DAC8822QBDBT [TI]

16 位双并行接口高精度乘法 DAC | DBT | 38 | -40 to 125;
DAC8822QBDBT
型号: DAC8822QBDBT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16 位双并行接口高精度乘法 DAC | DBT | 38 | -40 to 125

光电二极管 转换器
文件: 总27页 (文件大小:1087K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
B
u
r
r
Ć
B
r
o
w
n
P
r
o
d
u
c
t
s
f
r
o
m
T
e
x
a
s
I
n
s
t
r
u
m
e
n
t
s
DAC8822  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
16-Bit, Dual, Parallel Input, Multiplying  
Digital-to-Analog Converter  
FEATURES  
DESCRIPTION  
±0.5LSB DNL  
The DAC8822 dual, multiplying digital-to-analog  
converter (DAC) is designed to operate from a single  
2.7V to 5.5V supply.  
±1LSB INL  
Low Noise: 12nV/Hz  
Low Power Operation:  
IDD = 1µA per Channel at 2.7V  
2mA Full-Scale Current, with VREF = 10V  
Settling Time: 0.5µs  
The applied external reference input voltage VREF  
determines the full-scale output current. An internal  
feedback resistor (RFB  
)
provides temperature  
tracking for the full-scale output when combined with  
an external, current-to-voltage (I/V) precision  
amplifier.  
16-Bit Monotonic  
4-Quadrant Multiplying Reference Inputs  
Reference Bandwidth: 10MHz  
Reference Input: ±18V  
A RSTSEL pin allows system reset assertion (RS) to  
force all registers to zero code when RSTSEL = '0',  
or to midscale code when RSTSEL = '1'. Additionally,  
an internal power-on reset forces all registers to zero  
or midscale code at power-up, depending on the  
state of the RSTSEL pin.  
Reference Dynamics: –105 THD  
Midscale or Zero Scale Reset  
Analog Power Supply: +2.7V to +5.5V  
TSSOP-38 Package  
A
parallel  
interface  
offers  
high-speed  
communications. The DAC8822 is packaged in a  
space-saving TSSOP-38 package and has an  
industry-standard pinout. The device is specified  
from –40°C to +125°C.  
Industry-Standard Pin Configuration  
Pin-Compatible with the 14-Bit DAC8805  
Temperature Range: –40°C to +125°C  
For  
a 14-bit, pin-compatible version, see the  
DAC8805.  
APPLICATIONS  
Automatic Test Equipment  
Instrumentation  
Digitally Controlled Calibration  
Industrial Control PLCs  
DGND  
VDD  
R1A RCOM  
A
VREFA ROFS  
A
RFBA  
R1A  
R2A  
ROFSA  
RFBA  
D0  
Input A  
DAC A  
Parallel  
Bus  
D15  
DAC A  
DAC B  
IOUT  
A
Register  
Register  
WR  
A0  
Interface  
AGNDA  
A1  
Input B  
DAC B  
Register  
Register  
IOUTB  
RS  
LDAC  
Control  
Logic  
AGNDB  
R1B  
R2B  
ROFSB  
RFBB  
Power-On  
Reset  
RSTSEL  
R1B  
RCOMB  
VREFB ROFS  
B
RFBB  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2006–2007, Texas Instruments Incorporated  
DAC8822  
www.ti.com  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be  
more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
ORDERING INFORMATION(1)  
RELATIVE  
ACCURACY  
(LSB)  
DIFFERENTIAL  
NONLINEARITY  
(LSB)  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE-LEAD  
(DESIGNATOR)  
PACKAGE  
MARKING  
PRODUCT  
TSSOP-38  
(DBT)  
DAC8822QB  
±2  
±1  
±1  
±1  
–40°C to +125°C  
–40°C to +125°C  
DAC8822  
DAC8822  
TSSOP-38  
(DBT)  
DAC8822QC  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
DAC8822  
–0.3 to +7  
–0.3 to +VDD + 0.3  
–0.3 to +VDD + 0.3  
±25  
UNIT  
V
VDD to GND  
Digital input voltage to GND  
V (IOUT) to GND  
V
V
REF, ROFS, RFB, R1, RCOM to AGND, DGND  
Operating temperature range  
Storage temperature range  
Junction temperature range (TJ max)  
Power dissipation  
V
–40 to +125  
–65 to +150  
+150  
°C  
°C  
°C  
W
(TJ max – TA) / RθJA  
53  
Thermal impedance, RθJA  
°C/W  
V
Human Body Model (HBM)  
ESD rating  
4000  
Charged Device Model (CDM)  
500  
V
(1) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute  
maximum conditions for extended periods may affect device reliability.  
2
Submit Documentation Feedback  
DAC8822  
www.ti.com  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
ELECTRICAL CHARACTERISTICS  
All specifications at TA = –40°C to +125°C, VDD = +2.7V to +5.5V, IOUT = virtual GND, GND = 0V, and VREF = 10V, unless otherwise noted.  
DAC8822  
PARAMETER  
STATIC PERFORMANCE  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
16  
Bits  
LSB  
LSB  
LSB  
nA  
DAC8822QB  
DAC8822QC  
±2  
±1  
Relative accuracy  
INL  
Differential nonlinearity  
Output leakage current  
Output leakage current  
DNL  
±0.5  
±1  
Data = 0000h, TA = +25°C  
Data = 0000h, Full temperature range  
Unipolar, data = FFFFh  
10  
20  
±4  
nA  
±1  
±1  
mV  
Full-scale gain error  
Bipolar, data = FFFFh  
±4  
mV  
Full-scale temperature coefficient  
Bipolar zero error  
±1  
±2  
ppm/°C  
mV  
TA = +25°C  
±1  
±3  
Full temperature range  
±1  
±3  
mV  
Power-supply rejection ratio  
OUTPUT CHARACTERISTICS(1)  
Output current  
PSRR VDD = 5V ±10%  
±0.2  
±1.0  
LSB/V  
2
mA  
pF  
Output capacitance  
Code dependent  
50  
REFERENCE INPUT  
Reference voltage range  
Input resistance (unipolar)  
Input capacitance  
VREF  
RREF  
–18  
4
18  
6
V
5
5
kΩ  
pF  
kΩ  
kΩ  
R1, R2  
4
8
5
6
Feedback and offset resistance  
LOGIC INPUTS AND OUTPUT(1)  
ROFS, RFB  
10  
12  
VIL VDD = +2.7V  
VIL VDD = +5V  
VIH VDD = +2.7V  
VIH VDD = +5V  
IIL  
0.6  
0.8  
V
V
Input low voltage  
Input high voltage  
2.1  
2.4  
V
V
Input leakage current  
Input capacitance  
0.001  
1
8
µA  
pF  
CIL  
POWER REQUIREMENTS  
Supply voltage  
VDD  
2.7  
5.5  
6
V
Normal operation, logic inputs = 0V  
3
3
1
µA  
µA  
µA  
Supply current  
IDD VDD = +4.5V to +5.5V, VIH = VDD and VIL = GND  
VDD = +2.7V to +3.6V, VIH = VDD and VIL = GND  
6
3
AC CHARACTERISTICS(1)(2)  
Output current settling time  
Reference multiplying BW  
DAC glitch impulse  
To 0.0015% of full-scale,  
data = 0000h to FFFFh to 0000h  
tS  
0.5  
10  
5
µs  
BW – 3dB VREF = 5VPP, data = FFFFh, 2-quadrant mode  
MHz  
nV–s  
VREF = 0V to 10V,  
data = 7FFFh to 8000h to 7FFFh  
Data = 0000h, VREF = 100kHz, ±10VPP  
2-quadrant mode  
,
Feedthrough error  
Crosstalk error  
VOUT/VREF  
–70  
–100  
1
dB  
dB  
VOUTA/VREF  
B
Data = 0000h, VREFB = 100mVRMS, f = 100kHz  
LDAC = logic low, VREF = –10V to + 10V  
Any code change  
Digital feedthrough  
nV–s  
Total harmonic distortion  
Output noise density  
THD VREF = 6VRMS, data = FFFFh, f = 1kHz  
eN f = 1kHz, BW = 1Hz, 2-quadrant mode  
–105  
12  
dB  
nV/Hz  
(1) Specified by design and characterization; not production tested.  
(2) All ac characteristic tests are performed in a closed-loop system using a THS4011 I-to-V converter amplifier.  
3
Submit Documentation Feedback  
DAC8822  
www.ti.com  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
PIN ASSIGNMENTS  
DBT PACKAGE  
TSSOP-38  
(TOP VIEW)  
1
2
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
D1  
D0  
D2  
D3  
3
R
OFSA  
RFB  
R1A  
D4  
4
A
D5  
5
D6  
6
RCOM  
VREF  
IOUT  
A
A
A
D7  
7
D8  
8
D9  
9
AGNDA  
DGND  
D10  
VDD  
D11  
D12  
D13  
D14  
D15  
RS  
DAC8822  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
AGNDB  
IOUT  
VREF  
RCOM  
B
B
B
R1B  
RFB  
B
B
ROFS  
RSTSEL  
LDAC  
A1  
WR  
A0  
4
Submit Documentation Feedback  
DAC8822  
www.ti.com  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
PIN ASSIGNMENTS (continued)  
Table 1. TERMINAL FUNCTIONS  
PIN #  
NAME  
DESCRIPTION  
1, 2, 24-28,  
30-38  
D0-D15  
Digital Input Data Bits D0 to D15. Signal level must be VDD +0.3V. D15 is MSB.  
Bipolar Offset Resistor A. Accepts up to ±18V.  
3
4
5
ROFS  
RFB  
A
In 2-quadrant mode, ROFSA ties to RFBA.  
In 4-quadrant mode, ROFSA ties to R1A and the external reference.  
A
Internal Matching Feedback Resistor A. Connects to the external op amp for I-V conversion.  
4-Quadrant Resistor.  
In 2-quadrant mode, R1A shorts to the VREFA pin.  
In 4-quadrant mode, R1A ties to ROFSA and the reference input.  
R1A  
Center Tap Point of the Two 4-Quadrant Resistors, R1A and R2A.  
In 2-quadrant mode, RCOMA shorts to the VREF pin.  
6
RCOMA  
In 4-quadrant mode, RCOMA ties to the inverting node of the reference amplifier.  
DAC A Reference Input in 2-Quadrant Mode, R2 Terminal in 4-Quadrant Mode.  
In 2-quadrant mode, VREFA is the reference input with constant input resistance versus code.  
In 4-quadrant mode, VREFA is driven by the external reference amplifier.  
7
8
VREFA  
DAC A Current Output. Connects to the inverting terminal of external precision I-V op amp for voltage  
output.  
IOUT  
A
9
AGNDA  
DGND  
DAC A Analog Ground.  
Digital Ground.  
10  
11  
AGNDB  
DAC B Analog Ground.  
DAC B Current Output. Connects to the inverting terminal of external precision I-V op amp for voltage  
output.  
12  
IOUTB  
DAC B Reference Input in 2-Quadrant Mode, R2 Terminal in 4-Quadrant Mode.  
In 2-quadrant mode, VREFB is the reference input with constant input resistance versus code.  
In 4-quadrant mode, VREFB is driven by the external reference amplifier.  
13  
VREF  
B
Center Tap Point of the Two 4-Quadrant Resistors, R1B and R2B.  
In 2-quadrant mode, RCOMB shorts to the VREF pin.  
14  
RCOMB  
In 4-quadrant mode, RCOMB ties to the inverting node of the reference amplifier.  
4-Quadrant Resistor.  
15  
16  
17  
R1B  
In 2-quadrant mode, R1B shorts to the VREFB pin.  
In 4-quadrant mode, R1B ties to ROFSB and the reference input.  
RFB  
B
Internal Matching Feedback Resistor B. Connects to external op amp for I-V conversion.  
Bipolar Offset Resistor B. Accepts up to ±18V.  
In 2-quadrant mode, ROFSB ties to RFBB.  
ROFS  
B
In 4-quadrant mode, ROFSB ties to R1B and the external reference.  
Write Control Digital Input In, Active Low. WR enables input registers.  
Signal level must be VDD + 0.3V.  
18  
WR  
19  
20  
A0  
A1  
Address 0. Signal level must be VDD + 0.3V.  
Address 1. Signal level must be VDD + 0.3V.  
Digital Input Load DAC Control. Signal level must be VDD + 0.3V. See the Function of Control Inputs  
table for details.  
21  
LDAC  
Power-On Reset State.  
RSTSEL = 0 corresponds to zero-scale reset.  
RSTSEL = 1 corresponds to midscale reset.  
The signal level must be VDD + 0.3V.  
22  
RSTSEL  
Reset. Active low resets both input and DAC registers.  
Resets to zero-scale if RSTSEL= 0, and to midscale if RSTSEL = 1.  
Signal level must be equal to or less than VDD + 0.3 V.  
23  
29  
RS  
VDD  
Positive Power Supply Input. The specified range of operation is 2.7V to 5.5V.  
5
Submit Documentation Feedback  
DAC8822  
www.ti.com  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
TIMING AND FUNCTIONAL INFORMATION  
tWR  
WR  
A0/1  
tAS  
tAH  
DATA  
tDS  
tDH  
tLWD  
LDAC  
RS  
tLDAC  
tRST  
Figure 1. Timing Diagram  
TIMING CHARACTERISTICS  
All specifications at TA = –40°C to +125°C, IOUT = virtual GND, GND = 0V, and VREF = 10V, unless otherwise noted  
DAC8822  
PARAMETER  
Data to WR setup time  
CONDITIONS  
VDD = +5.0V  
VDD = +2.7V  
VDD = +5.0V  
VDD = +2.7V  
VDD = +5.0V  
VDD = +2.7V  
VDD = +5.0V  
VDD = +2.7V  
VDD = +5.0V  
VDD = +2.7V  
VDD = +5.0V  
VDD = +2.7V  
VDD = +5.0V  
VDD = +2.7V  
VDD = +5.0V  
VDD = +2.7V  
MIN  
10  
10  
10  
10  
0
TYP  
MAX  
UNITS  
ns  
tDS  
ns  
ns  
A0/1 to WR setup time  
Data to WR hold time  
A0/1 to WR hold time  
WR pulse width  
tAS  
ns  
ns  
tDH  
0
ns  
0
ns  
tAH  
0
ns  
10  
10  
10  
10  
10  
10  
0
ns  
tWR  
ns  
ns  
LDAC pulse width  
RS pulse width  
tLDAC  
tRST  
tLWD  
ns  
ns  
ns  
ns  
WR to LDAC delay time  
0
ns  
6
Submit Documentation Feedback  
 
DAC8822  
www.ti.com  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
Table 2. Address Decoder Pins  
A1  
0
A0  
0
OUTPUT UPDATE  
DAC A  
0
1
None  
1
0
DAC A and DAC B  
DAC B  
1
1
Table 3. Function of Control Inputs  
CONTROL INPUTS  
RS  
WR  
LDAC  
REGISTER OPERATION  
Asynchronous operation. Reset the input and DAC register to '0' when the RSTSEL pin is tied to DGND, and to  
0
X
X
midscale when RSTSEL is tied to VDD  
.
1
1
1
0
1
0
0
1
1
Load the input register with all 16 data bits.  
Load the DAC register with the contents of the input register.  
The input and DAC register are transparent.  
LDAC and WR are tied together and programmed as a pulse. The 16 data bits are loaded into the input register on  
the falling edge of the pulse and then loaded into the DAC register on the rising edge of the pulse.  
1
1
1
0
No register operation.  
7
Submit Documentation Feedback  
 
 
DAC8822  
www.ti.com  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
TYPICAL CHARACTERISTICS: VDD = +5V  
Channel A  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
1.0  
0.8  
TA = +25°C  
TA = +25°C  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
Figure 2.  
Figure 3.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = -40°C  
TA = -40°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
Figure 4.  
Figure 5.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = +125°C  
TA = +125°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
Figure 6.  
Figure 7.  
8
Submit Documentation Feedback  
DAC8822  
www.ti.com  
Channel B  
1.0  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
TYPICAL CHARACTERISTICS: VDD = +5V (continued)  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
TA = +25°C  
TA = +25°C  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
Figure 8.  
Figure 9.  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = -40°C  
TA = -40°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
Figure 10.  
Figure 11.  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = +125°C  
TA = +125°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
Figure 12.  
Figure 13.  
9
Submit Documentation Feedback  
DAC8822  
www.ti.com  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
TYPICAL CHARACTERISTICS: VDD = +5V (continued)  
MIDSCALE DAC GLITCH  
MIDSCALE DAC GLITCH  
VREF = +10V  
VREF = +10V  
Code: 7FFFh to 8000h  
Code: 8000h to 7FFFh  
LDAC Pulse  
LDAC Pulse  
Time (0.2ms/div)  
Time (0.2ms/div)  
Figure 14.  
Figure 15.  
FULL-SCALE ERROR  
vs TEMPERATURE  
BIPOLAR-ZERO ERROR  
vs TEMPERATURE  
3
2
4
3
DAC A  
2
1
1
DAC A  
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
DAC B  
DAC B  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
Temperature (°C)  
Temperature (°C)  
Figure 16.  
Figure 17.  
10  
Submit Documentation Feedback  
DAC8822  
www.ti.com  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
TYPICAL CHARACTERISTICS: VDD = +2.7V  
Channel A  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
1.0  
0.8  
TA = +25°C  
TA = +25°C  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
Figure 18.  
Figure 19.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = -40°C  
TA = -40°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
Figure 20.  
Figure 21.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = +125°C  
TA = +125°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
Figure 22.  
Figure 23.  
11  
Submit Documentation Feedback  
DAC8822  
www.ti.com  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
TYPICAL CHARACTERISTICS: VDD = +2.7V (continued)  
Channel B  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
1.0  
0.8  
TA = +25°C  
TA = +25°C  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
Figure 24.  
Figure 25.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = -40°C  
TA = -40°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
Figure 26.  
Figure 27.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.0  
0.8  
1.0  
0.8  
TA = +125°C  
TA = +125°C  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
8192 16384 24576 32768 40960 49152 57344 65535  
Code  
Figure 28.  
Figure 29.  
12  
Submit Documentation Feedback  
DAC8822  
www.ti.com  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
TYPICAL CHARACTERISTICS: VDD = +2.7V (continued)  
MIDSCALE DAC GLITCH  
MIDSCALE DAC GLITCH  
VREF = +10V  
VREF = +10V  
Code: 7FFFh to 8000h  
Code: 8000h to 7FFFh  
LDAC Pulse  
LDAC Pulse  
Time (0.2ms/div)  
Time (0.2ms/div)  
Figure 30.  
Figure 31.  
FULL-SCALE ERROR  
vs TEMPERATURE  
BIPOLAR-ZERO ERROR  
vs TEMPERATURE  
3
2
4
3
2
DAC A  
1
1
DAC A  
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
DAC B  
DAC B  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
Temperature (°C)  
Temperature (°C)  
Figure 32.  
Figure 33.  
13  
Submit Documentation Feedback  
DAC8822  
www.ti.com  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
TYPICAL CHARACTERISTICS: VDD = +2.7V and +5V  
SUPPLY CURRENT  
vs LOGIC INPUT VOLTAGE  
REFERENCE MULTIPLYING BANDWIDTH  
UNIPOLAR MODE  
180  
160  
140  
120  
100  
80  
6
0
0xFFFF  
0x8000  
0x4000  
0x2000  
0x1000  
0x0800  
0x0400  
0x0200  
0x0100  
0x0080  
0x0040  
0x0020  
0x0010  
0x0008  
0x0004  
0x0002  
0x0001  
-6  
-12  
-18  
-24  
-30  
-36  
-42  
-48  
-54  
-60  
-66  
-72  
-78  
-84  
-90  
-96  
-102  
-108  
-114  
VDD = +5.0V  
60  
40  
VDD = +2.7V  
20  
0x0000  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Logic Input Voltage (V)  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Bandwidth (Hz)  
Figure 34.  
Figure 35.  
REFERENCE MULTIPLYING BANDWIDTH  
BIPOLAR MODE  
REFERENCE MULTIPLYING BANDWIDTH  
BIPOLAR MODE  
6
0
6
0
0xFFFF  
0x0000  
0x4000  
0x6000  
0x7000  
0x7800  
0x7C00  
0x7E00  
0x7F00  
0x7F80  
0x7FC0  
0x7FE0  
0x7FF0  
0x7FF8  
0x7FFC  
0x7FFE  
0x7FFF  
0x8000  
-6  
0xC000  
0xA000  
0x9000  
0x8800  
0x8400  
0x8200  
0x8100  
0x8080  
0x8040  
0x8020  
0x8010  
0x8008  
0x8004  
0x8002  
0x8001  
0x8000  
-6  
-12  
-18  
-24  
-30  
-36  
-42  
-48  
-54  
-60  
-66  
-72  
-78  
-84  
-90  
-96  
-102  
-108  
-114  
-12  
-18  
-24  
-30  
-36  
-42  
-48  
-54  
-60  
-66  
-72  
-78  
-84  
-90  
-96  
-102  
-108  
-114  
DAC 0V output  
limited by bipolar  
zero error to  
DAC 0V output  
limited by bipolar  
zero error to  
–96dB typical  
(–76dB max).  
–96dB typical  
(–76dB max).  
Codes from Midscale  
to Positive Full-Scale  
Codes from Negative  
Full-Scale to Midscale  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Bandwidth (Hz)  
Bandwidth (Hz)  
Figure 36.  
Figure 37.  
SUPPLY CURRENT vs TEMPERATURE  
DAC SETTLING TIME  
6
5
4
3
2
1
0
VDD = 5.0V  
Unipolar Mode  
Voltage Output Settling  
VDD = 2.7V  
Trigger Pulse  
Time (0.5ms/div)  
-50 -30 -10  
10  
30  
50  
70  
90  
110 130  
Temperature (°C)  
Figure 38.  
Figure 39.  
14  
Submit Documentation Feedback  
DAC8822  
www.ti.com  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
THEORY OF OPERATION  
The DAC8822 is a multiplying, dual-channel, current output, 16-bit DAC. The architecture, illustrated in  
Figure 40, is an R-2R ladder configuration with the three MSBs segmented. Each 2R leg of the ladder is either  
switched to GND or to the IOUT terminal. The IOUT terminal of the DAC is held at a virtual GND potential by the  
use of an external I/V converter op amp. The R-2R ladder is connected to an external reference input (VREF) that  
determines the DAC full-scale output current. The R-2R ladder presents a code-independent load impedance to  
the external reference of 5kΩ ± 25%. The external reference voltage can vary in a range of –18V to +18V, thus  
providing bipolar IOUT current operation. By using an external I/V converter op amp and the RFB resistor in the  
DAC8822, an output voltage range of –VREF to +VREF can be generated.  
R
R
R
VREF  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
RFB  
IOUT  
GND  
Figure 40. Equivalent R-2R DAC Circuit  
The DAC output voltage is determined by VREF and the digital data (D) according to Equation 1:  
D
65536  
VOUT AńB + *VREF  
 
(1)  
Each DAC code determines the 2R-leg switch position to either GND or IOUT. The external I/V converter op amp  
noise gain will also change because the DAC output impedance (as seen looking into the IOUT terminal) changes  
versus code. Because of this change in noise gain, the external I/V converter op amp must have a sufficiently  
low offset voltage such that the amplifier offset is not modulated by the DAC IOUT terminal impedance change.  
External op amps with large offset voltages can produce INL errors in the transfer function of the DAC8822  
because of offset modulation versus DAC code. For best linearity performance of the DAC8822, an op amp  
(such as the OPA277) is recommended, as shown in Figure 41. This circuit allows VREF to swing from –10V to  
+10V.  
VDD  
U1  
VDD ROFS RFB  
+15V  
U2  
V+  
OPA277  
VREF  
IOUTA/B  
DAC8822  
VOUT  
V-  
GND  
-15V  
Figure 41. Voltage Output Configuration  
15  
Submit Documentation Feedback  
 
 
 
DAC8822  
www.ti.com  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
APPLICATION INFORMATION  
DIGITAL INTERFACE  
The parallel bus interface of the DAC8822 is comprised of a 16-bit data bus D0—D15, address lines A0 and A1,  
and a WR control signal. Timing and control functionality are shown in Figure 1, and described in Table 2 and  
Table 3. The address lines must be set up and stable before the WR signal goes low, to prevent loading  
improper data to an undesired input register.  
Both channels of the DAC8822 can be simultaneously updated by control of the LDAC signal, as shown in  
Figure 1. Reset control (RS) and reset select control (RSTSEL) signals are provided to allow user reset ability to  
either zero scale or midscale codes of both the input and DAC registers.  
STABILITY CIRCUIT  
For a current-to-voltage (I/V) design, as shown in Figure 42, the DAC8822 current output (IOUT) and the  
connection with the inverting node of the op amp should be as short as possible and laid out according to  
correct printed circuit board (PCB) layout design. For each code change, there is an output step function. If the  
gain bandwidth product (GBP) of the op amp is limited and parasitic capacitance is excessive at the inverting  
node, then gain peaking is possible. Therefore, a compensation capacitor C1 (4pF to 20pF, typ) can be added to  
the design for circuit stability, as shown in Figure 42.  
VDD  
U1  
VDD ROFS RFB  
C1  
U2  
VREF  
VREF  
DAC8822  
IOUTA/B  
VOUT  
OPA277  
GND  
Figure 42. Gain Peaking Prevention Circuit with Compensation Capacitor  
16  
Submit Documentation Feedback  
 
DAC8822  
www.ti.com  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
APPLICATION INFORMATION (continued)  
BIPOLAR OUTPUT CIRCUIT  
The DAC8822, as a 4-quadrant multiplying DAC, can be used to generate a bipolar output. The polarity of the  
full-scale output (IOUT) is the inverse of the input reference voltage at VREF  
.
Using a dual op amp, such as the OPA2277, full 4-quadrant operation can be achieved with minimal  
components. Figure 43 demonstrates a ±10VOUT circuit with a fixed +10V reference. The output voltage is  
shown in Equation 2:  
D
32768  
+ ǒ  
Ǔ
VOUT  
*1   VREF  
(2)  
VREF  
U1  
OPA2277  
VDD  
DGND  
R1A  
RCOMA  
ROFSA  
R
FBA  
VREFA  
R1A  
R2A  
ROFSA  
RFB  
A
DAC8822  
C1  
D0  
IOUT  
A
U2  
OPA2277  
DAC A  
Parallel  
Bus  
Interface  
D15  
Input A  
Register  
DAC A  
Register  
VOUT  
WR  
A0  
AGNDA  
A1  
RS  
LDAC  
Control  
Logic  
RSTSEL  
Figure 43. Bipolar Output Circuit for Channel A  
17  
Submit Documentation Feedback  
 
 
DAC8822  
www.ti.com  
SBAS390ADECEMBER 2006REVISED MARCH 2007  
APPLICATION INFORMATION (continued)  
PROGRAMMABLE CURRENT SOURCE CIRCUIT  
The DAC8822 can be integrated into the circuit in Figure 44 to implement an improved Howland current pump  
for precise V/I conversions. Bidirectional current flow and high-voltage compliance are two features of the circuit.  
With a matched resistor network, the load current of the circuit is shown by Equation 3:  
(
)
R2)R3 ń R1  
D
65536  
ILAńB +  
  VREF   
R3  
(3)  
The value of R3 in the previous equation can be reduced to increase the output current drive of U3. U3 can drive  
±20mA in both directions with voltage compliance limited up to 15V by the U3 voltage supply. Elimination of the  
circuit compensation capacitor (C1) in the circuit is not suggested as a result of the change in the output  
impedance (ZO), according to Equation 4:  
(
)
R1ȀR3 R1)R2  
ZO +  
(
)
(
)
R1 R2Ȁ)R3Ȁ * R1Ȁ R2)R3  
(4)  
As shown in Equation 4, ZO with matched resistors is infinite and the circuit is optimum for use as a current  
source. However, if unmatched resistors are used, ZO is positive or negative with negative output impedance  
being a potential cause of oscillation. Therefore, by incorporating C1 into the circuit, possible oscillation problems  
are eliminated. The value of C1 can be determined for critical applications; for most applications, however, a  
value of several pF is suggested.  
R2´  
15kW  
C1  
10pF  
VDD  
R1´  
U3  
R3´  
150kW  
50W  
U1  
VOUT  
OPA2277  
C2  
VDD ROFS RFB  
10pF  
R3  
U2  
R1  
R2  
50W  
150kW  
15kW  
VREF  
VREF  
DAC8822  
IOUTA/B  
IL  
OPA2277  
LOAD  
GND  
Figure 44. Programmable Bidirectional Current Source Circuit  
CROSS-REFERENCE  
The DAC8822 has an industry-standard pinout. Table 4 provides the cross-reference information.  
Table 4. Cross-Reference  
SPECIFIED  
TEMPERATURE  
RANGE  
CROSS-  
REFERENCE  
PART  
INL  
DNL  
PACKAGE  
DESCRIPTION  
PACKAGE  
OPTION  
PRODUCT  
DAC8822QB  
DAC8822QC  
BIT  
16  
(LSB)  
(LSB)  
2
1
1
1
–40°C to +125°C  
–40°C to +125°C  
TSSOP-38  
TSSOP-38  
DBT  
DBT  
AD5547B  
N/A  
16  
18  
Submit Documentation Feedback  
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC8822QBDBT  
DAC8822QBDBTR  
DAC8822QCDBT  
DAC8822QCDBTG4  
DAC8822QCDBTR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
DBT  
DBT  
DBT  
DBT  
DBT  
38  
38  
38  
38  
38  
50  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
DAC8822  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
DAC8822  
DAC8822  
DAC8822  
DAC8822  
50  
50  
RoHS & Green  
RoHS & Green  
2000 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC8822QBDBTR  
DAC8822QCDBTR  
TSSOP  
TSSOP  
DBT  
DBT  
38  
38  
2000  
2000  
330.0  
330.0  
16.4  
16.4  
6.9  
6.9  
10.2  
10.2  
1.8  
1.8  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC8822QBDBTR  
DAC8822QCDBTR  
TSSOP  
TSSOP  
DBT  
DBT  
38  
38  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DAC8822QBDBT  
DAC8822QCDBT  
DAC8822QCDBTG4  
DBT  
DBT  
DBT  
TSSOP  
TSSOP  
TSSOP  
38  
38  
38  
50  
50  
50  
530  
530  
530  
10.2  
10.2  
10.2  
3600  
3600  
3600  
3.5  
3.5  
3.5  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DBT0038A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
6.55  
6.25  
TYP  
C
A
0.1 C  
PIN 1 INDEX AREA  
38 X 0.5  
38  
1
2X  
9
9.75  
9.65  
NOTE 3  
19  
B
20  
0.23  
38 X  
0.17  
4.45  
1.2 MAX  
0.1  
C A B  
4.35  
NOTE 4  
0.25  
GAGE PLANE  
0.15  
0.05  
(0.15) TYP  
SEE DETAIL A  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
4220221/A 05/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBT0038A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
38 X (1.5)  
SYMM  
(R0.05) TYP  
38  
1
38 X (0.3)  
38 X (0.5)  
SYMM  
19  
20  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220221/A 05/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBT0038A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
38 X (1.5)  
SYMM  
(R0.05) TYP  
38  
1
38 X (0.3)  
38 X (0.5)  
SYMM  
19  
20  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220221/A 05/2020  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY