DAC8801IDRBT [TI]

14 位单通道串行接口乘法数模转换器 | DRB | 8 | -40 to 85;
DAC8801IDRBT
型号: DAC8801IDRBT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

14 位单通道串行接口乘法数模转换器 | DRB | 8 | -40 to 85

光电二极管 转换器 数模转换器
文件: 总23页 (文件大小:1309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
B
u
r
r
Ć
B
r
o
w
n
P
r
o
d
u
c
t
s
DAC8801  
f
r
o
m
T
e
x
a
s
I
n
s
t
r
u
m
e
n
t
s
SLAS403BNOVEMBER 2004REVISED FEBRUARY 2007  
14-Bit, Serial Input Multiplying Digital-to-Analog Converter  
FEATURES  
DESCRIPTION  
14-Bit Monotonic  
The DAC8801 multiplying digital-to-analog converter  
is designed to operate from a single 2.7-V to 5.5-V  
supply.  
±1 LSB INL  
±0.5 LSB DNL  
The applied external reference input voltage VREF  
determines the full-scale output current. An internal  
Low Noise: 12 nV/Hz  
Low Power: IDD = 2 µA  
+2.7 V to +5.5 V Analog Power Supply  
feedback resistor (RFB  
)
provides temperature  
tracking for the full-scale output when combined with  
an external I-to-V precision amplifier.  
2 mA Full-Scale Current ±20%  
with VREF = 10 V  
A serial-data interface offers high-speed, three-wire  
microcontroller compatible inputs using data-in (SDI),  
clock (CLK), and chip select (CS).  
0.5 µs Settling Time  
4-Quadrant Multiplying Reference-Input  
Reference Bandwidth: 10 MHz  
±10 V Reference Input  
On power-up, the DAC register is filled with zeroes,  
and the DAC output is at zero scale.  
The DAC8801 is packaged in space-saving 8-lead  
SON and MSOP packages.  
Reference Dynamics: -105 THD  
3-Wire 50-MHz Serial Interface  
Tiny 8-Lead 3 x 3 mm SON and 3 x 5 mm  
MSOP Packages  
Industry-Standard Pin Configuration  
APPLICATIONS  
14  
Automatic Test Equipment  
Instrumentation  
Digitally Controlled Calibration  
Industrial Control PLCs  
14  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2004–2007, Texas Instruments Incorporated  
DAC8801  
www.ti.com  
SLAS403BNOVEMBER 2004REVISED FEBRUARY 2007  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be  
more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
(1)  
PACKAGE/ORDERING INFORMATION  
MINIMUM  
RELATIVE  
DIFFERENTIAL  
SPECIFIED  
TEMPERATURE  
RANGE  
TRANSPORT  
MEDIA,  
QUANTITY  
ACCURACY NONLINEARITY PACKAGE-  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
PRODUCT  
(LSB)  
(LSB)  
LEAD  
Tape and Reel,  
250  
DAC8801  
±1  
±0.5  
MSOP-8  
DGK  
DGK  
DRB  
DRB  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
F01  
F01  
E01  
E01  
DAC8801IDGKT  
DAC8801IDGKR  
DAC8801IDRBT  
DAC8801IDRBR  
Tape and Reel,  
2500  
DAC8801  
DAC8801  
DAC8801  
±1  
±1  
±1  
±0.5  
±0.5  
±0.5  
MSOP-8  
SON-8  
SON-8  
Tape and Reel,  
250  
Tape and Reel,  
2500  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this data sheet, or refer to our  
web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
DAC8801  
–0.3 to 7  
UNITS  
V
VDD to GND  
Digital Input voltage to GND  
VOUT to GND  
–0.3 to +VDD + 0.3  
–0.3 to +VDD + 0.3  
–40 to 105  
–25 to 25  
–65 to 150  
125  
V
V
Operating temperature range  
VREF, RFB to GND  
°C  
V
Storage temperature range  
Junction temperature range (TJ max)  
Power dissipation  
°C  
°C  
W
(TJ max – TA) / RΘJA  
55  
Thermal impedance, RΘJA  
°C/W  
°C  
°C  
V
Lead temperature, soldering  
Lead temperature, soldering  
ESD rating, HBM  
Vapor phase (60s)  
Infrared (15s)  
215  
220  
4000  
ESD rating, CDM  
1000  
V
(1) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute  
maximum conditions for extended periods may affect device reliability.  
2
Submit Documentation Feedback  
DAC8801  
www.ti.com  
SLAS403BNOVEMBER 2004REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS  
VDD = 2.7 V to 5.5 V; IOUT = Virtual GND, GND = 0 V; VREF = 10 V; TA = Full Operating Temperature; all specifications -40°C  
to 85°C unless otherwise noted.  
DAC8801  
PARAMETER  
CONDITIONS  
UNITS  
MIN  
TYP MAX  
STATIC PERFORMANCE  
Resolution  
14  
Bits  
LSB  
LSB  
nA  
Relative accuracy  
±1  
±0.5  
10  
Differential nonlinearity  
Output leakage current  
Output leakage current  
Full-scale gain error  
Data = 0000h, TA = 25°C  
Data = 0000h, TA = TMAX  
10  
nA  
All ones loaded to DAC register  
±1  
±3  
±4  
mV  
ppm of  
FSR/°C  
Full-scale tempco  
OUTPUT CHARACTERISTICS(1)  
Output current  
2
mA  
pF  
Output capacitance  
REFERENCE INPUT(1)  
VREF Range  
Code dependent  
50  
–15  
15  
V
Input resistance  
5
5
kΩ  
pF  
Input capacitance  
LOGIC INPUTS AND OUTPUT(1)  
VDD = 2.7V  
VDD = 5V  
0.6  
0.8  
V
V
VIL  
VIH  
Input low voltage  
Input high voltage  
VDD = 2.7V  
VDD = 5V  
2.1  
2.4  
V
V
IIL  
Input leakage current  
Input capacitance  
10  
10  
µA  
pF  
CIL  
INTERFACE TIMING  
fCLK  
Clock input frequency  
50  
MHz  
ns  
t(CH)  
t(CL)  
Clock pulse width high  
Clock pulse width low  
CS to Clock setup time  
Clock to CS hold time  
Data setup time  
10  
10  
0
ns  
t(CSS)  
t(CSH)  
t(DS)  
t(DH)  
ns  
10  
5
ns  
ns  
Data hold time  
10  
ns  
POWER REQUIREMENTS  
VDD  
2.7  
5.5  
5
V
IDD (normal operation)  
Logic inputs = 0 V  
µA  
µA  
µA  
VDD = 4.5 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
3
1
5
2.5  
AC CHARACTERISTICS(1)(2)  
To ±0.1% of full-scale, Data = 0000h to 3FFFh to 0000h  
To ±0.006% of full-scale, Data = 0000h to 3FFFh to 0000h  
VREF = 5 VPP, Data = 3FFFh  
0.3  
0.5  
10  
2
ts  
Output voltage settling time  
µs  
Reference multiplying BW  
DAC glitch impulse  
Feedthrough error  
MHz  
nV/s  
dB  
VREF = 0 V, Data = 3FFFh to 2000h  
VREF = 100 mVRMS, 100kHz, Data = 0000h  
CS = 1 and fCLK = 1MHz  
–70  
2
Digital feedthrough  
nV/s  
(1) Specified by design and characterization, not production tested.  
(2) All ac characteristic tests are performed in a closed-loop system using the THS4011 I-to-V converter amplifier.  
3
Submit Documentation Feedback  
DAC8801  
www.ti.com  
SLAS403BNOVEMBER 2004REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS (continued)  
VDD = 2.7 V to 5.5 V; IOUT = Virtual GND, GND = 0 V; VREF = 10 V; TA = Full Operating Temperature; all specifications -40°C  
to 85°C unless otherwise noted.  
DAC8801  
PARAMETER  
CONDITIONS  
UNITS  
MIN  
TYP MAX  
Total harmonic distortion  
Output spot noise voltage  
VREF = 5 VPP, Data = 3FFFh, f = 1 kHz  
f = 1 kHz, BW = 1 Hz  
–105  
12  
dB  
nV/Hz  
PIN ASSIGNMENTS  
DGK PACKAGE  
(TOP VIEW)  
DRB PACKAGE  
(TOP VIEW)  
8
7
6
5
CS  
CLK  
SDI  
1
8
7
CLK  
SDI  
1
2
CS  
V
DD  
2
V
DD  
3
4
R
FB  
GND  
R
FB  
3
4
6
5
GND  
I
V
REF  
OUT  
V
REF  
I
OUT  
TERMINAL FUNCTIONS  
PIN  
1
NAME  
CLK  
SDI  
DESCRIPTION  
Clock input, positive edge triggered clocks data into shift register  
2
Serial register input, data loads directly into the shift register MSB first. Extra leading bits are ignored.  
Internal matching feedback resistor. Connect to external op amp output.  
DAC reference input pin. Establishes DAC full-scale voltage. Constant input resistance versus code.  
DAC current output. Connects to inverting terminal of external precision I to V op amp.  
Analog and digital ground  
3
RFB  
4
VREF  
IOUT  
GND  
VDD  
5
6
7
Posiitve power supply input. Specified range of operation 2.7 V to 5.5 V.  
Chip select, active low digital input. Transfers shift register data to DAC register on rising edge. See Table 1 for  
operation.  
8
CS  
4
Submit Documentation Feedback  
DAC8801  
www.ti.com  
SLAS403BNOVEMBER 2004REVISED FEBRUARY 2007  
TYPICAL CHARACTERISTICS: VDD = 5 V  
At TA = 25°C, +VDD = 5 V, unless otherwise noted.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
Figure 1.  
Figure 2.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
Figure 3.  
Figure 4.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
Figure 5.  
Figure 6.  
5
Submit Documentation Feedback  
DAC8801  
www.ti.com  
SLAS403BNOVEMBER 2004REVISED FEBRUARY 2007  
TYPICAL CHARACTERISTICS: VDD = 5 V (continued)  
At TA = 25°C, +VDD = 5 V, unless otherwise noted.  
SUPPLY CURRENT  
vs LOGIC INPUT VOLTAGE  
REFERENCE BANDWIDTH  
1.6  
6
0
6
0x3FFF  
0x2000  
0x1000  
0x0800  
0x0400  
1.4  
12  
18  
24  
30  
36  
42  
48  
54  
60  
66  
72  
78  
84  
90  
96  
VDD = +5.0V  
1.2  
0x0200  
0x0100  
0x0080  
0x0040  
0x0020  
0x0010  
0x0008  
0x0004  
1.0  
0.8  
0.6  
0.4  
0x0002  
0x0001  
0.2  
0x0000  
102  
108  
114  
1
VDD = +2.7V  
0
0
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Logic Input Voltage (V)  
Bandwidth (Hz)  
Figure 7.  
Figure 8.  
DAC SETTLING TIME  
DAC GLITCH  
Voltage Output Settling  
Code: 3FFFh to 2000h  
Trigger Pulse  
Trigger Pulse  
µ
Time (0.1 s/div)  
µ
Time (0.2 s/div)  
Figure 9.  
Figure 10.  
6
Submit Documentation Feedback  
 
DAC8801  
www.ti.com  
SLAS403BNOVEMBER 2004REVISED FEBRUARY 2007  
TYPICAL CHARACTERISTICS: VDD = 2.7 V  
At TA = 25°C, +VDD = 2.7 V, unless otherwise noted.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
Figure 11.  
Figure 12.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
0
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
Figure 13.  
Figure 14.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
2048 4096 6144 8192 10240 12288 14336 16384  
Digital Input Code  
Figure 15.  
Figure 16.  
7
Submit Documentation Feedback  
DAC8801  
www.ti.com  
SLAS403BNOVEMBER 2004REVISED FEBRUARY 2007  
THEORY OF OPERATION  
The DAC8801 is a single channel current output, 16-bit digital-to-analog converter (DAC). The architecture,  
illustrated in Figure 17, is an R-2R ladder configuration with the three MSBs segmented. Each 2R leg of the  
ladder is either switched to GND or the IOUT terminal. The IOUT terminal of the DAC is held at a virtual GND  
potential by the use of an external I/V converter op amp. The R-2R ladder is connected to an external reference  
input VREF that determines the DAC full-scale current. The R-2R ladder presents a code independent load  
impedance to the external reference of 5 kΩ± 25%. The external reference voltage can vary in a range of -10 V  
to 10 V, thus providing bipolar IOUT current operation. By using an external I/V converter and the DAC8801 RFB  
resistor, output voltage ranges of -VREF to VREF can be generated.  
When using an external I/V converter and the DAC8801 RFB resistor, the DAC output voltage is given by  
Equation 1:  
CODE  
16384  
VOUT + −VREF  
 
(1)  
R
R
R
V
REF  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
R
FB  
I
OUT  
GND  
Figure 17. Equivalent R-2R DAC Circuit  
Each DAC code determines the 2R leg switch position to either GND or IOUT. Because the DAC output  
impedance as seen looking into the IOUT terminal changes versus code, the external I/V converter noise gain will  
also change. Because of this, the external I/V converter op amp must have a sufficiently low offset voltage such  
that the amplifier offset is not modulated by the DAC IOUT terminal impedance change. External op amps with  
large offset voltages can produce INL errors in the transfer function of the DAC8801 due to offset modulation  
versus DAC code. For best linearity performance of the DAC8801, an op amp (OPA277) as shown in Figure 18  
is recommended. This circuit allows VREF to swing from -10V to +10V.  
V
DD  
U1  
V
DD  
R
FB  
15 V  
U2  
V+  
_
DAC8801  
I
V
REF  
OUT  
OPA277  
V
O
+
GND  
V−  
−15 V  
Figure 18. Voltage Output Configuration  
8
Submit Documentation Feedback  
 
 
 
DAC8801  
www.ti.com  
SDI  
SLAS403BNOVEMBER 2004REVISED FEBRUARY 2007  
D13 D12 D11 D10 D9  
D8 D7  
D6  
D1 D0  
CLK  
t
(DS)  
t
(CH)  
t
t
(CL)  
(DH)  
t
t
(CSH)  
(CSS)  
CS  
Figure 19. DAC8801 Timing Diagram  
Table 1. Control Logic Truth Table(1)  
CLK  
X
CS  
H
Serial Shift Register  
DAC Register  
No effect  
Latched  
+  
X
L
Shift register data advanced one bit  
No effect  
Latched  
H
Latched  
X
+  
Shift register data transferred to DAC register  
New data loaded from serial register  
(1) + Positive logic transition; X = Don't care  
Table 1. Serial Input Register Data Format, Data Loaded MSB First  
B13  
B0  
Bit  
Data(1)  
(MSB)  
B12  
D12  
B11  
D11  
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
(LSB)  
D13  
D0  
(1) A full 16-bit data word can be loaded into the serial register, but only the last 14 bits are transferred to the DAC register when CS goes  
high.  
9
Submit Documentation Feedback  
DAC8801  
www.ti.com  
SLAS403BNOVEMBER 2004REVISED FEBRUARY 2007  
APPLICATION INFORMATION  
Stability Circuit  
For a current-to-voltage design as shown in Figure 20, the DAC8801 current output (IOUT) and the connection  
with the inverting node of the op amp should be as short as possible and according to correct PCB layout  
design. For each code change there is a step function. If the GBP of the op amp is limited and parasitic  
capacitance is excessive at the inverting node then gain peaking is possible. Therefore, for circuit stability, a  
compensation capacitor C1 (4 pF to 20 pF typ) can be added to the design as shown in Figure 20.  
V
DD  
V
DD  
R
FB  
C1  
_
+
I
U1  
V
REF  
V
REF  
OUT  
V
OUT  
U2  
GND  
Figure 20. Gain Peaking Prevention Circuit With Compensation Capacitor  
Positive Voltage Output Circuit  
As shown in Figure 21, in order to generate a positive voltage output, a negative reference is input to the  
DAC8801. This design is suggested instead of using an inverting amp to invert the output due to tolerance  
errors of the resistor. For a negative reference, VOUT and GND of the reference are level-shifted to a virtual  
ground and a -2.5 V input to the DAC8801 with an op amp.  
V
DD  
+2.5V Reference  
V
IN  
V
OUT  
GND  
R
FB  
V
DD  
C1  
OPA277  
V
+
REF  
DAC8801  
GND  
+
−2.5 V  
I
OUT  
V
OUT  
OPA277  
0 3 V  
3 +2.5 V  
OUT  
Figure 21. Positive Voltage Output Circuit  
10  
Submit Documentation Feedback  
 
 
DAC8801  
www.ti.com  
SLAS403BNOVEMBER 2004REVISED FEBRUARY 2007  
APPLICATION INFORMATION (continued)  
Bipolar Output Circuit  
The DAC8801, as a 2-quadrant multiplying DAC, can be used to generate a unipolar output. The polarity of the  
full-scale output IOUT is the inverse of the input reference voltage at VREF  
.
Some applications require full 4-quadrant multiplying capabilities or bipolar output swing. As shown in Figure 22,  
external op amp U4 is added as a summing amp and has a gain of 2X that widens the output span to 5 V. A  
4-quadrant multiplying circuit is implemented by using a 2.5-V offset of the reference voltage to bias U4.  
According to the circuit transfer equation given in Equation 2, input data (D) from code 0 to full scale produces  
output voltages of VOUT = -2.5 V to VOUT = 2.5 V.  
D
+ ǒ  
Ǔ
VOUT  
* 1   VREF  
16, 384  
(2)  
10 kW  
10 kW  
V
DD  
5 kW  
C2  
RFB  
V
V
OUT  
DD  
+
C1  
U4  
OPA277  
V
REF  
DAC8801  
GND  
+2.5 V  
(+10 V)  
I
−2.5 V 3 V  
(−10 V 3 V  
3 +2.5 V  
3 +10 V)  
OUT  
OUT  
+
U2  
OPA277  
OUT  
Figure 22. Bipolar Output Circuit  
Programmable Current Source Circuit  
A DAC8801 can be integrated into the circuit in Figure 23 to implement an improved Howland current pump for  
precise voltage to current conversions. Bidirectional current flow and high voltage compliance are two features of  
the circuit. A application of this circuit includes a 4-mA to 20-mA current transmitter with up to a 500-load.  
With a matched resistor network, the load current of the circuit is shown in Equation 3:  
(
)
R2 ) R3 ń R1  
IL +  
  VREF   D  
R3  
(3)  
R24  
15 kW  
C1  
10 pF  
R14  
150 kW  
R34  
50 W  
U2  
OPA277  
V
DD  
+
V
R
V
OUT  
DD  
FB  
U2  
R2  
15 kW  
R1  
150 kW  
OPA277  
R3  
V
U1  
DAC8801  
REF  
V
REF  
50 W  
I
OUT  
+
I
L
GND  
LOAD  
Figure 23. Programmable Bidirectional Current Source Circuit  
11  
Submit Documentation Feedback  
 
 
 
 
DAC8801  
www.ti.com  
SLAS403BNOVEMBER 2004REVISED FEBRUARY 2007  
APPLICATION INFORMATION (continued)  
The value of R3 in the previous equation can be reduced to increase the output current drive of U3. U3 can  
drive ±20 mA in both directions with voltage compliance limited up to 15 V by the U3 voltage supply. Elimination  
of the circuit compensation capacitor C1 in the circuit is not suggested because of the change in the output  
impedance ZO, according to Equation 4:  
R1ȀR3(R1 ) R2)  
R1(R2Ȁ ) R3Ȁ) * R1Ȁ(R2 ) R3)  
ZO +  
(4)  
As shown in Equation 4, with matched resistors, ZO is infinite and the circuit is optimum for use as a current  
source. However, if unmatched resistors are used, ZO is positive or negative with negative output impedance  
being a potential cause of oscillation. Therefore, by incorporating C1 into the circuit, possible oscillation  
problems are eliminated. The value of C1 can be determined for critical applications; however, for most  
applications a value of several pF is suggested.  
Cross-Reference  
The DAC8801 has an industry-standard pinout. Table 2 provides the cross-reference information.  
Table 2. Cross Reference  
SPECIFIED  
INL  
(LSB)  
DNL  
(LSB)  
TEMPERATURE  
RANGE  
PACKAGE  
DESCIPTION  
PACKAGE  
OPTION  
CROSS  
REFERENCE  
PRODUCT  
DAC8801IDGK  
DAC8801IDRB  
±1  
±1  
±1  
±1  
-40°C to +85°C  
-40°C to +85°C  
8-Lead MicroSOIC  
MSOP-8  
SON-8  
ADS5553CRM  
N/A  
8-Lead Small Outline  
Table 3. DAC8801 Revision History  
Revision  
Date  
Description  
A
12/04 Removed the "Product Preview" label.  
Added information to the Features.  
Added Output leakage current Data = 0000h, TA = TMAX in the Electrical Characteristics table.  
Added Input high voltage for 2.7 V and 5 V in the Electrical Characteristics table.  
Changed the values of the Power Requirements and the AC characteristics in the Electrical Characteristics table.  
10/06 Changed the ESD rating, HBM from 1500 to 4000 in the Absolute Maximum Ratings.  
Revised Figure 8.  
B
12  
Submit Documentation Feedback  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC8801IDGKR  
DAC8801IDGKT  
DAC8801IDGKTG4  
DAC8801IDRBT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
SON  
DGK  
DGK  
DGK  
DRB  
8
8
8
8
2500 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
F01  
F01  
F01  
E01  
250  
250  
250  
RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC8801IDGKR  
VSSOP  
DGK  
8
2500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VSSOP DGK  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
DAC8801IDGKR  
8
2500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRB0008A  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
DIM A  
OPT 1  
(0.1)  
OPT 2  
(0.2)  
1.5 0.1  
4X (0.23)  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
4
5
2X  
1.95  
1.75 0.1  
8
1
6X 0.65  
0.37  
0.25  
8X  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
(0.65)  
0.05  
0.5  
0.3  
8X  
4218875/A 01/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRB0008A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.5)  
(0.65)  
SYMM  
8X (0.6)  
(0.825)  
8
8X (0.31)  
1
SYMM  
(1.75)  
(0.625)  
6X (0.65)  
4
5
(R0.05) TYP  
(
0.2) VIA  
(0.23)  
TYP  
(0.5)  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218875/A 01/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRB0008A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.65)  
4X (0.23)  
SYMM  
METAL  
TYP  
8X (0.6)  
4X  
(0.725)  
8
1
8X (0.31)  
(2.674)  
(1.55)  
SYMM  
6X (0.65)  
4
5
(R0.05) TYP  
(1.34)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
84% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218875/A 01/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY