DLP2021-Q1 [TI]

汽车类 0.2 英寸 DLP® 数字微镜器件 (DMD);
DLP2021-Q1
型号: DLP2021-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 0.2 英寸 DLP® 数字微镜器件 (DMD)

文件: 总27页 (文件大小:1343K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
DLP2021-Q1 0.2 16:9 数字微镜器件  
1 特性  
3 说明  
• 具有符AEC-Q100 标准的下列特性  
DLP2021-Q1 汽车数字微镜器件 (DMD) 专为汽车外部  
照明控制和显示应用而设计。应用包括显示全彩色和动  
画及动态内容的地面投影。地面投影有助于实现车辆对  
行人 (V2P) 通信例如倒车和车门打开警告以及协  
调车辆通信系统和汽车个性化选项。由于尺寸小且运行  
功耗低采用 DLP2021-Q1 芯片组的投影仪可以支持  
很多投影应用。这类投影仪可以安装在车辆上的很多位  
例如后视镜、车门、尾灯以及前格栅等等。  
– 器件温度等2-40°C +105°C 环境工作温  
度范围  
– 人体放电模(HBM) ESD 分类等1C  
– 充电器件模(CDM) ESD 分类等C4B  
0.2 英寸对角线微镜阵列  
7.6µm 微镜间距  
±12° 微镜倾斜角相对于平面)  
– 可减小系统尺寸的侧向照明  
16:9 (588 × 330) 输入分辨率  
• 高832 × 468 的有效分辨率  
• 偏振无关型空间光调制器  
LED 或激光光源兼容  
• 低功耗260mW最大值)  
• 工作温度范围40°C 105°C  
• 气密封装  
器件信息  
封装  
器件型号(1)  
DLP2021-Q1  
封装尺寸标称值)  
8.55mm × 16.80mm  
FQU (64)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
80MHz 双倍数据速(DDR) 数字微镜器(DMD)  
接口  
2 应用  
动态地面投影  
• 车辆内外视频投影  
DCLK  
SPI  
DATA[0:9]  
CONTROL  
DMD  
MCU  
IRQ  
BIAS  
SPI Flash  
(Video and Images,  
FPGA Configuration)  
SPI  
DMD Voltage  
Regulator  
ENABLE  
OFFSET  
RESET  
DLP2021 Configured  
Controller  
DRIVE_EN  
MUX  
RED_PWM  
BLUE_PWM  
GREEN_PWM  
IADJ  
LED Driver  
PWM_SEL_0  
PWM_SEL_1  
SHUNT_EN  
RED_EN  
GREEN_EN  
BLUE_EN  
GND  
DLP2021-Q1 系统方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: DLPS207  
 
 
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.5 DMD Image Performance Specification....................17  
8.6 Micromirror Array Temperature Calculation.............. 17  
8.7 Micromirror Landed-On/Landed-Off Duty Cycle....... 18  
9 Application and Implementation..................................19  
9.1 Application Information............................................. 19  
9.2 Typical Application.................................................... 19  
9.3 Application Mission Profile Consideration.................20  
10 Power Supply Recommendations..............................21  
10.1 Power Supply Sequencing Requirements.............. 21  
11 Layout...........................................................................23  
11.1 Layout Guidelines................................................... 23  
11.2 Temperature Diode Pins..........................................23  
12 Device and Documentation Support..........................24  
12.1 Device Support....................................................... 24  
12.2 Documentation Support.......................................... 25  
12.3 接收文档更新通知................................................... 25  
12.4 支持资源..................................................................25  
12.5 Trademarks.............................................................25  
12.6 Electrostatic Discharge Caution..............................25  
12.7 Device Handling......................................................25  
12.8 术语表..................................................................... 25  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 Storage Conditions..................................................... 5  
7.3 ESD Ratings............................................................... 5  
7.4 Recommended Operating Conditions.........................5  
7.5 Thermal Information....................................................6  
7.6 Electrical Characteristics.............................................7  
7.7 Timing Requirements..................................................7  
7.8 System Mounting Interface Loads.............................. 9  
7.9 Micromirror Array Physical Characteristics...............10  
7.10 Micromirror Array Optical Characteristics............... 12  
7.11 Window Characteristics...........................................12  
7.12 Chipset Component Usage Specification............... 12  
8 Detailed Description......................................................13  
8.1 Overview...................................................................13  
8.2 Functional Block Diagram.........................................13  
8.3 Feature Description...................................................14  
8.4 System Optical Considerations.................................16  
Information.................................................................... 25  
13.1 Package Option Addendum....................................26  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (February 2022) to Revision A (November 2022)  
Page  
• 根据最新的德州仪(TI) 和行业数据表标准对本文档进行了更新.......................................................................1  
Updated Electrostatic discharge HBM value...................................................................................................... 5  
Updated RESET_STROBE Setup and Hold values........................................................................................... 8  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DLP2021-Q1  
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
5 说明)  
该芯片组能够与 LED 或激光器搭配使用以生成具有 125% 以上国家电视系统委员(NTSC) 色域的高饱和度颜  
并且可以与 RGB 或白色光源搭配使用。DLP2021-Q1 具有现场可编程门阵列 (FPGA) 配置可用于驱动  
DLP2021-Q1 汽车 DMD。此控制器架构专为小型投影仪而设计不需要视频总线或图形处理单元 (GPU) 即可创  
建内容。视频和图像内容存储在本地闪存中上电即可播放也可根据命令进行播放。  
6 Pin Configuration and Functions  
16 15 14 13  
4
3
12  
5
2
1
G
F
E
D
C
B
A
6-1. FQU Package 64-Pin LGA Bottom View  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DLP2021-Q1  
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
A2  
A4  
B2  
B3  
B5  
C2  
C3  
B4  
C5  
D2  
F4  
DATA(0)  
DATA(1)  
DATA(2)  
DATA(3)  
DATA(4)  
DATA(5)  
DATA(6)  
DATA(7)  
DATA(8)  
DATA(9)  
DCLK  
Data bus. Synchronous to rising edge and falling edge of DCLK  
Data clock  
LVCMOS input  
Parallel latch load enable. Synchronous to rising edge and  
falling edge of DCLK  
LOADB  
SCTRL  
TRC  
F3  
E4  
Serial control (sync). Synchronous to rising edge and falling  
edge of DCLK  
Toggle rate control. Synchronous to rising edge and falling edge  
of DCLK  
F2  
Reset control serial bus. Synchronous to rising edge of  
SAC_CLK  
DAD_BUS  
B15  
RESET_OEZ  
C15  
B13  
Active low. Output enable signal for internal reset driver circuitry  
Rising edge on RESET_STROBE latches in the control signals  
RESET_STROBE  
Stepped address control serial bus. Synchronous to rising edge  
of SAC_CLK  
SAC_BUS  
A15  
SAC_CLK  
TEMP_MINUS  
TEMP_PLUS  
VBIAS  
A14  
G13  
G2  
Stepped address control clock  
Calibrated temperature diode used to assist accurate  
temperature measurements of DMD die  
Analog input  
D15  
Power supply for positive bias level of mirror reset signal  
Power supply for low voltage CMOS logic. Power supply for  
normal high voltage at mirror address electrodes. Power supply  
for offset level of mirror reset signal during power down  
A5, B12, C14, D12,  
F13, G3  
VCC  
Power supply for high voltage CMOS logic. Power supply for  
stepped high voltage at mirror address electrodes. Power  
supply for offset level of mirror reset signal  
VOFFSET  
VRESET  
E14  
D14  
Power  
Power supply for negative reset level of mirror reset signal  
A3, A13, B14, C4,  
C12, C13, D13, E3,  
E5, E12, F12, F14,  
G4, G12  
VSS  
Common return for all power  
A1, A12, A16,B1,  
B16, D3, D4, D5,  
E2, E13,E15, F1,  
F5, F15, F16, G1,  
G5, G14, G15, G16  
RESERVED  
Reserved  
Do not connect.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DLP2021-Q1  
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
See (1)  
MIN  
NOM  
MAX  
UNIT  
SUPPLY VOLTAGE  
VDD  
LVCMOS logic supply voltage  
2.3  
8.75  
17  
V
V
V
V
V
V
0.5  
0.5  
0.5  
11  
VOFFSET  
VBIAS  
Supply voltage for HVCMOS and micromirror electrode  
Supply voltage for micromirror electrode  
Supply voltage for micromirror electrode  
Supply voltage delta (absolute value)  
VRESET  
0.5  
8.75  
28  
| VBIASVOFFSET  
|
Supply voltage delta (absolute value)  
| VBIASVRESET  
|
INPUT VOLTAGE  
Input voltage for LVCMOS Pins  
VDD + 0.5  
500  
V
0.5  
40  
TEMPERATURE DIODE  
ITEMP_DIODE  
ENVIRONMENTAL  
TARRAY  
Max current source into temperature diode  
µA  
Operating DMD array temperature  
105  
°C  
Illumination overfill maximum heat load in area shown  
in Illumination Overfill Diagram  
ILLOVERFILL  
50 mW/mm2  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and  
this may affect device reliability, functionality, performance, and shorten the device lifetime.  
7.2 Storage Conditions  
Applicable for the DMD as a component or non-operating in a system.  
MIN  
MAX  
UNIT  
Tstg  
DMD storage temperature  
125  
°C  
40  
7.3 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
±1000  
±750  
V(ESD) Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.4 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
UNIT  
SUPPLY VOLTAGE RANGE  
Supply voltage for LVCMOS core logic  
VDD  
1.7  
1.8  
1.95  
V
Supply voltage for LPSDR low-speed interface  
Supply voltage for HVCMOS and micromirror electrode  
Supply voltage for mirror electrode  
VOFFSET  
VBIAS  
8.25  
15.5  
8.5  
16  
8.75  
16.5  
V
V
V
V
V
VRESET  
Supply voltage for micromirror electrode  
Supply voltage delta (absolute value)  
9.5  
10  
10.5  
8.75  
| VBIASVOFFSET  
| VBIASVFRESET  
|
|
Supply voltage delta (absolute value)  
28  
LVCMOS Buffers  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DLP2021-Q1  
 
 
 
 
 
 
 
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.4 Recommended Operating Conditions (continued)  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.7  
NOM  
MAX  
UNIT  
VIH  
Positive going threshold voltage  
Negative going threshold voltage  
VDD+0.3 x VDD  
VIL  
-0.3  
0.3  
x VDD  
CLOCK FREQUENCY  
Clock frequency for high speed interface SAC_CLK  
Duty Cycle Distortion tolerance SAC_CLK  
Clock frequency for high speed interface DCLK  
Duty Cycle Distortion tolerance DCLK  
20  
30  
20  
30  
76.2  
76.2  
80  
70  
80  
70  
MHz  
%
ƒmax  
DCDIN  
MHz  
%
ƒmax  
DCDIN  
TEMPERATURE DIODE  
ITEMP_DIODE  
ENVIRONMENTAL  
TARRAY  
Max current source into temperature diode  
120  
uA  
Operating DMD array temperature(3)  
Illumination, wavelength < 395 nm (2)  
105  
°C  
40  
ILLUV  
2 mW/cm 2  
Illumination overfill maximum heat load in area  
shown in Illumination Overfill Diagram  
ILLOVERFILL  
40 mW/mm 2  
(1) Recommended Operating Conditions are applicable after the DMD is installed in the final product.  
(2) The maximum operation conditions for operating temperature and UV illumination shall not be implemented simultaneously.  
(3) Operating profile information for device micromirror landed duty-cycle and temperature may be provided if requested.  
Limited illumination area  
on window apertur
Window  
dow  
ture  
Wi
Window  
Aperture  
7-1. Illumination Overfill Diagram  
7.5 Thermal Information  
DLP2021-Q1  
FQU  
THERMAL METRIC  
UNIT  
64 PINS  
5
Thermal resistance  
Active area-to-test point 1 (TP1) (1)  
°C/W  
(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of  
maintaining the package within the temperature range specified in the Recommended Operating Conditions. The total heat load on the  
DMD is largely driven by the incident light absorbed by the active area, although other contributions include light energy absorbed by  
the window aperture and electrical power dissipation of the array. Optical systems should be designed to minimize the light energy  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DLP2021-Q1  
 
 
 
 
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
falling outside the window clear aperture since any additional thermal load in this area can significantly degrade the reliability of the  
device.  
7.6 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted) (1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT  
IDD  
Supply current: VDD  
VDD = 1.95 V  
30  
15  
mA  
mA  
mA  
mA  
IOFFSET  
IBIAS  
Supply current: VOFFSET  
Supply current: VBIAS  
Supply current: VRESET  
VOFFSET = 8.75 V  
VBIAS = 16.5 V  
2.3  
3.3  
IRESET  
POWER  
PDD  
VRESET = 10.5 V  
Supply power dissipation: VDD  
Supply power dissipation: VOFFSET  
Supply power dissipation: VBIAS  
Supply power dissipation: VRESET  
Supply power dissipation: Total  
VDD = 1.95 V  
60  
132  
38  
mW  
mW  
mW  
mW  
mW  
POFFSET  
PBIAS  
PRESET  
PTOTAL  
LVCMOS Buffers  
VOFFSET = 8.75 V  
VBIAS = 16.5 V  
VRESET = 10.5 V  
30  
260  
VOH  
VOL  
IIL  
High level output voltage  
0.8 × VDD  
100  
5  
V
IOH = 2 mA  
Low level output voltage  
Low level input current(2)  
High level output current(2)  
Low level input current(3)  
High level output current(3)  
IOH = 2 mA  
0.2 × VDD  
135  
V
VDD = 1.95 V; VI = 0 V  
VDD = 1.95 V; VI = 1.95 V  
VDD = 0.0 V  
nA  
uA  
uA  
uA  
IIH  
IIL2  
IIH2  
CAPACITANCE  
VDD = 1.95 V  
785  
CIN  
Input capacitance  
10  
15  
25  
pF  
pF  
pF  
ƒ= 1 MHz  
ƒ= 1 MHz  
ƒ= 1 MHz  
COUT  
CTEMP  
Output capacitance  
Temperature sense diode capacitance  
(1) Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.  
(2) Specification is for LVCMOS input pins which do not have pull up or pull down resistors.  
(3) Specification is for LVCMOS input pins which do have pull down resistors.  
7.7 Timing Requirements  
Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted  
MIN  
NOM  
MAX  
UNIT  
DMD MIRROR AND SRAM CONTROL LOGIC SIGNALS  
tsu  
th  
tsu  
th  
1
1
1
1
ns  
ns  
ns  
ns  
Setup time SAC_BUS low before SAC_CLK↑  
Hold time SAC_BUS low after SAC_CLK↑  
Setup time DAD_BUS high before SAC_CLK↑  
Hold time DAD_BUS high after SAC_CLK↑  
DMD DATA PATH AND LOGIC CONTROL SIGNALS  
tsu  
th  
tsu  
th  
tsu  
th  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time DATA(9:0) before DCLKor DCLK↓  
Hold time DATA(9:0) after DCLKor DCLK↓  
Setup time SCTRL before DCLKor DCLK↓  
Hold time SCTRL after DCLKor DCLK↓  
Setup time TRC before DCLKor DCLK↓  
Hold time TRC after DCLKor DCLK↓  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DLP2021-Q1  
 
 
 
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.7 Timing Requirements (continued)  
Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted  
MIN  
1.0  
1.0  
1.5  
NOM  
MAX  
UNIT  
ns  
Setup time LOADB low before DCLKor DCLK  
tsu  
th  
ns  
Hold time LOADB low after DCLKor DCLK↓  
Setup time RESET_STROBE high before DCLK  
or DCLK↓  
tsu  
ns  
Hold time RESET_STROBE high after DCLK↑  
or DCLK↓  
th  
tw  
tw  
tw  
tr  
1.5  
5
ns  
ns  
ns  
ns  
ns  
ns  
Pulse width 50% to 50% reference points: DCLK  
high or low  
pulse width 50% to 50% reference points: LOADB  
low  
7
pulse width 50% to 50% reference points:  
RESET_STROBE high  
7
Rise time 20% to 80% reference points: DCLK,  
DATA, SCTRL, TRC, LOADB,SAC_CLK  
2.5  
2.5  
Fall time 80% to 20% reference points: DCLK,  
DATA, SCTRL, TRC, LOADB,SAC_CLK  
tf  
tW  
tW  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
SAC_CLK  
tH  
tSU  
50%  
50%  
SAC_BUS  
tSU  
tH  
50%  
50%  
DAD_BUS  
VCC  
80%  
20%  
SAC_CLK  
VSS  
tR  
tF  
7-2. DMD Mirror and SRAM Control Logic Timing Requirements  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DLP2021-Q1  
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
tW  
tW  
DCLK  
50%  
50%  
50%  
50%  
50%  
tH  
tH  
tSU  
tSU  
DATA  
SCTRL  
TRC  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
tSU  
tH  
50%  
50%  
LOADB  
tW(L)  
tH  
tSU  
50%  
50%  
RESET_STROBE  
tW(L)  
VCC  
80%  
DCLK  
DATA  
SCTRL  
TRC  
LOADB  
20%  
VSS  
tR  
tF  
7-3. DMD Data Path and Control Logic Timing Requirements  
7.8 System Mounting Interface Loads  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
Uniformly distributed within the Thermal Interface Area shown in  
7-4  
Thermal Interface Area  
Electrical Interface Area  
70  
N
Uniformly distributed within the Electrical Interface Area shown  
in 7-4  
100  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DLP2021-Q1  
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
Thermal Interface Area  
Electrical Interface Area  
7-4. System Interface Loads  
7.9 Micromirror Array Physical Characteristics  
PARAMETER  
VALUE  
416  
UNIT  
micromirrors  
micromirrors  
µm  
M
N
Number of active columns(1)  
Number of active rows(1)  
468  
Micromirror Pitch (diagonal)(2)  
7.6  
ε
P
Micromirror Pitch (horizontal and vertical)(2)  
Micromirror active array width  
Micromirror active array height  
Micromirror active border  
10.8  
4.498  
2.533  
10  
µm  
(P × M) + (P / 2)  
mm  
(P x N) / 2 + (P / 2)  
mm  
Pond of micromirrors (POM) (3)  
micromirrors/side  
(1) See Array Physical Characteristics.  
(2) See Pixel Pitch.  
(3) The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM.  
These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical  
bias to tilt toward OFF.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DLP2021-Q1  
 
 
 
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
(0,0)  
Illumination  
Border Mirrors (POM) are Omitted for Clarity  
Row 0  
Row 1  
Row 2  
Row 3  
Row 4  
Row 5  
Row 6  
Row 7  
Illumination  
On-State  
Off-State  
Tilt Direction  
Tilt Direction  
DMD Active Mirror Array  
Row 460  
Row 461  
Row 462  
Row 463  
Row 464  
Row 465  
Row 466  
Row 467  
4.4982 mm  
DMD Periphery  
7-5. Micromirror Array Physical Characteristics  
x
(
u
m
)
P (um)  
7-6. Mirror (Pixel) Pitch  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DLP2021-Q1  
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7.10 Micromirror Array Optical Characteristics  
PARAMETER  
Micromirror tilt angle  
DMD efficiency(2)  
TEST CONDITIONS  
MIN  
NOM  
12  
MAX  
UNIT  
DMD landed state(1)  
11  
13  
degree  
66%  
420 nm 700 nm  
(1) Measured relative to the plane formed by the overall micromirror array at 25°C  
(2) DMD efficiency is measured photopically under the following conditions: 24° illumination angle, F/2.4 illumination and collection  
apertures, uniform source spectrum (halogen), uniform pupil illumination, the optical system is telecentric at the DMD, and the  
efficiency numbers are measured with 100% electronic micromirror landed duty-cycle and do not include system optical efficiency or  
overfill loss. This number is measured under conditions described above and deviations from these specified conditions could result in  
a different efficiency value in a different optical system. The factors that can influence the DMD efficiency related to system application  
include: light source spectral distribution and diffraction efficiency at those wavelengths (especially with discrete light sources such as  
LEDs or lasers), and illumination and collection apertures (F/#) and diffraction efficiency. DLPA083A describes the interaction of these  
system factors, as well as the DMD efficiency factors that are not system dependent.  
7.11 Window Characteristics  
PARAMETER  
MIN  
NOM  
Corning Eagle XG  
1.5119  
MAX  
UNIT  
Window material designation  
Window refractive index  
Window aperture (1)  
at wavelength 546.1 nm  
See (1)  
(1) See the mechanical package ICD for details regarding the size and location of the window aperture.  
7.12 Chipset Component Usage Specification  
The DLP2021-Q1 DMD is a component of a Texas Instruments DLP® chipset including a DLP products  
controller. Reliable function and operation of the DMD requires that it be used in conjunction with a DLP products  
controller.  
备注  
TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system  
operating conditions exceeding limits described previously.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DLP2021-Q1  
 
 
 
 
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The DLP2021-Q1 DMD has a resolution of 416 × 468 mirrors configured in a diamond format that results in an  
aspect ratio of 16:9 which creates an effective resolution of 588 × 330 square pixels. By configuring the pixels in  
a diamond format, the illumination input to the DMD enters from the side allowing for smaller mechanical  
packaging of the optical system.  
8.2 Functional Block Diagram  
V
V
CC  
SS  
DMD Mirror &  
SRAM  
Control Logic  
RESET_OEZ  
DAD_BUS  
V
CC  
RESET_SROBE  
SAC_BUS  
V
SS  
DMD Mirror &  
SRAM Voltage  
Control  
DMD Data  
Path and  
Logic  
SAC_CLK  
DATA(9:0)  
DCLK  
0.2 16:9 Aspect Ratio  
SRAM & Micromirror Array  
Control  
V
V
V
V
V
RESET  
BIAS  
OFFSET  
CC  
LOADB  
SCTRL  
TRC  
SS  
TEMP_PLUS  
TEMP_MINUS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DLP2021-Q1  
 
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.3 Feature Description  
To ensure reliable operation, the DLP2021-Q1 DMD must be used with a DLP products controller.  
8.3.1 Micromirror Array  
The DLP2021-Q1 DMD consists of a two-dimensional array of 1-bit CMOS memory cells that determine the state  
of the each of the 416 × 468 micromirrors in the array. Refer to 7.9 section for a calculation of how the 416 ×  
468 micromirror array represents a 16:9 dimensional aspect ratio to the user. Each micromirror is either ON  
(tilted +12°) or OFF (tilted 12°). Combined with appropriate projection optical system the DMD can be used to  
create sharp, colorful, and vivid digital images.  
8.3.2 Double Data Rate (DDR) Interface  
Each DMD micromirror and its associated SRAM memory cell is loaded with data from the DLP controller via the  
DDR interface (DATA(9:0), DCLK, LOADB, SCRTL, and TRC). These signals are low voltage CMOS nominally  
operating at 1.8-V level to reduce power and switching noise. This high speed data input to the DMD allows for a  
maximum update rate of the entire micromirror array to be nearly 5 kHz, enabling the creation of seamless digital  
images using Pulse Width Modulation (PWM).  
8.3.3 Micromirror Switching Control  
Once data is loaded onto the DMD, the mirrors switch position (+12° or 12°) based on the timing signal sent to  
the DMD Mirror and SRAM control logic. The DMD mirrors will be switched from OFF to ON or ON to OFF, or  
stay in the same position based on control signals DAD_BUS, RESET_STROBE, SAC_BUS, and SAC_CLK,  
which are coordinated with the data loading by the DLP controller. In general, the DLP controller loads the DMD  
SRAM memory cells over the DDR interface, and then commands to the micromirrors to switch position.  
At power down, the DMD Mirrors are commanded by the DLP controller to move to a near flat (0°) position as  
shown in 10. The flat state position of the DMD mirrors are referred to as the Parkedstate. To maintain  
long-term DMD reliability, the DMD must be properly Parkedprior to every power down of the DMD power  
supplies.  
8.3.4 DMD Voltage Supplies  
The micromirrors switching requires unique voltage levels to control the mechanical switching. These voltages  
levels are nominally 16 V, 8.5 V, and 10 V (VBIAS, VOFFSET, and VRESET). The specification values for VBIAS  
VOFFSET, and VRESET are shown in 7.4.  
,
8.3.5 Logic Reset  
Reset of the DMD is required and controlled by the DLP products controller.  
8.3.6 Temperature Sensing Diode  
The DMD includes a temperature sensing diode designed to be used with the TMP411-Q1 or equivalent  
temperature monitoring device.  
8-1 shows the typical connection between the DLP products controller, TMP411-Q1, and the DLP2021-Q1  
DMD. The signals to the temperature sense diode are sensitive to system noise, and care should be taken in the  
routing and implementation of this circuit. See the TMP411-Q1 data sheet for detailed PCB layout  
recommendations.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DLP2021-Q1  
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
DLP Products Controller  
DMD  
50  
SCL  
SCA  
D+  
D-  
100 pF  
50  
Temperature  
Sense IC  
8-1. Temperature Sense Diode Typical Circuit Configuration  
It is recommended that the host controller manage parking of the DMD based on the allowable temperature  
specifications and temperature measurements.  
8.3.6.1 Temperature Sense Diode Theory  
A temperature sensing diode is based on the fundamental current and temperature characteristics of a transistor.  
The diode is formed by connecting the transistor base to the collector. Two different known currents flow through  
the diode and the resulting diode voltage is measured in each case. The difference in the base-emitter voltages  
is proportional to the absolute temperature of the transistor.  
Refer to the TMP411-Q1 data sheet for detailed information about temperature diode theory and measurement.  
8-2 and 8-3 illustrate the relationship between the current and voltage through the diode.  
IE1  
IE2  
+
VBE 1,2  
-
8-2. Temperature Measurement Theory  
100uA  
10uA  
1uA  
Temperature (°C)  
Temperature (°C)  
8-3. Example of Delta VBE vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DLP2021-Q1  
 
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.4 System Optical Considerations  
Optimizing system optical performance and image performance strongly relates to optical system design  
parameter trades. Although it is not possible to anticipate every conceivable application, projector image quality  
and optical performance is contingent on compliance to the optical system operating conditions described in the  
following sections.  
8.4.1 Numerical Aperture and Stray Light Control  
The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area  
should be the same. This angle should not exceed the nominal device mirror tilt angle unless appropriate  
apertures are added in the illumination and/or projection pupils to block flat-state and stray light from passing  
through the projection lens. The mirror tilt angle defines DMD capability to separate the "On" optical path from  
any other light path, including undesirable flat-state specular reflections from the DMD window, DMD border  
structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture  
exceeds the mirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than  
the illumination numerical aperture angle, contrast ratio can be reduced and objectionable artifacts in the image  
border and/or active area could occur.  
8.4.2 Pupil Match  
TIs optical and image quality specifications assume that the exit pupil of the illumination optics is nominally  
centered within two degrees of the entrance pupil of the projection optics. Misalignment of pupils can create  
objectionable artifacts in the image border and/or active area, which may require additional system apertures to  
control, especially if the numerical aperture of the system exceeds the pixel tilt angle.  
8.4.3 Illumination Overfill and Alignment  
Overfill light illuminating the area outside the active array can create artifacts from the mechanical features and  
other surfaces that surround the active array. These artifacts may be visible in the projected image. The  
illumination optical system should be designed to minimize light flux incident outside the active array and on the  
window aperture. Depending on the particular systems optical architecture and assembly tolerances, this  
amount of overfill light on the area outside of the active array may still cause artifacts to be visible. Illumination  
light and overfill can also induce undesirable thermal conditions on the DMD, especially if illumination light  
impinges directly on the DMD window aperture or near the edge of the DMD window. Refer to 7.4 for a  
specification on this maximum allowable heat load due to illumination overfill.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DLP2021-Q1  
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.5 DMD Image Performance Specification  
PARAMETER  
MIN  
NOM  
MAX  
0
UNIT  
Adjacent micromirrors  
Non-adjacent micromirrors  
Number of non-operational micromirrors(1)  
Optical performance  
micromirrors  
10  
See 8.4  
(1) A non-operational micromirror is defined as a micromirror that is unable to transition between the on-state and off-state positions.  
8.6 Micromirror Array Temperature Calculation  
Active array temperature can be computed analytically from measurement points on the outside of the package,  
the package thermal resistance, the electrical power, and the illumination heat load.  
Relationship between array temperature and the reference ceramic temperature (thermocouple location TP1 in  
8-4) is provided by the following equations.  
TARRAY = TCERAMIC + (QARRAY × RARRAY-TO-CERAMIC  
)
(1)  
(2)  
QARRAY = QELECTRICAL + QILLUMINATION  
where  
TARRAY = computed DMD array temperature (°C)  
TCERAMIC = measured ceramic temperature (TP1 location in 8-4) (°C)  
RARRAY-TO-CERAMIC = DMD package thermal resistance from array to TP1 (°C/watt) (see 7.5)  
QARRAY = total power, electrical plus absorbed, on the DMD array (watts)  
QELECTRICAL = nominal electrical power dissipation by the DMD (watts)  
QILLUMINATION = (CL2W × SL)  
CL2W = conversion constant for screen lumens to power on the DMD (watts/lumen)  
SL = measured screen lumens (lm)  
Electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating  
frequencies.  
Absorbed power from the illumination source is variable and depends on the operating state of the mirrors and  
the intensity of the light source.  
Equations shown previous are valid for a 1-Chip DMD system with total projection efficiency from DMD to the  
screen of 87%.  
The constant CL2W is based on the DMD array characteristics. It assumes a spectral efficiency of 300 lumens/  
watt for the projected light and illumination distribution of 83.7% on the active array, and 16.3% on the array  
border.  
Sample calculation:  
SL = 50 lm  
CL2W = 0.00293 W/lm  
QELECTRICAL = 0.105 W  
RARRAY-TO-CERAMIC = 5°C/W  
TCERAMIC = 55°C  
QARRAY = 0.105 W + (0.00293 × 50 lm) = 0.252 W  
(3)  
(4)  
TARRAY = 55°C + (0.252 W × 5°C/W) = 56.26  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DLP2021-Q1  
 
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
Illuminatio
Direction  
Array  
TP1  
10.00  
0
8-4. Thermocouple Location  
8.7 Micromirror Landed-On/Landed-Off Duty Cycle  
The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a  
percentage) that an individual micromirror is landed in the ON state versus the amount of time the same  
micromirror is landed in the OFF state.  
As an example, assuming a fully-saturated white pixel, a landed duty cycle of 90/10 indicates that the referenced  
pixel is in the ON state 90% of the time (and in the OFF state 10% of the time), whereas 10/90 would indicate  
that the pixel is in the OFF state 90% of the time. Likewise, 50/50 indicates that the pixel is ON 50% of the time  
and OFF 50% of the time.  
Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other  
state (OFF or ON) is considered negligible and is thus ignored.  
Since a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages)  
always add to 100.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DLP2021-Q1  
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The DLP2021-Q1 DMD was designed to be used in automotive applications such as dynamic ground projection.  
The information shown in this section describes the dynamic ground projection application.  
9.2 Typical Application  
The DLP2021-Q1 DMD combined with a DLP products controller are the primary devices that make up the  
reference design for a dynamic ground projection system as shown in the block diagram 9-1.  
DCLK  
SPI  
DATA[0:9]  
CONTROL  
DMD  
MCU  
IRQ  
SPI  
BIAS  
SPI Flash  
(Video and Images,  
FPGA Configuration)  
DMD Voltage  
Regulator  
ENABLE  
OFFSET  
RESET  
DLP2021 Configured  
Controller  
DRIVE_EN  
RED_PWM  
BLUE_PWM  
GREEN_PWM  
IADJ  
MUX  
LED Driver  
PWM_SEL_0  
PWM_SEL_1  
SHUNT_EN  
RED_EN  
GREEN_EN  
BLUE_EN  
GND  
9-1. Dynamic Ground Projection System Block Diagram  
In this architecture, video content is compressed and stored in external flash memory. Low speed SPI  
commands are sent from a microcontroller or other processor to the DLP products controller to indicate what  
video content to read from external memory. Storing the video content in memory removes the need for a high  
speed video interface to the module which improves compatibility with typical vehicle infrastructures. It also  
decreases overall system size and cost by removing graphics generation and interfaces. The controller  
decompresses each bit plane of the video data (416 × 468 resolution) and displays them on the DMD in rapid  
succession to create the full video image. Due to the diamond format of the DMD pixels, the output image has an  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DLP2021-Q1  
 
 
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
effective resolution of 588 × 330. The controller synchronizes the DMD bit plane data with the RGB enable  
timing for the LED color controller and driver circuit.  
The controller may connect to a TMP411-Q1 to measure the DLP2021-Q1 temperature using the built-in  
temperature sensing diode.  
The controller combined with the DLP2021-Q1 may be used in RGB LED or laser illumination systems, or in  
single-color systems as shown in 9-2.  
DCLK  
SPI  
DATA[0:9]  
CONTROL  
DMD  
MCU  
IRQ  
SPI  
BIAS  
SPI Flash  
(Video and Images,  
FPGA Configuration)  
DMD Voltage  
Regulator  
ENABLE  
OFFSET  
RESET  
DLP2021 Configured  
Controller  
DRIVE_EN  
LED_PWM  
LED Driver  
SHUNT_EN  
LED_EN  
GND  
9-2. Dynamic Ground Projection System Block Diagram - Single Color  
9.3 Application Mission Profile Consideration  
Each application is anticipated to have different mission profiles, or number of operating hours at different  
temperatures. To assist in evaluation, the automotive DMD reliability lifetime estimates Application Report may  
be provided. See the TI Application team for more information.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DLP2021-Q1  
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 Power Supply Sequencing Requirements  
VBIAS, VCC, VOFFSET, VRESET, VSS are required to operate the DMD.  
CAUTION  
For reliable operation of the DMD, the following power supply sequencing requirements must be  
followed. Failure to adhere to the prescribed power up and power down procedures may affect  
device reliability.  
The VCC, VOFFSET, VBIAS, and VRESET power supplies have to be coordinated during power up  
and power down operations. Failure to meet any of the following requirements will result in a  
significant reduction in the DMDs reliability and lifetime. Refer to 10-1. VSS must also be  
connected.  
DMD Power Supply Power Up Procedure:  
During power up, VCC must always start and settle before VOFFSET, VBIAS and VRESET voltages are applied to  
the DMD.  
During power up, VBIAS does not have to start after VOFFSET. However, it is a strict requirement that the delta  
between VBIAS and VOFFSET must be within ±8.75 V (refer to Note 1 for 10-1).  
During power up, the DMDs LVCMOS input pins shall not be driven high until after VCC has settled at  
operating voltage.  
During power up, there is no requirement for the relative timing of VRESET with respect to VOFFSET and VBIAS  
Power supply slew rates during power up are flexible, provided that the transient voltage levels follow the  
requirements listed previously in 7.4 and in 10-1.  
.
DMD Power Supply Power Down Procedure  
VCC must be supplied until after VBIAS, VRESET, and VOFFSET are discharged to within 4 V of ground.  
During power down it is not mandatory to stop driving VBIAS prior to VOFFSET, but it is a strict requirement that  
the delta between VBIAS and VOFFSET must be within ±8.75 V (refer to Note 1 for 10-1).  
During power down, the DMDs LVCMOS input pins must be less than VCC + 0.3 V.  
During power down, there is no requirement for the relative timing of VRESET with respect to VOFFSET and  
VBIAS  
.
Power supply slew rates during power down are flexible, provided that the transient voltage levels follow the  
requirements listed previously in 7.4 and in 10-1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DLP2021-Q1  
 
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
10.1.1 Power Up and Power Down  
Power  
Off  
VBIAS, VOFFSET, and VRESET  
Disabled by DLP Products Controller  
VCC  
Mirror Park Sequence  
RESET_OEZ  
VSS  
VCC  
VCC  
VSS  
VSS  
VBIAS  
VBIAS  
VBIAS < 4 V  
V < 8.75 v  
VSS  
VSS  
VOFFSET  
V < 8.75 v  
VOFFSET  
VSS  
VSS  
VOFFSET < 4 V  
VRESET < 0.5 V  
VSS  
VSS  
VRESET > - 4 V  
VRESET  
VRESET  
VCC  
LVCMOS  
Inputs  
VSS  
VSS  
A. ±8.75-V delta, V, shall be considered the max operating delta between VBIAS and VOFFSET. Customers may find that the most reliable  
way to ensure this is to power VOFFSET prior to VBIAS during power up and to remove VBIAS prior to VOFFSET during power down.  
10-1. Power Supply Sequencing Requirements (Power Up and Power Down)  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DLP2021-Q1  
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For specific DMD PCB guidelines, use the following:  
VCC should have at least 1 × 2.2-µF and 4 × 0.1-µF capacitors evenly distributed among the 6 VCC pins.  
A 0.1-µF, X7R rated capacitor should be placed near every pin for VBIAS, VRSET, and VOFF  
.
11.2 Temperature Diode Pins  
The DMD has an internal diode (PN junction) that is intended to be used with an external TI TMP411-Q1 or  
equivalent temperature sensing IC. PCB traces from the DMDs temperature diode pins to the TMP411-Q1 are  
sensitive to noise. See the TMP411-Q1 data sheet for specific routing recommendations.  
Avoid routing the temperature diodes signals near other traces to reduce coupling of noise onto these signals.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DLP2021-Q1  
 
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Device Nomenclature  
DLP2021 A FQU Q1  
Automotive Qualified  
Package Type  
Temperature Range  
Device Descriptor  
12-1. Part Number Description  
12.1.2 Device Markings  
The device marking is shown in 12-2. The marking will include both human-readable information and a 2-  
dimensional matrix code.  
The human-readable information is described in 12-2. The 2-dimensional matrix code is an alpha-numeric  
character string that contains the DMD part number and lot trace code.  
Two-Dimensional Matrix Code  
(DMD part number and lot trace code)  
Part Marking  
Lot Trace Code  
12-2. DMD Marking  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DLP2021-Q1  
 
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TMP411-Q1 ±1°C Remote and Local Temperature Sensor With N-Factor and Series  
Resistance Correction data sheet  
Texas Instruments, DMD Optical Efficiency for Visible Wavelengths application report  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
DLP® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 Device Handling  
The DMD is an optical device so precautions should be taken to avoid damaging the glass window. Please see  
the DMD Handling application note for instructions on how to properly handle the DMD.  
12.8 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DLP2021-Q1  
 
 
 
 
 
 
 
 
DLP2021-Q1  
ZHCSMH3A FEBRUARY 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
13.1 Package Option Addendum  
Packaging Information  
Package  
Type  
Lead/Ball  
Finish  
Device  
Marking  
Orderable Device  
Status  
Package Drawing Pins  
FQU 54  
Package Qty Eco Plan  
126 Green  
MSL Peak Temp Op Temp (°C)  
XDLP2021AFQUQ1  
PREVIEW  
CLGA  
Call TI  
N/A for Pkg Type -40 to 105  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on  
information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI  
has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming  
materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DLP2021-Q1  
 
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DLP230GP

DLP® 0.23 qHD DMD
TI

DLP230GPAFQP

0.23-inch, qHD DLP® digital micromirror device (DMD) | FQP | 54 | 0 to 70
TI

DLP230KP

0.23 英寸 HD DLP® 数字微镜器件 (DMD)
TI

DLP230KPAFQP

0.23-inch, HD DLP® digital micromirror device (DMD) | FQP | 54 | 0 to 70
TI

DLP230NP

DLP® 0.23 1080p DMD
TI

DLP230NPAFQP

0.23-inch 1080p DLP® digital micromirror device (DMD) | FQP | 54 | 0 to 70
TI

DLP230NPSEFQP

DLP® 0.23 1080p DMD | FQP | 54 | 0 to 70
TI

DLP2AD

SMD/BLOCK Type EMI Suppression Filters
MURATA

DLP2ADA350HL4

SMD/BLOCK Type EMI Suppression Filters
MURATA

DLP2ADA350HL4B

Common Mode Choke Coil Film Type (Array)
MURATA

DLP2ADA350HL4L

Common Mode Choke Coil Film Type (Array)
MURATA

DLP2ADA670HL4

SMD/BLOCK Type EMI Suppression Filters
MURATA