DF1704E [TI]

Stereo, 24-Bit, 96kHz 8X Oversampling Digital Interpolation Filter; 立体声, 24位, 96kHz的8倍过采样数字插值滤波器
DF1704E
型号: DF1704E
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Stereo, 24-Bit, 96kHz 8X Oversampling Digital Interpolation Filter
立体声, 24位, 96kHz的8倍过采样数字插值滤波器

DSP外围设备 微控制器和处理器 外围集成电路 光电二极管 LTE
文件: 总20页 (文件大小:450K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DF1704  
D
F
1
7
0
4
49%  
FPO  
SBAS099A – MARCH 2001  
TM  
Stereo, 24-Bit, 96kHz  
8X Oversampling Digital Interpolation Filter  
SYSTEM CLOCK: 256fS, 384fS, 512fS, 768fS  
FEATURES  
COMPANION DIGITAL FILTER FOR THE PCM1704  
ON-CHIP CRYSTAL OSCILLATOR  
+5V SINGLE-SUPPLY OPERATION  
SMALL SSOP-28 PACKAGE  
24-BIT AUDIO DAC  
HIGH PERFORMANCE FILTER:  
Stopband Attenuation: –115dB  
Passband Ripple: ±0.00005dB  
DESCRIPTION  
AUDIO INTERFACE:  
Input Data Formats: Standard, Left-  
Justified, and I2S  
Input Word Length: 16, 20, or 24 Bits  
Output Word Length: 16, 18, 20, or 24 Bits  
Sampling Frequency: 32kHz to 96kHz  
The DF1704 is a high-performance, stereo, 8X oversampling  
digital interpolation filter designed for high-end consumer  
and professional audio applications. The DF1704 supports  
24-bit, 96kHz operation and features user-programmable  
functions, including selectable filter response, de-emphasis,  
attenuation, and input/output data formats.  
PROGRAMMABLE FUNCTIONS:  
Hardware or Software Control Modes  
Sharp or Slow Roll-Off Filter Response  
Soft Mute  
The DF1704 is the ideal companion for Texas Instruments’  
PCM1704 24-bit audio digital-to-analog converter. This  
combination allows for construction of very high-perfor-  
mance audio systems and components.  
Digital De-Emphasis  
Independent Left/Right Digital Attenuation  
BCKO  
WCKO  
BCKIN  
Serial  
LRCIN  
Input  
I/F  
8X Oversampling  
Digital Filter with  
Function  
DIN  
Output I/F  
Controller  
DOL  
DOR  
MD/CKO  
MC/LRIP  
ML/RESV  
Mode  
Control  
I/F  
MODE  
(MUTE)  
RST  
SCK  
(DEM)  
Crystal/OSC  
Power Supply  
(SF0) (SF1) (SRO)  
XTI  
XTO  
CLKO  
VDD  
VSS  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 1998, Texas Instruments Incorporated  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
www.ti.com  
PACKAGE/ORDERING INFORMATION  
PACKAGE  
DRAWING  
NUMBER  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA  
PRODUCT  
PACKAGE  
DF1704E  
SSOP-28  
324  
25°C to +85°C  
DF1704E  
DF1704E  
Rails  
ABSOLUTE MAXIMUM RATINGS  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Texas Instru-  
mentsrecommendsthatallintegratedcircuitsbehandledwith  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
Supply Voltage (VDD , VCC1, VCC2R, VCC2L).................................... +6.5V  
Supply Voltage Differences................................................................. ±0.1  
GND Voltage Differences.................................................................. ±0.1V  
Digital Input Voltage ................................................. –0.3V to (VDD + 0.3V)  
Input Current (any pins except power supplies) ............................. ±10mA  
Power Dissipation .......................................................................... 300mW  
Operating Temperature Range ......................................... –25°C to +85°C  
Storage Temperature ...................................................... –55°C to +125°C  
Lead Temperature (soldering, 5s)................................................. +260°C  
Package Temperature (reflow, 10s) .............................................. +235°C  
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
PIN CONFIGURATION  
PIN ASSIGNMENTS  
PIN NAME  
I/O  
IN  
DESCRIPTION  
TOP VIEW  
SSOP  
1
2
DIN  
Serial Audio Data Input(3)  
Bit Clock Input for Serial Audio Data(3)  
BCKIN  
IN  
3
4
I2S  
IW0  
IN  
IN  
Input Audio Data Format Selection(2, 4)  
Input Audio Data Word Selection(2, 4)  
5
IW1  
XTI  
IN  
IN  
Input Audio Data Word Selection(2, 4)  
Oscillator Input/External Clock Input  
Oscillator Output  
6
7
XTO  
VSS  
OUT  
DIN  
BCKIN  
I2S  
1
2
3
4
5
6
7
8
9
28 LRCIN  
27 SRO  
26 BCKO  
25 WCKO  
24 DOL  
23 DOR  
22 VDD  
8
Digital Ground  
9
CLKO  
MODE  
OUT  
IN  
Buffered System Clock Output  
Mode Control Selection (H: Software, L: Hardware)(1)  
10  
11 MD/CKO  
IN  
Control Data Input/Clock Output Frequency  
Select(1, 5)  
Control Data Clock/Polarity of LRCK Select(1, 5)  
Control Data Latch/Reserved(1, 5)  
IW0  
12 MC/LRIP  
13 ML/RESV  
IN  
IN  
IN  
IW1  
XTI  
14  
RST  
Reset. When this pin is LOW, the digital filter  
is held in reset.(1)  
Mute Control(1, 4)  
XTO  
VSS  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
MUTE  
DEM  
SF0  
IN  
IN  
DF1704E  
De-Emphasis Control(2, 4)  
21 NC  
IN  
Sampling Rate Select for De-emphasis(2, 4)  
Sampling Rate Select for De-emphasis(2, 4)  
Output Audio Data Word and Format Select(2, 4)  
Output Audio Data Word and Format Select(2, 4)  
No Connection  
CLKO  
20 OW1  
19 OW0  
18 SF1  
SF1  
IN  
MODE 10  
OW0  
OW1  
NC  
IN  
IN  
MD/CKO 11  
MC/LRIP 12  
ML/RESV 13  
RST 14  
17 SF0  
VDD  
Digital Power, +5V  
DOR  
DOL  
OUT  
OUT  
OUT  
OUT  
IN  
Rch, Serial Audio Data Output  
Lch, Serial Audio Data Output  
16 DEM  
15 MUTE  
WCKO  
BCKO  
SRO  
LRCIN  
Word Clock for Serial Audio Data Output  
Bit Clock for Serial Audio Data Output  
Filter Response Select(2, 4)  
NC: No Connection  
IN  
L/R Clock Input (fS) for Serial Audio Data(3)  
NOTES: (1) Pins 10-15; Schmitt-Trigger input with pull-up resistor. (2) Pins  
3-5, 16-20, 27; Schmitt-Trigger input with pull-down resister. (3) Pins 1, 2,  
28; Schmitt-Trigger input. (4) Pins 3-5, 15-20, 27; these pins are invalid  
when MODE (pin 10) is HIGH. (5) Pins 11-13; these pins have different  
functions corresponding to MODE (pin 10), (HIGH/LOW).  
DF1704  
2
SBAS099A  
ELECTRICAL CHARACTERISTICS  
All specifications at +25°C, VDD = +5V, unless otherwise noted.  
DF1704E  
TYP  
PARAMETER  
RESOLUTION  
CONDITIONS  
MIN  
MAX  
UNITS  
24  
Bits  
INPUT DATA FORMAT  
Audio Data Interface Format  
Audio Data Bit Length  
Audio Data Format  
Standard/Left-Justified/I2S  
16/20/24 Selectable  
MSB-First, Twos Binary Comp  
Sampling Frequency (fS)  
System Clock Frequency  
32  
96  
kHz  
256/384/512/768fS  
OUTPUT DATA FORMAT  
Audio Data Interface Format  
Audio Data Bit Length  
Audio Data Format  
Right-Justified  
16/20/24 Selectable  
MSB-First, Binary Twos Complement  
DIGITAL INPUT/OUTPUT  
Input Logic Level: VIH  
2.0  
V
V
V
V
VIL  
Output Logic Level: VOH  
VOL  
0.8  
0.5  
IOH = 2mA  
IOL = 4mA  
4.5  
CLKO AC CHARACTERISTICS  
Rise Time (tR)  
Fall Time (tF)  
20% to 80% VDD, 10pF  
80% to 20% VDD, 10pF  
10pF Load  
4
3
37  
ns  
ns  
%
Duty Cycle  
DIGITAL FILTER PERFORMANCE  
Filter Characteristics 1 (Sharp Roll-Off)  
Passband  
±0.00005dB  
3dB  
0.454fS  
0.493fS  
Stopband  
0.546fS  
Passband Ripple  
±0.00005  
dB  
dB  
Stopband Attenuation  
Filter Characteristics 2 (Sharp Roll-Off)  
Passband Ripple  
Stopband = 0.546fS  
115  
±0.0001dB  
3dB  
0.254fS  
0.460fS  
Stopband  
0.732fS  
Passband Ripple  
Stopband Attenuation  
Delay Time  
±0.0001  
±0.003  
dB  
dB  
sec  
dB  
Stopband = 0.748fS  
100  
45.125/fS  
De-Emphasis Error  
POWER SUPPLY REQUIREMENTS  
Voltage Range  
Supply Current: IDD  
VDD  
4.5  
5
20  
5.5  
30  
VDC  
mA  
Power Dissipation  
100  
150  
mW  
TEMPERATURE RANGE  
Operation  
Storage  
25  
55  
+85  
+100  
°C  
°C  
DF1704  
SBAS099A  
3
TYPICAL CHARACTERISTICS OF INTERNAL FILTER  
DIGITAL FILTER (DE-EMPHASIS OFF, fS = 44.1kHz)  
FREQUENCY RESPONSE (Sharp Roll Off)  
PASSBAND RIPPLE (Sharp Roll Off)  
20  
0
0.0001  
0.00008  
0.00006  
0.00004  
0.00002  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
0.00002  
0.00004  
0.00006  
0.00008  
0.0001  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Frequency (fS)  
Frequency (fS)  
TRANSITION CHARACTERISTIC (Slow Roll Off)  
FREQUENCY RESPONSE (Slow Roll Off)  
0
5  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
10  
15  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Frequency (fS)  
Frequency (fS)  
DE-EMPHASIS AND DE-EMPHASIS ERROR  
DE-EMPHASIS ERROR (fS = 32kHz)  
DE-EMPHASIS (fS = 32kHz)  
0
0.01  
0.008  
0.006  
0.004  
0.002  
0
2  
4  
0.002  
0.004  
0.006  
0.008  
0.01  
6  
8  
10  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
Frequency (fS)  
Frequency ( fS)  
DF1704  
4
SBAS099A  
TYPICAL CHARACTERISTICS OF INTERNAL FILTER (Cont.)  
DE-EMPHASIS (fS = 44.1kHz)  
DE-EMPHASIS ERROR (fS = 44.1kHz)  
0
2  
0.01  
0.008  
0.006  
0.004  
0.002  
0
4  
6  
0.002  
0.004  
0.006  
0.008  
0.01  
8  
10  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Frequency (fS)  
Frequency (fS)  
DE-EMPHASIS (fS = 48kHz)  
DE-EMPHASIS ERROR (fS = 48kHz)  
0
2  
0.01  
0.008  
0.006  
0.004  
0.002  
0
4  
0.002  
0.004  
0.006  
0.008  
0.01  
6  
8  
10  
0
2
4
6
8
10 12 14 16 18 20 22  
0
2
4
6
8
10 12 14 16 18 20 22  
Frequency (fS)  
Frequency (fS)  
DF1704  
SBAS099A  
5
SYSTEM CLOCK REQUIREMENTS  
During the power-on reset period (1024 system clocks), the  
DF1704 outputs are forced LOW. For an external forced  
reset, the outputs are forced LOW during the initialization  
period (1024 system clocks), which occurs after the LOW-  
to-HIGH transition of the RST pin as shown in Figure 3.  
The system clock of the DF1704 can be supplied by either  
an external clock signal at XTI (pin 6), or by the on-chip  
crystal oscillator. The system clock rate must run at 256fS,  
384fS, 512fS, or 768fS, where fS is the audio sampling rate.  
It should be noted that a 768fS system clock cannot be used  
when fS = 96kHz. In addition, the on-chip crystal oscillator  
is limited to a maximum frequency of 24.576MHz. Table I  
shows the typical system clock frequencies for selected  
sample rates.  
2.6V  
VDD 2.2V  
1.8V  
Reset  
The DF1704 includes a system clock detection circuit that  
determines the system clock rate in use. The circuit com-  
pares the system clock input (XTI) frequency with the  
LRCIN input rate to determine the system clock multiplier.  
Ideally, LRCIN and BCKIN should be derived from the  
system clock to ensure proper synchronization. If the phase  
difference between the system clock and LRCIN is larger  
than ±6 bit clock (BCKIN) periods, the synchronization of  
the system and LRCIN clocks will be performed automati-  
cally by the DF1704.  
Reset Removal  
Internal Reset  
1024 system clocks  
System Clock  
FIGURE 2. Internal Power-On Reset Timing.  
Timing requirements for the system clock input are shown in  
Figure 1.  
tRST  
tRST 20ns  
RST  
Reset  
Reset Removal  
tSCKH  
Internal Reset  
System Clock  
1024 system (XTI) clocks  
H”  
2.0V  
XTI  
0.8V  
L”  
tSCKL  
FIGURE 3. External Forces Reset Timing.  
System Clock Pulse Width HIGH :tSCKIH :7ns min(1)  
System Clock Pulse Width LOW :tSCKIL :7ns min(1)  
NOTE: (1) For fS = 96kHz and SCK = 256fS, tSCKIH = 14ns (min)  
AUDIO INPUT INTERFACE  
t
SCKIL = 14ns (min)  
For fS 96kHz and SCK = 256fS, tSCKIH = 20ns (min)  
SCKIL = 20ns (min)  
The audio input interface is comprised of BCKIN (pin 2),  
LRCIN (pin 28), and DIN (pin 1).  
t
BCKIN is the input bit clock, which is used to clock data  
applied at DIN into the DF1704’s input serial interface.  
Input data at DIN is clocked into the DF1704 on the rising  
edge of BCKIN. The left/right clock, LRCIN, is used as a  
word latch for the audio input data.  
FIGURE 1. System Clock Timing.  
RESET  
The DF1704 has both an internal power-on reset circuit and  
a reset pin, RST (pin 14), for providing an external reset  
signal. The internal power-on reset is performed automati-  
cally when power is applied to the DF1704, as shown in  
Figure 2. The RST pin can be used to synchronize the  
DF1704 with a system reset signal, as shown in Figure 3.  
BCKIN can run at 32fS, 48fS, or 64fS, where fS is the audio  
sample frequency. LRCIN is run at the fS rate. Figures 4 (a)  
through 4 (c) show the input data formats, which are sel-  
ected by hardware or software controls. Figure 5 shows the  
audio input interface timing requirements.  
SYSTEM CLOCK FREQUENCY (MHz)  
SAMPLING RATE FREQUENCY (fS)  
256fS  
384fS  
512fS  
768fS  
32kHz  
44.1kHz  
48kHz  
8.1920  
11.2896  
12.2880  
12.2880  
16.9340  
18.4320  
36.8640(1)  
16.3840  
22.5792  
24.5760  
49.1520(1)  
24.5760  
33.8688(1)  
36.8640(1)  
96kHz  
24.5760(3)  
See Notes 1, 2  
NOTES: (1) Maximum crystal oscillator frequency is 24.576MHz and cannot be used for these combinations. (2) 768fS system clock cannot be used with 96kHz  
sampling rate. (3) Use external system clock applied at XTI.  
TABLE I. Typical System Clock Frequencies.  
DF1704  
6
SBAS099A  
(a) Standard Format (Sony Format); Lch = H, Rch = L”  
1/fS  
Lch  
Rch  
LRCIN  
BCKIN  
AUDIO DATA WORD = 16-BIT  
DIN 14 15 16  
1
2
15 16  
1
2
15 16  
19 20  
23 24  
MSB  
LSB  
LSB  
LSB  
AUDIO DATA WORD = 20-BIT  
DIN 18 19 20  
1
1
2
2
19 20  
23 24  
1
1
2
2
MSB  
MSB  
AUDIO DATA WORD = 24-BIT  
DIN 22 23 24  
MSB  
LSB  
(b) Left-Justified Format; Lch = H, Rch = L”  
1/fS  
Lch  
Rch  
LRCIN  
BCKIN  
AUDIO DATA WORD = 24-BIT  
DIN  
1
2
3
22 23 24  
LSB  
1
2
3
22 23 24  
LSB  
1
2
3
MSB  
MSB  
(c) I2S Data Format (Philips Format); Lch = L, Rch = H”  
1/fS  
Lch  
Rch  
LRCIN  
BCKIN  
AUDIO DATA WORD = 16-BIT  
DIN  
1
1
2
2
15 16  
1
1
2
2
15 16  
1
2
MSB  
MSB  
LSB  
MSB  
MSB  
LSB  
AUDIO DATA WORD = 24-BIT  
DIN  
23 24  
23 24  
1
2
LSB  
LSB  
FIGURE 4. Audio Data Input Formats.  
LRCKIN  
1.4V  
1.4V  
tBCH  
tBCL  
tLB  
BCKIN  
tBCY  
tBL  
1.4V  
DIN  
tDS  
tDH  
BCKIN Pulse Cycle Time  
BCKIN Pulse Width HIGH  
BCKIN Pulse Width LOW  
tBCY  
tBCH  
tBCL  
100ns (min)  
50ns (min)  
50ns (min)  
30ns (min)  
30ns (min)  
30ns (min)  
30ns (min)  
BCKIN Rising Edge to LRCIN Edge tBL  
LRCIN Edge to BCKIN Rising Edge tLB  
DIN Set-up Time  
DIN Hold Time  
tDS  
tDH  
FIGURE 5. Audio Input Interface Timing.  
DF1704  
SBAS099A  
7
AUDIO OUTPUT INTERFACE  
The output data format used by the DF1704 for DOL and  
DOR is Binary Two’s Complement, MSB-first, right-justi-  
fied audio data. Figures 6(a) and 6(b) show the output data  
formats for the DF1704. Figure 7 shows the audio output  
timing.  
The audio output interface includes BCKO (pin 26), WCKO  
(pin 25), DOL (pin 24), and DOR (pin 23).  
BCKO is the output bit clock and is used to clock data into  
an audio Digital-to-Analog Converter (DAC), such as the  
PCM1704. DOL and DOR are the left and right audio data  
outputs. WCKO is the output word clock and is used to  
latch audio data words into an audio DAC.  
MODE CONTROL  
The DF1704 may be configured using either software or  
hardware control. The selection is made using the MODE  
input (pin 10).  
WCKO runs at a fixed rate of 8fS (8X oversampling) for all  
system clock rates.  
BCKO is fixed at 256fS for system clock rates of 256fS or  
512fS.  
MODE SETTING  
MODE CONTROL SELECTION  
MODE = H  
MODE = L  
Software Mode  
Hardware Mode  
BCKO is fixed at 192fS for system clock rates of 384fS or  
768fS.  
TABLE II. MODE Selection.  
(a) SYSTEM CLOCK: 256/512fS  
1/8fS  
WCKO  
BCKO  
AUDIO DATA WORD = 16-BIT  
DOR  
14 15 16  
DOL  
1
2
15 16  
MSB  
LSB  
17 18  
AUDIO DATA WORD = 18-BIT  
DOR  
16 17 18  
DOL  
1
2
MSB  
LSB  
AUDIO DATA WORD = 20-BIT  
DOR  
18 19 20  
DOL  
1
2
19 20  
23 24  
MSB  
LSB  
LSB  
AUDIO DATA WORD = 24-BIT  
DOR  
DOL  
22 23 24  
1
2
MSB  
(b) SYSTEM CLOCK: 384/768fS  
1/8fS  
WCKO  
BCKO  
AUDIO DATA WORD = 16-BIT  
DOR  
14 15 16  
DOL  
1
2
15 16  
MSB  
LSB  
17 18  
AUDIO DATA WORD = 18-BIT  
DOR  
16 17 18  
DOL  
1
2
MSB  
LSB  
19 20  
AUDIO DATA WORD = 20-BIT  
DOR  
18 19 20  
DOL  
1
2
MSB  
LSB  
23 24  
AUDIO DATA WORD = 24-BIT  
DOR  
22 23 24  
1
2
1
2
DOL  
MSB  
LSB  
FIGURE 6. Audio Output Data Format.  
8
DF1704  
SBAS099A  
tWCKP  
WCKO  
BCKO  
0.5VDD  
tBCKH  
tBCKL  
tCKWK  
0.5VDD  
tBCKP  
tCKDO  
DOL, R  
0.5VDD  
max  
min  
typ  
BCKO Period  
tBCKP  
1/256 fS or 1/192 fS  
BCKO Pulse Width High(4)  
BCKO Pulse Width Low(4)  
tBCKH  
tBCKL  
tCKWK  
tWCKP  
tCKDO  
20ns  
100ns  
100ns  
5ns  
20ns  
Delay Time BCKO Falling Edge to WCKO Valid  
WCKO Period  
5ns  
1/8 fS  
Delay Time BCKO Falling Edge to DOL, R Valid  
5ns  
5ns  
Rising Time of All Signals  
Falling Time of All Signals  
tR  
tF  
7ns  
7ns  
NOTES: (1) Timing measurement reference level is (VIH/VIL)/2. (2) Rising and falling time is  
measured from 10% to 90% of IN/OUT signalsswing. (3) Load capacitance of all signals  
are 20pF. (4) Exceptions: fS = 96kHz and SCK = 256fS, tBCKH = 14ns (min)  
t
BCKL = 14ns (min)  
FIGURE 7. Audio Output Data Format.  
Pins I2S, IW0, and IW1 are used to select the audio data  
input format and word length.  
Programmable Functions  
The DF1704 includes a number of programmable features,  
with most being accessible from either Hardware or Soft-  
ware mode. Table III summarizes the user programmable  
functions for both modes of operation.  
Pins OW0 and OW1 are used to select the output data word  
length.  
The DEM pin is used to enable and disable the digital de-  
emphasis function. De-emphasis is only available for 32kHz,  
44.1kHz, and 48kHz sample rates.  
RESET  
DEFAULT  
(Software Mode)  
SOFTWARE  
(MODE = H)  
HARDWARE  
(MODE = L)  
Pins SF0 and SF1 are used to select the sample rate for the  
de-emphasis function.  
FUNCTION  
Input Data Format Selection  
O
O
Standard Format  
The SRO pin is used to select the digital filter response,  
either sharp or slow roll-off.  
Input Word Length Selection  
Output Word Length Selection  
LRCIN Polarity Selection  
Digital De-Emphasis  
O
O
O
O
O
O
O
O
O
O
O
X
16 Bits  
16 Bits  
The MUTE pin is used to enable or disable the soft mute  
function.  
Left/Right = High/Low  
OFF  
Soft Mute  
OFF  
The CKO pin is used to select the clock frequency seen at  
the CLKO pin, either XTI or XTI ÷ 2.  
Digital Attenuation  
0dB, Independent L/R  
Sample Rate for  
De-Emphasis Function  
The LRIP pin is used to select the polarity used for the audio  
input left/right clock, LRCIN.  
O
O
O
O
O
O
44.1 kHz  
Filter Roll-Off Selection  
Sharp Roll-Off Selected  
Same As XTI Input  
Finally, the RESV pin is not used by the current DF1704  
design, but is reserved for future use.  
CLKO Output Frequency Selection  
Legend:  
O = User Programmable, X = Not Available.  
TABLE III. User-Programmable Functions for Software and  
Hardware Mode.  
Software Mode Controls  
With MODE = H, the DF1704 may be configured by  
programming four internal registers in software mode. ML  
(pin 13), MC (pin 12), and MD (pin 11) make up the 3-wire  
software control port, and may be controlled using DSP or  
microcontroller general purpose I/O pins, or a serial port.  
Table V provides an overview of the internal registers,  
labeled MODE0 through MODE3.  
Hardware Mode Controls  
With MODE = L, the DF1704 may be configured by  
utilizing several user-programmable pins. The following is a  
brief summary of the pin functions. Table IV provides more  
details on setting the hardware mode controls.  
DF1704  
SBAS099A  
9
PIN  
PIN  
REGISTER  
NAME  
BIT  
NAME  
NAME NUMBER  
DESCRIPTION  
DESCRIPTION  
RESV  
LRIP  
13  
12  
Reserved, Not Used  
MODE0  
MODE1  
MODE2  
AL[7:0]  
LDL  
A[1:0]  
res  
Attenuation Data for the Left Channel  
Attenuation Load Control for the Left Channel  
Register Address  
LRCIN Polarity  
LRIP = L: LRCIN= H = Left Channel, LRCIN= L = Right Channel  
LRIP = H: LRCIN= L = Left Channel, LRCIN = H = Right Channel  
Reserved  
AR[7:0]  
LDL  
A[1:0]  
res  
Attenuation Data for the Right Channel  
Attenuation Load Control for the Right Channel  
Register Address  
CKO  
11  
15  
CLKO Output Frequency  
CKO = H: CLKO Frequency = XTI/2  
CKO = L: CLKO Frequency = XTI  
Reserved  
MUTE  
Soft Mute Control: H = Mute Off, L = Mute On  
Input Data Format Controls  
MUT  
DEM  
IW[1:0]  
OW[1:0]  
A[1:0]  
res  
Soft Mute Control  
I2S  
IW0  
IW1  
3
4
5
Digital De-Emphasis Control  
Input Data Format and Word Length  
Output Data Word Length  
Register Address  
I2S IW1 IW0  
INPUT FORMAT  
L
L
L
L
H
H
L
L
H
H
L
L
L
H
L
H
L
16-Bit, Standard, MSB-First, Right-Justified  
20-Bit, Standard, MSB-First, Right-Justified  
24-Bit, Standard, MSB-First, Right-Justified  
24-Bit, MSB-First, Left-Justified  
16-Bit, I2S  
Reserved  
MODE3  
I2S  
LRP  
ATC  
SRO  
CKO  
SF[1:0]  
A[1:0]  
res  
Input Data Format (I2S or Standard/Left-Justified)  
LRCIN Polarity  
Attenuator Control, Dependent or Independent  
Digital Filter Roll-Off Selection (sharp or slow)  
CLKO Frequency Selection (XTI or XTI ÷ 2)  
Sample Rate Selection for De-Emphasis Function  
Register Address  
H
24-Bit, I2S  
SRO  
27  
Digital Filter Roll-Off: H = Slow, L = Sharp  
Output Data Word Length Controls  
OW0  
OW1  
19  
20  
Reserved  
OW1 OW0 OUTPUT FORMAT  
NOTE: All reserved bits should be programmed to 0.  
L
L
L
H
L
16-Bit, MSB-First  
18-Bit, MSB-First  
20-Bit, MSB-First  
24-Bit, MSB-First  
TABLE V. Internal Register Mapping.  
H
H
H
Register Addressing  
SF0  
SF1  
17  
18  
Sample Rate Selection for the Digital De-Emphasis Control  
A[1:0], bits B10 and B9 of the 16-bit control data word, are  
used to indicate the register address to be written to by the  
current control port write cycle. Table VI shows how to  
address the internal registers using bits A[1:0] of registers  
MODE0 through MODE3.  
SF1 SF0  
SAMPLING RATE  
44.1kHz  
Reserved, Not Used  
48kHz  
L
L
H
H
L
H
L
H
32kHz  
DEM  
16  
Digital De-Emphasis: H = On, L = Off  
A1  
A0  
REGISTER SELECTED  
TABLE IV. Hardware Mode Controls.  
0
0
1
1
0
1
0
1
MODE0  
MODE1  
MODE2  
MODE3  
Figures 8 through 10 show more details regarding the  
control port data format and timing requirements. The data  
format for the control port is 16-bit, MSB-first, with Bit B15  
being the MSB.  
TABLE VI. Internal Register Addressing.  
B15  
res  
B14  
res  
B13  
res  
B12  
res  
B11  
res  
B10  
A1  
B9  
A0  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
MODE0  
MODE1  
LDL  
AL7  
AL6  
AL5  
AL4  
AL3  
AL2  
AL1  
AL0  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
res  
A1  
A1  
A1  
A0  
A0  
A0  
LDR  
res  
AR7  
res  
AR6  
OW1  
SF0  
AR5  
OW0  
CKO  
AR4  
IW1  
res  
AR3  
IW0  
AR2  
res  
AR1  
AR0  
MODE2  
MODE3  
DEM MUT  
res  
SF1  
SRO  
ATC  
LRP  
I2S  
FIGURE 8. Internal Mode Control Registers.  
ML  
MC  
MD  
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
FIGURE 9. Software Interface Format.  
10  
DF1704  
SBAS099A  
tMLL  
tMHH  
ML(1)  
1.4V  
1.4V  
tMLH  
tMLS  
tMCH  
tMCL  
MC(2)  
tMCY  
LSB  
MD  
1.4V  
tMDS  
tMDH  
MC Pulse Cycle Time  
MC Pulse Width LOW  
MC Pulse Width HIGH  
MD Hold Time  
tMCY  
tMCL  
tMCH  
tMDH  
tMDS  
tMLL  
tMHH  
tMLH  
tMLS  
100ns (min)  
40ns (min)  
40ns (min)  
40ns (min)  
40ns (min)  
MD Set-Up Time  
ML Low Level Time  
ML High Level Time  
ML Hold Time(2)  
40ns + 1SYSCLK(3) (min)  
40ns + 1SYSCLK(3) (min)  
40ns (min)  
ML Set-Up Time(3)  
40ns (min)  
NOTES: (1) ML rising edge to the next MC rising edge. (2) MC rising edge for LSB to ML rising edge. (3) SYSCK: System Clock Cycle.  
FIGURE 10. Software Interface Timing Requirements.  
MODE0 Register  
MODE1 Register  
The MODE0 register is used to set the attenuation data for  
the Left output channel, or DOL (pin 24).  
The MODE1 register is used to set the attenuation data for  
the Right output channel, or DOR (pin 23).  
When ATC = 1 (Bit B2 of Register MODE3 = 1), the Left  
channel attenuation data AL[7:0] is used for both the Left  
and Right channel attenuators.  
When ATC = 1 (Bit B2 of Register MODE3 = 1), the Left  
channel attenuation data AL[7:0] of register MODE0 is used  
for both the Left and Right channel attenuators.  
When ATC = 0, (Bit B2 of Register MODE3 = 0), Left  
channel attenuation data is taken from AL[7:0] of register  
MODE0, and Right channel attenuation data is taken from  
AR[7:0] of register MODE1.  
When ATC = 0, (Bit B2 of Register MODE3 = 0), Left  
channel attenuation data is taken from AL[7:0] of register  
MODE0, and Right channel attenuation data is taken from  
AR[7:0] of register MODE1.  
AL[7:0]  
Left Channel Attenuator Data, where AL7 is the  
MSB and AL0 is the LSB.  
Attenuation Level is given by:  
AR[7:0] Right Channel Attenuator Data, where AR7 is  
the MSB and AR0 is the LSB. Attenuation  
Level is given by:  
ATTEN = 0.5 • (DATA – 255)dB  
ATTEN = 0.5 • (DATA – 255)dB  
For DATA = FFh, ATTEN = –0dB  
For DATA = FFh, ATTEN = –0dB  
For DATA = FEh, ATTEN = –0.5dB  
For DATA = 01h, ATTEN = –127.5dB  
For DATA = 00h, ATTEN = infinity = Mute  
For DATA = FEh, ATTEN = –0.5dB  
For DATA = 01h, ATTEN = –127.5dB  
For DATA = 00h, ATTEN = infinity = Mute  
LDL  
Left Channel Attenuation Data Load Control.  
This bit is used to simultaneously set attenua-  
tion levels of both the Left and Right channels.  
LDR  
Right Channel Attenuation Data Load Control.  
This bit is used to simultaneously set attenuation  
levels of both the Left and Right channels.  
When LDL = 1, the Left channel output level is  
set by the data in AL[7:0]. The Right channel  
output level is set by the data in AL[7:0], or the  
most recently programmed data in bits AR[7:0]  
of register MODE1.  
When LDR = 1, the Right channel output level  
is set by the data in AR[7:0], or by the data in  
bits AL[7:0] of register MODE0. The Left chan-  
nel output level is set to the most recently  
programmed data in bits AL[7:0] of register  
MODE0.  
When LDL = 0, the Left channel output data  
remains at its previously programmed level.  
When LDR = 0, the Right channel output data  
remains at its previously programmed level.  
DF1704  
SBAS099A  
11  
MODE2 Register  
MODE3 Register  
The MODE2 register is used to program various functions:  
The MODE3 register is used to program various functions.  
MUT  
Soft Mute Function.  
I2S  
Input Data Format.  
When MUT = 0, Soft Mute is ON for both Left  
and Right channels.  
When I2S = 0, standard or left-justified formats  
are enabled.  
When MUT = 1, Soft Mute is OFF for both Left  
and Right channels.  
When I2S = 1, the I2S formats are enabled.  
LRP  
LRCIN Polarity Selection.  
DEM  
Digital De-Emphasis Function.  
When LRP = 0, Left channel is HIGH and Right  
channel is LOW.  
When DEM = 0, de-emphasis is OFF.  
When DEM = 1, de-emphasis is ON.  
When LRP = 1, Left channel is LOW and Right  
channel is HIGH.  
IW[1:0]  
Input Data Format and Word Length.  
I2S IW1  
IW0  
0
Description  
ATC  
Attenuator Control.  
0
0
16-Bit Data, Standard  
Format (MSB-First,  
Right-Justified)  
This bit is used to determine whether the Left  
and Right channel attenuators operate with inde-  
pendent data, or use common data (the Left  
channel data in bits AL[7:0] of register MODE0).  
0
0
0
0
1
1
1
0
1
20-Bit Data, Standard  
Format  
When ATC = 0, the Left and Right channel  
attenuator data is independent.  
24-Bit Data, Standard  
Format  
When ATC = 1, the Left and Right channel  
attenuators use common data.  
24-Bit Data, MSB-First,  
Left-Justified  
SRO  
CKO  
Digital Filter Roll-Off Selection.  
1
1
1
1
0
0
1
1
0
1
0
1
16-Bit Data, I2S Format  
24-Bit Data, I2S format  
Reserved  
When SRO = 0, sharp roll-off is selected.  
When SRO = 1, slow roll-off is selected.  
CLKO Output Frequency Selection.  
When CKO = 0, the CLKO frequency is the  
same as the clock at the XTI input.  
When CKO =1, the CLKO frequency is half of  
the XTI input clock frequency.  
Reserved  
OW[1:0] Output Data Word Length.  
OW1 OW0 Description  
0
0
1
1
0
1
0
1
16-Bit Data, MSB-First  
18-Bit Data, MSB-First  
20-Bit Data, MSB-First  
24-Bit Data, MSB-First  
SF[1:0]  
Sampling Frequency Selection for the De-Em-  
phasis Function.  
SF1 SF0  
Description  
0
0
1
1
0
1
0
1
44.1 kHz  
Reserved  
48 kHz  
32 kHz  
DF1704  
12  
SBAS099A  
provides complete isolation between the digital and analog  
sections of the board. Texas Instrument’s ISO150 dual  
digital coupler provides excellent isolation, and operates at  
speeds up to 80Mbps.  
APPLICATIONS INFORMATION  
PCB LAYOUT GUIDELINES  
In order to obtain the specified performance from the DF1704  
and its associated DACs, proper printed circuit board layout  
is essential. Figure 11 shows two approaches for obtaining  
the best audio performance.  
POWER SUPPLIES AND BYPASSING  
The DF1704 requires a single +5V power supply for  
operation. The power supply should be bypassed by a 10µF  
and 0.1µF parallel capacitor combination. The capacitors  
should be placed as close as possible to VDD (pin 22).  
Aluminum electrolytics or tantalum capacitors can be used  
for the 10µF value, while ceramics may be used for the  
0.1µF value.  
Figure 11(a) shows a standard, mixed signal layout scheme.  
The board is divided into digital and analog sections, each  
with its own ground. The ground areas should be put on a  
split-plane, separate from the routing and power layers. The  
DF1704 and all digital circuitry should be placed over the  
digital section, while the audio DACs and analog circuitry  
should be located over the analog section of the board. A  
common connection between the digital and analog grounds  
is required and is done at a single point as shown.  
BASIC CIRCUIT CONNECTIONS  
Figures 12 and 13 show basic circuit connections for the  
DF1704. Figure 12 shows connections for Hardware mode  
controls, while Figure 13 shows connections for Software  
mode controls. Notice the placement of C1 and C2 in both  
figures, as they are physically close to the DF1704.  
For Figure 11(a), digital signals should be routed from the  
DF1704 to the audio DACs using short, direct connections  
to reduce the amount of radiated high-frequency energy. If  
necessary, series resistors may be placed in the clock and  
data signal paths to reduce or eliminate any overshoot or  
undershoot present on these signals. A value of 50to 100Ω  
is recommended as a starting point, but the designer should  
experiment with the resistor values in order to obtain the best  
results.  
TYPICAL APPLICATIONS  
The DF1704 will typically be used in high-performance  
audio equipment, in conjunction with high-performance  
audio DACs. Figure 14 shows a typical application circuit  
example, employing the DF1704, a digital audio receiver,  
and two PCM1704 24-bit, 96kHz audio DACs.  
Figure 11(b) shows an improved method for high perfor-  
mance, mixed signal board layout. This method adds digital  
isolation between the DF1704 and the audio DACs, and  
DF1704  
SBAS099A  
13  
(a) Layout Without Isolation  
Common  
Ground  
Connection  
Digital Power  
Supplies  
Analog Power  
Supplies  
WCKO  
BCKO  
DOL  
DAC  
DOR  
DF1704  
DAC  
Digital Section  
Analog Section  
Split Ground Plane  
(b) Layout With Isolation  
Digital Power  
Supplies  
Analog Power  
Supplies  
WCKO  
BCKO  
DOL  
ISO150  
DAC  
DOR  
DF1704  
DAC  
ISO150  
Digital Section  
Analog Section  
= DGND  
= AGND  
Split Ground Plane  
FIGURE 11. PCB Layout Model.  
DF1704  
14  
SBAS099A  
DF1704  
1
2
3
4
5
6
7
8
9
DIN  
LRCIN 28  
SRO 27  
BCKO 26  
WCKO 25  
DOL 24  
DOR 23  
VDD 22  
BCKIN  
I2S  
Audio  
Data  
and  
Clock  
Source  
D/A  
Converters  
or  
Digital  
Couplers  
IW0  
IW1  
XTI  
22pF  
22pF  
XTAL  
XTO  
VSS  
+5V  
+
C1  
0.1µF  
C2  
10µF  
NC 21  
CLKO  
OW1 20  
OW0 19  
SF1 18  
(optional)  
10 MODE  
11 MD/CKO  
12 MC/LRIP  
13 ML/RESV  
14 RST  
SF0 17  
DEM 16  
MUTE 15  
Digital  
Logic  
7
or  
7
Manual  
Controls  
= DGND  
NOTE: Do not allow pins 3-5, 11-20, and 27 to float. These pins should be manually  
connected to VDD or DGND (hardwired, switch, jumper) or actively driven by logic.  
FIGURE 12. Basic Circuit Connections, Hardware Control.  
DF1704  
Audio  
Data  
and  
Clock  
Source  
1
2
3
4
5
6
7
8
9
DIN  
LRCIN 28  
SRO 27  
BCKO 26  
WCKO 25  
DOL 24  
DOR 23  
VDD 22  
BCKIN  
I2S  
D/A  
Converters  
or  
Digital  
Couplers  
IWO  
IW1  
XTI  
22pF  
22pF  
XTAL  
XTO  
VSS  
+5V  
+
C1  
C2  
NC 21  
0.1µF  
10µF  
CLKO  
OW1 20  
OW0 19  
SF1 18  
(optional)  
10 MODE  
11 MD  
12 MC  
13 ML  
+5V  
Controller  
or  
Logic  
SF0 17  
DEM 16  
MUTE 15  
14 RST  
= DGND  
FIGURE 13. Basic Circuit Connection, Software Control.  
DF1704  
SBAS099A  
15  
DIGITAL  
SECTION  
ANALOG  
SECTION  
WORD CLOCK  
DF1704  
Digital  
Audio  
Input  
Digital  
Audio  
Receiver  
DATA  
PCM1704  
1
2
3
4
5
6
7
8
9
DIN  
LRCIN 28  
SRO 27  
BCKO 26  
WCKO 25  
DOL 24  
DOR 23  
VDD 22  
BCLK  
WCLK  
DATA  
BIT CLOCK  
SYSTEM CLOCK  
Left  
Channel  
Out  
BCKIN  
I2S  
D/A  
Converter  
Post  
Filter  
I/V  
IWO  
IW1  
XTI  
XTO  
VSS  
NC 21  
CLKO  
OW1 20  
OW0 19  
SF1 18  
PCM1704  
10 MODE  
11 MD  
12 MC  
13 ML  
+5V  
BCLK  
WCLK  
DATA  
Micro  
Controller  
or  
Right  
Channel  
Out  
D/A  
Converter  
Post  
Filter  
Host  
Interface  
I/V  
SF0 17  
Logic  
DEM 16  
MUTE 15  
14 RST  
System  
Reset  
+
+5V  
10µF  
0.1µF  
= DGND  
+5V  
FIGURE 14. DF1704 Typical Application Circuit.  
DF1704  
16  
SBAS099A  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Jul-2009  
PACKAGING INFORMATION  
Orderable Device  
DF1704E  
Status (1)  
NRND  
NRND  
NRND  
NRND  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SSOP  
DB  
28  
28  
28  
28  
47 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
DF1704E/2K  
DF1704E/2KG4  
DF1704EG4  
SSOP  
SSOP  
SSOP  
DB  
DB  
DB  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
47 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jun-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
DF1704E/2K  
SSOP  
DB  
28  
2000  
330.0  
17.4  
8.5  
10.8  
2.4  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jun-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SSOP DB 28  
SPQ  
Length (mm) Width (mm) Height (mm)  
336.6 336.6 28.6  
DF1704E/2K  
2000  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

DF1704E/2K

SoundPlus(TM) Stereo, 24-Bit, 96kHz 8X Oversampling Digital Interpolation Filter D/A Converter 28-SSOP
TI

DF1704E/2K

Digital Filter, CMOS, PDSO28, GREEN, SSOP-28
BB

DF1704E/2KG4

SoundPlus(TM) Stereo, 24-Bit, 96kHz 8X Oversampling Digital Interpolation Filter D/A Converter 28-SSOP
TI

DF1704EG4

Stereo, 24-Bit, 96kHz 8X Oversampling Digital Interpolation Filter
TI

DF1706

Stereo, 24-Bit, 192kHz 8x Oversampling Digital Interpolation Filter
TI

DF1706E

Stereo, 24-Bit, 192kHz 8x Oversampling Digital Interpolation Filter
TI

DF1706E/2K

Stereo, 24-Bit, 192kHz 8x Oversampling Digital Interpolation Filter
TI

DF1706E/2KG4

IC DSP-DIGITAL FILTER, PDSO28, GREEN, SSOP-28, DSP Peripheral
TI

DF1706EG4

DSP-DIGITAL FILTER, PDSO28, GREEN, SSOP-28
TI

DF1706_14

Stereo, 24-Bit, 192kHz 8x Oversampling Digital Interpolation Filter
TI

DF170S

DF SERIES 15 AMP THERMAL CUTOFFS
THERMTROL

DF174.0-20DS-0.5V57

0.5mm Pitch Board to Board Connector
HRS