DAC8871SBPWR [TI]

16 位、单通道、串行接口、+/-18V(高电压双极性)输出 DAC | PW | 16 | -40 to 105;
DAC8871SBPWR
型号: DAC8871SBPWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

16 位、单通道、串行接口、+/-18V(高电压双极性)输出 DAC | PW | 16 | -40 to 105

文件: 总25页 (文件大小:807K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC8871  
www.ti.com ............................................................................................................................................................. SBAS396AJUNE 2007REVISED JUNE 2008  
16-Bit, Single-Channel, ±18V Output (Unbuffered), Ultra-Low Power, Serial Interface  
DIGITAL-TO-ANALOG CONVERTER  
1
FEATURES  
DESCRIPTION  
2345  
16-Bit Resolution  
The DAC8871 is a 16-bit, single-channel, serial input,  
voltage output digital-to-analog converter (DAC). The  
output range is determined by the reference voltage,  
VREFH and VREFL. By properly selecting the reference,  
the output can be unipolar or bipolar, and up to ±18V.  
The DAC8871 provides excellent linearity (1LSB INL),  
low noise, and fast settling (1µs to 1LSB of full scale  
output) over the specified temperature range of  
–40°C to +105°C. The output is unbuffered, which  
reduces the power consumption and the error  
introduced by the buffer. This device features a  
standard high-speed clock (up to 50MHz), and a 3V  
or 5V SPI serial interface to communicate with the  
DSP or microprocessors. For optimum performance,  
a set of Kelvin connections to external reference are  
provided.  
Output: ±18V for ±18V Reference Input  
±18V Supply Operation  
Very Low Power  
High Accuracy INL: 1LSB  
Low Noise: 10nV/Hz  
Fast Settling: 1µs to 1LSB  
Fast SPI™ Interface: Up To 50MHz  
16-Pin TSSOP Package  
Selectable Reset to Zero or Midscale  
APPLICATIONS  
Portable Equipment  
Automatic Test Equipment  
Industrial Process Control  
Data Acquisition Systems  
Optical Networking  
The DAC8871 is available in a TSSOP-16 package.  
VSS  
VCC  
VDD  
DGND  
VREFH-S VREFH-F VREFL-F VREFL-S  
RSTSEL  
RST  
Control  
VOUT  
DAC  
Logic  
LDAC  
AGND  
CS  
SCLK  
SDI  
Input  
Serial  
DAC  
Latch  
Data  
Interface  
Register  
DAC8871  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
4
5
TI DSP is a trademark of Texas Instruments.  
SPI, QSPI are trademarks of Motorola, Inc.  
Microwire is a trademark of National Semiconductor.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007–2008, Texas Instruments Incorporated  
DAC8871  
SBAS396AJUNE 2007REVISED JUNE 2008 ............................................................................................................................................................. www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
MINIMUM  
RELATIVE  
ACCURACY  
(LSB)  
DIFFERENTIAL  
NONLINEARITY  
(LSB)  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
PACKAGE-  
LEAD  
PACKAGE  
DESIGNATOR  
PRODUCT  
DAC8871B  
DAC8871  
±1  
±3  
±1  
±1  
–40°C to +105°C  
–40°C to +105°C  
8871  
8871  
TSSOP-16  
TSSOP-16  
PW  
PW  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this data sheet, or see the TI  
website at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range (unless otherwise noted).  
DAC8871  
–0.3 to +7  
UNIT  
V
VDD to GND  
Digital input voltage to GND  
AGND to DGND  
–0.3 to (VDD + 0.3)  
–0.3 to +0.3  
–0.3 to +39.6  
–0.3 to +19.8  
+0.3 to –19.8  
–0.3 to +39.6  
–0.3 to +19.8  
–19.8 to +17.5  
–40 to +105  
–65 to +150  
+150  
V
V
VCC to VSS  
V
VCC to AGND  
V
VSS to AGND  
V
VREFH to VREFL  
V
VREFH to AGND  
V
VREFL to AGND  
V
Operating temperature range  
Storage temperature range  
Maximum junction temperature (TJ max)  
Power dissipation  
°C  
°C  
°C  
W
C/W  
(TJ max - TA)/θJA  
161.4  
Thermal impedance, θJA  
TSSOP-16  
(1) Stresses above those listed under absolute maximum ratings may cause permanent damage to the device. Exposure to absolute  
maximum conditions for extended periods may affect device reliability.  
2
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC8871  
DAC8871  
www.ti.com ............................................................................................................................................................. SBAS396AJUNE 2007REVISED JUNE 2008  
ELECTRICAL CHARACTERISTICS  
All specifications at TA = TMIN to TMAX, VCC = +15V, VSS = –15V, VREFH = +10V, VREFL = –10V, and VDD = +5V, unless  
otherwise noted; specifications subject to change without notice.  
DAC8871  
PARAMETER  
STATIC PERFORMANCE  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
16  
Bits  
LSB  
VREFH = 10V, VREFL = –5V  
VREFH = 10V, VREFL = –10V  
±0.75  
±1  
±1  
±1.5  
±3  
DAC8871B  
DAC8871  
Linearity error  
LSB  
±1  
LSB  
Differential linearity error  
Gain error  
±0.25  
±0.5  
±0.1  
±1  
±1  
LSB  
TA = +25°C  
TA = +25°C  
TA = +25°C  
2
LSB  
Gain drift  
ppm/°C  
LSB  
Bipolar zero error  
±4  
±2  
Bipolar drift  
±0.1  
±0.5  
±0.05  
ppm/°C  
LSB  
Zero code error  
Zero code drift  
ppm/°C  
OUTPUT CHARACTERISTICS  
Voltage output  
VREFL  
VREFH  
V
k  
Output impedance  
6.25  
1
Settling time  
Slew rate(1)  
Digital feedthrough(2)  
To 1LSB of FS, CL = 15 pF  
CL = 15pF  
µs  
40  
0.2  
10  
V/µs  
nV-s  
nV/Hz  
LSB  
Output noise  
TA = +25°C  
Power supply rejection  
REFERENCE INPUT  
VREFH Ref high input voltage range  
VREFL Ref low input voltage range  
Ref high input current  
Ref low input current  
Reference input impedance(3)  
Supplies vary ±10%  
1
0
+18  
V
V
–18  
VREFH – 1.25  
1.3  
mA  
mA  
kΩ  
pF  
pF  
–1.3  
7.5  
Code = 0000h  
Code = FFFFh  
75  
Reference input capacitance  
120  
DIGITAL INPUTS  
VDD = +5V  
VDD = +3V  
VDD = +5V  
VDD = +3V  
DGND  
DGND  
2.6  
0.8  
0.6  
VDD  
VDD  
±1  
V
V
VIL  
VIH  
Input low voltage  
Input high voltage  
V
2.1  
V
Input current  
µA  
pF  
Input capacitance  
10  
(1) Slew Rate is measured from 10% to 90% of transition when the output changes from 0 to full scale.  
(2) Digital feedthrough is defined as the impulse injected into the analog output from the digital input. It is measured when the DAC output  
does not change; CS is held high, while SCLK and DIN signals are toggled. It is specified with a full-scale code change on the SDI bus  
(that is, from all 0s to all 1s and vice versa).  
(3) Reference input resistance is code-dependent, with a minimum at 8555h  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): DAC8871  
DAC8871  
SBAS396AJUNE 2007REVISED JUNE 2008 ............................................................................................................................................................. www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
All specifications at TA = TMIN to TMAX, VCC = +15V, VSS = –15V, VREFH = +10V, VREFL = –10V, and VDD = +5V, unless  
otherwise noted; specifications subject to change without notice.  
DAC8871  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VCC  
VSS  
VDD  
ICC  
+13.5  
–19.8  
+2.7  
+15  
–15  
+19.8  
–13.5  
+5.5  
2
V
V
V
0.01  
–0.01  
3
µA  
µA  
µA  
µW  
ISS  
–2  
IDD  
10  
Power  
15  
30  
TEMPERATURE RANGE  
Specified performance  
–40  
+105  
°C  
4
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC8871  
DAC8871  
www.ti.com ............................................................................................................................................................. SBAS396AJUNE 2007REVISED JUNE 2008  
PIN CONFIGURATION (NOT TO SCALE)  
PW PACKAGE  
TSSOP-16  
(TOP VIEW)  
VOUT  
VCC  
VSS  
DGND  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
LDAC  
SDI  
SCLK  
AGND  
VREFH-F  
VREFH-S  
VREFL-S  
VREFL-F  
DAC8871  
12 CS  
11  
10  
9
RST  
RSTSEL  
VDD  
TERMINAL FUNCTIONS  
TERMINAL  
NO. NAME  
VOUT  
DESCRIPTION  
1
2
3
4
5
6
7
8
9
Analog output of the DAC  
VCC  
Positive analog power supply: +15V  
Negative analog power supply: –15V  
Analog ground  
VSS  
AGND  
VREFH-  
VREFH-  
F
S
VREFH reference input (Force). Connect to external VREFH  
VREFH reference input (Sense). Connect to external VREFH  
VREFL reference input (Sense). Connect to external VREFL  
VREFL reference input (Force). Connect to external VREFL  
Digital power. +5V for 5V interface logic; +3V for 3V logic.  
.
.
VREFL-  
VREFL-  
VDD  
S
.
F
.
Power-On-Reset select. Determines VOUT after power-on reset. If tied to VDD, the DAC latch is set to mid-scale  
after power-on, and VOUT is (VREFH – VREFL)/2. If tied to DGND, the DAC latch is cleared ('0'), and VOUT is VREFL  
10  
RSTSEL  
.
11  
12  
13  
14  
RST  
CS  
Reset (active low)  
Chip select input (active low). Data are not clocked into SDI unless CS is low.  
Serial clock input  
SCLK  
SDI  
Serial data input. Data are latched into input register on the rising edge of SCLK.  
Load DAC control input (active low). When LDAC is low, the DAC latch is simultaneously updated with the content  
of the input register.  
15  
16  
LDAC  
DGND  
Digital ground  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): DAC8871  
DAC8871  
SBAS396AJUNE 2007REVISED JUNE 2008 ............................................................................................................................................................. www.ti.com  
TIMING DIAGRAMS  
tTD  
CS  
DAC  
Updated  
tDelay  
tSCK  
tWSCK  
tLag  
tDSCLK  
tLead  
tWSCK  
SCLK  
tSU  
tHO  
Bit 15 (MSB)  
Bit 14  
Bit 13, ..., Bit 1  
Bit 0  
SDI  
LOW  
tRST  
LDAC  
RST  
-- Don’t Care  
Figure 1. Case 1—LDAC Tied Low  
tTD  
CS  
tDelay  
tSCK  
tWSCK  
tLag  
tDSCLK  
tWSCK  
tLead  
SCLK  
SDI  
tHO  
tSU  
Bit 15 (MSB)  
Bit 14  
Bit 13, ..., Bit 1  
Bit 0  
tWLDAC  
tDLADC  
HIGH  
LDAC  
RST  
DAC  
Updated  
tRST  
-- Don’t Care  
Figure 2. Case 2—LDAC Active  
6
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC8871  
DAC8871  
www.ti.com ............................................................................................................................................................. SBAS396AJUNE 2007REVISED JUNE 2008  
TIMING CHARACTERISTICS: VDD = +5V(1) (2)  
At –40°C to +105°C, unless otherwise noted.  
PARAMETER  
MIN  
20  
10  
10  
10  
10  
10  
30  
10  
0
MAX  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
tSCK  
SCLK period  
tWSCK  
tDelay  
tLead  
tLag  
SCLK high or low time  
Delay from SCLK high to CS low  
CS enable lead time  
CS enable lag time  
tDSCLK  
tTD  
Delay from CS high to SCLK high  
CS high between active period  
Data setup time (input)  
tSU  
tHO  
Data hold time (input)  
tWLDAC  
tDLDAC  
tRST  
LDAC width  
30  
30  
10  
10  
Delay from CS high to LDAC low  
Reset (RST) low  
VDD high to CS low (power-up delay)  
(1) Assured by design. Not production tested.  
(2) Sample tested during the initial release and after any redesign or process changes that may affect this parameter.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): DAC8871  
DAC8871  
SBAS396AJUNE 2007REVISED JUNE 2008 ............................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS  
At TA = +25°C, VDD = +5V, VCC = +15V, VSS = –15V, VREFH = +10V, and VREFL =–10V, unless otherwise noted.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
TA = +25°C  
TA = +25°C  
VREFH = 10V  
VREFL = -5V  
VREFH = 10V  
VREFL = -5V  
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
-1.00  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 3.  
Figure 4.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
TA = -40°C  
VREFH = 10V  
VREFL = -5V  
TA = -40°C  
VREFH = 10V  
VREFL = -5V  
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
-1.00  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 5.  
Figure 6.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
TA = +105°C  
VREFH = 10V  
VREFL = -5V  
TA = +105°C  
VREFH = 10V  
VREFL = -5V  
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
-1.00  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 7.  
Figure 8.  
8
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC8871  
DAC8871  
www.ti.com ............................................................................................................................................................. SBAS396AJUNE 2007REVISED JUNE 2008  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VDD = +5V, VCC = +15V, VSS = –15V, VREFH = +10V, and VREFL =–10V, unless otherwise noted.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
1.00  
0.75  
0.50  
0.25  
0
TA = +25°C  
TA = +25°C  
0.50  
0.25  
0
-0.25  
-0.50  
-0.75  
-1.00  
-1.25  
-1.50  
-0.25  
-0.50  
-0.75  
-1.00  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 9.  
Figure 10.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
1.00  
0.75  
0.50  
0.25  
0
TA = -40°C  
TA = -40°C  
0.50  
0.25  
0
-0.25  
-0.50  
-0.75  
-1.00  
-1.25  
-1.50  
-0.25  
-0.50  
-0.75  
-1.00  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 11.  
Figure 12.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
1.00  
0.75  
0.50  
0.25  
0
TA = +105°C  
TA = +105°C  
0.50  
0.25  
0
-0.25  
-0.50  
-0.75  
-1.00  
-1.25  
-1.50  
-0.25  
-0.50  
-0.75  
-1.00  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 13.  
Figure 14.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): DAC8871  
DAC8871  
SBAS396AJUNE 2007REVISED JUNE 2008 ............................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VDD = +5V, VCC = +15V, VSS = –15V, VREFH = +10V, and VREFL =–10V, unless otherwise noted.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
VREFH = 10V  
VREFH = 10V  
VREFL = 0V  
VREFL = 0V  
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
-1.00  
0
0
5
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
0
5
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 15.  
Figure 16.  
LINEARITY ERROR  
vs DIGITAL INPUT CODE  
DIFFERENTIAL LINEARITY ERROR  
vs DIGITAL INPUT CODE  
2.00  
1.50  
1.00  
0.50  
0
1.00  
0.75  
0.50  
0.25  
0
VCC = +18V  
VSS = -18V  
VREFH = +18V  
VREFL = -18V  
-0.50  
-1.00  
-1.50  
-2.00  
-0.25  
-0.50  
-0.75  
-1.00  
VCC = +18V  
VSS = -18V  
VREFH = +18V  
VREFL = -18V  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 17.  
Figure 18.  
INTEGRAL NONLINEARITY ERROR  
vs REFERENCE VOLTAGE  
DIFFERENTIAL NONLINEARITY ERROR  
vs REFERENCE VOLTAGE  
2.0  
1.5  
1.0  
0.8  
VCC = +18V  
VCC = +18V  
VSS = -18V  
VSS = -18V  
0.6  
1.0  
0.4  
0.5  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.5  
-1.0  
-1.5  
-2.0  
6
7
8
9
10 11 12 13 14 15 16 17 18  
6
7
8
9
10 11 12 13 14 15 16 17 18  
±Reference (V)  
±Reference (V)  
Figure 19.  
Figure 20.  
10  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC8871  
DAC8871  
www.ti.com ............................................................................................................................................................. SBAS396AJUNE 2007REVISED JUNE 2008  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VDD = +5V, VCC = +15V, VSS = –15V, VREFH = +10V, and VREFL =–10V, unless otherwise noted.  
INTEGRAL NONLINEARITY ERROR  
vs ANALOG SUPPLY VOLTAGE  
DIFFERENTIAL NONLINEARITY ERROR  
vs ANALOG SUPPLY VOLTAGE  
2.0  
1.5  
1.0  
0.8  
0.6  
1.0  
0.4  
0.5  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.5  
-1.0  
-1.5  
-2.0  
12  
13  
14  
15  
16  
17  
18  
12  
13  
14  
15  
16  
17  
18  
±Supply (V)  
±Supply (V)  
Figure 21.  
Figure 22.  
GAIN ERROR  
vs TEMPERATURE  
ZERO-CODE ERROR  
vs TEMPERATURE  
1.00  
0.75  
0.50  
0.25  
0
0.5  
0.4  
Bipolar Mode  
VCC = 15V  
Unipolar Mode  
VCC = 15V  
VCC = 15V  
VSS = -15V  
VREFH = 10V  
VREFL = 0V  
VSS = -15V  
VREF = ±10V  
0.3  
VSS = -15V  
VREFH = 10V  
VREFL = 0V  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.25  
-0.50  
-0.75  
-1.00  
VCC = 15V  
VSS = -15V  
VREF = ±10V  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (°C)  
Temperature (°C)  
Figure 23.  
Figure 24.  
BIPOLAR ZERO ERROR  
vs TEMPERATURE  
SUPPLY CURRENT  
vs DIGITAL INPUT VOLTAGE  
0
-0.25  
-0.50  
-0.75  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VCC = 15V  
VSS = -15V  
VREF = ±10V  
Digital Input Code = 8000h  
VDD = +5V  
VDD = +3V  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
0
1
2
3
4
5
Temperature (°C)  
Digital Input Voltage (V)  
Figure 25.  
Figure 26.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): DAC8871  
DAC8871  
SBAS396AJUNE 2007REVISED JUNE 2008 ............................................................................................................................................................. www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VDD = +5V, VCC = +15V, VSS = –15V, VREFH = +10V, and VREFL =–10V, unless otherwise noted.  
DUAL REFERENCE CURRENT  
vs CODE  
VREFH = +10V, VREFL = -10V  
SINGLE REFERENCE CURRENT  
vs CODE  
VREFH = +10V, VREFL = 0V  
800  
700  
600  
500  
400  
300  
200  
100  
0
1500  
1250  
1000  
750  
500  
250  
0
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
0
-250  
-500  
-750  
-1000  
-1250  
-1500  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Digital Input Code  
Figure 27.  
Figure 28.  
SUPPLY CURRENTS  
vs TEMPERATURE  
DIGITAL SUPPLY CURRENT  
vs DIGITAL SUPPLY VOLTAGE  
5
4
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
IDD (VDD = 5V, VLOGIC = 5V)  
3
2
IDD (VDD = 3V, VLOGIC = 3V)  
1
ICC (VCC = 15V)  
0
ISS (VSS = -15V)  
-5  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0  
Digital Supply Voltage (V)  
Temperature (°C)  
Figure 29.  
Figure 30.  
ANALOG SUPPLY CURRENT  
vs ANALOG SUPPLY VOLTAGE  
SUPPLY CURRENTS  
vs REFERENCE VOLTAGES  
0.10  
0.08  
0.06  
0.04  
0.02  
0
5
4
IDD (VDD = +5V)  
3
ICC  
ISS  
2
IDD (VDD = +3V)  
ICC (VCC = +18V)  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
1
0
ISS (VSS = -18V)  
-5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
0
2
4
6
8
10  
12 14  
16  
18 20  
±Analog Supply Voltage (V)  
±Reference Voltages (V)  
Figure 31.  
Figure 32.  
12  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC8871  
 
DAC8871  
www.ti.com ............................................................................................................................................................. SBAS396AJUNE 2007REVISED JUNE 2008  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VDD = +5V, VCC = +15V, VSS = –15V, VREFH = +10V, and VREFL =–10V, unless otherwise noted.  
MAJOR CARRY GLITCH  
(FALLING)  
MAJOR CARRY GLITCH  
(RISING)  
5V/div  
5V/div  
LDAC  
LDAC  
VOUT  
VOUT  
200mV/div  
200mV/div  
Time (0.5ms/div)  
Time (0.5ms/div)  
Figure 33.  
Figure 34.  
DAC SETTLING TIME  
(FALLING)  
DAC SETTLING TIME  
(RISING)  
5V/div  
5V/div  
5V/div  
LDAC  
LDAC  
VOUT  
VOUT  
5V/div  
Time (0.5ms/div)  
Time (0.5ms/div)  
Figure 35.  
Figure 36.  
BROADBAND  
NOISE  
BW = 10kHz  
Code = 8000h  
Time (10ms/div)  
Figure 37.  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): DAC8871  
DAC8871  
SBAS396AJUNE 2007REVISED JUNE 2008 ............................................................................................................................................................. www.ti.com  
THEORY OF OPERATION  
GENERAL DESCRIPTION  
The DAC8871 is a 16-bit, single-channel, serial-input, voltage-output DAC. It operates from a dual power supply  
ranging from ±13.5V to ±19.8V, and typically consumes 10µA. The output range is from VREFL to VREFH. Data are  
written to this device in a 16-bit word format, via an SPI serial interface. To ensure a known power-up state, the  
DAC8871 is designed with a power-on reset function. After power on, the state of the RSTSEL pin sets the value  
of the input register and DAC latch, which sets the output state of the VOUT pin. Refer to the Power-On Reset and  
Hardware Reset section for more details.  
Kelvin sense connections for the reference and analog ground are also included.  
DIGITAL-TO-ANALOG SECTIONS  
The DAC architecture consists of two matched DAC sections and is segmented. A simplified circuit diagram is  
shown in Figure 38. The four MSBs of the 16-bit data word are decoded to drive 15 switches, E1 to E15. Each of  
these switches connects one of 15 matched resistors to either VREFH or VREFL. The remaining 12 bits of the data  
word drive switches S0 to S11 of a 12-bit voltage mode R-2R ladder network.  
R
R
VOUT  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
S0  
S1  
S11  
E1  
E2  
E15  
VREFH-F  
VREFH-S  
VREFL-F  
VREFL-S  
12-Bit R-2R Ladder  
Four MSBs Decoded into  
15 Equal Segments  
Figure 38. DAC Architecture  
OUTPUT RANGE  
The output of the DAC is:  
V
REFH * VREFL  
65536  
VOUT  
+
  Code ) VREFL  
(1)  
Where Code is the decimal data word loaded to the DAC latch.  
For example, if VREFH is +10V, and VREFL is –10V, the range of VOUT is from –10V (Code = 0000h) to +10V (Code  
= FFFFh).  
The range of VREFL is from –18V to (VREFH – 1.25V), and the range of VREFH is 0V to +18V. The output from the  
DAC8871 can be unipolar (from 0V to +18V) or bipolar by setting the proper VREFL and VREFH values.  
14  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC8871  
 
 
DAC8871  
www.ti.com ............................................................................................................................................................. SBAS396AJUNE 2007REVISED JUNE 2008  
POWER-ON RESET AND HARDWARE RESET  
The DAC8871 has a power-on reset function. When the RSTSEL pin is low (tied to DGND), and after power-on  
or a hardware reset signal is applied to the RST pin, the DAC latch is cleared ('0') and the VOUT pin is set to  
negative full-scale. When RSTSEL is high, the DAC latch and VOUT are set to mid-scale.  
SERIAL INTERFACE  
The DAC8871 digital interface is a standard 3-wire connection compatible with SPI, QSPI™, Microwire™ and TI  
DSP™ interfaces, which can operate at speeds up to 50 Mbits/second. The data transfer is framed by the chip  
select (CS) signal. The DAC works as a bus slave. The bus master generates the synchronize clock (SCLK) and  
initiates the transmission. When CS is high, the DAC is not accessed, and SCLK and SDI are ignored. The bus  
master accesses the DAC by driving CS low. Immediately following the high-to-low transition of CS, the serial  
input data on the SDI pin are shifted out from the bus master synchronously on the falling edge of SCLK and  
latched on the rising edge of SCLK into the input shift register, MSB first. The low-to-high transition of CS  
transfers the content of the input shift register to the input register.  
All data registers are 16 bits. It takes 16 SCLK cycles to transfer one data word to the device. To complete a  
whole data word, CS must be taken high immediately after the 16th SCLK is clocked in. If more than 16 SCLK  
cycles are applied while CS is low, the last 16 bits are transferred into the input register on the rising edge of CS.  
However, if CS is not kept low during the entire 16 SCLK cycles, the data are corrupted. In this case, reload the  
DAC latch with a new 16-bit word.  
The DAC8871 has an LDAC pin that allows the DAC latch to be updated asynchronously by bringing LDAC low  
after CS goes high. In this case, LDAC must be kept high while CS is low. If LDAC is permanently tied low, the  
DAC latch will be updated immediately after the input register is loaded (caused by the low-to-high transition of  
CS).  
EXTERNAL AMPLIFIER SELECTION  
The output of the DAC8871 is unbuffered. The output impedance is approximately 6.2k. If the applications  
require an external buffer amplifier, the selected amplifier must have a low-offset voltage (1LSB = 305µV for  
±10V output range), eliminating the need for output offset trims. Input bias current should also be low because  
the bias current multiplied by the DAC output impedance (approximately 6.25k) adds to the zero-code error.  
Rail-to-rail input and output performance is required. For fast settling, the slew rate of the operational amplifier  
should not impede the settling time of the DAC. The output impedance of the DAC is constant and  
code-independent, but in order to minimize gain errors, the input impedance of the output amplifier should be as  
high as possible. The amplifier should also have a 3dB bandwidth of 1MHz or greater. The amplifier adds  
another time constant to the system, thus increasing the settling time of the output. A higher 3dB amplifier  
bandwidth results in a shorter effective settling time of the DAC and amplifier combination.  
VSS  
VCC  
VDD  
DGND  
VREFH-S VREFH-F VREFL-F VREFL-S  
+V  
OPA277  
or  
RSTSEL  
RST  
Control  
VOUT  
DAC  
OPA211  
Logic  
LDAC  
AGND  
-V  
CS  
SCLK  
SDI  
LOAD  
Input  
Serial  
6.2kW  
DAC  
Latch  
Data  
Interface  
Register  
DAC8871  
Figure 39. DAC8871 with External Amplifier  
Copyright © 2007–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): DAC8871  
DAC8871  
SBAS396AJUNE 2007REVISED JUNE 2008 ............................................................................................................................................................. www.ti.com  
APPLICATION INFORMATION  
REFERENCE INPUT  
The DAC full-scale output voltage is determined by the reference voltage, as shown in the Output Range section.  
Reference input VREFH can be any voltage from 0V to +18V. Reference input VREFL can be any voltage from  
–18V to (VREFH – 1.25V). The current into the VREFH input and out of VREFL depends on the DAC output voltages.  
Refer to Figure 27 and Figure 28 for details. The reference input appears as a varying load to the reference. If  
the reference can sink or source the required current, a reference buffer is not required. The DAC8871 features a  
reference drive (force) and sense connection that minimizes the internal errors caused by the changing reference  
current and the circuit impedances. Figure 40 shows a typical reference configuration.  
DAC8871  
VREFH  
OPA2277  
VREFH-F  
VREFH-S  
VREFL  
OPA2277  
VREFL-F  
VREFL-S  
Figure 40. Buffered Reference Connection  
POWER-SUPPLY BYPASSING  
For accurate, high-resolution performance, bypassing the supply pins with a 10µF tantalum capacitor in parallel  
with a 0.1µF ceramic capacitor is recommended.  
POWER-SUPPLY SEQUENCING  
The analog supplies (VCC and VSS) must power up before the digital supply (VDD). All three supplies must power  
up before the reference voltages (VREFH and VREFL) are applied. Additionally, because the DAC input shift  
register is not reset during a power-on reset (or a hardware reset through the RST pin), the CS pin must not be  
unintentionally asserted during power-up of the device. It is recommended that the CS pin be connected to VDD  
through a pull-up resistor to avoid improper power-up.  
Likewise, the state of the LDAC pin must not be accidentally changed during power-up. It is recommended that  
the LDAC pin be connected to VDD through a pull-up resistor, unless it is permanently tied to ground.  
To ensure that the ESD protection circuitry of this device is not activated, all other digital pins must be kept at  
ground potential until VDD is applied.  
16  
Submit Documentation Feedback  
Copyright © 2007–2008, Texas Instruments Incorporated  
Product Folder Link(s): DAC8871  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DAC8871SBPW  
DAC8871SBPWR  
DAC8871SPW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
16  
16  
16  
16  
90  
RoHS & Green  
Call TI  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
DAC8871  
Samples  
Samples  
Samples  
Samples  
2000 RoHS & Green  
90 RoHS & Green  
2000 RoHS & Green  
Call TI  
Call TI  
Call TI  
DAC8871  
DAC8871  
DAC8871  
DAC8871SPWR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DAC8871SBPWR  
DAC8871SPWR  
TSSOP  
TSSOP  
PW  
PW  
16  
16  
2000  
2000  
330.0  
330.0  
12.4  
12.4  
6.9  
6.9  
5.6  
5.6  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DAC8871SBPWR  
DAC8871SPWR  
TSSOP  
TSSOP  
PW  
PW  
16  
16  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DAC8871SBPW  
DAC8871SPW  
PW  
PW  
TSSOP  
TSSOP  
16  
16  
90  
90  
530  
530  
10.2  
10.2  
3600  
3600  
3.5  
3.5  
Pack Materials-Page 3  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY