DCV010505DP-U [TI]

微型 1W 1500Vrms 隔离式未稳压直流/直流转换器 | DUA | 7 | -40 to 85;
DCV010505DP-U
型号: DCV010505DP-U
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

微型 1W 1500Vrms 隔离式未稳压直流/直流转换器 | DUA | 7 | -40 to 85

PC CD 光电二极管 输出元件 转换器
文件: 总30页 (文件大小:1695K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
DCV01 1W1500VRMS 隔离式非稳压直流/直流转换器模块  
1 特性  
3 说明  
1.5kV 隔离运行):1 秒测试  
• 在隔离层中施加连续电压60VDC/42.5VAC  
UL1950 认证元件  
EN55022 B EMC 性能  
7 PDIP 7 SOP 封装  
• 输入电压5V15V 24V  
• 输出电压±5V±12V ±15V  
• 器件间同步  
DCV01 系列是一个 1W1500Vrm 隔离式非稳压直流/  
直流转换器模块系列。DCV01 系列器件具有片上器件  
保护只需要很少的外部元件即可提供额外的功能例  
如输出禁用和开关频率同步。  
DCV01 系列器件集这些特性和较小的尺寸于一体非  
常适合用于各种应用并且对需要信号路径隔离的应用  
来说它是一个易于使用的解决方案。  
警告此产品具有运行隔离功能仅可用于信号隔离。不可用于需  
要增强型隔离的安全隔离电路。请参阅8.3 中的定义。  
• 过热保护  
• 短路保护  
• 高效率  
器件信息  
2 应用  
封装(1)  
PDIP (7)  
SOP (7)  
封装尺寸标称值)  
19.18mm × 10.60mm  
19.18mm × 10.60mm  
器件型号  
DCV01xxxx  
信号路径隔离  
消除接地环路  
数据采集  
工业控制和仪表  
测试设备  
(1) 要了解所有可用封装请参见数据表末尾的可订购产品附录。  
SYNCOUT  
SYNCOUT  
Oscillator  
800 kHz  
Divide-by-2  
Reset  
Oscillator  
800 kHz  
Divide-by-2  
Reset  
+VOUT  
SYNCIN  
SYNCIN  
+VOUT  
Power  
Stage  
Power  
Stage  
œVOUT  
œVOUT  
Watchdog  
Startup  
Watchdog  
Startup  
COM  
Thermal  
Shutdown  
PSU Thermal  
Shutdown  
+VS  
+VS  
Power Controller  
Power Controller  
œVS  
œVS  
单路输出方框图  
双路输出方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBVS014  
 
 
 
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
Table of Contents  
8.4 Device Functional Modes..........................................14  
9 Application and Implementation..................................17  
9.1 Application Information............................................. 17  
9.2 Typical Application.................................................... 17  
10 Power Supply Recommendations..............................20  
11 Layout...........................................................................21  
11.1 Layout Guidelines................................................... 21  
11.2 Layout Example...................................................... 21  
12 Device and Documentation Support..........................23  
12.1 Device Support....................................................... 23  
12.2 Documentation Support.......................................... 23  
12.3 接收文档更新通知................................................... 23  
12.4 支持资源..................................................................23  
12.5 Trademarks.............................................................23  
12.6 静电放电警告.......................................................... 23  
12.7 术语表..................................................................... 23  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................6  
7.6 Switching Characteristics............................................6  
7.7 Typical Characteristics................................................7  
8 Detailed Description......................................................11  
8.1 Overview................................................................... 11  
8.2 Functional Block Diagrams....................................... 11  
8.3 Feature Description...................................................12  
Information.................................................................... 23  
4 Revision History  
Changes from Revision B (September 2016) to Revision C (August 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 更新了1 ......................................................................................................................................................... 1  
• 向2 添加了链接...............................................................................................................................................1  
Added sentence in 8.3.1.3 .......................................................................................................................... 12  
Added 8.3.6 .................................................................................................................................................13  
Added 8.3.7 .................................................................................................................................................13  
Added 8.3.10 ...............................................................................................................................................14  
Changes from Revision A (December 2013) to Revision B (September 2016)  
Page  
• 更改了.........................................................................................................................................................1  
• 更改了.........................................................................................................................................................1  
• 添加了器件信表、器件比表、ESD 表、特性说部分、器件功能模式应用和实部分、电源相  
关建部分、部分、器件和文档支部分以及机械、封装和可订购信部分..........................................1  
Deleted Electrical Characteristics Per Device table............................................................................................6  
Added additional graphs to Typical Characteristics section................................................................................7  
Added Isolation subsection to Feature Description section..............................................................................12  
Deleted DCH, DCP, DCR, and DCV Series DC-DC Converters subsection.....................................................12  
Deleted Continuous Voltage subsection...........................................................................................................12  
Deleted references to DCP, DCR, DCR, and DCH series................................................................................ 12  
Added typical application design to Application Information section................................................................ 17  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
 
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
5 Device Comparison Table  
at TA = 25°C, +VS = nominal, CIN = 2.2 µF, and COUT = 0.1 µF (unless otherwise noted)  
OUTPUT  
VOLTAGE  
VNOM at VS (TYP) (V)  
75% LOAD  
DEVICE  
OUTPUT  
CURRENT  
(mA)(3)  
LOAD  
NO LOAD  
CURRENT  
IQ (mA)  
BARRIER  
CAPACITANCE  
CISO (pF)  
INPUT  
VOLTAGE  
VS (V)  
EFFICIENCY  
(%)  
100% LOAD  
REGULATION  
10% TO 100%  
LOAD(1)  
DEVICE NUMBER  
0% LOAD  
VISO = 750 Vrms  
MIN TYP MAX  
MIN  
TYP  
MAX  
MAX  
TYP  
MAX  
TYP  
TYP  
TYP  
DCV010505P  
DCV010505P-U  
4.5  
4.5  
5
5
5.5  
5.5  
4.75  
5
5.25  
200  
200(2)  
83  
19  
31  
20  
22  
29  
40  
34  
42  
19  
20  
14  
17  
80  
3.6  
3.8  
5.1  
4
DCV010505DP  
DCV010505DP-U  
±4.25  
11.4  
±5  
12  
±5.75  
12.6  
18  
21  
19  
26  
19  
11  
12  
13  
10  
32  
38  
37  
42  
41  
39  
39  
23  
35  
81  
85  
82  
82  
85  
78  
80  
77  
76  
DCV010512P  
DCV010512P-U  
4.5  
5
5.5  
DCV010512DP  
DCV010512DP-U  
4.5  
5
5.5  
±11.4  
14.25  
±14.25  
±11.4  
±14.25  
4.75  
±12  
15  
±12.6  
15.75  
83(2)  
66  
DCV010515P  
DCV010515P-U  
4.5  
5
5.5  
3.8  
4.7  
2.5  
2.5  
2.5  
3.8  
DCV010515DP  
DCV010515DP-U  
4.5  
5
5.5  
±15 ±15.75  
±12 ±12.6  
±15 ±15.75  
5.25  
±15 ±15.75  
66(2)  
83 (2)  
66(2)  
200  
DCV011512DP  
DCV011512DP-U  
13.5  
13.5  
21.6  
21.6  
15  
15  
24  
24  
16.5  
16.5  
26.4  
26.4  
DCV011515DP  
DCV011515DP-U  
DCV012405P  
DCV012405P-U  
5
DCV012415DP  
DCV012415DP-U  
±14.25  
66(2)  
(1) Load regulation = (VOUT at 10% load VOUT at 100%)/VOUT at 75% load  
(2) IOUT1 + IOUT2  
(3) POUT(max) = 1 W  
6 Pin Configuration and Functions  
1
2
14  
1
2
14  
+VS  
SYNCIN  
+VS  
SYNCIN  
œVS  
œVS  
DCV01  
DCV01  
5
6
7
5
6
7
œVOUT  
+VOUT  
NC  
COM  
+VOUT  
œVOUT  
8
8
SYNCOUT  
SYNCOUT  
6-1. NVA, DUA Package 7-Pin PDIP, SOP (Single- 6-2. NVA, DUA Package 7-Pin PDIP, SOP (Dual-  
Output) (Top View)  
Output) (Top View)  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
COM  
NC  
SINGLE-OUTPUT  
DUAL-OUTPUT  
5
O
Output side common  
No connection  
7
Synchronization. Synchronize multiple devices by  
connecting the SYNC pins of each. Pulling this pin low  
disables the internal oscillator.  
SYNCIN  
14  
8
14  
8
I
SYNCOUT  
O
Synchronization output. Unrectified transformer output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
 
 
 
 
 
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
6-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
+VOUT  
+VS  
SINGLE-OUTPUT  
DUAL-OUTPUT  
6
1
5
2
6
1
7
2
O
I
Positive output voltage  
Input voltage  
O
I
Negative output voltage  
Input side common  
VOUT  
VS  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
7
UNIT  
5-V input devices  
Input voltage  
15-V input devices  
24-V input devices  
18  
V
29  
Surface temperature of device body or pins  
(maximum 10 s)  
Lead temperature  
PDIP package  
SOP package  
270  
°C  
Reflow solder temperature  
Storage temperature, Tstg  
Surface temperature of device body or pins  
260  
125  
°C  
°C  
60  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
5
MAX  
5.5  
UNIT  
V
5-V input devices  
15-V input devices  
24-V input devices  
Input voltage  
13.5  
21.6  
40  
15  
16.5  
26.4  
85  
24  
Operating temperature  
7.4 Thermal Information  
°C  
DCV01  
DCV01  
THERMAL METRIC(1)  
NVA (PDIP)  
DVB (SOP)  
UNIT  
7 PINS  
61  
12 PINS  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
61  
26  
24  
7
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
26  
24  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
7
ψJT  
24  
24  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
 
 
 
 
 
 
 
 
 
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
7.5 Electrical Characteristics  
at TA = 25°C, +VS = nominal, CIN = 2.2 µF, COUT = 1 µF (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
POUT  
Output power  
ILOAD = 100% (full load)  
0.97  
20  
W
mVPP  
°C  
VRIPPLE  
Output voltage ripple  
COUT = 1 µF, ILOAD = 50%  
40°C TA 25°C  
25°C TA 85°C  
0.046%  
0.016%  
Voltage vs temperature  
°C  
INPUT  
VS  
Input voltage  
10%  
10%  
ISOLATION  
Voltage  
1.5  
kVrms  
V/s  
1-second flash test  
dV/dt  
500  
30  
Leakage current  
nA  
VISO  
Isolation  
Continuous working DC  
voltage across  
isolation barrier  
60  
VDC  
AC  
42.5  
VAC  
LINE REGULATION  
I
OUT 10% load current and constant,  
1%  
1%  
15%  
15%  
VS (min) to VS (typ)  
Output voltage  
I
OUT 10% load current and constant,  
VS (typ) to VS (max)  
RELIABILITY  
Demonstrated  
THERMAL SHUTDOWN  
TA = 55°C  
75  
FITS  
TSD  
ISD  
Die temperature at shutdown  
Shutdown current  
150  
3
°C  
mA  
7.6 Switching Characteristics  
at TA = 25°C, +VS = nominal, CIN = 2.2 µF, COUT = 1 µF (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
kHz  
V
fOSC  
Oscillator frequency  
fSW = fOSC/2  
800  
VIL  
Low-level input voltage, SYNC  
Input current, SYNC  
0
0.4  
ISYNC  
tDISABLE  
CSYNC  
VSYNC = 2 V  
External  
75  
2
µA  
Disable time  
µs  
Capacitance loading on SYNC pin(1)  
3
pF  
(1) External Synchronization of the DCP01/02 Series of DC/DC Converters describes this configuration.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
 
 
 
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
7.7 Typical Characteristics  
at TA = 25°C (unless otherwise noted)  
60  
50  
60  
50  
Standard Limits  
Class A  
Standard Limits  
Class A  
Class B  
Class B  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
10  
20  
œ10  
œ20  
0.15  
1
10  
30  
0.15  
1
10  
30  
Frequency(MHz)  
Frequency(MHz)  
DCV010505  
125% Load  
DCV010505  
8% Load  
7-1. Conducted Emissions  
7-2. Conducted Emissions  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1-mF Ceramic  
4.7-mF Ceramic  
10-mF Ceramic  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
4.5  
4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5  
Input Voltage (V)  
Load (%)  
DCV010505  
20-MHz BW  
DCV010505  
7-3. Output Ripple versus Load  
7-4. Line Regulation  
85  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
80  
75  
70  
65  
60  
55  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Load (%)  
Load (%)  
DCV010505  
DCV010505  
7-5. Efficiency versus Load  
7-6. Load Regulation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
 
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
85  
80  
75  
70  
65  
60  
55  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
+V  
OUT  
OUT  
œV  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Load (%)  
Load (%)  
DCV010505D  
DCV010505D  
7-8. Load Regulation  
7-7. Efficiency versus Load  
90  
85  
80  
75  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
70  
65  
60  
55  
50  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Load (%)  
Load (%)  
DCV010512  
DCV010512  
7-9. Efficiency versus Load  
7-10. Load Regulation  
85  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.00  
80  
75  
70  
65  
60  
55  
50  
+VOUT  
-VOUT  
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Load (%)  
Load (%)  
DCV010512D  
DCV010512D  
7-11. Efficiency versus Load  
7-12. Load Regulation  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
85  
80  
75  
70  
65  
60  
55  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
14.5  
14.0  
50  
10  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Load (%)  
Load (%)  
DCV010515  
DCV010515  
7-14. Load Regulation  
7-13. Efficiency versus Load  
90  
85  
80  
75  
70  
65  
60  
55  
18  
17  
16  
15  
14  
+VOUT  
-VOUT  
50  
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Load (%)  
Load (%)  
DCV010515D  
DCV010515D  
7-15. Efficiency versus Load  
7-16. Load Regulation  
90  
80  
70  
60  
50  
40  
30  
20  
10  
5.60  
5.50  
5.40  
5.30  
5.20  
5.10  
5.00  
4.90  
4.80  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
10  
20  
30  
40  
50  
60  
70  
80  
100  
Load (%)  
Load (%)  
DCV012405  
DCV012405  
7-17. Efficiency versus Load  
7-18. Load Regulation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
80  
75  
70  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
+V  
OUT  
OUT  
œV  
65  
60  
55  
50  
45  
40  
35  
30  
10  
20  
30  
40  
50  
60  
70  
80  
80  
80  
90  
100  
10  
20  
30  
40  
50  
60  
70  
80  
90  
90  
90  
100  
100  
100  
Load (%)  
Load (%)  
DCV011512D  
DCV011512D  
7-20. Load Regulation  
7-19. Efficiency versus Load  
90  
17  
16.5  
16  
+V  
OUT  
œV  
OUT  
80  
70  
15.5  
15  
60  
50  
40  
30  
14.5  
14  
13.5  
13  
10  
20  
30  
40  
50  
60  
70  
90  
100  
10  
20  
30  
40  
50  
60  
70  
80  
Load (%)  
Load (%)  
DCV011515D  
DCV011515D  
7-22. Load Regulation  
7-21. Efficiency versus Load  
90  
16.5  
16  
+V  
OUT  
OUT  
œV  
80  
70  
60  
50  
40  
30  
20  
15.5  
15  
14.5  
14  
13.5  
10  
20  
30  
40  
50  
60  
70  
90  
100  
10  
20  
30  
40  
50  
60  
70  
80  
Load (%)  
Load (%)  
DCV012415D  
DCV012415D  
7-24. Load Regulation  
7-23. Efficiency versus Load  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
8 Detailed Description  
8.1 Overview  
The DCV01 offers up to 1 W of isolated, unregulated output power from a 5-V, 15-V, or 24-V input source with a  
typical efficiency of up to 86%. This efficiency is achieved through highly integrated packaging technology and  
the implementation of a custom power stage and control device. The DCV01 devices are specified for  
operational isolation only. The circuit design uses an advanced BiCMOS and DMOS process.  
8.2 Functional Block Diagrams  
SYNCOUT  
Oscillator  
800 kHz  
Divide-by-2  
Reset  
SYNCIN  
+VOUT  
Power  
Stage  
œVOUT  
Watchdog  
Startup  
Thermal  
Shutdown  
+VS  
Power Controller  
œVS  
8-1. Single Output Device  
SYNCOUT  
Oscillator  
800 kHz  
Divide-by-2  
Reset  
+VOUT  
SYNCIN  
Power  
Stage  
œVOUT  
Watchdog  
Startup  
COM  
PSU Thermal  
Shutdown  
+VS  
Power Controller  
œVS  
8-2. Dual Output Device  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
 
 
 
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
8.3 Feature Description  
8.3.1 Isolation  
Underwriters Laboratories, ULdefines several classes of isolation that are used in modern power supplies.  
Safety extra low voltage (SELV) is defined by UL (UL1950 E199929) as a secondary circuit which is so  
designated and protected that under normal and single fault conditions the voltage between any two accessible  
parts, or between an accessible part and the equipment earthing terminal for operational isolation does not  
exceed steady state 42.5 VRMS or 60 VDC peak.  
8.3.1.1 Operation or Functional Isolation  
The type of isolation used in the DCV01 products is referred to as operational or functional isolation. Insulated  
wire used in the construction of the transformer acts as the primary isolation barrier. A high-potential (hipot), one-  
second duration test (dielectric voltage, withstand test) is a production test used to verify that the isolation barrier  
is functioning. Products with operational isolation must never be used as an element in a safety-isolation system.  
8.3.1.2 Basic or Enhanced Isolation  
Basic or enhanced isolation is defined by specified creepage and clearance limits between the primary and  
secondary circuits of the power supply. Basic isolation is the use of an isolation barrier in addition to the  
insulated wire in the construction of the transformer. Input and output circuits must also be physically separated  
by specified distances.  
Note  
The DCV01 products do not provide basic or enhanced isolation.  
8.3.1.3 Working Voltage  
For a device with operational isolation, the continuous working voltage that can be applied across the device in  
normal operation must be less than 42.5 VRMS or 60 VDC. Ensure that both input and output voltages maintain  
normal SELV limits.  
WARNING  
Do not use the device as an element of a safety isolation system that exceeds the SELV limit.  
If the device is expected to function correctly with more than 42.5 VRMS or 60 VDC applied continuously across  
the isolation barrier, then the circuitry on both sides of the barrier must be regarded as operating at an unsafe  
voltage, and further isolation or insulation systems must form a barrier between these circuits and any user-  
accessible circuitry according to safety standard requirements.  
8.3.1.4 Isolation Voltage Rating  
The terms Hipot test, flash-tested, withstand voltage, proof voltage, dielectric withstand voltage, and isolation  
test voltage all relate to the same thing. These terms describe a test voltage that is applied across a component  
for a specified time, to verify the integrity of the isolation barrier of the component. TIs DCV01 series of DC/DC  
converters are all 100% production tested at 1.5 kVrms for one second.  
8.3.1.5 Repeated High-Voltage Isolation Testing  
Repeated high-voltage isolation testing of a barrier component can degrade the isolation capability, depending  
on materials, construction, and environment. The DCV01 series of DC/DC converters have toroidal, enameled,  
wire isolation transformers with no additional insulation between the primary and secondary windings. While a  
device can be expected to withstand several times the stated test voltage, the isolation capability depends on  
the wire insulation. Any material, including this enamel (typically polyurethane), is susceptible to eventual  
chemical degradation when subject to very-high applied voltages. Therefore, strictly limit the number of high-  
voltage tests and repeated high-voltage isolation testing. However, if it is absolutely required, reduce the voltage  
by 20% from specified test voltage with a duration limit of one second per test.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
 
 
 
 
 
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
8.3.2 Power Stage  
The DCV01 series of devices use a push-pull, center-tapped topology. The DCV01 devices switch at 400 kHz  
(divide-by-2 from an 800-kHz oscillator).  
8.3.3 Oscillator and Watchdog Circuit  
The onboard, 800-kHz oscillator generates the switching frequency via a divide-by-2 circuit. The oscillator can be  
synchronized to other DCV01 device circuits or an external source, and is used to minimize system noise.  
A watchdog circuit monitors the operation of the oscillator circuit. The oscillator can be disabled by pulling the  
SYNC pin low. When the SYNC pin goes low, the output pins transition into tri-state mode, which occurs within  
2 µs.  
8.3.4 Thermal Shutdown  
The DCV01 series of devices are protected by a thermal-shutdown circuit.  
If the on-chip temperature rises above 150°C, the device shuts down. Normal operation resumes as soon as the  
temperature falls below 150°C. While the overtemperature condition continues, operation randomly cycles on  
and off. This cycling continues until the temperature is reduced.  
8.3.5 Synchronization  
When more than one DC/DC converter is needed onboard, beat frequencies and other electrical interference  
can be generated. This interference occurs because of the small variations in switching frequencies between the  
DC/DC converters.  
The DCV01 series of devices overcome this interference by allowing devices to be synchronized to one another.  
Synchronize up to eight devices by connecting the SYNC pins of each device, taking care to minimize the  
capacitance of tracking. Stray capacitance (greater than 3 pF) reduces the switching frequency, or can  
sometimes stop the oscillator circuit. The maximum recommended voltage applied to the SYNC pin is 3 V.  
For an application that uses more than eight synchronized devices use an external device to drive the SYNC  
pins. External Synchronization of the DCP01/02 Series of DC/DC Converters (SBAA035) describes this  
configuration.  
Note  
During the start-up period, all synchronized devices draw maximum current from the input  
simultaneously. If the input voltage falls below approximately 4 V, the devices may not start up. A  
ceramic capacitor must be connected close to the input pin of each device. Use a 2.2-µF capacitor for  
5-V and 15-V input devices, and a 0.47-µF capacitor for the  
24-V devices.  
8.3.6 Light Load Operation (< 10%)  
Operation below 10% load can cause the output voltage to increase up to double the typical output voltage. For  
applications that operate less than 10% of rated output current, it is recommended to add a minimum load to  
ensure the output voltage of the device is within the load regulation range. For example, connect a 250-Ω pre-  
load resistor to meet the 10% minimum load condition for the DCV010505P.  
8.3.7 Load Regulation (10% to 100%)  
The load regulation of the DCV01 series of devices are specified at 10% to 100% load. Placing a minimum of  
10% load will ensure the output voltage is within the range specified in the 7.5. For more information  
regarding the operation below 10% load, see 8.3.6.  
8.3.8 Construction  
The basic construction of the DCV01 series of devices is the same as standard integrated circuits. The molded  
package contains no substrate. The DCV01 series of devices are constructed using an IC, rectifier diodes, and a  
wound magnetic toroid on a leadframe. Because the package contains no solder, the devices do not require any  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
 
 
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
special printed circuit board (PCB) assembly processing. This architecture results in an isolated DC/DC  
converter with inherently high reliability.  
8.3.9 Thermal Management  
Due to the high power density of this device, it is advisable to provide ground planes on the input and output  
rails.  
8.3.10 Power-Up Characteristics  
The DCV01 series of devices do not include a soft-start feature. Therefore, a high in-rush current during power-  
up is expected. To ensure a more stable start-up, allow the input voltage to be in regulation before enabling the  
device. Refer to the 8.4.1 section on how to disable/enable the device. 8-6 shows the typical start-up  
waveform for a DCV010505P when enabled after the input voltage is in regulation. 8-3 shows the typical start-  
up waveform for a DCV010505P, operating from a 5-V input with no load on the output. 8-4 shows the start-up  
waveform for a DCV010505P starting up into a 10% load. 8-5 shows the start-up waveform starting up into a  
full (100%) load.  
8-4. DCV010505P Start-Up at 10% Load  
8-3. DCV010505P Start-Up at No Load  
8-5. DCV010505P Start-Up at 100% Load  
8-6. DCV010505P Enable Start-Up at 100% Load  
8.4 Device Functional Modes  
8.4.1 Disable and Enable (SYNCIN Pin)  
Each of the DCV01 series devices can be disabled or enabled by driving the SYNCIN pin using an open-drain  
CMOS gate. If the SYNCIN pin is pulled low, the DCV01 becomes disabled. The disable time depends upon the  
external loading. The internal disable function is implemented in 2 µs. Removal of the pulldown causes the  
DCV01 to be enabled.  
Capacitive loading on the SYNCIN pin must be minimized (3 pF) in order to prevent a reduction in the  
oscillator frequency. The External Synchronization of the DCP01/02 Series of DC/DC Converters application  
report (SBAA035) describes disable/enable control circuitry.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
 
 
 
 
 
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
8.4.2 Decoupling  
8.4.2.1 Ripple Reduction  
The high switching frequency of 400 kHz allows simple filtering. To reduce ripple, TI recommends that a  
minimum of 1-µF capacitor be used on the +VOUT pin. For dual output devices, decouple both of the outputs to  
the COM pin. The required 2.2-µF, low ESR ceramic input capacitor also helps to reduce ripple and noise, (24-V  
input voltage versions require only 0.47 µF of input capacitance). See the DC-to-DC Converter Noise Reduction  
application report (SBVA012).  
8.4.2.2 Connecting the DCV01 in Series  
Multiple DCV01 devices can be connected in series to provide non-standard voltage rails. This configuration is  
possible by using the floating outputs provided by the galvanic isolation of the DCV01.  
Connect the +VOUT from one DCV01 to the VOUT of another (see 8-7). If the SYNCIN pins are tied together,  
the self-synchronization feature of the DCV01 prevents beat frequencies on the voltage rails. The  
synchronization feature of the DCV01 allows easy series connection without external filtering, thus minimizing  
cost.  
VIN  
+VS  
+VOUT1  
COUT  
1.0 µF  
CIN  
SYNCIN  
œVS  
DCV  
01  
œVOUT1  
VOUT1  
+
VOUT2  
VS  
+VOUT2  
COUT  
1.0 µF  
CIN  
SYNCIN  
œVS  
DCV  
01  
œVOUT2  
8-7. Multiple DCV01 Devices Connected in Series  
The outputs of a dual-output DCV01 can also be connected in series to provide two times the magnitude of  
+VOUT, as shown in 8-8. For example, connect a dual-output, 15-V, DCP012415D device to provide a 30-V  
rail.  
VIN  
+VS  
+VOUT  
œVOUT  
COM  
+VOUT  
COUT  
1.0 µF  
CIN  
DCV  
01  
œVOUT  
COUT  
1.0 µF  
œVS  
8-8. Dual Output Devices Connected in Series  
8.4.2.3 Connecting the DCV01 in Parallel  
If the output power from one DCV01 is not sufficient, it is possible to parallel the outputs of multiple DCV01s, as  
shown in 8-9 (applies to single output devices only). The synchronization feature allows easy synchronization  
to prevent power-rail beat frequencies at no additional filtering cost.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
 
 
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
VIN  
+VS  
+VOUT1  
DCV  
01  
COUT  
1.0 µF  
SYNCIN  
œVS  
CIN  
œVOUT1  
2 × Power Out  
+VS  
+VOUT2  
COUT  
1.0 µF  
DCV  
01  
SYNCIN  
œVS  
CIN  
œVOUT2  
GND  
8-9. Multiple DCV01 Devices Connected in Parallel  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
 
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
9 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The DCV01 devices offer up to 1 W of isolated, unregulated output power from a 5-V, 15-V, or 24-V input supply.  
Applications requiring up to 1.5-kVrms of operational isolation benefit from the small size and ease-of-use of the  
DCV01 family of devices.  
9.2 Typical Application  
VIN  
+VS  
+VOUT  
+VOUT  
DCV01  
CIN  
2.2 µF  
COUT  
1.0 µF  
SYNC  
œVS  
œVOUT  
œVOUT  
Copyright © 2016, Texas Instruments Incorporated  
9-1. DCV010505 Typical Application Schematic  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 9-1 and follow the procedures in the 9.2.2.  
9-1. Design Example Parameters  
PARAMETER  
VALUE  
V(+VS)  
V(+VOUT)  
IOUT  
Input voltage  
5 V  
Output voltage  
5 V  
Output current rating  
Operating frequency  
200 mA  
400 kHz  
fSW  
9.2.2 Detailed Design Procedure  
9.2.2.1 Input Capacitor  
For all 5-V and 15-V input voltage designs, select a 2.2-µF low-ESR ceramic input capacitor to ensure a good  
start-up performance. 24-V input applications require only 0.47 µF of input capacitance.  
9.2.2.2 Output Capacitor  
For any DCV01 design, select a 1-µF low-ESR ceramic output capacitor to reduce output ripple.  
9.2.2.3 SYNCIN Pin  
In a stand-alone application, leave the SYNCIN pin floating.  
9.2.2.4 PCB Design  
The copper losses (resistance and inductance) can be minimized by using wide ground and power traces or  
planes. If several devices are being powered from a common power source, a star-connected layout must be  
used. Device inputs must not be connected in series, as this will cascade the resistive losses. The position of the  
decoupling capacitors is important to reduce losses. Place the decoupling capacitors as close to the devices as  
possible. See the PCB Layout for more details.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
 
 
 
 
 
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
9.2.2.5 Decoupling Ceramic Capacitors  
All capacitors have losses because of internal equivalent series resistance (ESR), and to a lesser degree,  
equivalent series inductance (ESL). Values for ESL are not always easy to obtain. However, some  
manufacturers provide graphs of frequency versus capacitor impedance. These graphs typically show the  
capacitor impedance falling as frequency is increased (as shown in 9-2). In 9-2, XC is the reactance due to  
the capacitance, XL is the reactance due to the ESL, and f0 is the resonant frequency. As the frequency  
increases, the impedance stops decreasing and begins to rise. The point of minimum impedance indicates the  
resonant frequency of the capacitor. This frequency is where the components of capacitance and inductance  
reactance are of equal magnitude. Beyond this point, the capacitor is not effective as a capacitor.  
Z
X
C
X
L
0
f
0
Frequency (Hz)  
9-2. Capacitor Impedance versus Frequency  
At f0, XC = XL; however, there is a 180° phase difference resulting in cancellation of the imaginary component.  
The resulting effect is that the impedance at the resonant point is the real part of the complex impedance;  
namely, the value of the ESR. The resonant frequency must be well above the 800-kHz switching frequency of  
the device.  
The effect of the ESR is to cause a voltage drop within the capacitor. The value of this voltage drop is simply the  
product of the ESR and the transient load current, as shown in 方程1.  
VIN = VPK (ESR × ITR  
)
(1)  
where  
VIN is the voltage at the device input  
VPK is the maximum value of the voltage on the capacitor during charge  
ITR is the transient load current  
The other factor that affects the performance is the value of the capacitance. However, for the input and the full  
wave outputs (single-output voltage devices), ESR is the dominant factor.  
9.2.2.6 Input Capacitor and the Effects of ESR  
If the input decoupling capacitor is not ceramic (and has an ESR greater than 20 mΩ), then at the instant the  
power transistors switch on, the voltage at the input pins falls momentarily. If the voltage falls below  
approximately 4 V, the DCV01 detects an undervoltage condition and switches the DCV01 drive circuits to a  
momentary off state. This detection is carried out as a precaution against a genuine low input voltage condition  
that could slow down or even stop the internal circuits from operating correctly. A slow-down or stoppage results  
in the drive transistors being turned on too long, causing saturation of the transformer and destruction of the  
device.  
Following detection of a low input voltage condition, the device switches off the internal drive circuits until the  
input voltage returns to a safe value, at which time the device tries to restart. If the input capacitor is still unable  
to maintain the input voltage, shutdown recurs. This process repeats until the input capacitor charges sufficiently  
to start the device correctly.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
 
 
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
Normal start-up must occur in approximately 1 ms after power is applied to the device. If a considerably longer  
start-up duration time is encountered, it is likely that either (or both) the input supply or the capacitors are not  
performing adequately.  
For 5-V to 15-V input devices, a 2.2-µF, low-ESR ceramic capacitor ensures a good start-up performance. For  
24-V input voltage devices, TI recommends 0.47-µF ceramic capacitors. Tantalum capacitors are not  
recommended, because most do not have low-ESR values and will degrade performance. If tantalum capacitors  
must be used, designers must pay close attention to both the ESR and voltage as derated by the vendor.  
Note  
During the start-up period, these devices can draw maximum current from the input supply. If the input  
voltage falls below approximately 4 V, the devices may not start up. Connect a 2.2-µF ceramic  
capacitor close to the input pins.  
9.2.2.7 Ripple and Noise  
A good quality, low-ESR ceramic capacitor placed as close as possible across the input reduces reflected ripple  
and ensures a smooth start-up.  
A good quality, low-ESR ceramic capacitor placed as close as possible across the rectifier output terminal and  
output ground gives the best ripple and noise performance. See the DC-to-DC Converter Noise Reduction  
application report (SBVA012) for more information on noise rejection.  
9.2.2.7.1 Output Ripple Calculation Example  
The following example shows that increasing the capacitance has a much smaller effect on the output ripple  
voltage than does reducing the value of the ESR for the filter capacitor.  
To calculate the output ripple for a DCV010505 device:  
VOUT = 5 V  
IOUT = 0.2 A  
At full output power, the load resistor is 25 Ω  
Output capacitor of 1 µF, ESR of 0.1 Ω  
Capacitor discharge time 1% of 800 kHz (ripple frequency)  
tDIS = 0.0125 µs  
τ= C × RLOAD  
τ= 1 × 10-6 × 25 = 25 µs  
VDIS = VO(1 EXP(tDIS / τ))  
VDIS = 2.5 mV  
By contrast, the voltage dropped because of ESR:  
VESR = ILOAD × ESR  
VESR = 0.2 × 0.1 = 20 mV  
Ripple voltage = 22.5 mV  
9.2.2.8 Dual DCV01 Output Voltage  
The voltage output for dual DCV01 devices is half-wave rectified; therefore, the discharge time is 1.25 µs.  
Repeating the previous calculations using the 100% load resistance of 50 Ω(0.1 A per output), the results are:  
τ= 50 µs  
tDIS = 1.25 µs  
VDIS = 123 mV  
VESR = 0.1 × 0.1 = 10 mV  
Ripple Voltage = 133 mV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
In this example, it is the capacitor discharging that contributes to the largest component of ripple. Changing the  
output filter to 10 µF, and repeating the calculations, the result is that the ripple voltage is 22.3 mV.  
This value is composed of almost equal components.  
The previous calculations are offered as a guideline only. Capacitor parameters usually have large tolerances  
and can be susceptible to environmental conditions.  
9.2.2.9 Optimizing Performance  
Optimum performance can only be achieved if the device is correctly supported. The very nature of a switching  
converter requires power to be instantly available when it switches on. If the converter has DMOS switching  
transistors, the fast edges create a high current demand on the input supply. This transient load placed on the  
input is supplied by the external input decoupling capacitor, thus maintaining the input voltage. Therefore, the  
input supply does not experience this transient (this is analogous to high-speed digital circuits). The positioning  
of the capacitor is critical and must be placed as close as possible to the input pins and connected through a  
low-impedance path.  
The optimum performance primarily depends on two factors:  
Connection of the input and output circuits for minimal loss.  
The ability of the decoupling capacitors to maintain the input and output voltages at a constant level.  
9.2.3 Application Curves  
85  
80  
75  
70  
65  
60  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
55  
50  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Load (%)  
Load (%)  
DCV010515  
Note: Operations under 10% Load  
DCV010505  
9-4. Load Regulation  
9-3. Efficiency versus Load  
10 Power Supply Recommendations  
The DCV01 is a switching power supply, and as such can place high peak current demands on the input supply.  
To avoid the supply falling momentarily during the fast switching pulses, ground and power planes must be used  
to connect the power to the input of DCV01. If this connection is not possible, then the supplies must be  
connected in a star formation with the traces made as wide as possible.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
 
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
11 Layout  
11.1 Layout Guidelines  
Due to the high power density of these devices, provide ground planes on the input and output.  
11-1 shows a schematic for two DCV01 devices. 11-2 and 11-3 show a typical layout for two through-  
hole PDIP devices.  
Input power and ground planes provide a low-impedance path for the input power. For the output, the COM  
signal connects through a ground plane, while the connections for the positive and negative voltage outputs  
conduct through wide traces to minimize losses.  
The output must be taken from the device using ground and power planes, thereby ensuring minimum losses.  
The location of the decoupling capacitors in close proximity to their respective pins ensures low losses due to the  
effects of stray inductance, thus improving the ripple performance. This location is of particular importance to the  
input decoupling capacitor, because this capacitor supplies the transient current associated with the fast  
switching waveforms of the power drive circuits.  
Allow the unused SYNC pin, to remain configured as a floating pad. It is advisable to place a guard ring  
(connected to input ground) or annulus connected around this pin to avoid any noise pickup. When connecting a  
SYNC pin to one or more SYNC design the linking trace to be short and narrow to avoid stray capacitance.  
Ensure that no other trace is in close proximity to this trace SYNC trace to decrease the stray capacitance on  
this pin. The stray capacitance affects the performance of the oscillator.  
11.2 Layout Example  
CON1  
VS1  
0V1  
1
2
SYNC 14  
JP1  
+VS  
C1  
œVS  
DCV01  
+VOUT  
+V1  
6
5
7
C3  
C2-1  
C2  
R1  
COM  
COM1  
C5  
C4-1  
C4  
R2  
œ V1  
œVOUT  
CON2  
VS2  
0V2  
1
2
SYNC 14  
JP2  
+VS  
C6  
œVS  
DCV01  
+VOUT  
+V2  
6
5
7
C8  
C7-1  
C7  
R3  
COM  
COM2  
C10  
C9-1  
C9  
R4  
œ V2  
œVOUT  
11-1. PCB Schematic, P and U Package  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
 
 
 
 
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
11-2. PCB Layout Example, Component-Side  
11-3. PCB Layout Example, Non-Component-  
View  
Side View  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
 
DCV010505, DCV010505D, DCV010512, DCV010512D, DCV010515, DCV010515D, DCV011512D,  
DCV011515D, DCV012405, DCV012415D  
www.ti.com.cn  
ZHCSOO6C AUGUST 2000 REVISED AUGUST 2021  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Device Nomenclature  
DCV01 05  
05 (D) (P)  
Basic model number: 1-W product  
Voltage input:  
5, 15, or 24  
Voltage output:  
5, 12 or 15  
Output type:  
blank (single) or D (dual)  
Package code:  
P = 7-pin PDIP (NVA package)  
P-U = 7-pin SOP (DUA package)  
12-1. Supplemental Ordering Information  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, External Synchronization of the DCP01/02 Series of DC/DC Converters (SBAA035)  
Texas Instruments, DC-to-DC Converter Noise Reduction (SBVA012)  
Texas Instruments, Optimizing Performance of the DCP01/02 Series of DC/DC Converters (SBVA013)  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
Underwriters Laboratories, ULis a trademark of UL LLC.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DCV010505 DCV010505D DCV010512 DCV010512D DCV010515 DCV010515D  
DCV011512D DCV011515D DCV012405 DCV012415D  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Aug-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
NVA  
DUA  
NVA  
DUA  
DUA  
NVA  
DUA  
NVA  
DUA  
NVA  
DUA  
NVA  
DUA  
NVA  
DUA  
NVA  
Qty  
25  
25  
25  
25  
700  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DCV010505DP  
DCV010505DP-U  
DCV010505P  
ACTIVE  
PDIP  
SOP  
PDIP  
SOP  
SOP  
PDIP  
SOP  
PDIP  
SOP  
PDIP  
SOP  
PDIP  
SOP  
PDIP  
SOP  
PDIP  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
RoHS &  
Non-Green  
NIPDAU  
N / A for Pkg Type  
Level-3-260C-168 HR  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
DCV010505DP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
RoHS &  
Non-Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
DCV010505DP-U  
DCV010505P  
RoHS &  
Non-Green  
DCV010505P-U  
DCV010505P-U/700  
DCV010512DP  
DCV010512DP-U  
DCV010512P  
RoHS &  
Non-Green  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
N / A for Pkg Type  
DCV010505P-U  
DCV010505P-U  
DCV010512DP  
DCV10512DPU  
DCV010512P  
RoHS &  
Non-Green  
RoHS &  
Non-Green  
RoHS &  
Non-Green  
Level-3-260C-168 HR  
N / A for Pkg Type  
RoHS &  
Non-Green  
DCV010512P-U  
DCV010515DP  
DCV010515DP-U  
DCV010515P  
RoHS &  
Non-Green  
Level-3-260C-168 HR  
N / A for Pkg Type  
DCV010512P-U  
DCV010515DP  
DCV010515DP-U  
DCV010515P  
RoHS &  
Non-Green  
RoHS &  
Non-Green  
Level-3-260C-168 HR  
N / A for Pkg Type  
RoHS &  
Non-Green  
DCV010515P-U  
DCV011512DP  
DCV011512DP-U  
DCV011515DP  
RoHS &  
Non-Green  
Level-3-260C-168 HR  
N / A for Pkg Type  
DCV010515P-U  
DCV011512DP  
DCV011512DP-U  
DCV011515DP  
RoHS &  
Non-Green  
RoHS &  
Non-Green  
Level-3-260C-168 HR  
N / A for Pkg Type  
RoHS &  
Non-Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Aug-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DCV011515DP-U  
DCV011515DP-U/700  
DCV012405P  
ACTIVE  
SOP  
SOP  
PDIP  
SOP  
PDIP  
SOP  
SOP  
DUA  
7
7
7
7
7
7
7
25  
RoHS &  
Non-Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
DCV011515DP-U  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DUA  
700  
25  
RoHS &  
Non-Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
DCV011515DP-U  
DCV012405P  
NVA  
RoHS &  
Non-Green  
DCV012405P-U  
DUA  
25  
RoHS &  
Non-Green  
Level-3-260C-168 HR  
N / A for Pkg Type  
DCV012405P-U  
DCV012415DP  
DCV012415DP-U  
DCV012415DP-U  
DCV012415DP  
NVA  
25  
RoHS &  
Non-Green  
DCV012415DP-U  
DCV012415DP-U/700  
DUA  
25  
RoHS &  
Non-Green  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
DUA  
700  
RoHS &  
Non-Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Aug-2021  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DCV010505DP  
DCV010505P  
DCV010512DP  
DCV010512P  
DCV010512P-U  
DCV010515DP  
DCV010515P  
DCV011512DP  
DCV011515DP  
DCV012405P  
DCV012415DP  
NVA  
NVA  
NVA  
NVA  
DUA  
NVA  
NVA  
NVA  
NVA  
NVA  
NVA  
PDIP  
PDIP  
PDIP  
PDIP  
SOP  
PDIP  
PDIP  
PDIP  
PDIP  
PDIP  
PDIP  
7
7
7
7
7
7
7
7
7
7
7
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
533.4  
533.4  
533.4  
533.4  
532.13  
533.4  
533.4  
533.4  
533.4  
533.4  
533.4  
14.33  
14.33  
14.33  
14.33  
13.51  
14.33  
14.33  
14.33  
14.33  
14.33  
14.33  
13.03  
13.03  
13.03  
13.03  
7.36  
8.07  
8.07  
8.07  
8.07  
6.91  
8.07  
8.07  
8.07  
8.07  
8.07  
8.07  
13.03  
13.03  
13.03  
13.03  
13.03  
13.03  
Pack Materials-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY