA  
Full Scale Code, 24 mA on all channels  
93. PVDD Power Loss (IOUT Mode) vs Temperature  
92. PVDD Power Loss (IOUT Mode) vs Load Current  
32  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Typical Characteristics (接下页)  
AVDD/PVDD_x = +15 V, PBKG = PVSS_x = 0 V, External DVDD = 5 V, VOUT enabled, 10-V Range, Load 1K//200pF, IOUT  
disabled, TA = 25, REFIN = +5 V external, Buck-Boost Converter enabled (Full Tracking Mode), unless otherwise stated.  
50  
46  
42  
38  
34  
30  
26  
22  
18  
14  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 12 V  
PVDD = 24 V  
PVDD = 36 V  
PVDD=12V, RL=250  
PVDD=24V, RL=250ꢀ  
PVDD=36V, RL=250ꢀ  
PVDD=12V, RL=1kꢀ  
PVDD=24V, RL=1kꢀ  
PVDD=36V, RL=1kꢀ  
0
2
4
6
8
10 12 14 16 18 20 22 24  
IOUT (mA)  
0
1
2
3
4
5
6
7
8
9
10  
VOUT Load (mA)  
C001  
C001  
VOUT disabled, IOUT = 24 mA (all channels), VNEG_IN_x = 0 V  
94. Intenal Die Temperature (IOUT Mode) vs Load Current  
95. VPOS Efficiency (VOUT Mode) vs Load Current  
2000  
2000  
1800  
1600  
1400  
1200  
1000  
800  
PVDD = 12 V  
PVDD = 24 V  
PVDD = 36 V  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
600  
400  
200  
0
PVDD = 12 V  
PVDD = 24 V  
PVDD = 36 V  
0
1
2
3
4
5
6
7
8
9
10  
5
20  
35  
50  
65  
80  
95 110 125  
œ40 œ25 œ10  
VOUT Load (mA)  
Temperature (oC)  
C001  
C001  
Full Scale Code on all channels  
Full Scale Code on all channels  
96. PVDD Power Loss (VOUT Mode) vs Load Current  
97. PVDD Power Loss (VOUT Mode) vs Temperature  
50  
46  
42  
38  
34  
30  
3.60  
3.40  
3.20  
Forward Sweep  
Reverse Sweep  
3.00  
2.80  
2.60  
2.40  
2.20  
2.00  
1.80  
26  
PVDD = 12 V  
22  
PVDD = 24 V  
18  
PVDD = 36 V  
14  
10  
1.60  
0
1
2
3
4
5
6
7
8
9
10  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VOUT Load (mA)  
Logic Level (V)  
C001  
C001  
All channels enabled  
98. Internal Die Temperature (VOUT Mode) vs Load  
99. Power Supply Current (DVDD) vs Input Logic Level  
Current  
版权 © 2017, Texas Instruments Incorporated  
33  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
Each channel of DAC8775 consists of a resistor-string digital-to-analog converter (DAC) followed by buffer  
amplifiers. The output of the buffer drives the current output stage and the voltage output amplifier. The resistor-  
string section is simply a string of resistors, each of value R, from REFIN to PBKG, as the Functional Block  
Diagram illustrates. This type of architecture ensures DAC monotonicity. The 16-bit binary digital code loaded to  
the DAC register determines at which node on the string the voltage is tapped off before being fed into the output  
amplifier. The current output stage converts the output from the string to current using a precision current source.  
The voltage output provides a voltage output to the external load. When the current output stage or the voltage  
output stage is disabled, the respective output pin is in Hi-Z state. After power-on, both output stages are  
disabled. Each channel of DAC8775 also contains a Buck-Boost converter which can be used to generate the  
power supply for the current output stage and voltage output amplifier.  
8.2 Functional Block Diagram  
REFIN  
Buck-Boost  
Converters  
VPOS_IN_x  
Current Out  
Current  
Source  
IOUT_x  
VOUT_x  
Voltage Out  
VNEG_IN_x  
AGND1  
Copyright © 2016, Texas Instruments Incorporated  
100. General Architecture  
8.3 Feature Description  
8.3.1 Current Output Stage  
Each channel's current output stage consists of a pre-conditioner and a precision current source as shown in 图  
101. This stage provides a current output according to the DAC code. The output range can be programmed as  
0 mA to 20 mA, 0 mA to 24 mA, 4 mA to 20 mA, 3.5 mA to 23.5 mA, or ±24 mA. In the current output mode, the  
maximum compliance voltage on pin IOUT_x is between (-|VNEG_IN_x| + 3 V) |IOUT_x| (VPOS_IN_x – 3 V).  
This compliance voltage is automatically maintained when the Buck-Boost converter is used to generate these  
supplies (see Buck-Boost Converter section). However, when using an external supply for VPOS_IN_x pin  
(Buck-Boost converter disabled), the VPOS_IN_x and VNEG_IN_x supplies should be chosen such that this  
compliance voltage is maintained.  
34  
版权 © 2017, Texas Instruments Incorporated  
 
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Feature Description (接下页)  
VPOS_IN_x  
Rsense  
Sourcing  
PMOS  
DAC  
IOUT  
Sinking  
NMOS  
Rload  
Iload  
Rsense  
VNEG_IN_x  
Copyright © 2016, Texas Instruments Incorporated  
101. Current Output  
The 16 bit data can be written to DAC8775 using address 0x05 (DAC data registers, see 5 and 6).  
For a 0-mA to 20-mA output range:  
CODE  
2N  
»
ÿ
IOUT_x = 20 mA.  
Ÿ
(1)  
(2)  
(3)  
(4)  
(5)  
For a 0-mA to 24-mA output range:  
CODE  
2N  
»
ÿ
IOUT_x = 24 mA.  
Ÿ
For a 3.5-mA to 23.5-mA output range:  
CODE  
2N  
»
ÿ
IOUT_x = 20 mA.  
+ 3.5 mA  
Ÿ
For a 4-mA to 20-mA output range:  
CODE  
2N  
»
ÿ
IOUT_x = 16 mA.  
+ 4 mA  
Ÿ
For a -24-mA to 24-mA output range:  
CODE  
2N  
»
ÿ
IOUT_x = 48 mA.  
- 24 mA  
Ÿ
Where:  
CODE is the decimal equivalent of the code loaded to the DAC.  
N is the bits of resolution; 16.  
版权 © 2017, Texas Instruments Incorporated  
35  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Feature Description (接下页)  
8.3.2 Voltage Output Stage  
The voltage output stage as conceptualized in 102 provides the voltage output according to the DAC code  
and the output range setting. The output range can be programmed as 0 V to +5 V or 0 V to +10 V for unipolar  
output mode, and ±5 V or ±10 V for bipolar output mode. In addition, an option is available to increase the output  
voltage range by 20%. The output current drive can be up to 10 mA. The output stage has short-circuit current  
protection that limits the output current to 16 mA, this limit can be changed to 8 mA, 20 mA or 24mA via writing  
bits 15 and 14 of address 0x04. This minimum headroom and footroom for the voltage output stage is  
automatically maintained when the Buck-Boost converter is used to generate these supplies. However, when  
using an external supply for VPOS_IN_x and VNEG_IN_x pin (Buck-Boost converter disabled) the minimum  
headroom and footroom as per must be maintained. In this case, the Recommended Operating Conditions  
shows the maximum allowable difference between VPOS_IN_x and VNEG_IN_x.  
The voltage output is designed to drive capacitive loads of up to 1 μF. For loads greater than 20 nF, an external  
compensation capacitor can be connected between CCOMP_x and VOUT_x to keep the output voltage stable at  
the expense of reduced bandwidth and increased settling time. Note that, a step response (due to input code  
change) on the voltage output pin loaded with large capacitive load (> 20 nF) will trigger the short circuit limit  
circuit of the output stage. This will result in setting the short circuit alarm status bits. Therefore, it is  
recommended to use slew rate control for large step change, when the voltage output pin is loaded with high  
capacitive loads.  
w3  
120Y  
ë{9b{9t_ó  
w2  
{1  
120Y  
5!/  
ëhÜÇ_ó  
w0  
w1  
120Y  
120Y  
w2  
17Y t 24Y  
wC.  
60Y  
w9CLb  
{3  
ë{9b{9b_ó  
w1  
42Y - hpen  
{2  
Copyright © 2016, Texas Instruments Incorporated  
102. Voltage Output  
The VSENSEP_x pin is provided to enable sensing of the load. Ideally, it is connected to VOUT_x at the  
terminals. Additionally, it can also be used to connect remotely to points electrically "nearer" to the load. This  
allows the internal output amplifier to ensure that the correct voltage is applied across the load as long as  
headroom is available on the power supply. However, if this line is cut, the amplifier loop would be broken.  
Therefore, an optional resistor can be used between VOUT_x and VSENSEP_x to prevent this.  
The VSENSEN_x pin can be used to sense the remote ground and offset the VOUT pin accordingly. The  
VSENSEN_x pin can sense a maximum of ±7 V difference from the PBKG pin of the DAC8775.  
The 16-bit data can be written to DAC8775 as shown in DAC data registers, see 5 and 6.  
For unipolar output mode:  
CODE  
2N  
»
ÿ
VOUT_x = VREFIN.GAIN.  
Ÿ
(6)  
For bipolar output mode:  
CODE  
2N  
GAIN.VREFIN  
2
»
ÿ
VOUT_x = VREFIN.GAIN.  
-
Ÿ
(7)  
36  
版权 © 2017, Texas Instruments Incorporated  
 
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Feature Description (接下页)  
Where:  
CODE is the decimal equivalent of the code loaded to the DAC.  
N is the bits of resolution; 16.  
VREFIN is the reference voltage; for internal reference, VREFIN = +5 V.  
GAIN is automatically selected for a desired voltage output range as shown in 7.  
8.3.3 Buck-Boost Converter  
The DAC8775 includes a Buck-Boost Converter for each channel to minimize the power dissipation of the chip  
and provides significant system integration. This Buck-Boost converter is based on a Single Inductor Multiple  
Output (SIMO) architecture and requires a single inductor (per channel) to simultaneously generate all the analog  
power supplies required by the chip. The Buck-Boost converters utilize three on-chip switches (shown in 103)  
which are synchronously controlled via current mode control logic. These converters are designed to work in  
discontinuous conduction mode (DCM) with an external inductor (per channel) of value 100 µH connected  
between LN_x and LP_x pins (see Buck-Boost Converter External Component Selection section). The peak  
inductor current inductor is limited to a value of 0.5 A internally.  
[t_x  
[b_x  
të55_x  
ëth{_Lb_x  
9xꢀernal Lnducꢀor  
9xꢀernal  
{cꢂoꢀꢀky  
5iodes  
të{{_x  
të{{_x  
ëb9D_Lb_x  
x = ꢁ!,.,/,5}  
Copyright © 2016, Texas Instruments Incorporated  
103. Buck-Boost Converter  
These Buck-Boost converters employ a variable switching frequency technique. This technique increases the  
converter efficiency at all loads by automatically reducing the switching frequency at light loads and increasing it  
at heavy loads. At no load condition, the converter stops switching completely until the load capacitor discharges  
by a preset voltage. At this point the converter automatically starts switching and recharges the load capacitor(s).  
In addition to saving power at all loads, this technique ensures low switching noise on the converter outputs at  
light loads. The minimum load capacitor for these Buck-Boost converters is 10 µF. This capacitor must be  
connected between the schottky diode(s) and ground (0 V) for each arm of each Buck-Boost converter (A, B, C,  
D). The Buck-Boost converter, when enabled, generates ripple on the supply pins (VPOS_IN_x and  
VNEG_IN_x). This ripples is typically attenuated by the power supply rejection ratio of the output amplifiers  
(IOUT_x or VOUT_x) and appears as noise on the output pin of the amplifiers (IOUT_x and VOUT_x). A larger  
load capacitor in combination with additional filter (see Application Information section) reduces the output ripple  
at the expense of increasing settling time of the converter output.  
The input voltage to the Buck-Boost converters (pin PVDD_x) can vary from +12 V to +36 V. These outputs can  
be individually enabled or disabled via the user SPI interface (see Commands in 5 and 6).  
8.3.3.1 Buck-Boost Converters Outputs  
Each of the four Buck-Boost converters can be used to provide power to the current output stage or the voltage  
output stage by enabling the respective Buck-Boost converter and connecting the power supplies as shown in 图  
104. Additional passive filters can optionally be added between the schottky diode and input supply pins  
(VPOS_IN_x and VNEG_IN_x) to attenuate the ripple feeding into the VPOS_IN_x and VNEG_IN_x pin.  
版权 © 2017, Texas Instruments Incorporated  
37  
 
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Feature Description (接下页)  
D1  
D2  
Rfilt1  
DAC8775  
LN_x  
VPOS_IN_x  
LP_x  
Cfilt1  
Cload  
PVSS_x  
AGND_x  
Rfilt2  
Cfilt2  
Cload  
PVSS_x  
AGND_x  
VNEG_IN_x  
Copyright © 2016, Texas Instruments Incorporated  
104. Buck-Boost Converter Positive and Negative Outputs  
8.3.3.2 Selecting and Enabling Buck-Boost Converters  
The analog outputs of the Buck-Boost converters can be enabled in two different ways: Current Output Mode or  
Voltage Output Mode. Any and all combination of the DAC8775 Buck-Boost converters can be selected by  
writing to address 0x06 (see Table 5). The positive/negative arm of the selected Buck-Boost converter can be  
enabled via writing to address 0x07 (see Table 6). Note that, VNEG_IN_x is internally shorted to PBKG when the  
negative arm of Buck-Boost converter is not enabled.  
When used in voltage output mode, the Buck-Boost converter generates a constant ±15.0 V for the positive and  
negative power supplies. Alternatively this constant voltage may be modified by the clamp register setting for  
each channel.  
When used in current output mode the Buck-Boost converter generates the positive and negative power supply  
based on the RANGE setting, for example the negative power supply is only generated for ±24 mA range.  
The minimum voltage that the Buck-Boost converter can generate on the VPOS_IN_x pin in 4.96 V with a typical  
efficiency of 75% at PVDD_x = 12 V and a load current of 24 mA, thus significantly minimizing power dissipation  
on chip. The maximum voltage that the Buck-Boost converter can generate on the VPOS_IN_x pin is 32 V.  
Similarly, the minimum voltage that the Buck-Boost converter can generate on the VNEG_IN_x pin in –18.0 V.  
The maximum voltage that the Buck-Boost converter can generate on the VNEG_IN_x pin in –5.0 V.  
8.3.3.3 Configurable Clamp Feature and Current Output Settling Time  
A large signal step on the output pin IOUT_x (for example 0 mA to 24 mA) with a load of 1 KΩ would require that  
the respective Buck-Boost converter change the output voltage on the VPOS_IN_x pin from 4 V to 27 V. Thus,  
the current output settling time will be dominated by the settling time of the VPOS_IN_x voltage. A trade off can  
be made to reduce the settling time at the expense of power saving by increasing the minimum voltage that the  
respective Buck-Boost converter generates on the positive output.  
The DAC8775 implements a configurable clamp feature. This feature allows multiple modes of operation based  
on CCLP[1:0] and HSCLMP bits (see Table 6).  
8.3.3.3.1 Default Mode - CCLP[1:0] = "00" - Current Output Only  
This is the default mode of operation, CCLP[1:0] = "00" for Buck-Boost converter is to be in full tracking mode.  
The minimum voltage generated on VPOS_IN_x in this case is 4 V. The Buck-Boost converter varies the positive  
and negative outputs adaptively such that the voltage across these outputs and IOUT_x pins is 3 V. This is  
accomplished by internally feeding back the voltage across the current output PMOS and NMOS to the  
respective Buck-Boost converter control circuit. For example, for a load current of 24 mA flowing through a load  
resistance of 1 KΩ, the generated voltage at the VPOS_IN_x pin will be around 27 V.  
38  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Feature Description (接下页)  
8.3.3.3.2 Fixed Clamp Mode - CCLP[1:0] = "01" - Current and Voltage Output  
In this mode of operation, the user can over-ride the default operation by writing "01" to CCLP[1:0]. The minimum  
voltage generated on VPOS_IN_x and VNEG_IN_x can be adjusted by writing to PCLMP[3:0] / NCLMP[3:0]  
(address 0x07). The voltage setting for current output and voltage output are specified in 6.  
8.3.3.3.3 Auto Learn Mode - CCLP[1:0] = "10" - Current Output Only  
In this mode ,the device automatically senses the load on the current output terminal and sets the minimum  
voltage generated on VPOS_IN_x terminals to a fixed value. The value is calculated such that for any code  
change, the settling time is dependent only on the DAC settling time. For example, with a load of 250 Ω and a  
maximum current of 24 mA, the Buck-Boost output voltage is set as 9 - 12 V. This achieves the maximum power  
saving without sacrificing settling time because the Buck-Boost output is fixed.  
In order to ensure the correct operation of auto-learn mode, following steps below must be followed.  
1. The device must be enabled in full tracking mode, CCLP[1:0] = "00".  
2. Current output is enabled and a code greater then 4000h should be written to the DAC.  
3. Write CCLP[1:0] = "10" to enable auto learn mode.  
At this point, the clamp register (PCLMP - address 0x07) is populated with the appropriate settings. The clamp  
status bit CLST (address 0x0B) is set once the clamp register is populated indicating the completion of this  
process. In this mode the PCLMP bits are read only. Typically, this process of sensing the load is done only once  
after power up. In order to re initiate this process, the CCLP bits must be rewritten with "10".  
8.3.3.3.4 High Side Clamp (HSCLMP)  
The default maximum positive voltage that the Buck-Boost converter can generate is 32 V. However, this voltage  
can be reduced to 26 V by writing '1' to HSCLMP bit (address 0x0E, 6). Note that this feature can be enabled  
or disabled per channel by selecting the corresponding channel (address 0x03, 6).  
8.3.3.4 Buck-Boost Converters and Open Circuit Current Output  
In normal operating condition when current output is loaded with a resistive load, the Buck-Boost converter varies  
the positive and negative outputs adaptively such that the voltage across these outputs and IOUT_x pins is 3  
V. However, if the current output is in open circuit condition, the Buck-Boost converter output would rail to fixed  
voltages as described in 1.  
1. Open Circuit IOUT with Buck-Boost Converter  
BUCK-BOOST  
POSITIVE ARM  
BUCK-BOOST  
NEGATIVE ARM  
IOUT RANGE  
IOUT PIN VOLTAGE  
VPOS_IN_x VNEG_IN_x  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
All Ranges  
±24 mA only  
0 V  
< 0 V  
0 V  
20 V  
4 V  
–5 V  
–20 V  
0 V  
All ranges except ±24 mA  
32 V  
8.3.4 Analog Power Supply  
After power up it is required that a hardware reset is issued using the RESET pin.  
The DAC8775 is design to operate with a single power supply (12 V to 36 V) using integrated Buck-Boost  
converter. In this mode, pins PVDD_x and AVDD must be tied together and driven by the same power supply.  
VPOS_INx and VNEG_IN_x will be enabled as programmed by the device registers. It is recommended that  
DVDD is applied first to reduce output transients.  
The DAC8775 can also be operated without using the integrated Buck-Boost converter. In this mode, pins  
PVDD_x, AVDD, and VPOS_IN_x must be tied together and driven by the same power supply (12 V to 36 V). In  
this mode in order to reduce output transients it is recommended that DVDD is applied first, followed by  
VPOS_IN_x / PVDD_x / AVDD and finally REFIN. Note that in this mode, the minimum required head room and  
foot room for the output amplifiers must be met.  
Recommended Operating Conditions shows the maximum and minimum allowable limits for all the power  
supplies when DAC8775 is powered using external power supplies.  
版权 © 2017, Texas Instruments Incorporated  
39  
 
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
8.3.5 Digital Power Supply  
The digital power supply to DAC8775 can be internally generated or externally supplied. This is determined by  
the status of DVDD_EN pin.  
When the DVDD_EN pin is left floating, the voltage on DVDD pin is generated via an internal LDO. The typical  
value of the voltage generated on DVDD pin is 5 V. In this mode, the DVDD pin can also be used to power other  
digital components on the board. The maximum drive capability of this pin is 10mA. Please note that to ensure  
stability the minimum load capacitance on this pin is limited to 100 pF, where as the maximum load capacitance  
is limited to 0.1 µF.  
When the DVDD_EN pin is tied to 0 V, the internal LDO is disabled and the DVDD pin must be powered via an  
external digital supply.  
8.3.6 Internal Reference  
The DAC8775 includes an integrated 5-V reference with an initial accuracy of ±10 mV maximum and a  
temperature drift coefficient of 10 ppm/°C maximum. A buffered output capable of driving up to 5 mA is available  
on REFOUT. The internal reference for DAC8775 is disabled by default. To enable the internal reference,  
REF_EN bit on address 0x02h must be set to '1' (see 6).  
8.3.7 Power-On-Reset  
The DAC8775 contain power on reset circuits which is based on AVDD and DVDD power supplies. After power-  
on, the power-on-reset circuit ensures that all registers are at their default values (see 5). The current, voltage  
output DACs, and the Buck-Boost converters are disabled. The current output pin is in high impedance state.  
The voltage output pin is in a 30kΩ-to-GND state; however, the VSENSEP_x pin is an open circuit. The voltage  
output pin impedance may be changed to high-impedance by the POC bit setting.  
8.3.8 ALARM Pin  
The DAC8775 contains an ALARM pin. When one or more of following events occur, the ALARM pin is pulled  
low:  
1. The load on any channel's IOUT_x pin is in open circuit (> 500 µsec); or  
2. The voltage at IOUT_x, when enabled, reaches a level where the accuracy of the output current would be  
compromised. This condition is detected by monitoring internal voltage levels of the IOUT_x circuitry and will  
typically be below the specified compliance voltage minimum of 3 V (> 500 µsec). Note that, when the buck  
boost converter is enabled in full tracking mode (CCLP[1:0] = "00"), a transient alarm signal can be observed  
during the current output transition. This condition occurs because the compliance voltage for current output  
is violated as the buck boost converter is adjusting the power supply. Alternatively the alarm can be  
programmed to only indicate an alarm once the DC/DC has reached saturation and the compliance voltage  
condition is still being violated; or  
3. The die temperature has exceeded +150°C; or  
4. The SPI watchdog timer exceeded the timeout period (if enabled); or  
5. The SPI frame error check (CRC) encountered an error (if enabled).  
6. A short circuit current limit is reached (> 500 µsec) on any VOUT_x when enabled in voltage output mode.  
7. The Buck-Boost converter has reached the maximum output voltage (set by bit HSCLMP, 6 address  
0x0E).  
When connecting the ALARM pins of multiple DAC8775 devices together, forming a wired-AND function, the host  
processor should read the status register of each device to know all the fault conditions that are present.  
The ALARM pin continuously monitors the above mentioned conditions and returns to open drain condition if the  
alarm condition is removed (non-latched behavior - default). For condition (1) mentioned above and Buck-Boost  
converter used to power the DAC, the ALARM pin if pulled low due to the alarm condition will remain pulled low  
even after the alarm condition is removed (latched behavior). In this condition the alarm pin can be reset by  
1. Resetting the corresponding fault bits in the status register (address 0x0B, 6); or  
2. Performing software reset (write to address 0x01, 6); or  
3. Toggling hardware reset pin; or  
4. Performing power on reset.  
40  
版权 © 2017, Texas Instruments Incorporated  
 
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Note that if the alarm action bits are programmed to "10" (AC_IOC[1:0], the Buck-Boost converter and the current  
output amplifier are automatically disabled upon the event of open circuit on current output. In this case, the  
ALARM automatically resets to the default behavior (non-latched behavior).  
8.3.9 Power GOOD Bits  
Each Buck-Boost converter in DAC8775 has a read only bit called power good (PGx) (address 0x0B, 6). This  
bit is set to logic '1' when both of the following conditions are met:  
1. The VPOS_IN_x > 4 V (if enabled) and  
2. The VNEG_IN_x < –3 V (if enabled)  
The PGx bit indicates the status of the outputs of the enabled Buck-Boost converters. For example if the output  
of Buck-Boost converter A is the only one enabled, then the PGA bit will be set to a logic '1' only after the  
positive output pins of the Buck-Boost converter A are 3.0 V and the negative output pin of Buck-boost  
converter A is -3.0 V.  
8.3.10 Status Register  
Since, DAC8775 contains one ALARM pin for the entire chip, the status of individual fault condition can be  
checked using the status register. This register (see Register Maps and Bit Functions section) consists of five  
types of ALARM status bits (Faults on current and voltage outputs , Over temperature condition, CRC errors,  
Watchdog timeout and Buck-Boost converter power good) and two status bit (User toggle, Auto Learn status).  
The device continuously monitors these conditions. When an alarm occurs, the ALARM pin is pulled low and the  
corresponding status bit is set ('1'). Whenever one of these status bits is set, it remains set until the user clears it  
by writing '1' to corresponding bit on address 0x0B. The status bit can also be cleared by performing a hardware  
reset, software reset, or power-on reset, note that it takes a minimum of 8 µsec for the status register to get  
reset. These bits are reasserted if the ALARM condition continues to exist in the next monitoring cycle.  
8.3.11 Status Mask  
The ALARM pin for DAC8775 is triggered by any of the alarm conditions (see ALARM Pin section). However,  
these different alarm conditions can be masked from creating the alarm signal at the pin by using the status  
mask register. The status mask register (address 0x0C, Table 6) has the same bit order as the status register  
except that it can be set to mask any or all status bits that create the alarm signal.  
8.3.12 Alarm Action  
The DAC8775 implements an alarm action register (address 0x0D,Table 6). By writing to this register, the user  
can select the action that the device will take automatically in case of a specific alarm condition. In case, different  
setting are chosen for different alarm conditions, the following priority (high to low) will be considered when taking  
action:  
1. Over temperature alarm  
2. Output fault alarm  
3. CRC error/Watchdog timer fault alarm  
This device also contains a 6-bit alarm code register (address 0x0E, 6) which can be loaded to the DACs if  
the alarm action register is set to "01". Note that the alarm code, once set, remains set even if the alarm  
condition is removed. Also note that the alarm action change to the programmed code is a step function even if  
slew rate control is enabled.  
8.3.13 Watchdog Timer  
This feature is useful to ensure that communication between the host processor and the DAC8775 has not been  
lost. It can be enabled by setting the WEN (address 0x03) bit to '1', see Table 6. The watchdog timeout period  
can be set using the WPD[1:0] address 0x03) bits. The timer period is based off an internal oscillator with a  
typical value of 8 MHz.  
If enabled, the chip must have an SPI frame with 0x10 as the write address byte written to the device within the  
programmed timeout period. Otherwise, the ALARM pin asserts low and the WDT bit (address 0x0B) of the  
status register is set to '1'. The WDT bit is set to '0' with a software/hardware reset, or by disabling the watchdog  
timer (WEN = '0'), or powering down the device.  
版权 © 2017, Texas Instruments Incorporated  
41  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
When using multiple DAC8775 devices in a daisy-chain configuration, the open-drain ALARM pins of all devices  
can be connected together to form a wired-AND network. The watchdog timer can be enabled in any number of  
the devices in the chain although enabling it in one device in the chain should be sufficient. The wired-AND  
ALARM pin may get pulled low because of the simultaneous presence of different trigger conditions in the  
devices in the daisy-chain. The host processor should read the status register of each device to know all the fault  
conditions present in the chain.  
8.3.14 Programmable Slew Rate  
The slew rate control feature allows the user to control the rate at which the output voltage or current changes.  
This feature is disabled by default and can be enabled for the selected channel by writing logic '1' to the SREN  
bit at address 0x04 (see Table 6). With the slew rate control feature disabled, the output changes smoothly at a  
rate limited by the output drive circuitry and the attached load.  
With this feature enabled, the output does not slew directly between the two values. Instead, the output steps  
digitally at a rate defined by bits [2:0] (SR_STEP) and bits [3:0] (SRCLK_RATE) on address 0x04 (see Table 6).  
SR_RATE defines the rate at which the digital slew updates; SRCLK_STEP defines the amount by which the  
output value changes at each update. Table 6 shows different settings for SRCLK_STEP and SR_RATE.  
The time required for the output to slew over a given range can be expressed as 公式 8:  
Output Change  
Slew Time =  
Step Size.Update Clock Frequency.LSB Size  
(8)  
Where:  
Slew Time is expressed in seconds  
Output Change is expressed in amps (A) for current output mode or volts (V) for voltage output mode  
When the slew rate control feature is enabled, the output changes happen at the programmed slew rate. This  
configuration results in a staircase formation at the output. If the CLR pin is asserted, the output slews to the  
zero-scale value at the programmed slew rate. When a new DAC data is written, the output starts slewing to the  
new value at the slew rate determined by the current DAC code and the new DAC data. The update clock  
frequency for any given value is the same for all output ranges. The step size, however, varies across output  
ranges for a given value of step size because the LSB size is different for each output range.  
Note that disabling the slew rate feature while the DAC is executing the slew rate command will abort the slew  
rate operation and the DAC output will stay at the last code after which the slew rate disable command was  
acknowledged.  
8.3.15 HART Interface  
On the DAC8775, digital communication such as HART can be modulated onto the input signal for each channel.  
In the case where the RANGE (address 0x04) bits are programmed such that the IOUT_x is enabled, the  
external HART signal (ac voltage; 500 mVPP, 1200 Hz and 2200 Hz) can be capacitively coupled in through the  
HARTIN_x pin and transferred to a current that is superimposed on the current output. The HARTIN_x pin has a  
typical input impedance of 20 kΩ to 30 kΩ, depending on the selected current output range, which together with  
the input capacitor used to couple the external HART signal into the HARTIN_x pin can be used to form a high-  
pass filter to attenuate frequencies below the HART bandpass region. In addition to this filter, an external passive  
filter is recommended to complete the filtering requirements of the HART specifications. 105 illustrates the  
output current versus time operation for a typical HART interface.  
42  
版权 © 2017, Texas Instruments Incorporated  
 
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Note: DC current = 6 mA.  
105. Output Current vs Time  
The HART pin for the selected channel can be enabled by writing logic '1' to the HTEN bit at address 0x04 (see  
5 and 6).  
8.4 Device Functional Modes  
8.4.1 Serial Peripheral Interface (SPI)  
The device is controlled over a versatile four-wire serial interface (SDIN, SDO, SCLK, and SYNC) that operates  
at clock rates of up to 25 MHz and is compatible with SPI, QSPI™, Microwire™, and digital signal processing  
(DSP) standards. The SPI communication command consists of a write address byte and a data word for a total  
of 24 bits (when CRC is disabled). The timing for the digital interface is shown in the Timing Requirements: Write  
and Readback Mode section.  
8.4.1.1 Stand-Alone Operation  
The serial clock SCLK can be a continuous or a gated clock. When SYNC is high, the SCLK and SDIN signals  
are blocked and the SDO pin is in a HiZ state. Exactly 24 falling clock edges must be applied before SYNC is  
brought high. If SYNC is brought high before the 24th falling SCLK edge, then the data written are not transferred  
into the internal registers. If more than 24 falling SCLK edges are applied before SYNC is brought high, then the  
last 24 bits are used. The device internal registers are updated from the Shift Register on the rising edge of  
SYNC. In order for another serial transfer to take place, SYNC must be brought low again.  
8.4.1.2 Daisy-Chain Operation  
For systems that contain more than one device, the SDO pin can be used to daisy-chain multiple devices  
together. Daisy-chain operation can be useful for system diagnostics and in reducing the number of serial  
interface lines. The daisy chain feature can be enabled by writing logic '0' to DSDO bit address 0x03 (see Table  
6), the SDO pin is set to HiZ when DSDO bit is set to 1. By connecting the SDO of the first device to the SDIN  
input of the next device in the chain, a multiple-device interface is constructed, as Figure 11 illustrates.  
版权 © 2017, Texas Instruments Incorporated  
43  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Device Functional Modes (接下页)  
C
B
A
DAC8775  
DAC8775  
DAC8775  
SDIN  
SDIN  
SDIN  
SDO  
SDO  
SDO  
SCLK  
SYNC  
LDAC  
SCLK  
SYNC  
LDAC  
SCLK  
SYNC  
LDAC  
Copyright © 2016, Texas Instruments Incorporated  
106. Three DAC8775s in Daisy-Chain Mode  
The DAC8775 provides two modes for daisy-chain operation: normal and transparent. The TRN bit in the Reset  
config register determines which mode is used. In Normal mode (TRN bit = '0'), the data clocked into the SDIN  
pin are transferred into the shift register. The first falling edge of SYNC starts the operating cycle. SCLK is  
continuously applied to the SPI Shift Register when SYNC is low. If more than 24 clock pulses are applied, the  
data ripple out of the shift register and appear on the SDO line. These data are clocked out on the rising edge of  
SCLK and are valid on the falling edge. By connecting the SDO pin of the first device to the SDIN input of the  
next device in the chain, a multiple-device interface is constructed. Each device in the system requires 24 clock  
pulses. Therefore, the total number of clock cycles must equal 24 × N, where N is the total number of DAC8775s  
in the chain. When the serial transfer to all devices is complete, SYNC is taken high. This action latches the data  
from the SPI Shift registers to the device internal registers synchronously for each device in the daisy-chain, and  
prevents any further data from being clocked in. Note that a continuous SCLK source can only be used if SYNC  
is held low for the correct number of clock cycles. For gated clock mode, a burst clock containing the exact  
number of clock cycles must be used and SYNC must be taken high after the final clock in order to latch the  
data.  
In Transparent mode (address 0x02h, TRN bit = '1' 6), the data clocked into SDIN are routed to the SDO pin  
directly; the Shift Register is bypassed. When SCLK is continuously applied with SYNC low, the data clocked into  
the SDIN pin appear on the SDO pin almost immediately (with approximately a 12 ns delay); there is no 24 clock  
delay, as there is in normal operating mode. While in Transparent mode, no data bits are clocked into the Shift  
Register, and the device does not receive any new data or commands. Putting the device into transparent mode  
eliminates the 24 clock delay from SDIN to SDO caused by the Shift Register, thus greatly speeding up the data  
transfer. For example, consider three DAC8775s (C, B, and A) in a daisy-chain configuration (see Figure 11).  
The data from the SPI controller are transferred first to C, then to B, and finally to A. In normal daisy-chain  
operation, a total of 72 clocks are needed to transfer one word to A. However, if C and B are placed into Sleep  
mode, the first 24 data bits are directly transferred to A (through C and B); therefore, only 24 clocks are needed.  
To wake the device up from transparent mode and return to normal operation, the hardware RESET pin must be  
toggled.  
8.4.2 SPI Shift Register  
The SPI Shift Register is 24 bits wide (refer to the Frame Error Checking section for 32-bit frame mode). The  
default 24-bit input frame consists of an 8-bit address byte followed by a 16-bit data word as shown in 2.  
2. Default SPI Frame  
BIT 23:BIT 16  
BIT 15:BIT 0  
Address byte  
Data word  
44  
版权 © 2017, Texas Instruments Incorporated  
 
 
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
8.4.3 Write Operation  
A typical write to program a channel of the DAC8775 consists of writing to the following registers in the sequence  
shown in Figure 12.  
Select Buck-Boost  
Register (x06h)  
Config Buck-Boost  
Register (x07h)  
Select DAC Register  
(x03h)  
Config DAC Register  
(x04h)  
Program DAC Data  
Register (x05h)  
107. Typical Write to DAC8775  
8.4.4 Read Operation  
A read operation is accomplished when DB 23 is '1' (see Table 3). A no-operation (NOP) command should follow  
the read operation in order to clock out an addressed register. The read register value is output MSB first on  
SDO on successive falling edges of SCLK.  
3. Register Read Address Functions(1)  
ADDRESS BYTE  
DB23  
DB 22: DB 16  
Read/Write Bit  
Register Addresses  
(1) 'X' denotes don't care bits.  
8.4.5 Updating the DAC Outputs and LDAC Pin  
Depending on the status of both SYNC and LDAC, and after data have been transferred into the DAC Data  
registers, the DAC outputs can be updated either in asynchronous mode or synchronous mode.  
8.4.5.1 Asynchronous Mode  
In this mode, the LDAC pin is set low before the rising edge of SYNC. This action places the DAC8775 into  
Asynchronous mode, and the LDAC signal is ignored. The DAC latches are updated immediately when SYNC  
goes high.  
8.4.5.2 Synchronous Mode  
To use this mode, set LDAC high before the rising edge of SYNC, and then take LDAC low after SYNC goes  
high. In this mode, when LDAC stays high, the DAC latch is not updated; therefore, the DAC output does not  
change. The DAC latch is updated by taking LDAC low any time after a certain delay from the rising edge of  
SYNC (see Figure 1). If this delay requirement is not satisfied, invalid data are loaded. Refer to the Timing  
Requirements: Write and Readback Mode section for details.  
版权 © 2017, Texas Instruments Incorporated  
45  
 
 
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
8.4.6 Hardware RESET Pin  
When the RESET pin is low, the device is in hardware reset. All the analog outputs (VOUT_A to VOUT_D and  
IOUT_A to IOUT_D), all the registers except the POC register, and the DAC latches are set to the default reset  
values. In addition, the Gain and Zero registers are loaded with default values, communication is disabled, and  
the signals on SYNC and SDIN are ignored (note that SDO is in a high-impedance state). When the RESET pin  
is high, the serial interface returns to normal operation and all the analog outputs (VOUT_A to VOUT_D and  
IOUT_A to IOUT_D) maintain the reset value until a new value is programmed.  
8.4.7 Hardware CLR Pin  
The CLR pin is an active high input that should be low for normal operation. When this pin is a logic '1', all the  
outputs are cleared to either zero-scale code or midscale code depending on the status of the CLSLx bit (see  
Reset Register (address = 0x01) [reset = 0x0000]). While CLR is high, all LDAC pulses are ignored. When CLR  
is taken low again, the DAC outputs remain cleared until new data is written to the DACs. The contents of the  
Offset registers, Gain registers, and DAC input registers are not affected by taking CLR high. Note that the clear  
action will result in the outputs clearing to the default value instantaneously even if slew rate control is enabled.  
8.4.8 Frame Error Checking  
If the DAC8775 is used in a noisy environment, error checking can be used to check the integrity of SPI data  
communication between the device and the host processor. This feature can be enabled by setting the CREN bit  
address 0x03 (see Table 6).  
The frame error checking scheme is based on the CRC-8-ATM (HEC) polynomial x8 + x2 + x + 1 (that is,  
100000111). When error checking is enabled, the SPI frame width is 32 bits, as shown in Table 1. The normal  
24-bit SPI data are appended with an 8-bit CRC polynomial by the host processor before feeding it to the device.  
For a register readback, the CRC polynomial is output on the SDO pins by the device as part of the 32 bit frame.  
Note that the user has to start with the default 24 bit frame and enable frame error checking through the CREN  
bit and switch to the 32 bit frame. Alternatively, the user can use a 32-bit frame from the beginning and pad the 8  
MSB bits as the device will only use the last 24 bits until the CRCEN bit is set. The frame length has to be  
carefully managed, especially when using daisy-chaining in combination with CRC checking to ensure correct  
operation.  
4. SPI Frame with Frame Error Checking Enabled  
BIT 31:BIT 8  
BIT 7:BIT 0  
Normal SPI frame data  
8-bit CRC polynomial  
The DAC8775 decodes the 32-bit input frame data to compute the CRC remainder. If no error exists in the  
frame, the CRC remainder is zero. When the remainder is non-zero (that is, the input frame has single- or  
multiple-bit errors), the ALARM pin asserts low and the CRE bit of the status register (address 0x0B) is also set  
to '1'. Note that the ALARM pin can be asserted low for any of the different conditions as explained in the  
ALARM Pin section. The CRE bit is set to '0' with a software or hardware reset, or by disabling the frame error  
checking, or by powering down the device. In the case of a CRC error, the specific SPI frame is blocked from  
writing to the device.  
Frame error checking can be enabled for any number of DAC8775 devices connected in a daisy-chain  
configuration. However, it is recommended to enable error checking for none or all devices in the chain. When  
connecting the ALARM pins of all combined devices, forming a wired-AND function, the host processor should  
read the status register of each device to know all the fault conditions present in the chain. For proper operation,  
the host processor must provide the correct number of SCLK cycles in each frame, taking care to identify  
whether or not error checking is enabled in each device in the daisy-chain.  
8.4.9 DAC Data Calibration  
Each channel of the DAC8775 contains a dedicated user calibration register set. This feature allows the user to  
trim the system gain and offset errors. Both the voltage output and the current output have common user  
calibration registers available. The user calibration feature is disabled by default. To enable this feature for a  
selected channel(s), the CLEN bit (DB0) on address 0x08 must be set to logic '1 (see Table 6).  
46  
版权 © 2017, Texas Instruments Incorporated  
 
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
8.4.9.1 DAC Data Gain and Offset Calibration Registers  
The DAC calibration register set includes one gain calibration and one offset calibration register (16 bits for  
DAC8775) per channel (address 0x09 and 0x0A). The range of gain adjustment is typically ±50% of full-scale  
with 1 LSB per step. The power-on value of the gain register is 0x8000 which is equivalent to a gain of 1. The  
offset code adjustment is typically ±32,768 LSBs with 1 LSB per step. The input data format of the gain register  
is unsigned straight binary, and the input data format of the offset register is twos complement. The gain and  
offset calibration is described by 公式 9.  
15  
»
ÿ
Ÿ
User_Gain + 2  
216  
CODE_OUT = CODE.  
+ User_Zero  
÷
÷
Ÿ
«
(9)  
Where:  
CODE is the decimal equivalent of the code loaded to the DAC.  
VREFIN is the reference voltage; for internal reference, VREFIN = +5 V.  
GAIN is automatically selected for a desired voltage output range as shown in 7.  
User_Offset is the signed 16-bit code in the offset register.  
User_GAIN is the unsigned 16-bit code in the gain register.  
It is important to note that this is a purely digital implementation and the output is still limited by the programmed  
value at both ends of the voltage or current output range. Therefore, the user must remember that the correction  
only makes sense for endpoints inside of the true device end points. If the user desires to correct more than just  
the actual device error, for example a system offset, the valid range for the adjustment would change accordingly  
and must be taken into account. This range is set by the RANGE bits as described in Table 6.  
8.5 Register Maps  
8.5.1 DAC8775 Commands  
5. Address Functions  
ADDRESS  
BYTE  
POWER-ON RESET  
VALUE  
FUNCTION  
READ/WRITE  
PER CHANNEL  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
No operation (NOP)  
Reset register  
Write  
No  
No  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x1000  
0x0000  
0x0000  
0x0000  
N/A  
Read+Write  
Read+Write  
Read+Write  
Read+Write  
Read+Write  
Read+Write  
Read+Write  
Read+Write  
Read+Write  
Read+Write  
Read+Write  
Read+Write  
Read+Write  
Read+Write  
N/A  
Reset config register  
Select DAC register  
No  
No  
Configuration DAC register  
DAC data register  
Yes  
Yes  
No  
Select Buck-Boost converter register  
Configuration Buck-Boost converter register  
DAC channel calibration enable register  
DAC channel gain calibration register  
DAC channel offset calibration register  
Status register  
Yes  
Yes  
Yes  
Yes  
No  
Status mask register  
No  
Alarm action register  
No  
User alarm code register  
Reserved  
Yes  
N/A  
No  
Write watchdog timer reset  
Device ID  
Write  
0x0000  
0x0000  
N/A  
Read  
No  
0x12 - 0xFF Reserved  
N/A  
N/A  
版权 © 2017, Texas Instruments Incorporated  
47  
 
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Note that, in order to write to (or read from) a per channel address, corresponding Buck-Boost converter and  
DAC channel must be selected using commands 0x06 and 0x03.  
8.5.2 Register Maps and Bit Functions  
6. Register Map  
ADDRESS  
BITS  
15  
x
14  
x
13  
12  
x
11  
x
10  
x
9
x
8
7
x
6
5
x
4
x
3
x
2
x
1
x
0
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x10  
0x11  
x
x
x
x
RST  
UBT  
WEN  
x
x
x
x
CLREND CLRENC  
CLRENB  
CLSLB  
CLRENA  
CLSLA  
x
x
x
REF_EN  
DSDO  
SREN  
TRN  
CREN  
CLR  
POC  
x
x
CLSLD  
OTEN  
CLSLC  
CHD  
CHC  
CHB  
CHA  
WPD[1:0]  
RANGE[3:0]  
SCLIM[1:0]  
HTEN  
SRCLK_RATE[3:0]  
SR_STEP[2:0]  
DAC_DATA[15:0]  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
DCD  
x
DCC  
x
DCB  
DCA  
CCLP[1:0]  
PCLMP[3:0]  
NCLMP[3:0]  
PNSEL[1:0]  
x
x
x
x
x
CLEN  
UGAIN[15:0]  
UOFF[15:0]  
x
x
x
x
x
x
x
x
x
CLST  
WDT  
MWT  
x
PGD  
PGC  
PGB  
PGA  
x
UTGL  
x
CRE  
TMP  
FD  
FC  
FB  
FA  
x
x
x
x
x
x
x
0
x
x
MCRE  
MTMP  
MFD  
MFC  
MFB  
MFA  
x
AC_CRE_WDT[1:0]  
AC_IOC[1:0]  
AC_VSC[1:0]  
AC_TMP[1:0]  
ACODE[15:10]  
HSCLMP  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
RWD  
DID[2:0]  
7. Voltage Output GAIN vs DAC Range  
BIT 3: Bit 0  
(RANGE)  
GAIN  
0000  
0001  
0010  
0011  
1000  
1001  
1010  
1011  
1
2
2
4
1.2 (20% Over-range)  
2.4 (20% Over-range)  
2.4 (20% Over-range)  
4.8 (20% Over-range)  
8.5.2.1 No Operation Register (address = 0x00) [reset = 0x0000]  
108. No Operation Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
Reserved  
W
Reserved  
W
LEGEND: R/W = Read/Write; R = Read only; W = Write Only; -n = value after reset  
8. No Operation Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:10  
Reserved  
W
00000000 Reserved  
00000000  
48  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
8.5.2.2 Reset Register (address = 0x01) [reset = 0x0000]  
109. Reset Register  
15  
7
14  
6
13  
5
12  
4
11  
10  
2
9
8
Reserved  
R/W  
3
1
0
Reserved  
R/W  
RST  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9. Reset Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:1  
Reserved  
R/W  
00000000 Reserved  
0000000  
0
RST  
R/W  
0
Reset. When set, it resets all registers except POC register bit to  
the respective power-on reset default value. After reset  
completes the RST bit clears  
8.5.2.3 Reset Config Register (address = 0x02) [reset = 0x0000]  
110. Reset Config Register  
15  
7
14  
13  
5
12  
11  
10  
9
8
Reserved  
R/W  
CLREND  
R/W  
CLRENC  
R/W  
CLRENB  
R/W  
CLRENA  
R/W  
Reserved  
R/W  
6
4
3
2
1
0
Reserved  
R/W  
REF_EN  
R/W  
TRN  
R/W  
CLR  
R/W  
POC  
R/W  
UBT  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
10. Reset Config Register Field Descriptions  
Bit  
15:13  
12  
Field  
Type  
R/W  
R/W  
Reset  
000  
0
Description  
Reserved  
Reserved  
CLREND  
Clear Enable  
0 - DACD hardware and software clear is disabled  
1 - DACD hardware and software clear is enabled  
11  
10  
9
CLRENC  
CLRENB  
CLRENA  
R/W  
R/W  
R/W  
0
0
0
Clear Enable  
0 - DACC hardware and software clear is disabled  
1 - DACC hardware and software clear is enabled  
Clear Enable  
0 - DACB hardware and software clear is disabled  
1 - DACB hardware and software clear is enabled  
Clear Enable  
0 - DACA hardware and software clear is disabled  
1 - DACA hardware and software clear is enabled  
8:5  
4
Reserved  
REF_EN  
R/W  
R/W  
0000  
0
Reserved  
Internal reference enable/disable  
0 - Internal reference disabled (default)  
1 - Internal reference enabled  
3
2
TRN  
CLR  
R/W  
R/W  
0
0
Enable transparent mode (see section "daisy chain operation")  
Active high, clears all DAC registers to either zero or full scale  
based on CLSL bit. After clear completes the CLR bit resets.  
版权 © 2017, Texas Instruments Incorporated  
49  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
10. Reset Config Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
1
POC  
R/W  
0
Power-Off-Condition  
0 - IOUT_x to HIZ, VOUT_x to 30K-to-PBKG at power up,  
hardware or software reset (default)  
1 - IOUT_x and VOUT_x to HIZ at power up, hardware and  
software reset  
0
UBT  
R/W  
0
User Bit - This bit can be used to check if the communication to  
the chip is working correctly by writing a known value to this bit  
and reading that value from the status register toggle bit. The  
toggle resister bit UTGL (address 0x0B) is set to the same value  
as the UBT bit.  
8.5.2.4 Select DAC Register (address = 0x03) [reset = 0x0000]  
111. Select DAC Register  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
R/W  
CLSLD  
R/W  
CLSLC  
R/W  
CLSLB  
R/W  
CLSLA  
R/W  
CHD  
R/W  
7
6
5
4
3
2
1
0
CHC  
R/W  
CHB  
R/W  
CHA  
R/W  
DSDO  
R/W  
CREN  
R/W  
WPD[1:0]  
R/W  
WEN  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
11. Select DAC Register Field Descriptions  
Bit  
15:13  
12  
Field  
Type  
R/W  
R/W  
Reset  
000  
0
Description  
Reserved  
Reserved  
CLSLD  
Clear Select  
0 - DACD DAC registers cleared to zero scale upon hardware or  
software clear (default)  
1 - DACD DAC registers cleared to mid scale upon hardware or  
software clear  
11  
10  
9
CLSLC  
CLSLB  
CLSLA  
R/W  
R/W  
R/W  
0
0
0
Clear Select  
0 - DACC DAC registers cleared to zero scale upon hardware or  
software clear (default)  
1 - DACC DAC registers cleared to mid scale upon hardware or  
software clear  
Clear Select  
0 - DACB DAC registers cleared to zero scale upon hardware or  
software clear (default)  
1 - DACB DAC registers cleared to mid scale upon hardware or  
software clear  
Clear Select  
0 - DACA DAC registers cleared to zero scale upon hardware or  
software clear (default)  
1 - DACA DAC registers cleared to mid scale upon hardware or  
software clear  
8
7
6
5
4
CHD  
CHC  
CHB  
CHA  
DSDO  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
Channel D selected  
Channel C selected  
Channel B selected  
Channel A selected  
Disable SDO - When set, this bit disables daisy chain operation  
and SDO pin is set to HiZ, enabled by default  
3
CREN  
R/W  
0
Enable CRC - When set, this bit enables frame error checking,  
disabled by default  
50  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
11. Select DAC Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
2:1  
WPD[1:0]  
R/W  
00  
Watchdog Timer Period  
00 - 10 ms (typical)  
01 - 51 ms (typical)  
10 - 102 ms (typical)  
11 - 204 ms (typical)  
0
WEN  
R/W  
0
Enable Watchdog Timer - When set, this bit enables watchdog  
timer, disabled by default  
8.5.2.5 Configuration DAC Register (address = 0x04) [reset = 0x0000]  
112. Configuration DAC Register  
15  
7
14  
6
13  
12  
11  
3
10  
9
8
0
SCLIM[1:0]  
R/W  
HTEN  
R/W  
OTEN  
R/W  
SRCLK_RATE[3:0]  
R/W  
5
4
2
1
SR_STEP[2:0]  
R/W  
SREN  
R/W  
RANGE[3:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
12. Configuration DAC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14  
SCLIM[1:0]  
R/W  
00  
Voltage output short circuit limit  
00 - 16 mA (default). Actual value will be between the minimum  
and maximum values specified in Electrical Characteristics.  
01 - 8 mA. Actual value will be between the minimum and  
maximum values specified in Electrical Characteristics.  
10 - 20 mA. Actual value will be between the minimum and  
maximum values specified in Electrical Characteristics.  
11 - 24 mA. Actual value will be between the minimum and  
maximum values specified in Electrical Characteristics.  
13  
12  
HTEN  
R/W  
R/W  
R/W  
0
Enable HART - When set, this bit enables HART, disabled by  
default  
OTEN  
0
Output Enabled - When set, this bit enables DAC (Voltage or  
Current) outputs, disabled by default  
11:8  
SRCLK_RATE[3:0]  
0000  
Slew Clock Rate  
0000 - DAC updates at 258,065 Hz (default)  
0001 - DAC updates at 200,000 Hz  
0010 - DAC updates at 153,845 Hz  
0011 - DAC updates at 131,145 Hz  
0100 - DAC updates at 115,940 Hz  
0101 - DAC updates at 69,565 Hz  
0110 - DAC updates at 37,560 Hz  
0111 - DAC updates at 25,805 Hz  
1000 - DAC updates at 20,150 Hz  
1001 - DAC updates at 16,030 Hz  
1010 - DAC updates at 10,295 Hz  
1011 - DAC updates at 8,280 Hz  
1100 - DAC updates at 6,900 Hz  
1101 - DAC updates at 5,530 Hz  
1110 - DAC updates at 4,240 Hz  
1111 - DAC updates at 3,300 Hz  
7:5  
SR_STEP[2:0]  
R/W  
000  
Slew Rate Step Size  
000 - 1 LSB (default)  
001 - 2 LSB  
010 - 4 LSB  
011 - 8 LSB  
100 - 16 LSB  
101 - 32 LSB  
110 - 64 LSB  
111 - 128 LSB  
版权 © 2017, Texas Instruments Incorporated  
51  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
12. Configuration DAC Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
4
SREN  
R/W  
0
Slew Rate Enabled - When set, this bit enables slew rate  
feature, disabled by default  
3:0  
RANGE[3:0]  
R/W  
0000  
Range, Please note that upon changing the range, the DAC  
output changes based on CLSLx (Address 0x03)  
0000 - Voltage output 0 to +5 V (default)  
0001 - Voltage output 0 to +10 V  
0010 - Voltage output ±5 V  
0011 - Voltage output ±10 V  
0100 - Current output 3.5 mA to 23.5 mA  
0101 - Current output 0 to 20 mA  
0110 - Current output 0 to 24 mA  
0111 - Current output ±24 mA  
1000 - Voltage output 0 to +6 V  
1001 - Voltage output 0 to +12 V  
1010 - Voltage output ±6 V  
1011 - Voltage output ±12 V  
11xx - Current output 4 mA to 20 mA  
8.5.2.6 DAC Data Register (address = 0x05) [reset = 0x0000]  
113. DAC Data Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
DAC_DATA[15:8]  
R/W  
4
3
DAC_DATA[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
13. DAC Data Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
DAC_DATA[15:0]  
R/W  
16-bit DAC data  
8.5.2.7 Select Buck-Boost Converter Register (address = 0x06) [reset = 0x0000]  
114. Select Buck-Boost Converter Register  
15  
7
14  
6
13  
5
12  
4
11  
10  
9
8
Reserved  
R/W  
3
2
1
0
Reserved  
R/W  
DCD  
R/W  
DCC  
R/W  
DCB  
R/W  
DCA  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
14. Select Buck-Boost Converter Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:4  
Reserved  
R/W  
00000000 Reserved  
0000  
3
2
1
0
DCD  
DCC  
DCB  
DCA  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Buck-Boost converter D selected  
Buck-Boost converter C selected  
Buck-Boost converter B selected  
Buck-Boost converter A selected  
52  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
8.5.2.8 Configuration Buck-Boost Register (address = 0x07) [reset = 0x0000]  
115. Configuration Buck-Boost Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
8
0
Reserved  
R/W  
CCLP[1:0]  
R/W  
PCLMP[3:2]  
R/W  
1
PCLMP[1:0]  
R/W  
NCLMP[3:0]  
R/W  
PNSEL[1:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
15. Configuration Buck-Boost Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0000  
00  
Description  
15:12  
11:10  
Reserved  
CCLP[1:0]  
Reserved  
Buck-Boost converter configurable clamp setting  
00 - Buck-Boost converter in full tracking mode (default)  
01 - User can write to PCLMP and NCLMP bits  
10 - PCLMP bits are populated automatically to optimum value -  
"Auto Learn mode", User cannot write to PCLMP bits  
11 - Invalid  
9:6  
PCLMP[3:0]  
R/W  
0000  
Buck-Boost converter positive clamp setting, DAC output  
unloaded - Buck-Boost converter positive arm low side clamp  
Current Output Mode  
4.0 V (default)  
5.0 V  
Voltage Output Mode  
Invalid  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Invalid  
6.0 V  
Invalid  
9.0 V  
9.0 V  
11.0 V  
Invalid  
12.0 V  
Invalid  
13.0 V  
Invalid  
14.0 V  
Invalid  
15.0 V  
15.0 V  
18.0 V  
18.0 V  
20.0 V  
Invalid  
23.0 V  
Invalid  
25.0 V  
Invalid  
27.0 V  
Invalid  
30.0 V  
Invalid  
32.0 V  
Invalid  
版权 © 2017, Texas Instruments Incorporated  
53  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
15. Configuration Buck-Boost Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
5:2  
NCLMP[3:0]  
R/W  
0000  
Buck-Boost converter negative clamp setting, DAC output  
unloaded - Buck-Boost converter negative arm low side clamp  
Current Output Mode  
–5.0 V  
Voltage Output Mode  
Invalid  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
101x  
11xx  
–6.0 V  
Invalid  
–9.0 V  
–9.0 V  
–11.0 V  
–12.0 V  
–13.0 V  
–14.0 V  
–15.0 V  
–18.0 V  
–18.0 V  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
–15.0 V (default)  
Invalid  
–18.0 V  
Invalid  
Invalid  
Invalid  
1:0  
PNSEL[1:0]  
R/W  
00  
Enable Buck-Boost converter positive and negative arm  
00 - Buck-Boost converter positive and negative arm disabled  
(default)  
01 - Buck-Boost converter positive arm enabled and negative  
arm disabled  
10 - Buck-Boost converter positive arm disabled and negative  
arm enabled  
11 - Buck-Boost converter positive arm and negative arm  
enabled  
8.5.2.9 DAC Channel Calibration Enable Register (address = 0x08) [reset = 0x0000]  
116. DAC Channel Calibration Enable Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
Reserved  
R/W  
0
Reserved  
R/W  
CLEN  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
16. DAC Channel Calibration Enable Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:1  
Reserved  
R/W  
00000000 Reserved  
0000000  
0
CLEN  
R/W  
0
Enable DAC calibration - When set, this bit enables DAC data  
calibration, disabled by default  
8.5.2.10 DAC Channel Gain Calibration Register (address = 0x09) [reset = 0x0000]  
117. DAC Channel Gain Calibration Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
UGAIN[15:8]  
R/W  
UGAIN[7:0]  
54  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
17. DAC Channel Gain Calibration Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
UGAIN[15:0]  
R/W  
00000000 16-bit user gain data  
00000000  
8.5.2.11 DAC Channel Offset Calibration Register (address = 0x0A) [reset = 0x0000]  
118. DAC Channel Offset Calibration Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
8
0
UOFF[15:8]  
R/W  
1
UOFF[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
18. DAC Channel Offset Calibration Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
UOFF[15:0]  
R/W  
00000000 16-bit user offset data  
00000000  
8.5.2.12 Status Register (address = 0x0B) [reset = 0x1000]  
119. Status Register  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
R/W  
CLST  
R/W  
WDT  
R/W  
PGF  
R/W  
PGC  
R/W  
PGB  
R/W  
7
6
5
4
3
2
1
0
PGA  
R/W  
UTGL  
R/W  
CRE  
R/W  
TMP  
R/W  
FD  
FC  
FB  
FA  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
19. Status Register Field Descriptions  
Bit  
15:13  
12  
Field  
Type  
R/W  
R/W  
Reset  
000  
1
Description  
Reserved  
CLST  
Reserved  
Auto Learn status - Indicates that Auto Learn operation is  
finished  
11  
10  
9
WDT  
PGF  
PGC  
PGB  
PGA  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
Watchdog timer fault - Indicates that watchdog timer fault has  
occurred  
Buck-Boost D power good - Indicates the power good condition  
on Buck-Boost converter D  
Buck-Boost C power good - Indicates the power good condition  
on Buck-Boost converter C  
8
Buck-Boost B power good - Indicates the power good condition  
on Buck-Boost converter B  
7
Buck-Boost A power good - Indicates the power good condition  
on Buck-Boost converter A  
6
5
4
UTGL  
CRE  
TMP  
R/W  
R/W  
R/W  
0
0
0
User toggle - Copy of user bit (UBT)  
CRC error - Indicates CRC error condition  
Over temperature - Indicates over temperature condition  
版权 © 2017, Texas Instruments Incorporated  
55  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
19. Status Register Field Descriptions (接下页)  
Bit  
3
Field  
FD  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
0
0
0
0
Fault channel D - Indicates fault condition channel D  
Fault channel C - Indicates fault condition channel C  
Fault channel B - Indicates fault condition channel B  
Fault channel A - Indicates fault condition channel A  
2
FC  
1
FB  
0
FA  
8.5.2.13 Status Mask Register (address = 0x0C) [reset = 0x0000]  
120. Status Mask Register  
15  
7
14  
6
13  
12  
11  
10  
9
8
Reserved  
R/W  
MWT  
R/W  
Reserved  
R/W  
5
4
3
2
1
0
Reserved  
R/W  
MCRE  
R/W  
MTMP  
R/W  
MFD  
R/W  
MFC  
R/W  
MFB  
R/W  
MFA  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
20. Status Mask Register Field Descriptions  
Bit  
15:12  
11  
Field  
Type  
R/W  
R/W  
Reset  
0000  
0
Description  
Reserved  
MWT  
Reserved  
Mask WDT - When set, it masks the alarm pin from watchdog  
timer fault condition  
10:6  
5
Reserved  
MCRE  
R/W  
R/W  
00000  
0
Reserved  
CRC error - When set, it masks the alarm pin from CRC error  
condition  
4
3
2
1
0
MTMP  
MFD  
MFC  
MFB  
MFA  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
Mask TMP - When set, it masks the alarm pin from over  
temperature condition  
Mask FD - When set, it masks the alarm pin from fault condition  
channel D  
Mask FC - When set, it masks the alarm pin from fault condition  
channel C  
Mask FB - When set, it masks the alarm pin from fault condition  
channel B  
Mask FA - When set, it masks the alarm pin from fault condition  
channel A  
8.5.2.14 Alarm Action Register (address = 0x0D) [reset = 0x0000]  
121. Alarm Action Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
Reserved  
R/W  
AC_CRE_WDT[1:0]  
R/W  
AC_IOC[1:0]  
R/W  
AC_VSC[1:0]  
R/W  
AC_TMP[1:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
56  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
21. Alarm Action Register Field Descriptions  
Bit  
15:8  
7:6  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
00000000 Reserved  
AC_CRE_WDT[1:0]  
00  
00  
00  
00  
Action CRC error and Watchdog timer fault circuit condition  
00 - No action on Buck-Boost converters, no action on DACs  
(default)  
01 - No action on Buck-Boost converters, respective user alarm  
code on all DACs  
10 - All Buck-Boost converters and DACs disabled and remain  
disabled even after the alarm condition is removed.  
11 - Invalid  
5:4  
3:2  
1:0  
AC_IOC[1:0]  
AC_VSC[1:0]  
AC_TMP[1:0]  
R/W  
R/W  
R/W  
Action current output open circuit condition  
00 - No action on Buck-Boost converters, no action on DACs  
(default)  
01 - No action on Buck-Boost converters, respective user alarm  
code on DAC(s) initiating the alarm  
10 - All Buck-Boost converters and DACs disabled and remain  
disabled even after the alarm condition is removed.  
11 - Invalid  
Action voltage output short circuit condition  
00 - No action on Buck-Boost converters, no action on DACs  
(default)  
01 - No action on Buck-Boost converters, respective user alarm  
code on DAC(s) initiating the alarm  
10 - All Buck-Boost converters and DACs disabled and remain  
disabled even after the alarm condition is removed.  
11 - Invalid  
Action over temperature condition  
00 - No action on Buck-Boost converters, no action on DACs  
(default)  
01 - No action on Buck-Boost converters, respective user alarm  
code on all DACs  
10 - All Buck-Boost converters and DACs disabled and remain  
disabled even after the alarm condition is removed.  
11 - Invalid  
8.5.2.15 User Alarm Code Register (address = 0x0E) [reset = 0x0000]  
122. User Alarm Code Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
8
0
ACODE[15:10]  
R/W  
HSCLMP  
R/W  
R/W  
1
0
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
22. User Alarm Code Register Field Descriptions  
Bit  
15:10  
9
Field  
Type  
R/W  
R/W  
Reset  
000000  
0
Description  
ACODE[15:10]  
HSCLMP  
6 bit alarm code data  
Buck-Boost positive output high side clamp  
0 - Buck-Boost converter positive output high side clamp set to  
32 V (default)  
1 - Buck-Boost converter positive output high side clamp set to  
26 V (default)  
8
0
R/W  
R/W  
0
0
7:0  
Reserved  
00000000 Reserved  
版权 © 2017, Texas Instruments Incorporated  
57  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
8.5.2.16 Reserved Register (address = 0x0F) [reset = N/A]  
123. Reserved Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
Reserved  
Reserved  
4
3
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
23. Reserved Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
Reserved  
N/A  
Reserved  
8.5.2.17 Write Watchdog Timer Register (address = 0x10) [reset = 0x0000]  
124. Write Watchdog Timer Register  
15  
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
Reserved  
W
7
0
RWD  
W
Reserved  
W
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
24. Write Watchdog Timer Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:1  
Reserved  
00000000 Reserved  
0000000  
0
RWD  
W
0
Reset watchdog timer, this bit clears itself after resetting watch  
dog timer  
8.5.2.18 Device ID Register (address = 0x11) [reset = 0x0000]  
125. Device ID Register  
15  
14  
6
13  
12  
4
11  
3
10  
2
9
8
0
Reserved  
R
7
5
1
DID[2:0]  
R
Reserved  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
25. Device ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:3  
Reserved  
00000000 Reserved  
00000  
2:0  
DID [2:0]  
R
000  
3-bit device identification code  
58  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
8.5.2.19 Reserved Register (address 0x12 - 0xFF) [reset = N/A]  
126. Reserved Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
8
0
Reserved  
Reserved  
4
3
1
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
26. Reserved Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
Reserved  
N/A  
Reserved  
版权 © 2017, Texas Instruments Incorporated  
59  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Buck-Boost Converter External Component Selection  
100mH  
10mF  
10mF  
DAC8775  
Copyright © 2016, Texas Instruments Incorporated  
127. DAC8775 External Buck-Boost Components with Recommended Values  
The buck-boost converters integrated in the DAC8775 each require three external passive components for  
operation: a single inductor per channel as well as storage capacitors and switching diodes for each VPOS_IN_x  
and VNEG_IN_x channels that are active. If only one output is used, either VPOS_IN_x or VNEG_IN_x, the  
inactive output components may be removed and the respective inputs tied to ground. In order to meet the  
parametric performance outlined in the Electrical Characteristics section for the voltage output, 500 mV of foot-  
room is required on VNEG_IN_x.  
The recommended value for the external inductor is 100 µH with at least 500 mA peak inductor current.  
Reducing the inductor value to as low as 80 µH is possible, though this will limit the buck-boost converter  
maximum input voltage to output voltage ratio, reduce efficiency, and increase ripple. Reducing the inductor  
below 80 µH will result in device damage. Peak inductor current should be rated at 500 mA or greater with 20%  
inductance tolerance at peak current. If peak inductor current for an inductor is violated the effective inductance  
is reduced, which will impact maximum input to output voltage ratio, efficiency, and ripple.  
An output, or storage, X7R capacitor with value of 10 µF and voltage rating of 50 V is recommended though  
other values and dielectric materials may be used without damaging the DAC8775. Reducing capacitor value will  
increase buck-boost converter output ripple and reduced voltage rating will reduce effective capacitance at full-  
scale buck-boost converter outputs. X7R capacitors are rated for –55°C to 125°C operation with 15% maximum  
capacitance variance over temperature. Designs operating over reduced temperature spans and with loose  
efficiency requirements may use different dielectric material. C0G capacitor typically offer tighter capacitance  
variance but come in larger packages, but may be beneficial substitutes.  
60  
版权 © 2017, Texas Instruments Incorporated  
 
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Application Information (接下页)  
The external diode switches illustrated on the left and right side of the 100 µH inductor shown in 127 should  
be selected based on reverse voltage rating, reverse recovery time, leakage or parasitic capacitance, and current  
or power ratings. Breakdown voltage rating of at least 60 V is recommended to accommodate for the maximum  
voltage that may be across the diode when both VPOS_x and VNEG_x are both active during switching of the  
DC/DCs. Minimal reverse recovery time and parasitic capacitance is recommended in order to preserve  
efficiency of the DC/DCs. The external diode should be rated for at least 500 mA average forward current.  
9.1.2 Voltage and Current Ouputs on a Shared Terminal  
128 illustrates a simplified block diagram of the voltage output stages of the DAC8775.  
R1  
R3  
R2  
VSENSEP_x  
VOUT_x  
S1  
DAC  
A2  
+
A1  
+
S3  
R6  
R4  
R5  
VSENSEN_x  
REFIN  
S2  
R7  
S4  
R8  
Copyright © 2016, Texas Instruments Incorporated  
128. Simplified Block Diagram of Voltage Output Architecture  
When designing for a shared voltage and current output terminal it is important to consider leakage paths that  
may corrupt the voltage or current output stages.  
When the voltage output is active and the current output is inactive the IOUT_x pin becomes a high-impedance  
node and therefore does not significantly load the voltage output in a way that would degrade VOUT_x  
performance. When the voltage output is inactive and the current output is active switches S1, S2, and S4 all  
become open while switch S3 is controlled by the POC bit in the Reset Config Register for each respective  
channel. When the POC bit is set to a 0, the default value, switch S3 is closed when VOUT is disabled. This  
creates a leakage path with respect to the current output when the terminals are shared which will create a load-  
dependent error. In order to reduce this error the POC bit can be set to a 1 which opens switch S3, effectively  
making the VOUT pin high-impedance and reducing the magnitude of leakage current.  
9.1.3 Optimizing Current Output Settling time with Auto learn Mode  
When the buck-boost converters are active power and heat dissipation of the device are at a minimum, however  
settling time of the current output is dominated by the slew rate of the buck-boost converter, which is significantly  
slower that the current output signal chain alone. When the buck-boost converters are bypassed settling time of  
the current output is minimized while power and heat dissipation are significant.  
Auto-learn mode offers an alternative mode which allows the buck-boost converter to learn the size of the load  
and choose a clamped output value that does not change over the full range of the selected current output. This  
allows a balance between settling time and power dissipation. There are two options for entering auto-learn  
mode:  
Enable the buck-boost converter in full-tracking mode followed by enabling the current output. Until the DAC  
code 0x4000 is passed, settling time will be dominated by the buck-boost converter. After code 0x400 is  
surpassed the buck-boost converter detects the load and sets the clamp value appropriately.  
Enable the buck-boost converter in clamp-mode with clamp value set to a greater voltage than required by  
the largest load the current output will be expected to drive, followed by enabling the current output. Enter full-  
版权 © 2017, Texas Instruments Incorporated  
61  
 
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Application Information (接下页)  
tracking mode. In this case the clamp value of maintained without the buck-boost converter output changing,  
therefore settling time is set by the IOUT_x signal chain. After code 0x4000 is surpassed the buck-boost  
converter detects the load and adjusts the clamp value appropriately. At all times using this initialization  
procedure the settling time is defined by the IOUT_x signal chain.  
9.1.4 Protection for Industrial Transients  
In order to successfully protect the DAC8775, or any integrated circuit, against industrial transient testing the  
internal structures and how they may behave when exposed to said signals must be understood. 129 depicts  
a simplified representation of internal structures present on the device’s output pins which are represented as a  
pair of clamp-to-rail diodes connected to the VPOS_IN_x and VNEG_IN_x supply rails.  
D2  
D3  
C2  
C1  
D1  
D4  
VPOS_IN_x  
R1  
C3  
VSENSEP_x  
CCOMP_x  
VOUT_x  
VPOS_IN_x  
VPOS_IN_x  
VNEG_IN_x  
VPOS_IN_x  
D5  
D6  
VNEG_IN_x  
VPOS_IN_x  
R2  
R3  
FB1  
Shared Voltage &  
Current Output Terminal  
C4  
VNEG_IN_x  
D7  
IOUT_x  
VNEG_IN_x  
VNEG_IN_x  
DAC8775  
(Single Channel Illustrated for Simplicity)  
Copyright © 2016, Texas Instruments Incorporated  
129. Simplified Block Diagram of Internal Structures and External Protection  
When these internal structures are exposed to industrial transient testing, without the external protection  
components, the diode structures will become forward biased and conduct current. If the conducted current is too  
large, which is often true for high-voltage industrial transient tests, the structures will become permanently  
damaged and impact device functionality.  
Both attenuation and diversion strategies are implemented to protect the internal structures as well as the device  
itself. Attenuation is realized by capacitor C4 which forms an R/C low-pass filter when interacting with the source  
impedance of the transient generator, ferrite bead FB1 also helps attenuate high-frequency current, along with  
both AC and DC current limiters realized by series pass elements R1, R2, and R3. Diversion is achieved by  
transient voltage suppressor (TVS) diode D7 and clamp-to-rail diodes D5 and D6. The combined effects of both  
strategies effectively limit the current flowing into the device and through the internal diode structures such that  
the device is not damaged and remains functional.  
It is important to also include TVS diodes D1 and D4 at the VPOS_IN_x and VNEG_IN_x nodes in order to  
provide a discharge path for the energy that is going to be sent to these nodes through diodes D5, D6, and the  
internal diode structures. Without these diodes when current is diverted to these nodes the DC/DC converter  
storage capacitors C1 and C2 will charge, slowly increasing the voltage at these nodes.  
62  
版权 © 2017, Texas Instruments Incorporated  
 
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Application Information (接下页)  
9.1.5 Implementing HART with DAC8775  
The DAC8775 features internal resistors to convert a 500-mVpp HART FSK signal sourced by an external HART  
modem. These resistors are ratiometrically matched to the gain-setting resistors for the current output signal  
chain to ensure that a 500-mVpp input at the HART_IN_x pin is delivered as a 1-mApp signal at the respective  
IOUT_x pin regardless of which gain mode is selected.  
An external capacitor, placed in series between the HART_IN_x pin and HART FSK source, is required to AC  
couple the HART FSK signal to the HART_IN_x pin. The recommended capacitance for this external capacitor is  
from 10 nF to 22 nF.  
9.2 Typical Application  
9.2.1 1W Power Dissipation, Quad Channel, EMC and EMI Protected Analog Output Module with  
Adaptive Power Management  
Isolation  
Barrier  
Field  
Connections  
100µH  
3300pF  
487kΩ  
+12V  
13-65V Field  
Supply Input  
SW  
VIN  
EN  
2.2µF  
100pF  
301kΩ  
VOUT/FB  
10µF  
34kΩ  
LM5166  
SS  
HYS  
0.033µF  
+12V  
100mH  
RSET  
GND  
PAD  
PGOOD  
10mF  
10mF  
10mF  
0.1mF  
RT  
301kΩ  
Field Ground  
DVDD  
15Ω  
0.1mF  
0.1mF  
0.1mF  
DVDD_EN  
VSENSEP_x  
CCOMP_x  
VOUT_x  
VPOS_IN_x  
(Optional)  
VCC2  
VDD  
VCC1  
SYNC  
SDIN  
SCLK  
SDO  
INA  
OUTA  
OUTB  
CS  
Ferrite Bead  
15Ω  
15Ω  
Shared Voltage &  
MOSI  
SCLK  
MISO  
INB  
Current Output Terminal  
ISO7641
36V  
Bidirectional  
TVS Diode  
1nF  
DAC8775  
INC  
OUTC  
IND  
IOUT_x  
OUTD  
GND1  
GND2  
VNEG_IN_x  
HART Signal  
HART_IN_x  
VSENSEN_x  
Digital Controller  
22nF  
FSK 1200-2200Hz  
VCC2  
OUTA  
VCC1  
INA  
INB  
INC  
RESET  
CLR  
CS  
OUTB  
MOSI  
SCLK  
MISO  
ISO7641
LDAC  
ALARM  
PVSS  
AGND  
OUTC  
IND  
OUTD  
GND1  
GND2  
GND  
(Single Channel Illustrated for Simplicity)  
Copyright © 2016, Texas Instruments Incorporated  
130. DAC8775 in Quad-Channel PLC AO Module  
9.2.2 Design Requirements  
Analog I/O modules are used by programmable logic controllers (PLCs) to interface sensors, actuators, and  
other field instruments. These modules must meet stringent electrical specifications for both accuracy and robust  
protection. These outputs are typically current outputs based on the 4-mA to 20-mA range and derivatives or  
voltage outputs ranging from 0 V to 5 V, 0 V to 10 V, ±5 V, and ±10 V. Common error budgets accommodate  
0.1% full-scale range total unadjusted error (% FSR TUE) at room temperature. Designs that desire stronger  
accuracy over temperature frequently implement calibration. Often the PLC back-plane provides access to a 12-  
V to 36-V analog supply from which a majority of analog supply voltages are derived.  
版权 © 2017, Texas Instruments Incorporated  
63  
 
 
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Typical Application (接下页)  
Analog output modules are frequently multi-channel modules featuring either channel-to-channel isolation  
between each channel or group isolation where several channels share a common ground connection. As  
channel count increases it is desirable to maintain small form-factor requiring high levels of integration and  
reduced power dissipation in order to control heat inside of the PLC enclosure.  
Therefore the design requirements are:  
Support of standard industrial automation voltage and current output spans  
Operation with standard industrial automation supply voltages from 12 V to 36 V  
Current and voltage outputs with TUE less than 0.1% at 25°C  
Total on-board power dissipation less than or equal to 1 W  
At minimum criteria B IEC61000-4 ESD, EFT, CI, and Surge immunity  
9.2.3 Detailed Design Procedure  
AVDD  
RA  
RB  
AVDD  
A2  
+
AVDD  
AVDD  
Q2  
AVSS  
Q1  
+
A1  
IOUT  
AVDD  
SYNC  
AVSS  
VOUTA  
DIN  
RSET  
SCLK  
GND  
VOUT  
B
LDAC  
GND VREFIN/VREFOUT  
AVDD  
+
A3  
AVSS  
RFB  
VOUT  
RG1  
RG2  
Copyright © 2016, Texas Instruments Incorporated  
131. Generic Design for Typical PLC Current and Voltage Outputs  
131 illustrates a common generic solution for realizing the desired voltage and current output spans for  
industrial automation applications.  
The current output circuit is comprised of amplifiers A1 and A2, MOSFETs Q1 and Q2, and the three resistors  
RSET, RA, and RB. This two-stage current source enables the ground-referenced DAC output voltage to drive  
the high-side amplifier required for the current-source.  
64  
版权 © 2017, Texas Instruments Incorporated  
 
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Typical Application (接下页)  
The voltage output circuit is composed of amplifier A3 and the resistor network consisting of RFB, RG1, and  
RG2. A3 operates as a modified summing amplifier, where the DAC controls the non-inverting input and inverting  
input has one path to GND and a second to VREF. This configuration allows the single-ended DAC to create  
both the unipolar 0-V to 5-V and 0-V to 10-V outputs and the bipolar ±5-V and ±10-V outputs by modifying the  
values of RG1 and RG2.  
Though this generic circuit realizes the desired spans, both the voltage and current outputs have short-comings.  
The current output high-side supply voltage is typically 24 V, when driving low impedance loads with this supply  
voltage a considerable amount of power is dissipated on RB and Q2. This power dissipation results in increased  
heat which leads to drift errors for amplifiers A1 and A2 as well as the DAC, resistors, and the reference voltage.  
In order to reduce the power dissipation in the high-side voltage to current converter circuit a feedback system  
which monitors the voltage drop across Q2 and adaptively adjusts the high-side supply voltage can be  
implemented. This feedback system adjusts the high side supply voltage to the minimum supply required to keep  
Q2 in the linear region of operation, avoiding compliance voltage saturation, reducing power dissipation and heat  
to a minimum which helps maintain accuracy.  
The generic voltage output circuit performs well but does not compensate for errors associated with excessive  
output impedance or differences in ground potential from the local PLC ground and the load ground. A modified  
circuit can be implemented which provides connections to sense errors associated with both output impedance  
voltage drops and differences in ground potentials, this circuit is shown in 128.  
130 illustrates the DAC8775 along with the LM5166 in a quad-channel PLC analog output module. The  
DAC8775 includes the generic voltage and current output circuits along with buck-boost converter and feedback  
circuits for the current output and positive and negative sense connections for the voltage output circuit. The  
DAC8775 includes an internal reference and internal LDO for supplying the field-side of a digital isolator along  
with the buck-boost converter generating the single or dual high voltage supplies required for the output circuits,  
all powered from a single supply.  
The DAC8775 buck-boost converter operates at peak efficiency with 12-V input voltage with peak power  
consumption of approximately 780mW. The LM5166 circuit accepts a wide range of input voltages from just  
above 12 V to 65 V, providing coverage for most standard PLC supply voltages, and buck-converts this supply  
voltage to the optimal 12-V supply for the DAC8775. Cumulative power dissipation for the DAC8775 and LM5166  
is under 1 W.  
Two ISO7641 devices implement galvanic isolation for all of the digital communication lines, though only a single  
ISO7641 is required for basic communication with the DAC8775 SPI compatible interface. An output protection  
circuit is included which is designed to provide immunity to the IEC61000-4 industrial transient and radiation test  
suite. The protection circuit includes transient voltage suppressor (TVS) diodes, clamp-to-rail steering diodes,  
and pass elements in the form of resistors and ferrite beads.  
9.2.4 Application Curves  
0.08%  
0.07%  
0.06%  
0.05%  
0.04%  
0.03%  
0.02%  
0.01%  
0.00%  
-0.01%  
-0.02%  
0.05%  
0.04%  
0.03%  
0.02%  
0.01%  
0.00%  
-0.01%  
-0.02%  
-0.03%  
-0.04%  
-0.05%  
A
C
B
D
A
C
B
D
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Code  
Code  
C001  
C001  
132. 4-mA to 20-mA IOUT TUE vs Code  
133. ±10-V VOUT TUE vs Code  
版权 © 2017, Texas Instruments Incorporated  
65  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
Typical Application (接下页)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
RL = 0  
RL = 249ꢀ  
RL = 750ꢀ  
RL = 487ꢀ  
RL = 976ꢀ  
12  
15  
18  
21  
24  
27  
30  
33  
36  
PVDD (V)  
C001  
134. Total On-Board Power Dissipation vs Supply  
66  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
10 Power Supply Recommendations  
There are three possible hardware power supply configurations for the DAC8775: the internal DC/DC provides  
both positive and negative supply voltages, the internal DC/DC provides only one of the supply voltages with an  
external supply provided on the other, or the internal DC/DC is not used at all and external supply voltages are  
provided for both positive and negative supply voltages. Simple illustrations for each case are shown below.  
12V to 36V  
100mH  
10mF  
10mF  
10mF  
0.1mF  
DAC8775  
PVSS  
AGND  
(Single Channel Illustrated for Simplicity)  
Copyright © 2016, Texas Instruments Incorporated  
135. DAC8775 With Dual Supplies from Internal DC/DC  
136 illustrates using a single supply from the DAC8775 internal DC/DC and the other supply from an external  
source. In this example the VNEG_IN_x supply is the input being supplied by an external supply, or ground for  
unipolar output spans. A similar scheme could be used if VPOS_IN_x was supplied by an external supply and  
VNEG_IN_x was supplied by the internal DC/DC.  
To GND or  
External Supply  
12V to 36V  
100mH  
10mF  
10mF  
0.1mF  
DAC8775  
PVSS  
AGND  
(Single Channel Illustrated for Simplicity)  
Copyright © 2016, Texas Instruments Incorporated  
136. DAC8775 With Single Supply from Internal DC/DC  
版权 © 2017, Texas Instruments Incorporated  
67  
 
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
The scheme in 137 should be used if the internal DC/DC is not used at all and external supplies are selected  
for VPOS_IN_x and VNEG_IN_x. When using external supplies for VPOS_IN_x it is important that VPOS_IN_x,  
PVDD, and AVDD nodes are tied to the same voltage potential with the same ramp-rate.  
To GND or  
External Supply  
+12V  
0.1mF  
10mF  
0.1mF  
DAC8775  
PVSS  
AGND  
(Single Channel Illustrated for Simplicity)  
Copyright © 2016, Texas Instruments Incorporated  
137. DAC8775 with External Supplies  
68  
版权 © 2017, Texas Instruments Incorporated  
 
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
11 Layout  
11.1 Layout Guidelines  
An example layout based on the design discussed in the Typical Application section is shown in the Layout  
Example section. 139 shows the top-layer of the design which illustrates all component placement as no  
components are placed on the bottom layer. 140 shows two of the internal power-layers: the layer on the left  
contains VPOS_IN_B, VPOS_IN_C, VNEG_IN_B, and VNEG_IN_D nets while the layer on the right contains  
VPOS_IN_A, VPOS_IN_D, VNEG_IN_A, and VNEG_IN_C nets.  
The layer stack-up for this 6-layer example layout is shown below. A 6-layer design is not required, however  
provides optimal conditions for ground and power-supply planes. The solid ground plane beneath the majority of  
the signal traces, which are placed on the top layer, allows for a clean return path for sensitive analog traces and  
keeps them isolated from the internal power supply nets which will exhibit ripple from the DC/DC converter.  
Signal Traces and Ground Fill  
Solid Ground Plane  
Split Power Supply Plane for 13V to 66V Field Supply Connection and PVDD/AVDD net  
Split VPOS_IN_B, VPOS_IN_C, VNEG_IN_B, and VNEG_IN_D net Planes  
Split VPOS_IN_A, VPOS_IN_D, VNEG_IN_A, and VNEG_IN_C net Planes  
Signal Traces and Ground Fill  
138. Example Layout Layer Stack-Up  
Traces for the DC/DC external components should be as low impedance, low inductance, and low capacitance  
as possible in order to maintain optimum performance. As such wide traces should be used to minimize  
inductance with minimal use of vias as vias will contribute large inductance and capacitance to the trace. For this  
reason it is recommended that all DC/DC components placed on the top layer.  
The industrial transient protection circuit should be placed as close to the output connectors as possible to  
ensure that the return currents from these transients have a controlled path to exit the PCB which does not  
impact the analog circuitry.  
Split ground planes for the DC/DC, digital, and analog grounds are not required but may be helpful to isolated  
ground return currents from cross-talk. If split ground planes are used care should be taken to ensure that signal  
traces are only placed above or below the locations where their respective grounds are placed in order to  
mitigate unexpected return paths or coupling to the other ground planes. If a single ground plane is used it is  
advisable to follow similar practices implementing a star-ground where the respective return currents interact with  
one another minimally. The example layout uses a single ground plane, based on measured results, performs  
similarly to an identical version with split ground planes.  
The perimeter of the board is stitched with vias in order to enhance design performance against environments  
which may include radiated emissions. Additional vias are placed in critical areas nearby the design in order to  
place ground pours in between nodes to reduce cross-talk between adjacent traces.  
Standard best-practices should be applied to the remaining components, including but not limited to, placing  
decoupling capacitors close to their respective pins and using wide traces or copper pours where possible,  
particularly for power traces where high current may flow.  
版权 © 2017, Texas Instruments Incorporated  
69  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
11.2 Layout Example  
Channel B DC/DC  
Components  
Channel C DC/DC  
Components  
12V Output  
Buck-Converter  
Channel A Output  
Protection Circuit  
Channel B Output  
Protection Circuit  
Channel C Output  
Protection Circuit  
Channel D Output  
Protection Circuit  
139. Application Example Layout  
70  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
Layout Example (接下页)  
140. Example Design Internal Copper Pours  
版权 © 2017, Texas Instruments Incorporated  
71  
DAC8775  
ZHCSFZ2 FEBRUARY 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档请参见以下部分:  
DAC8775 EVM 用户指南》(文献编号:SBAU248)  
LM5166 IQ 超低的 3V 65V 输入、500mA 同步降压转换器数据表》(文献编号:SNVSA67)  
ISO76x1 低功耗三通道和四通道数字隔离器》(文献编号:SLLSEC3)  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
Microwire, E2E are trademarks of Texas Instruments.  
SPI, QSPI are trademarks of Motorola, Inc.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
72  
版权 © 2017, Texas Instruments Incorporated  
DAC8775  
www.ti.com.cn  
ZHCSFZ2 FEBRUARY 2017  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017, Texas Instruments Incorporated  
73  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC8775IRWFR  
DAC8775IRWFT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RWF  
RWF  
72  
72  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
DAC8775  
DAC8775  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
RWF0072A  
VQFN - 0.9 mm max height  
S
C
A
L
E
1
.
4
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
10.1  
9.9  
A
B
PIN 1 INDEX AREA  
10.1  
9.9  
0.9 MAX  
C
SEATING PLANE  
0.08  
0.05  
0.00  
2X 8.5  
(0.2) TYP  
36  
19  
68X 0.5  
18  
37  
8.5 0.1  
2X  
8.5  
1
54  
0.3  
0.2  
72  
55  
72X  
PIN 1 ID  
0.5  
0.3  
(OPTIONAL)  
72X  
0.1  
C A  
B
0.05  
4221567/A 07/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RWF0072A  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(1.3) TYP  
55  
72  
72X (0.6)  
1
54  
72X (0.25)  
68X (0.5)  
(1.3)  
TYP  
SYMM  
(9.8)  
(
0.2) TYP  
VIA  
37  
18  
19  
36  
(
8.5)  
(9.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
UNDER SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221567/A 07/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RWF0072A  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
METAL  
TYP  
(1.3) TYP  
72X (0.6)  
72X (0.25)  
55  
72  
1
54  
(1.3)  
TYP  
68X (0.5)  
SYMM  
(9.8)  
18  
37  
19  
36  
SYMM  
(9.8)  
(
1.1)  
TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
60% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
4221567/A 07/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY