DAC8803IDBTG4 [TI]

14-Bit, Quad Channel, Serial Interface, Multiplying Digital-to-Analog Converter 28-SSOP -40 to 85;
DAC8803IDBTG4
型号: DAC8803IDBTG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

14-Bit, Quad Channel, Serial Interface, Multiplying Digital-to-Analog Converter 28-SSOP -40 to 85

光电二极管 转换器
文件: 总26页 (文件大小:3061K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
Quad, Serial Input 14-Bit Multiplying Digital-to-Analog Converter  
FEATURES  
DESCRIPTION  
Relative Accuracy: 1 LSB Max  
The DAC8803 is a quad, 14-bit, current-output  
digital-to-analog converter (DAC) designed to operate  
from a single +2.7-V to 5-V supply.  
Differential Nonlinearity: 1 LSB Max  
2-mA Full-Scale Current  
with VREF = ±10 V  
0.5-µs Settling Time  
Midscale or Zero-Scale Reset  
The applied external reference input voltage VREF  
determines the full-scale output current. An internal  
feedback resistor (RFB) provides temperature tracking  
for the full-scale output when combined with an  
external I-to-V precision amplifier.  
Four Separate 4Q Multiplying Reference  
Inputs  
A
doubled buffered serial data interface offers  
Reference Bandwidth: 10 MHz  
high-speed, 3-wire, SPI and microcontroller  
compatible inputs using serial data in (SDI), clock  
(CLK), and a chip select (CS). In addition, a serial  
data out pin (SDO) allows for daisy chaining when  
Reference Dynamics: -105 dB THD  
SPI™-Compatible 3-Wire Interface:  
50-MHz  
Double Buffered Registers Enable  
Simultaneous Multichannel Update  
Internal Power-On Reset  
multiple  
packages  
are  
used.  
A
common  
level-sensitive load DAC strobe (LDAC) input allows  
simultaneous update of all DAC outputs from  
previously loaded input registers. Additionally, an  
internal power-on reset forces the output voltage to  
zero at system turn on. An MSB pin allows system  
reset assertion (RS) to force all registers to zero code  
when MSB = 0, or to half-scale code when MSB = 1.  
Compact SSOP-28 Package  
Industry-Standard Pin Configuration  
APPLICATIONS  
Automatic Test Equipment  
Instrumentation  
Digitally-Controlled Calibration  
The DAC8803 is packaged in an SSOP package.  
A
B C D  
V
REF  
D0  
D1  
R A  
FB  
SDO  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
A0  
Input  
Register  
DAC A  
Register  
DAC A  
DAC B  
DAC C  
DAC D  
I
A
OUT  
R
R
R
R
R
R
A
A
GND  
R
B
FB  
Input  
Register  
DAC B  
Register  
14  
I
C
OUT  
A
B
GND  
R
C
FB  
A1  
Input  
Register  
DAC C  
Register  
I
C
OUT  
SDI  
A
C
GND  
CLK  
EN  
CS  
R
D
FB  
Input  
Register  
DAC D  
Register  
I
D
OUT  
R
R
A
DAC  
B
C
D
A
D
GND  
2:4  
Power-On  
Reset  
A
F
GND  
Decode  
DGND  
RS  
MSB  
LDAC  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
SPI is a trademark of Motorola, Inc.  
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005–2006, Texas Instruments Incorporated  
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
PACKAGE/ORDERING INFORMATION(1)  
MINIMUM  
RELATIVE  
ACCURACY  
(LSB)  
DIFFERENTIAL  
NONLINEARITY  
(LSB)  
SPECIFIED  
TEMPERATURE  
RANGE  
TRANSPORT  
MEDIA  
QUANTITY  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
ORDERING  
NUMBER  
PRODUCT  
DAC8803IDBT  
DAC8803IDBR  
Tape and Reel, 250  
Tape and Reel, 2500  
DAC8803  
±1  
±1  
-40°C to +85°C  
SSOP-28  
DB  
(1) For the most current specifications and package information, see the Package Option Addendum at the end of this document, or see the  
TI website at www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
DAC8803  
-0.3 to +8  
-18 to +18  
-0.3 to +8  
-0.3 to VDD + 0.3  
-0.3 to +0.3  
±50  
UNIT  
V
VDD to GND  
VREF to GND  
V
Logic inputs and output to GND  
V(IOUT) to GND  
V
V
AGNDX to DGND  
V
Input current to any pin except supplies  
Package power dissipation  
mA  
W
(TJmax - TA)/θJA  
100  
Thermal resistance, θJA  
28-Lead shrink surface-mount (RS-28)  
°C/W  
°C  
°C  
°C  
Maximum junction temperature (TJmax)  
Operating temperature range, Model A  
Storage temperature range  
150  
-40 to +85  
-65 to +150  
(1) Stresses above those listed under absolute maximum ratings may cause permanent damage to the device. This is a stress rating only;  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification  
is not implied. Exposure to absolute maximum conditions for extended periods may affect device reliability.  
2
Submit Documentation Feedback  
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
ELECTRICAL CHARACTERISTICS  
VDD = +2.7 V to +5.5 V; IOUTX = Virtual GND, AGNDX = 0 V, VREFA, B, C, D = 10 V, TA = full operating temperature range,  
unless otherwise noted.  
DAC8803  
PARAMETER  
STATIC PERFORMANCE(1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
14  
±1  
±1  
10  
20  
±3  
Bits  
LSB  
LSB  
nA  
Relative accuracy  
Differential nonlinearity  
Output leakage current  
DNL  
IOUT  
IOUT  
X
X
Data = 0000h, TA = 25°C  
Data = 0000h, TA = TA max  
Data = 3FFFh  
nA  
Full-scale gain error  
Full-scale tempco(2)  
Feedback resistor  
REFERENCE INPUT  
VREFX Range  
GFSE  
±0.75  
1
mV  
TCVFS  
ppm/°C  
kΩ  
RFB  
X
VDD = 5 V  
VREF  
RREF  
RREF  
CREF  
X
X
X
X
-15  
4
15  
6
V
Input resistance  
5
1
5
kΩ  
%
Input resistance match  
Input capacitance(2)  
ANALOG OUTPUT  
Output current  
Output capacitance(2)  
LOGIC INPUTS AND OUTPUT  
Input low voltage  
Channel-to-channel  
pF  
IOUT  
X
X
Data = 3FFFh  
1.6  
2.5  
mA  
pF  
COUT  
Code-dependent  
50  
VIL  
VIL  
VDD = +2.7 V  
VDD = +5 V  
VDD = +2.7 V  
VDD = +5 V  
0.6  
0.8  
V
V
Input high voltage  
VIH  
VIH  
IIL  
2.1  
2.4  
V
V
Input leakage current  
Input capacitance(2)  
1
10  
µA  
pF  
V
CIL  
VOL  
VOH  
Logic output low voltage  
Logic output high voltage  
IOL = 1.6 mA  
IOH = 100 µA  
0.4  
4
V
INTERFACE TIMING(2) (3)  
,
Clock width high  
Clock width low  
CS to Clock setup  
Clock to CS hold  
Clock to SDO prop delay  
Load DAC pulsewidth  
Data setup  
tCH  
tCL  
25  
25  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCSS  
tCSH  
tPD  
25  
2
20  
tLDAC  
tDS  
25  
20  
20  
5
Data hold  
tDH  
Load setup  
tLDS  
tLDH  
Load hold  
25  
(1) All static performance tests (except IOUT) are performed in a closed-loop system using an external precision OPA277 I-to-V converter  
amplifier. The DAC8803 RFB terminal is tied to the amplifier output. Typical values represent average readings measured at 25°C.  
(2) These parameters are specified by design and not subject to production testing.  
(3) All input control signals are specified with tR = tF = 2.5 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.  
3
Submit Documentation Feedback  
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
ELECTRICAL CHARACTERISTICS (continued)  
VDD = +2.7 V to +5.5 V; IOUTX = Virtual GND, AGNDX = 0 V, VREFA, B, C, D = 10 V, TA = full operating temperature range,  
unless otherwise noted.  
DAC8803  
PARAMETER  
SUPPLY CHARACTERISTICS  
Power supply range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDD RANGE  
IDD  
2.7  
5.5  
5
V
Logic inputs = 0 V,  
VDD = +4.5 V to +5.5 V  
Positive supply current  
2
1
µA  
Logic inputs = 0 V,  
VDD = +2.7 V to +3.6 V  
IDD  
2.5  
µA  
Power dissipation  
PDISS  
PSS  
Logic inputs = 0 V  
0.025  
0.006  
mW  
%
Power supply sensitivity  
AC CHARACTERISTICS(4)  
VDD = ±5%  
To ±0.1% of full-scale,  
Data = 0000h to 3FFFh to 0000h  
Output voltage settling time  
ts  
ts  
0.3  
0.5  
µs  
µs  
To ±0.006% of full-scale,  
Data = 0000h to 3FFFh to 0000h  
Reference multiplying BW  
DAC glitch impulse  
BW -3 dB VREFX = 100 mVRMS, Data = 3FFFh, CFB = 3 pF  
10  
1
MHz  
nV/s  
dB  
Q
VREFX = 10 V, Data = 1FFFh to 2000h to 1FFFh  
Data = 0000h, VREFX = 100 mVRMS, f = 100 kHz  
Feedthrough error  
VOUTX/VREF  
X
-70  
Data = 0000h, VREFB = 100 mVRMS  
Adjacent channel, f = 100 kHz  
,
Crosstalk error  
VOUTA/VREF  
B
-100  
dB  
Digital feedthrough  
Q
THD  
en  
CS = 1 and fCLK = 1 MHz  
1
-105  
12  
nV/s  
dB  
Total harmonic distortion  
Output spot noise voltage  
VREF = 5 VPP, Data = 3FFFh, f = 1 kHz  
f = 1 kHz, BW = 1 Hz  
nV/Hz  
(4) All ac characteristic tests are performed in a closed-loop system using a THS4011 I-to-V converter amplifier.  
4
Submit Documentation Feedback  
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
PIN CONFIGURATIONS  
DAC8803  
(TOP VIEW)  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
A
A
A
D
GND  
GND  
2
I
A
OUT  
I
D
OUT  
3
V
A
REF  
V
REF  
D
4
R
A
FB  
R
D
FB  
5
MSB  
DGND  
(1)  
6
RS  
V
SS  
7
V
A
GND  
F
DD  
8
CS  
CLK  
SDI  
LDAC  
9
SDO  
(1)  
10  
11  
12  
13  
14  
NC  
R
B
B
B
B
R
C
FB  
FB  
V
V
REF  
C
REF  
I
I
C
OUT  
OUT  
A
GND  
A
GND  
C
Note (1): No internal connection  
PIN DESCRIPTION  
PIN  
NAME  
AGNDA, AGNDB, AGNDC, AGND  
IOUTA, IOUTB, IOUTC, IOUT  
DESCRIPTION  
1, 14, 15, 28  
2, 13, 16, 27  
D
DAC A, B, C, D Analog ground  
DAC A, B, C, D Current output  
D
DAC A, B, C, D Reference voltage input terminal. Establishes DAC A, B, C, D full-scale  
output voltage. Can be tied to VDD  
3, 12, 17, 26  
VREFA, VREFB, VREFC, VREFD  
.
4, 11, 18, 25  
5
RFBA, RFBB, RFBC, RFBD,  
MSB  
Establish voltage output for DAC A, B, C, D by connecting to external amplifier output.  
MSB Bit set during a reset pulse (RS) or at system power-on if tied to ground or VDD  
.
Reset pin, active low. Input register and DAC registers are set to all zeros or half-scale  
code (2000h) determined by the voltage on the MSB pin. Register data = 2000h when  
MSB = 1.  
6
7
8
RS  
VDD  
CS  
Positive power-supply input. Specified range of operation +2.7 V to +5.5 V.  
Chip select; active low input. Disables shift register loading when high. Transfers shift  
register data to input register when CS/LDAC goes high. Does not affect LDAC  
operation.  
9
CLK  
SDI  
NC  
Clock input; positive edge triggered clocks data into shift register  
Serial data input; data loads directly into the shift register.  
Not connected; leave floating  
10  
19  
Serial data output; input data load directly into shift register. Data appears at SDO, 17  
clock pulses after input at the SDI pin.  
20  
21  
SDO  
Load DAC register strobe; level sensitive active low. Transfers all input register data to  
the DAC registers. Asynchronous active low input. See Table 1 for operation.  
LDAC  
22  
23  
24  
AGND  
F
High current analog force ground.  
No internal connection.  
Digital ground.  
VSS  
DGND  
5
Submit Documentation Feedback  
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
TYPICAL CHARACTERISTICS: VDD = +5 V  
At TA = +25°C, +VDD = +5 V, unless otherwise noted.  
Channel A  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
TA = +25 C  
_
TA = +25 C  
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Figure 1.  
Figure 2.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
40  
TA  
=
C
_
40  
TA  
=
C
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Figure 3.  
Figure 4.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
_
TA = +85 C  
TA = +85 C  
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Digital Input Code  
Figure 5.  
Figure 6.  
6
Submit Documentation Feedback  
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
TYPICAL CHARACTERISTICS: VDD = +5 V (continued)  
At TA = +25°C, +VDD = +5 V, unless otherwise noted.  
Channel B  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
_
TA = +25 C  
_
TA = +25 C  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Figure 7.  
Figure 8.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
40  
TA  
=
C
_
40  
TA  
=
C
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Figure 9.  
Figure 10.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
_
TA = +85 C  
TA = +85 C  
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Digital Input Code  
Figure 11.  
Figure 12.  
7
Submit Documentation Feedback  
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
TYPICAL CHARACTERISTICS: VDD = +5 V (continued)  
At TA = +25°C, +VDD = +5 V, unless otherwise noted.  
Channel C  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
_
TA = +25 C  
_
TA = +25 C  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Figure 13.  
Figure 14.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
40  
TA  
=
C
_
TA  
=
40  
C
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Figure 15.  
Figure 16.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
_
TA = +85 C  
TA = +85 C  
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Digital Input Code  
Figure 17.  
Figure 18.  
8
Submit Documentation Feedback  
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
TYPICAL CHARACTERISTICS: VDD = +5 V (continued)  
At TA = +25°C, +VDD = +5 V, unless otherwise noted.  
Channel D  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
_
_
TA = +25 C  
TA = +25 C  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Digital Input Code  
Figure 19.  
Figure 20.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
40  
TA  
=
C
_
40  
TA  
=
C
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Figure 21.  
Figure 22.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
TA = +85 C  
_
TA = +85 C  
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Digital Input Code  
Figure 23.  
Figure 24.  
9
Submit Documentation Feedback  
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
TYPICAL CHARACTERISTICS: VDD = +5 V (continued)  
At TA = +25°C, +VDD = +5 V, unless otherwise noted.  
SUPPLY CURRENT  
vs LOGIC INPUT VOLTAGE  
REFERENCE MULTIPLYING BANDWIDTH  
6
0
6
180  
160  
0x3FFF  
0x2000  
0x1000  
0x0800  
0x0400  
12  
18  
24  
30  
36  
42  
48  
54  
60  
66  
72  
78  
84  
90  
96  
VDD = +5.0V  
140  
0x0200  
120  
100  
80  
0x0100  
0x0080  
0x0040  
0x0020  
0x0010  
0x0008  
0x0004  
60  
0x0002  
0x0001  
40  
VDD = +2.7V  
20  
0
0x0000  
100k  
102  
108  
114  
1
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Logic Input Voltage (V)  
0
100  
1k  
10k  
1M  
10M  
100M  
Bandwidth (Hz)  
Figure 25.  
Figure 26.  
DAC GLITCH  
DAC SETTLING TIME  
Voltage Output Settling  
Code: 1FFFh to 2000h  
Trigger Pulse  
LDAC Pulse  
µ
Time (0.1 s/div)  
µ
Time (0.2 s/div)  
Figure 27.  
Figure 28.  
IDD vs TEMPERATURE  
ENDPOINT ERROR vs TEMPERATURE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3
2
1
0
DAC C  
DAC B  
DAC D  
5.0V  
2.7V  
DAC A  
1
2
3
20  
20  
40  
0
20  
40  
60  
80  
100  
40  
0
20  
40  
60  
80  
100  
_
Temperature ( C)  
_
Temperature ( C)  
Figure 29.  
Figure 30.  
10  
Submit Documentation Feedback  
 
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
TYPICAL CHARACTERISTICS: VDD = +2.7 V  
At TA = +25°C, +VDD = +2.7 V, unless otherwise noted.  
Channel A  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
_
TA = +25 C  
_
TA = +25 C  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Figure 31.  
Figure 32.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
TA  
=
40  
C
_
40  
TA  
=
C
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Figure 33.  
Figure 34.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
TA = +85 C  
_
TA = +85 C  
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Digital Input Code  
Figure 35.  
Figure 36.  
11  
Submit Documentation Feedback  
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
TYPICAL CHARACTERISTICS: VDD = +2.7 V (continued)  
At TA = +25°C, +VDD = +2.7 V, unless otherwise noted.  
Channel B  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
_
TA = +25 C  
_
TA = +25 C  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Figure 37.  
Figure 38.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
TA  
=
40  
C
_
TA  
=
40  
C
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Figure 39.  
Figure 40.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
TA = +85 C  
_
TA = +85 C  
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Digital Input Code  
Figure 41.  
Figure 42.  
12  
Submit Documentation Feedback  
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
TYPICAL CHARACTERISTICS: VDD = +2.7 V (continued)  
At TA = +25°C, +VDD = +2.7 V, unless otherwise noted.  
Channel C  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
_
TA = +25 C  
_
TA = +25 C  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Figure 43.  
Figure 44.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
40  
TA  
=
C
_
TA  
=
40  
C
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Figure 45.  
Figure 46.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
TA = +85 C  
_
TA = +85 C  
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Digital Input Code  
Figure 47.  
Figure 48.  
13  
Submit Documentation Feedback  
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
TYPICAL CHARACTERISTICS: VDD = +2.7 V (continued)  
At TA = +25°C, +VDD = +2.7 V, unless otherwise noted.  
Channel D  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
_
TA = +25 C  
_
TA = +25 C  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
0
0
0
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Figure 49.  
Figure 50.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
40  
_
40  
TA  
=
C
TA  
=
C
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Figure 51.  
Figure 52.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
_
TA = +85 C  
_
TA = +85 C  
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
2048 4096 6144 8192 10240 12288 14336 16383  
2048 4096 6144 8192 10240 12288 14336 16383  
Digital Input Code  
Digital Input Code  
Figure 53.  
Figure 54.  
14  
Submit Documentation Feedback  
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
TYPICAL CHARACTERISTICS: VDD = +2.7 V (continued)  
At TA = +25°C, +VDD = +2.7 V, unless otherwise noted.  
DAC GLITCH  
ENDPOINT ERROR vs TEMPERATURE  
3
2
1
0
DAC C  
DAC B  
DAC D  
Code: 1FFFh to 2000h  
DAC A  
1
2
3
LDAC Pulse  
µ
Time (0.2 s/div)  
20  
40  
0
20  
40  
60  
80  
100  
_
Temperature ( C)  
Figure 55.  
Figure 56.  
TIMING INFORMATION  
SDI  
A1  
A0 D13 D12 D11 D10 D9 D8  
D7 D6  
D1  
D0  
CLK  
Input REG. LD  
t
t
csh  
CSS  
t
t
dh  
t
t
cl  
ds  
ch  
CS  
t
lds  
t
t
LDAC  
pd  
LDH  
t
SDO  
LDAC  
Figure 57. DAC8803 Timing Diagram  
15  
Submit Documentation Feedback  
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
THEORY OF OPERATION  
CIRCUIT OPERATION  
The DAC8803 contains four, 14-bit, current-output, digital-to-analog converters (DACs) respectively. Each DAC  
has its own independent multiplying reference input. The DAC8803 uses a 3-wire SPI-compatible serial data  
interface, with a configurable asynchronous RS pin for half-scale (MSB = 1) or zero-scale (MSB = 0) preset. In  
addition, an LDAC strobe enables four channel simultaneous updates for hardware synchronized output voltage  
changes.  
D/A Converter  
The DAC8803 contains four current-steering R-2R ladder DACs. Figure 58 shows a typical equivalent DAC.  
Each DAC contains a matching feedback resistor for use with an external I-to-V converter amplifier. The RFBX pin  
is connected to the output of the external amplifier. The IOUTX terminal is connected to the inverting input of the  
external amplifier. The AGNDX pin should be Kelvin-connected to the load point in the circuit requiring the full  
14-bit accuracy.  
The DAC is designed to operate with both negative or positive reference voltages. The VDD power pin is only  
used by the logic to drive the DAC switches on and off. Note that a matching switch is used in series with the  
internal 5 kfeedback resistor. If users are attempting to measure the value of RFB, power must be applied to  
VDD in order to achieve continuity. The DAC output voltage is determined by VREF and the digital data (D)  
according to Equation 1:  
D
16384  
VOUT + *VREF  
 
(1)  
Note that the output polarity is opposite to the VREF polarity for dc reference voltages.  
V
DD  
R
R
R
R
X
V
X
FB  
REF  
2R  
2R  
2R  
R
5 kW  
S2  
S1  
I
X
OUT  
A
F
GND  
A
X
GND  
From other DACs A  
GND  
DGND  
Digital interface connections omitted for clarity.  
Switches S1 and S2 are closed. V must be powered.  
DD  
Figure 58. Typical Equivalent DAC Channel  
The DAC is also designed to accommodate ac reference input signals. The DAC8803 accommodates input  
reference voltages in the range of -15 V to +15 V. The reference voltage inputs exhibit a constant nominal input  
resistance of 5 k, ±20%. On the other hand, the DAC outputs IOUTA, B, C, D are code-dependent and produce  
various output resistances and capacitances.  
The choice of external amplifier should take into account the variation in impedance generated by the DAC8803  
on the amplifiers' inverting input node. The feedback resistance, in parallel with the DAC ladder resistance,  
dominates output voltage noise. For multiplying mode applications, an external feedback compensation capacitor  
(CFB) may be needed to provide a critically damped output response for step changes in reference input  
voltages.  
16  
Submit Documentation Feedback  
 
 
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
Figure 26 shows the gain versus frequency performance at various attenuation settings using a 3 pF external  
feedback capacitor connected across the IOUTX and RFBX terminals. In order to maintain good analog  
performance, power supply bypassing of 0.01 µF, in parallel with 1 µF, is recommended. Under these conditions,  
clean power supply with low ripple voltage capability should be used. Switching power supplies are usually not  
suitable for this application because of the higher ripple voltage and PSS frequency-dependent characteristics. It  
is best to derive the DAC8803 5-V supply from the system analog supply voltages. (Do not use the digital 5-V  
supply.) See Figure 59.  
Analog  
15 V  
Power  
Supply  
2R  
5 V  
R
V
DD  
R
R
R
R
X
FB  
V
REF  
X
2R  
2R  
2R  
R
5 kW  
15 V  
S2  
S1  
I
X
OUT  
V
CC  
A1  
A
F
V
GND  
OUT  
A
X
GND  
V
EE  
From other DACs A  
GND  
Load  
DGND  
Digital interface connections omitted for clarity.  
Switches S1 and S2 are closed. V must be powered.  
DD  
Figure 59. Recommended Kelvin-Sensed Hookup  
17  
Submit Documentation Feedback  
 
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
V
REF  
A B C D  
DAC A  
DAC B  
DAC C  
DAC D  
CS  
EN  
CLK  
V
DD  
R
I
A
A
SDI  
D0  
FB  
14  
DAC A  
Input  
D1  
Register  
R
R
R
OUT  
Register  
R
R
D2  
D3  
A
GND  
A
D4  
D5  
D6  
D7  
D8  
D9  
R B  
FB  
D10  
D11  
DAC B  
Register  
Input  
Register  
I
C
OUT  
D12  
D13  
A0  
DAC  
2:4  
A
GND  
B
A
B
C
D
SDO  
A1  
Decode  
R
I
C
C
FB  
DAC C  
Register  
Input  
Register  
OUT  
R
R
A
GND  
C
R
I
D
FB  
DAC D  
Register  
Input  
Register  
D
OUT  
R
A D  
GND  
Set  
MSB  
Set MSB  
Power-  
On  
Reset  
A
GND  
F
DGND  
MSB  
LDAC  
RS  
Figure 60. System Level Digital Interfacing  
SERIAL DATA INTERFACE  
The DAC8803 uses a 3-wire (CS, SDI, CLK) SPI-compatible serial data interface. Serial data of the DAC8803 is  
clocked into the serial input register in a 16-bit data-word format. MSB bits are loaded first. Table 2 defines the  
16 data-word bits for the DAC8803.  
Data is placed on the SDI pin, and clocked into the register on the positive clock edge of CLK subject to the data  
setup and data hold time requirements specified in the Interface Timing Specifications. Data can only be clocked  
in while the CS chip select pin is active low. For the DAC8803, only the last 16 bits clocked into the serial register  
are interrogated when the CS pin returns to the logic high state.  
Since most microcontrollers output serial data in 8-bit bytes, two right-justified data bytes can be written to the  
DAC8803. Keeping the CS line low between the first and second byte transfers results in a successful serial  
register update.  
18  
Submit Documentation Feedback  
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
Once the data is properly aligned in the shift register, the positive edge of the CS initiates the transfer of new  
data to the target DAC register, determined by the decoding of address bits A1and A0. For the DAC8803,  
Table 2 and Table 3 define the characteristics of the software serial interface. Figure 61 shows the equivalent  
logic interface for the key digital control pins for the DAC8803.  
To Input Register  
A
Address  
B
CS  
Decoder  
C
D
EN  
Shift Register  
CLK  
SDI  
17th  
Clock  
SDO  
Figure 61. DAC8803 Equivalent Logic Interface  
Two additional pins RS and MSB provide hardware control over the preset function and DAC register loading. If  
these functions are not needed, the RS pin can be tied to logic high. The asynchronous input RS pin forces all  
input and DAC registers to either the zero-code state (MSB = 0), or the half-scale state (MSB = 1).  
POWER ON RESET  
When the VDD power supply is turned on, an internal reset strobe forces all the Input and DAC registers to the  
zero-code state or half-scale, depending on the MSB pin voltage. The VDD power supply should have a smooth  
positive ramp without drooping in order to have consistent results, especially in the region of VDD = 1.5 V to  
2.3 V. The DAC register data stays at zero or half-scale setting until a valid serial register data load takes place.  
ESD Protection Circuits  
All logic-input pins contain back-biased ESD protection zener diodes connected to ground (DGND) and VDD as  
shown in Figure 62.  
V
DD  
250 W  
Digital  
Inputs  
DGND  
Figure 62. Equivalent ESD Protection Circuits  
19  
Submit Documentation Feedback  
 
 
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
PCB LAYOUT  
The DAC8803 is a high-accuracy DAC that can have its performance compromised by grounding and printed  
circuit board (PCB) lead trace resistance. The 14-bit DAC8803 with a 10-V full-scale range has an LSB value of  
610 µV. The ladder and associated reference and analog ground currents for a given channel can be as high as  
2 mA. With this 2 mA current level, a series wiring and connector resistance of only 305 mwill cause 1 LSB of  
voltage drop. The preferred PCB layout for the DAC8803 is to have all AGNDX pins connected directly to an  
analog ground plane at the unit. The non-inverting input of each channel I/V converter should also either connect  
directly to the analog ground plane or have an individual sense trace back to the AGNDX pin connection. The  
feedback resistor trace to the I/V converter should also be kept short and low resistance to prevent IR drops from  
contributing to gain error. This attention to wiring ensures the optimal performance of the DAC8803.  
Table 1. Control Logic Truth Table(1)  
CS  
H
L
CLK  
X
LDAC  
RS  
H
MSB  
X
SERIAL SHIFT REGISTER  
No effect  
INPUT REGISTER  
DAC REGISTER  
Latched  
H
H
H
H
Latched  
Latched  
Latched  
Latched  
L
H
X
No effect  
Latched  
Latched  
Latched  
L
+  
H
H
X
Shift register data advanced one bit  
No effect  
L
H
X
Selected DAC updated  
with current SR contents  
+  
L
H
H
X
No effect  
Latched  
H
H
H
H
H
X
X
X
X
X
L
H
H
H
H
L
X
X
X
0
No effect  
No effect  
No effect  
No effect  
No effect  
Latched  
Transparent  
Latched  
Latched  
+  
H
Latched  
Latched  
Latched data = 0000h  
Latched data = 2000h  
Latched data = 0000h  
Latched data = 2000h  
H
L
H
(1) + Positive logic transition; X = Do not care  
Table 2. Serial Input Register Data Format, Data Loaded MSB First(1)  
Bit  
B15  
(MSB)  
B14  
A0  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
D2  
B1  
D1  
B0 (LSB)  
D0  
Data  
A1  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
(1) Only the last 16 bits of data clocked into the serial register (address + data) are inspected when the CS line positive edge returns to  
logic high. At this point an internally generated load strobe transfers the serial register data contents (bits D13-D0) to the decoded  
DAC-input-register address determined by bits A1 and A0. Any extra bits clocked into the DAC8803 shift register are ignored; only the  
last 16 bits clocked in are used. If double-buffered data is not needed, the LDAC pin can be tied logic low to disable the DAC registers.  
Table 3. Address Decode  
A1  
0
A0  
0
DAC DECODE  
DAC A  
0
1
DAC B  
1
0
DAC C  
1
1
DAC D  
20  
Submit Documentation Feedback  
DAC8803  
www.ti.com  
SBAS340CJANUARY 2005REVISED FEBRUARY 2006  
APPLICATION INFORMATION  
The DAC8803, a 2-quadrant multiplying DAC, can be used to generate a unipolar output. The polarity of the  
full-scale output IOUT is the inverse of the input reference voltage at VREF  
.
Some applications require full 4-quadrant multiplying capabilities or bipolar output swing, as shown in Figure 63.  
An additional external op amp A2 is added as a summing amp. In this circuit the first and second amps (A1 and  
A2) provide a gain of 2X that widens the output span to 20 V. A 4-quadrant multiplying circuit is implemented by  
using a 10-V offset of the reference voltage to bias A2. According to the following circuit transfer equation  
(Equation 2), input data (D) from code 0 to full scale produces output voltages of VOUT = -10 V to VOUT = 10 V.  
D
8192  
+ ǒ  
Ǔ
VOUT  
*1   VREF  
(2)  
10 k  
10 k  
10 V  
5 k  
A2  
OPA277  
V
OUT  
V
REF  
-10 V < V  
< +10 V  
OUT  
V
DD  
V
X
R X  
FB  
REF  
I
X
One Channel  
DAC8803  
OUT  
A1  
OPA277  
A
F
A
X
GND  
GND  
Digital interface connections omitted for clarity.  
Figure 63. Four-Quadrant Multiplying Application Circuit  
Cross-Reference  
The DAC8803 has an industry-standard pinout. Table 4 provides the cross-reference information.  
Table 4. Cross-Reference  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESCRIPTION  
PACKAGE  
OPTION  
CROSS-  
REFERENCE PART  
PRODUCT  
INL (LSB) DNL (LSB)  
±1 ±1  
DAC8803IDB  
-40°C to +85°C  
28-Lead MicroSOIC  
SSOP-28  
AD5554BRS  
21  
Submit Documentation Feedback  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Jun-2008  
PACKAGING INFORMATION  
Orderable Device  
DAC8803IDBR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SSOP  
DB  
28  
28  
28  
28  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DAC8803IDBRG4  
DAC8803IDBT  
SSOP  
SSOP  
SSOP  
DB  
DB  
DB  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
DAC8803IDBTG4  
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jan-2009  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
DAC8803IDBR  
DAC8803IDBT  
SSOP  
SSOP  
DB  
DB  
28  
28  
2000  
250  
330.0  
330.0  
16.4  
16.4  
8.1  
8.1  
10.4  
10.4  
2.5  
2.5  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Jan-2009  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC8803IDBR  
DAC8803IDBT  
SSOP  
SSOP  
DB  
DB  
28  
28  
2000  
250  
346.0  
346.0  
346.0  
346.0  
33.0  
33.0  
Pack Materials-Page 2  
MECHANICAL DATA  
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001  
DB (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
28 PINS SHOWN  
0,38  
0,22  
0,65  
28  
M
0,15  
15  
0,25  
0,09  
5,60  
5,00  
8,20  
7,40  
Gage Plane  
1
14  
0,25  
A
0°ā8°  
0,95  
0,55  
Seating Plane  
0,10  
2,00 MAX  
0,05 MIN  
PINS **  
14  
16  
20  
24  
28  
30  
38  
DIM  
6,50  
5,90  
6,50  
5,90  
7,50  
8,50  
7,90  
10,50  
9,90  
10,50 12,90  
A MAX  
A MIN  
6,90  
9,90  
12,30  
4040065 /E 12/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-150  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

DAC8803_15

Quad, Serial Input 14-Bit Multiplying Digital-to-Analog Converter
TI

DAC8805

14-Bit, Dual, Parallel Input, Multiplying Digital-to-Analog Converter
BB

DAC8805

14-Bit, Dual, Parallel Input, Multiplying Digital-to-Analog Converter
TI

DAC8805Q

14-Bit, Dual, Parallel Input, Multiplying Digital-to-Analog Converter
BB

DAC8805Q

14-Bit, Dual, Parallel Input, Multiplying Digital-to-Analog Converter
TI

DAC8805QDBT

14-Bit, Dual, Parallel Input, Multiplying Digital-to-Analog Converter
BB

DAC8805QDBT

14-Bit, Dual, Parallel Input, Multiplying Digital-to-Analog Converter
TI

DAC8805QDBTG4

14-Bit, Dual Channel, Parallel Interface, Multiplying Digital-to-Analog Converter 38-TSSOP -40 to 125
TI

DAC8805QDBTR

14-Bit, Dual, Parallel Input, Multiplying Digital-to-Analog Converter
BB

DAC8805QDBTR

14-Bit, Dual, Parallel Input, Multiplying Digital-to-Analog Converter
TI

DAC8805QDBTRG4

14-Bit, Dual Channel, Parallel Interface, Multiplying Digital-to-Analog Converter 38-TSSOP -40 to 125
TI

DAC8805_14

14-Bit, Dual, Parallel Input, Multiplying Digital-to-Analog Converter
TI