DAC8830-EP [TI]

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters; 16位,超低功耗,电压输出数字 - 模拟转换器
DAC8830-EP
型号: DAC8830-EP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
16位,超低功耗,电压输出数字 - 模拟转换器

转换器
文件: 总32页 (文件大小:921K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
B
u
r
r
Ć
B
r
o
w
n
P
r
o
d
u
c
t
s
DAC8830-EP  
DAC8831-EP  
f
r
o
m
T
e
x
a
s
I
n
s
t
r
u
m
e
n
t
s
SGLS334CAUGUST 2006REVISED APRIL 2007  
16-Bit, Ultra-Low Power, Voltage-Output  
Digital-to-Analog Converters  
FEATURES  
APPLICATIONS  
Portable Equipment  
Controlled Baseline  
Automatic Test Equipment  
Industrial Process Control  
Data Acquisition Systems  
Optical Networking  
One Assembly  
One Test Site  
One Fabrication Site  
Extended Temperature Performance of –55°C  
to 125°C  
DESCRIPTION  
Enhanced Diminishing Manufacturing Sources  
(DMS) Support  
The DAC8830 and DAC8831 are single, 16-bit,  
serial-input,  
voltage-output  
digital-to-analog  
Enhanced Product-Change Notification  
converters (DACs) operating from a single 3-V to 5-V  
power supply. These converters provide excellent  
linearity, low glitch, low noise, and fast settling over  
the specified temperature range of –55°C to 125°C.  
The output is unbuffered, which reduces the power  
consumption and the error introduced by the buffer.  
(1)  
Qualification Pedigree  
16-Bit Resolution  
2.7-V to 5.5-V Single-Supply Operation  
Low Power: 15 μW for 3-V Power  
High Accuracy, INL: 1 LSB  
Low Glitch: 8 nV-s  
These parts feature a standard high-speed (clock up  
to 50 MHz), 3-V or 5-V SPI serial interface to  
communicate with the DSP or microprocessors.  
Low Noise: 10 nV/Hz  
Fast Settling: 1 μs  
The DAC8830 output is 0 V to VREF. However, the  
DAC8831 provides bipolar mode output (±VREF  
when working with an external buffer. The DAC8830  
and DAC8831 are both reset to zero-code after  
power up.  
)
Fast SPI Interface Up to 50 MHz  
Reset to Zero-Code  
Schmitt-Trigger Inputs for Direct Optocoupler  
Interface  
For optimum performance,  
connections to external reference and analog ground  
input are provided on the DAC8831.  
a
set of Kelvin  
Industry-Standard Pin Configuration  
(1) Component qualification in accordance with JEDEC and  
industry standards to ensure reliable operation over an  
extended temperature range. This includes, but is not limited  
to, Highly Accelerated Stress Test (HAST) or biased 85/85,  
temperature cycle, autoclave or unbiased HAST,  
The DAC8830 is available in an SO-8 package and  
the DAC8831 is available in an SO-14 package. Both  
have industry standard pinouts (see Table 3, the  
Cross Reference table in the Application Information  
section for details).  
electromigration, bond intermetallic life, and mold compound  
life. Such qualification testing should not be viewed as  
justifying use of this component beyond specified  
performance and environmental limits.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2006–2007, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
DAC8830  
DAC8831  
Functional Block Diagram  
Functional Block Diagram  
VDD  
VDD  
VREF  
F
S
VREF  
RINV RFB  
RFB  
INV  
VOUT  
DAC  
VREF  
CS  
+V  
LDAC  
VO  
+
VOUT  
DAC  
AGND  
CS  
SCLK  
SDI  
V
OPA277  
OPA704  
OPA727  
SCLK  
SDI  
Input  
Register  
AGNDF  
AGNDS  
DAC Latch  
Input  
Register  
DAC Latch  
DAC8830  
DAC8831  
DGND  
DGND  
2
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be  
more susceptible to damage because small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
MINIMUM  
RELATIVE  
ACCURACY  
(LSB)  
POWER-  
ON  
RESET  
VALUE  
DIFFERENTIAL  
NONLINEARITY  
(LSB)  
SPECIFICATION  
TEMPERATURE  
RANGE  
TRANSPORT  
MEDIA,  
QUANTITY  
PACKAGE  
MARKING  
PACKAGE-  
LEAD  
PACKAGE(2)  
DESIGNATOR  
ORDERING  
NUMBER  
PRODUCT  
Tape and Reel,  
2500  
DAC8830MCDREP  
DAC8830MCDEP  
DAC8831MCDREP  
DAC8831MCDEP  
DAC8830MCD  
±1  
±1  
±1  
±1  
Zero-Code  
Zero-Code  
–55°C to 125°C  
–55°C to 125°C  
8830M  
8831M  
SO-8  
D
D
Tube, 75  
Tape and Reel,  
2500  
DAC8831MCD  
SO-14  
Tube, 50  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this data sheet, or see the  
Texas Instruments website at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/sc/package.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
–0.3 to 7  
UNIT  
V
VDD to AGND  
Digital input voltage to DGND  
VOUT to AGND  
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–0.3 to 0.3  
–55 to 125  
–65 to 150  
150  
V
V
AGND, AGNDF, AGNDS to DGND  
Operating temperature range  
Storage temperature range  
Junction temperature range (TJ max)  
Power dissipation  
V
°C  
°C  
°C  
(TJ max – TA)/ θJA  
149.5  
W
SO-8  
°C/W  
°C/W  
°C  
Thermal impedance, θJA  
SO-14  
104.5  
Vapor phase (60 s)  
Infrared (15 s)  
215  
Lead temperature, soldering  
220  
°C  
(1) Stresses above those listed under absolute maximum ratings may cause permanent damage to the device. Exposure to absolute  
maximum conditions for extended periods may affect device reliability.  
3
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
10000  
1000  
100  
10  
Wirebond Voiding Fail Mode  
Electromigration Fail Mode  
1
80  
90  
100  
110  
120  
130  
140  
150  
Continuous TJ − 5C  
Figure 1. DAC8831MEP Operating Life Derating Chart  
4
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
ELECTRICAL CHARACTERISTICS  
All specifications at TA = TMIN to TMAX, VDD = 3 V, or VDD = 5 V, VREF = 2.5 V (unless otherwise noted); specifications subject  
to change without notice.  
PARAMETER  
STATIC PERFORMANCE  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
16  
bits  
TA = 25°C  
±0.5  
±0.5  
±1  
TA = –40°C to 105°C (DAC8831  
only)  
±1.5  
Linearity error  
LSB  
TA = –55°C to 125°C (DAC8831  
only)  
±4  
TA = –55°C to 125°C (DAC8830  
only)  
±0.5  
±1.5  
Differential linearity error  
Gain error  
All grades  
±0.5  
±1  
±1  
±5  
±7  
LSB  
LSB  
TA = 25°C  
TA = –55°C to 125°C  
Gain drift  
±0.1  
ppm/°C  
TA = 25°C  
±0.25  
±1  
TA = –40°C to 105°C (DAC8831  
Only)  
±2.5  
Zero code error  
LSB  
TA = –55°C to 125°C (DAC8831  
Only)  
±3  
±2  
TA = –55°C to 125°C (DAC8830  
Only)  
Zero code drift  
±0.05  
ppm/°C  
OUTPUT CHARACTERISTICS  
Unipolar operation  
Bipolar operation  
0
VREF  
VREF  
V
(1)  
Voltage output  
(DAC8831 only)  
–VREF  
V
Output Impedance  
Settling time  
Slew rate(2)  
6.25  
1
kΩ  
To 1/2 LSB of FS, CL = 10 pF  
CL = 10 pF  
μs  
25  
8
V/μs  
nV-s  
nV-s  
Digital-to-analog glitch  
Digital feedthrough(3)  
1 LSB change around major carry  
0.2  
10  
18  
DAC8830  
DAC8831  
Output noise  
TA = 25°C  
nV/Hz  
Power supply rejection  
VDD varies ±10%  
RFB / RINV  
±1  
LSB  
1
±0.0015%  
±0.25  
/Ω  
Bipolar resistor  
matching  
DAC8831 only  
Ratio error  
±0.01%  
±5  
TA = 25°C  
Bipolar zero error  
Bipolar zero drift  
DAC8831 only  
DAC8831 only  
LSB  
TA = –55°C to 125°C  
±7  
±0.2  
ppm/°C  
(1) TheDAC8830 output is unipolar (0 V to VREF). TheDAC8831 output is bipolar (±VREF) when it connects to an external buffer (see the  
Bipolar Output Operation section for details).  
(2) Slew Rate is measure from 10% to 90% of transition when the output changes from 0 to full scale.  
(3) Digital feedthrough is defined as the impulse injected into the analog output from the digital input. It is measured when the DAC output  
does not change, CS is held high, while SCLK and DIN signals are toggled.  
5
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
ELECTRICAL CHARACTERISTICS (continued)  
All specifications at TA = TMIN to TMAX, VDD = 3 V, or VDD = 5 V, VREF = 2.5 V (unless otherwise noted); specifications subject  
to change without notice.  
PARAMETER  
REFERENCE INPUT  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Reference input voltage range(4)  
1.25  
9
VDD  
V
Unipolar mode  
Reference input impedance(5)  
kΩ  
Bipolar mode, DAC8831  
Code = FFFFh  
7.5  
Reference –3-dB bandwidth, BW  
Reference feedthrough  
1.3  
1
MHz  
mV  
dB  
Code = 0000h,  
VREF = 1 VPP at 100 kHz  
Signal-to-noise ratio, SNR  
92  
75  
Code = 0000h  
Code = FFFFh  
Reference input capacitance  
pF  
120  
DIGITAL INPUTS  
VDD = 2.7 V  
VDD = 5 V  
VDD = 2.7 V  
VDD = 5 V  
0.6  
0.8  
VIL  
VIH  
Input low voltage  
Input high voltage  
V
V
2.1  
2.4  
Input current  
±1  
μA  
pF  
V
Input capacitance  
Hysteresis voltage  
10  
0.4  
POWER SUPPLY  
VDD  
2.7  
5.5  
20  
V
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
5
5
IDD  
μA  
20  
15  
25  
60  
Power  
μW  
°C  
100  
TEMPERATURE RANGE  
Specified performance  
–55  
125  
(4) Specified by design. Vref production tested only at 2.5 V.  
(5) Reference input resistance is code dependent, minimum at 8555h.  
6
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
PIN CONFIGURATION (NOT TO SCALE)  
DAC8830ID, DAC8830IBD,  
DAC8830ICD (SO-8)  
(TOP VIEW)  
DAC8831ID, DAC8831IBD,  
DAC8831ICD (SO-14)  
(TOP VIEW)  
VOUT  
AGND  
VREF  
VDD  
1
2
3
4
8
7
6
5
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VDD  
RFB  
VOUT  
INV  
DGND  
SDI  
DGND  
LDAC  
SDI  
AGNDF  
AGNDS  
VREF−S  
VREF−F  
CS  
CS  
SCLK  
NC  
8
SCLK  
TERMINAL FUNCTIONS  
TERMINAL  
DESCRIPTION  
NO.  
NAME  
DAC8830  
1
VOUT  
Analog output of DAC  
Analog ground  
2
AGND  
VREF  
CS  
3
Voltage reference input  
4
Chip select input (active low). Data is not clocked into SDI unless CS is low.  
Serial clock input  
5
SCLK  
SDI  
6
Serial data input. Data is latched into input register on the rising edge of SCLK.  
Digital ground  
7
DGND  
VDD  
8
Analog power supply, 3 V to 5 V  
DAC8831  
1
2
RFB  
Feedback resistor. Connect to the output of external operational amplifier in bipolar mode.  
Analog output of DAC  
VOUT  
3
AGNDF Analog ground (Force)  
AGNDS Analog ground (Sense)  
4
5
VREF-  
VREF-  
CS  
S
Voltage reference input (Sense). Connect to external voltage reference.  
Voltage reference input (Force). Connect to external voltage reference.  
Chip select input (active low). Data is not clocked into SDI unless CS is low.  
Serial clock input  
6
F
7
8
SCLK  
NC  
9
No internal connection  
10  
SDI  
Serial data input. Data is latched into input register on the rising edge of SCLK.  
Load DAC control input. Active low. When LDAC is Low, the DAC latch is simultaneously updated with the  
content of the input register.  
11  
12  
13  
14  
LDAC  
DGND  
INV  
Digital ground  
Junction point of internal scaling resistors. Connect to external operational amplifier’s inverting input in bipolar  
mode.  
VDD  
Analog power supply, 3 V to 5 V  
7
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
t
td  
CS  
DAC  
Updated  
t
Delay  
t
sck  
t
Lead  
t
t
DSCLK  
t
t
wsck  
Lag  
wsck  
SCLK  
SDI  
t
t
su  
ho  
BIT15 (MSB)  
−−Don’t Care  
BIT13, . . . ,1  
BIT0  
BIT14  
Figure 2. DAC8830 Timing Diagram  
Case1: LDAC tied to LOW  
CS  
t
td  
DAC  
Updated  
t
Delay  
t
sck  
t
Lead  
t
t
DSCLK  
t
t
wsck  
Lag  
wsck  
SCLK  
t
t
su  
ho  
SDI  
BIT 15 (MSB)  
BIT 14  
BIT 13, . . . ,1  
BIT 0  
LDAC  
LOW  
−−Don’t Care  
Case2: LDAC Active  
CS  
t
td  
t
Delay  
t
sck  
t
Lead  
t
t
DSCLK  
t
t
wsck  
Lag  
wsck  
SCLK  
SDI  
t
t
su  
ho  
BIT 15 (MSB)  
BIT 14  
BIT 13, . . . ,1  
BIT 0  
t
t
WLDAC  
DLADC  
DAC  
HIGH  
LDAC  
Updated  
−−Don’t Care  
Figure 3. DAC8831 Timing Diagram  
8
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
TIMING CHARACTERISTICS: VDD = 5 V(1) (2)  
At –55°C to 125°C (unless otherwise noted)  
PARAMETER  
MIN  
20  
10  
18  
12  
15  
15  
30  
10  
0
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
tsck  
SCLK period  
twsck  
tDelay  
tLead  
tLag  
SCLK high or low time  
Delay from SCLK high to CS low  
CS enable lead time  
CS enable lag time  
tDSCLK  
ttd  
Delay from CS high to SCLK high  
CS high between active period  
Data setup time (input)  
Data hold time (input)  
tsu  
tho  
tWLDAC  
tDLDAC  
LDAC width  
30  
30  
10  
Delay from CS high to LDAC low  
VDD high to CS low (power-up delay)  
(1) Specified by design. Not production tested.  
(2) Sample tested during the initial release and after any redesign or process changes that may affect this parameter.  
TIMING CHARACTERISTICS: VDD = 3 V(1) (2)  
At –55°C to 125°C (unless otherwise noted)  
PARAMETER  
MIN  
20  
10  
18  
15  
15  
15  
30  
10  
0
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
tsck  
SCLK period  
twsck  
tDelay  
tLead  
tLag  
SCLK high or low time  
Delay from SCLK high to CS low  
CS enable lead time  
CS enable lag time  
tDSCLK  
ttd  
Delay from CS high to SCLK high  
CS high between active period  
Data setup time (input)  
tsu  
tho  
Data hold time (input)  
tWLDAC  
tDLDAC  
LDAC width  
30  
30  
10  
Delay from CS high to LDAC low  
VDD high to CS low (power-up delay)  
(1) Specified by design. Not production tested.  
(2) Sample tested during the initial release and after any redesign or process changes that may affect this parameter.  
9
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
TYPICAL CHARACTERISTICS: VDD = 5 V  
At TA = 25°C, VREF = 2.5 V (unless otherwise noted)  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
0.75  
1.00  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 4.  
Figure 5.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
0.75  
1.00  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 6.  
Figure 7.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
0.75  
1.00  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 8.  
Figure 9.  
10  
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
TYPICAL CHARACTERISTICS: VDD = 5 V (continued)  
At TA = 25°C, VREF = 2.5 V (unless otherwise noted)  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
1.00  
0.75  
0.50  
0.25  
0
0.75  
0.50  
0.25  
0
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
0.75  
1.00  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 10.  
Figure 11.  
LINEARITY ERROR  
vs REFERENCE VOLTAGE  
LINEARITY ERROR  
vs SUPPLY VOLTAGE  
0.75  
0.50  
0.25  
0
0.75  
0.50  
0.25  
0
VREF = 2.5 V  
DNL  
DNL  
INL  
INL  
0.25  
0.50  
0.25  
0.50  
0
1
2
3
4
5
6
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Reference Voltage (V)  
Supply Voltage (V)  
Figure 12.  
Figure 13.  
GAIN ERROR  
vs TEMPERATURE  
ZERO-CODE ERROR  
vs TEMPERATURE  
1.25  
1.00  
0.75  
0.50  
0.25  
0
0.50  
0.25  
0
Bipolar Mode  
VREF = 2.5 V  
Bipolar Mode  
Unipolar Mode  
0.25  
0.50  
0.75  
0.25  
0.50  
Unipolar Mode  
VREF = 2.5 V  
60  
40 20  
0
20  
40  
60  
80 100 120 140  
60  
40 20  
0
20  
40  
60  
80 100 120 140  
_
_
Temperature ( C)  
Temperature ( C)  
Figure 14.  
Figure 15.  
11  
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
TYPICAL CHARACTERISTICS: VDD = 5 V (continued)  
At TA = 25°C, VREF = 2.5 V (unless otherwise noted)  
REFERENCE CURRENT  
vs CODE (UNIPOLAR MODE)  
REFERENCE CURRENT  
vs CODE (BIPOLAR MODE)  
300  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
60  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 16.  
Figure 17.  
SUPPLY CURRENT  
vs DIGITAL INPUT VOLTAGE  
SUPPLY CURRENT  
vs TEMPERATURE  
800  
5
4
3
2
1
0
VREF = 2.5 V  
700  
600  
500  
400  
300  
200  
100  
0
VDD = 5 V  
VDD = 5 V  
VLOGIC = 5 V  
VDD = 3 V  
VLOGIC = 3 V  
VDD = 3 V  
0
1
2
3
4
5
20  
40  
0
20 40  
60  
80 100 120 140  
Digital Input Voltage (V)  
_
Temperature ( C)  
Figure 18.  
Figure 19.  
SUPPLY CURRENT  
vs SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs REFERENCE VOLTAGE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VREF = 2.5 V  
VDD = 5 V  
VDD = 3 V  
2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0  
Supply Voltage (V)  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Reference Voltage (V)  
Figure 20.  
Figure 21.  
12  
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
TYPICAL CHARACTERISTICS: VDD = 5 V (continued)  
At TA = 25°C, VREF = 2.5 V (unless otherwise noted)  
MAJOR-CARRY GLITCH  
(FALLING)  
MAJOR-CARRY GLITCH  
(RISING)  
VREF = 2.5 V  
VREF = 2.5 V  
5V/div  
5V/div  
LDAC  
VOUT  
LDAC  
VOUT  
0.1V/div  
0.1V/div  
µ
µ
Time (0.5 s/div)  
Time (0.5 s/div)  
Figure 22.  
Figure 23.  
DAC SETTLING TIME  
(FALLING)  
DAC SETTLING TIME  
(RISING)  
VREF = 2.5 V  
VREF = 2.5 V  
5V/div  
1V/div  
5V/div  
LDAC  
LDAC  
VOUT  
VOUT  
1V/div  
µ
µ
Time (0.2 s/div)  
Time (0.2 s/div)  
Figure 24.  
Figure 25.  
DIGITAL  
FEEDTHROUGH  
VREF = 2.5 V  
SDI  
5V/div  
VOUT  
20mV/div  
Time (50ns/div)  
Figure 26.  
13  
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
TYPICAL CHARACTERISTICS: VDD = 3 V  
At TA = 25°C, VREF = 2.5 V (unless otherwise noted)  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
0.75  
1.00  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 27.  
Figure 28.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
0.75  
1.00  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 29.  
Figure 30.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
0.75  
1.00  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 31.  
Figure 32.  
14  
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
TYPICAL CHARACTERISTICS: VDD = 3 V (continued)  
At TA = 25°C, VREF = 2.5 V (unless otherwise noted)  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
0.75  
1.00  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 33.  
Figure 34.  
LINEARITY ERROR  
vs REFERENCE VOLTAGE  
GAIN ERROR  
vs TEMPERATURE  
1.00  
0.75  
0.50  
0.25  
0
0.75  
0.50  
0.25  
0
Bipolar Mode  
DNL  
Unipolar Mode  
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
VDD = 3 V  
VREF = 2.5 V  
INL  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
60  
40 20  
0
20  
40  
60  
80 100 120 140  
_
Temperature ( C)  
Reference Voltage (V)  
Figure 35.  
Figure 36.  
ZERO-CODE ERROR  
vs TEMPERATURE  
REFERENCE CURRENT  
vs CODE (UNIPOLAR MODE)  
0.50  
0.25  
0
300  
250  
200  
150  
100  
50  
VDD = 3 V  
VREF = 2.5 V  
Unipolar Mode  
0.25  
0.50  
0.75  
Bipolar Mode  
0
60  
40 20  
0
20  
40  
60  
80 100 120 140  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
_
Temperature ( C)  
Figure 37.  
Figure 38.  
15  
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
TYPICAL CHARACTERISTICS: VDD = 3 V (continued)  
At TA = 25°C, VREF = 2.5 V (unless otherwise noted)  
REFERENCE CURRENT  
vs CODE (BIPOLAR MODE)  
DIGITAL  
FEEDTHROUGH  
300  
VREF = 2.5 V  
250  
200  
150  
100  
50  
SDI  
5V/div  
VOUT  
20mV/div  
0
Time (50ns/div)  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 39.  
Figure 40.  
MAJOR-CARRY GLITCH  
(FALLING)  
MAJOR-CARRY GLITCH  
(RISING)  
VREF = 2.5 V  
VREF = 2.5 V  
5V/div  
5V/div  
LDAC  
LDAC  
VOUT  
VOUT  
0.1V/div  
0.1V/div  
µ
µ
Time (0.5 s/div)  
Time (0.5 s/div)  
Figure 41.  
Figure 42.  
DAC SETTLING TIME  
(FALLING)  
DAC SETTLING TIME  
(RISING)  
VREF = 2.5 V  
VREF = 2.5 V  
5V/div  
5V/div  
1V/div  
LDAC  
LDAC  
VOUT  
VOUT  
1V/div  
µ
µ
Time (0.2 s/div)  
Time (0.2 s/div)  
Figure 43.  
Figure 44.  
16  
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
THEORY OF OPERATION  
General Description  
The DAC8830 and DAC8831 are single, 16-bit, serial-input, voltage-output DACs. They operate from a single  
supply ranging from 2.7 V to 5 V, and typically consume 5 μA. Data is written to these devices in a 16-bit word  
format, via an SPI serial interface. To ensure a known power-up state, these parts were designed with a  
power-on reset function. The DAC8830 and DAC8831 are reset to zero code. In unipolar mode, the DAC8830  
and DAC8831 are reset to 0V, and in bipolar mode, the DAC8831 is reset to –VREF. Kelvin sense connections  
for the reference and analog ground are included on the DAC8831.  
Digital-to-Analog Sections  
The DAC architecture for both devices consists of two matched DAC sections and is segmented. A simplified  
circuit diagram is shown in Figure 45. The four MSBs of the 16-bit data word are decoded to drive 15 switches,  
E1 to E15. Each of these switches connects one of 15 matched resistors to either AGND or VREF. The remaining  
12 bits of the data word drive switches S0 to S11 of a 12-bit voltage mode R-2R ladder network.  
R
R
VOUT  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
S0  
S1  
S11  
E1  
E2  
E15  
VREF  
12−Bit R2R Ladder  
Four MSBs Decoded into  
15 Equal Segments  
Figure 45. DAC Architecture  
Output Range  
The output of the DAC is  
VOUT = (VREF × Code/65536)  
Where:  
Code = Decimal data word loaded to the DAC latch  
17  
Submit Documentation Feedback  
 
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
THEORY OF OPERATION (continued)  
Power-on Reset  
Both devices have a power-on reset function to ensure the output is at a known state upon power up. In the  
DAC8830 and DAC8831, on power up, the DAC latch and input registers contain all 0s until new data is loaded  
from the input serial shift register. Therefore, after power up, the output from pin VOUT of the DAC8830 is 0 V.  
The output from pin VOUT of the DAC8831 is 0 V in unipolar mode and –VREF in bipolar mode.  
However, the serial register of the DAC8830 and DAC8831 is not cleared on power up, so its contents are  
undefined. When loading data initially to the device, 16 bits or more should be loaded to prevent erroneous data  
appearing on the output. If more than 16 bits are loaded, the last 16 are kept; if less than 16 are loaded, bits will  
remain from the previous word. If the device must be interfaced with data shorter than 16 bits, the data should  
be padded with 0s at the LSBs.  
Serial Interface  
The digital interface is standard 3-wire connection compatible with SPI, QSPI, Microwire, and Texas Instruments  
DSP interfaces, which can operate at speeds up to 50 Mbps. The data transfer is framed by CS, the chip select  
signal. The DAC works as a bus slave. The bus master generates the synchronize clock, SCLK, and initiates the  
transmission. When CS is high, the DAC is not accessed, and the clock SCLK and serial input data SDI are  
ignored. The bus master accesses the DAC by driving pin CS low. Immediately following the high-to-low  
transition of CS, the serial input data on pin SDI is shifted out from the bus master synchronously on the falling  
edge of SCLK, and latched on the rising edge of SCLK into the input shift register, MSB first. The low-to-high  
transition of CS transfers the contents of the input shift register to the input register. All data registers are 16 bit.  
It takes 16 clocks of SCLK to transfer one data word to the parts. To complete a whole data word, CS must go  
high immediately after 16 SCLKs are clocked in. If more than 16 SCLKs are applied during the low state of CS,  
the last 16 bits are transferred to the input register on the rising edge of CS. However, if CS is not kept low  
during the entire 16 SCLK cycles, data is corrupted. In this case, reload the DAC latch with a new 16-bit word.  
In the DAC8830, the contents of the input register are transferred into the DAC latch immediately when the input  
register is loaded, and the DAC output is updated at the same time.  
The DAC8831 has an LDAC pin allowing the DAC latch to be updated asynchronously by bringing LDAC low  
after CS goes high. In this case, LDAC must be maintained high while CS is low. If LDAC is tied permanently  
low, the DAC latch is updated immediately after the input register is loaded (caused by the low-to-high transition  
of CS).  
18  
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
APPLICATION INFORMATION  
Unipolar Output Operation  
These DACs are capable of driving unbuffered loads of 60 k. Unbuffered operation results in low supply  
current (typically 5 μA) and a low offset error. The DAC8830 provides a unipolar output swing ranging from 0 V  
to VREF. The DAC8831 can be configured to output both unipolar and bipolar voltages. Figure 46 and Figure 47  
show a typical unipolar output voltage circuit for each device, respectively. The code table for this mode of  
operation is shown in Table 1.  
Table 1. Unipolar Code  
DAC Latch Contents  
Analog Output  
MSB  
LSB  
1111 1111 1111 1111  
VREF × (65,535/65,536)  
VREF × (32,768/65,536) = VREF  
VREF × (1/65,536)  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
0 V  
+5 V  
+2.5 V  
+
µ
10  
F
µ
0.1  
F
µ
0.1  
F
OPA277  
OPA704  
OPA727  
VDD  
VREF  
VO = 0 to +VREF  
VOUT  
DAC  
AGND  
CS  
SCLK  
SDI  
Input  
Register  
DAC Latch  
DAC8830  
DGND  
Figure 46. Unipolar Output Mode of DAC8830  
19  
Submit Documentation Feedback  
 
 
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
+5 V  
+2.5 V  
+
µ
µ
F
0.1  
F
10  
µ
0.1  
F
OPA277  
OPA704  
OPA727  
VREF  
F
VDD  
S
VREF  
RINV  
RFB  
+V  
RFB  
LDAC  
INV  
VO = 0 to +VREF  
VOUT  
DAC  
CS  
SCLK  
SDI  
V
AGNDF  
AGNDS  
Input  
Register  
DAC Latch  
DAC8831  
DGND  
Figure 47. Unipolar Output Mode of DAC8831  
Assuming a perfect reference, the worst-case output voltage may be calculated from the following equation:  
Unipolar Mode Worst-Case Output  
D
2
  ǒV  
GEǓ ) V  
ZSE  
V
+
) V  
) INL  
OUT_UNI  
REF  
16  
Where:  
VOUT_UNI = Unipolar mode worst-case output  
D = Code loaded to DAC  
VREF = Reference voltage applied to part  
VGE = Gain error in volts  
VZSE = Zero scale error in volts  
INL = Integral nonlinearity in volts  
20  
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
Bipolar Output Operation  
With the aid of an external operational amplifier, the DAC8831 may be configured to provide a bipolar voltage  
output. A typical circuit of such an operation is shown in Figure 48. The matched bipolar offset resistors RFB and  
RINV are connected to an external operational amplifier to achieve this bipolar output swing; typically, RFB = RINV  
= 28 k.  
Table 2 shows the transfer function for this output operating mode. The DAC8831 also provides a set of Kelvin  
connections to the analog ground and external reference inputs.  
Table 2. Bipolar Code  
DAC Latch Contents  
Analog Output  
MSB  
LSB  
1111 1111 1111 1111  
VREF × (32,767/32,768)  
VREF × (1/32,768)  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0001  
0000 0000 0000 0000  
0 V  
–VREF × (1/32,768)  
–VREF × (32,767/32,768) = –VREF  
+5 V  
+2.5 V  
+
µ
µ
F
0.1  
F
10  
µ
0.1  
F
VREF  
F
VDD  
S
VREF  
RINV  
RFB  
RFB  
INV  
+V  
LDAC  
= VREF to +VREF  
VO  
VOUT  
DAC  
OPA277  
OPA704  
OPA727  
CS  
SCLK  
SDI  
V
AGNDF  
AGNDS  
Input  
Register  
DAC Latch  
DAC8831  
DGND  
Figure 48. Bipolar Output Mode of DAC8831  
Assuming a perfect reference, the worst-case output voltage may be calculated from the following equation:  
Bipolar Mode Worst-Case Output  
ǒ
ƪ V  
Ǔ (  
1 ) RD)ƫ  
)
(
) V  
2 ) RD * V  
OUT_UNI  
OS  
REF  
V
+
OUT_BIP  
2)RD  
1 ) ǒ  
Ǔ
A
Where:  
VOS = External operational amplifier input offset voltage  
RD = RFB and RIN resistor matching error  
A = Operational amplifier open-loop gain  
21  
Submit Documentation Feedback  
 
 
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
Output Amplifier Selection  
For bipolar mode, a precision amplifier should be used, supplied from a dual power supply. This provides the  
±VREF output.  
In a single-supply application, selection of a suitable operational amplifier may be more difficult because the  
output swing of the amplifier does not usually include the negative rail; in this case, AGND. This output swing  
can result in some degradation of the specified performance unless the application does not use codes near 0.  
The selected operational amplifier needs to have low-offset voltage (the DAC LSB is 38 μV with a 2.5-V  
reference), eliminating the need for output offset trims. Input bias current should also be low because the bias  
current multiplied by the DAC output impedance (approximately 6.25 k) adds to the zero-code error.  
Rail-to-rail input and output performance is required. For fast settling, the slew rate of the operational amplifier  
should not impede the settling time of the DAC. Output impedance of the DAC is constant and  
code-independent, but in order to minimize gain errors the input impedance of the output amplifier should be as  
high as possible. The amplifier should also have a 3 dB bandwidth of 1 MHz or greater. The amplifier adds  
another time constant to the system, thus increasing the settling time of the output. A higher 3-dB amplifier  
bandwidth results in a shorter effective settling time of the combined DAC and amplifier.  
Reference and Ground  
Since the input impedance is code-dependent, the reference pin should be driven from a low impedance source.  
The DAC8830 and DAC8831 operate with a voltage reference ranging from 1.25 V to VDD. References below  
1.25 V result in reduced accuracy.  
The DAC full-scale output voltage is determined by the reference. Table 1 and Table 2 outline the analog output  
voltage for particular digital codes.  
For optimum performance, Kelvin sense connections are provided on the DAC8831. If the application does not  
require separate force and sense lines, they should be tied together close to the package to minimize voltage  
drops between the package leads and the internal die.  
Power Supply and Reference Bypassing  
For accurate high-resolution performance, it is recommended that the reference and supply pins be bypassed  
with a 10 μF tantalum capacitor in parallel with a 0.1 μF ceramic capacitor.  
22  
Submit Documentation Feedback  
DAC8830-EP  
DAC8831-EP  
www.ti.com  
SGLS334CAUGUST 2006REVISED APRIL 2007  
CROSS REFERENCE  
The DAC8830 and DAC8831 have an industry-standard pinout configuration (see Table 3).  
Table 3. Cross Reference  
INL  
(LSB)  
DNL  
(LSB)  
POWER-ON  
RESET TO  
TEMPERATURE  
RANGE  
PACKAGE  
DESCRIPTION  
PACKAGE  
OPTION  
CROSS  
REFERENCE  
MODEL  
AD5541CR,  
MAX541AESA  
DAC8830ICD  
DAC8830IBD  
DAC8830ID  
±1  
±2  
±4  
±1  
±1  
±1  
Zero-Code  
Zero-Code  
Zero-Code  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
8-Lead Small Outline IC  
8-Lead Small Outline IC  
8-Lead Small Outline IC  
SO-8  
SO-8  
SO-8  
AD5541BR,  
MAX541BESA  
AD5541AR,  
MAX541CESA  
DAC8830MCD  
±1  
±1  
±2  
±4  
±1  
±2  
±1  
±2  
±4  
±1  
±1  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
–55°C to 125°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
8-Lead Small Outline IC  
8-Lead Plastic DIP  
8-Lead Plastic DIP  
8-Lead Plastic DIP  
8-Lead Small Outline IC  
8-Lead Small Outline IC  
8-Lead Plastic DIP  
8-Lead Plastic DIP  
8-Lead Plastic DIP  
SO-8  
PDIP-8  
PDIP-8  
PDIP-8  
SO-8  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
MAX541AEPA  
MAX541BEPA  
MAX541CEPA  
AD5541LR  
±1  
±1  
±1  
±1.5  
±1  
0°C to 70°C  
SO-8  
AD5541JR  
0°C to 70°C  
PDIP-8  
PDIP-8  
PDIP-8  
MAX541AEPA  
MAX541BEPA  
MAX541CEPA  
±1  
0°C to 70°C  
±1  
0°C to 70°C  
AD5542CR,  
MAX542AESD  
DAC8831ICD  
DAC8831IBD  
DAC8831ID  
±1  
±2  
±4  
±1  
±1  
±1  
Zero-Code  
Zero-Code  
Zero-Code  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
14-Lead Small Outline IC  
14-Lead Small Outline IC  
14-Lead Small Outline IC  
SO-14  
SO-14  
SO-14  
AD5542BR,  
MAX542BESD  
AD5542AR,  
MAX542CESD  
DAC8831MCD  
±1  
±1  
±2  
±4  
±4  
±1  
±2  
±1  
±2  
±4  
±1  
±1  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
Zero-Code  
–55°C to 125°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–55°C to 125°C  
0°C to 70°C  
14-Lead Small Outline IC  
14-Lead Plastic DIP  
SO-14  
PDIP-14  
PDIP-14  
PDIP-14  
SB-14  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
MAX542ACPD  
MAX542BCPD  
MAX542CCPD  
MAX542CMJD  
AD5542LR  
±1  
14-Lead Plastic DIP  
±1  
14-Lead Plastic DIP  
±1  
14-Lead Ceramic SB  
±1  
14-Lead Small Outline IC  
14-Lead Small Outline IC  
14-Lead Small Outline IC  
14-Lead Small Outline IC  
14-Lead Small Outline IC  
SO-14  
±1.5  
±1  
0°C to 70°C  
SO-14  
AD5542JR  
0°C to 70°C  
SO-14  
MAX542AEPD  
MAX542BEPD  
MAX542CEPD  
±1  
0°C to 70°C  
SO-14  
±1  
0°C to 70°C  
SO-14  
23  
Submit Documentation Feedback  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Sep-2008  
PACKAGING INFORMATION  
Orderable Device  
DAC8830MCDEP  
DAC8830MCDREP  
DAC8831MCDEP  
DAC8831MCDREP  
V62/06671-01XE  
V62/06671-02XE  
V62/06671-03YE  
V62/06671-04YE  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
75 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
8
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
14  
14  
8
50 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
8
75 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
14  
14  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF DAC8830-EP, DAC8831-EP :  
Catalog: DAC8830, DAC8831  
NOTE: Qualified Version Definitions:  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Sep-2008  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC8830MCDREP  
DAC8831MCDREP  
SOIC  
SOIC  
D
D
8
2500  
2500  
330.0  
330.0  
12.4  
16.4  
6.4  
6.5  
5.2  
9.0  
2.1  
2.1  
8.0  
8.0  
12.0  
16.0  
Q1  
Q1  
14  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC8830MCDREP  
DAC8831MCDREP  
SOIC  
SOIC  
D
D
8
2500  
2500  
367.0  
367.0  
367.0  
367.0  
35.0  
38.0  
14  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All  
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

DAC8830IBD

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
BB

DAC8830IBD

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
TI

DAC8830IBDG4

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
TI

DAC8830IBDR

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
BB

DAC8830IBDR

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
TI

DAC8830IBDRG4

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
TI

DAC8830IBDT

暂无描述
TI

DAC8830IBDTG4

SERIAL INPUT LOADING, 1us SETTLING TIME, 16-BIT DAC, PDSO8, GREEN, PLASTIC, MS-012AA, SOIC-8
TI

DAC8830ICD

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
TI

DAC8830ICDG4

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
TI

DAC8830ICDR

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
BB

DAC8830ICDR

16-Bit, Ultra-Low Power, Voltage-Output Digital-to-Analog Converters
TI