DLP230KPAFQP [TI]

0.23-inch, HD DLP® digital micromirror device (DMD) | FQP | 54 | 0 to 70;
DLP230KPAFQP
型号: DLP230KPAFQP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

0.23-inch, HD DLP® digital micromirror device (DMD) | FQP | 54 | 0 to 70

商用集成电路
文件: 总43页 (文件大小:2716K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
DLP230KP 0.23 HD DMD  
1 特性  
3 说明  
• 超紧0.23 (5.95mm) 对角线微镜阵列  
DLP230KP 数字微镜器件 (DMD) 是一款数控微光机电  
(MOEMS) 空间光调制(SLM)。当与适当的光学  
系统搭配使用时此器件 DMD 可显示清晰和高质量的  
高清 HD 像或视频。该芯片组包括此 DMD 和  
DLPC3434 制器。DLPA2000 DLPA2005 和  
DLPA3000 PMIC/LED 驱动器也支持该芯片组。此器  
件外形小巧适用于重视高画质、小尺寸和低功耗的便  
携设备。  
1280 × 720 像素屏幕显示  
5.4µm 微镜间距  
17° 微镜倾斜相对于平坦表面)  
– 采用侧面照明实现最优的效率和光学引擎尺寸  
– 偏振无关型铝微镜表面  
8 SubLVDS 输入数据总线  
• 显示应用专用DLPC3434 控制器  
• 专DLPA2000DLPA2005 DLPA3000  
PMIC/LED 驱动器确保可靠运行  
请访问 TI DLP®Pico显示技术入门页面了解有关  
DMD 技术的更多信息。  
2 显示应用  
DMD 提供现成的资源可帮助用户缩短设计周期。这  
些资源包括可直接用于生产环境的光学模块、 光学模  
块制造商设计公司。  
超高移动性超低功Pico 投影仪  
手机、平板电脑和笔记本电脑  
智能扬声器  
器件信息  
智能家居  
封装(1)  
封装尺寸标称值)  
器件型号  
DLP230KP  
FQP (54)  
16.8mm × 5.92mm × 3.58mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
.
.
D_P(0)  
DLPC3434  
Display  
Controller  
D_N(0)  
VOFFSET  
DLPA2000  
D_P(1)  
D_N(1)  
DLPA2005  
DLPA3000  
Power  
VBIAS  
Management  
600 MHz  
SubLVDS  
DDR  
D_P(6)  
D_N(6)  
VRESET  
DLP230KP DMD  
Interface  
Digital  
Micromirror  
Device  
D_P(7)  
D_N(7)  
VDDI  
VDD  
DCLK_P  
DCLK_N  
LS_WDATA  
LS_CLK  
120 MHz  
SDR  
Interface  
LS_RDATA  
VSS  
DMD_DEN_ARSTZ  
(System signal routing omitted for clarity)  
简化版应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: DLPS138  
 
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
Table of Contents  
7.6 Micromirror Array Temperature Calculation.............. 24  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle....... 25  
8 Application and Implementation..................................29  
8.1 Application Information............................................. 29  
8.2 Typical Application.................................................... 30  
9 Power Supply Recommendations................................32  
9.1 Power Supply Power-Up Procedure......................... 32  
9.2 Power Supply Power-Down Procedure.....................32  
9.3 Power Supply Sequencing Requirements................ 33  
10 Layout...........................................................................35  
10.1 Layout Guidelines................................................... 35  
10.2 Layout Example...................................................... 35  
11 Device and Documentation Support..........................36  
11.1 Device Support........................................................36  
11.2 Chipset Resources..................................................36  
11.3 接收文档更新通知................................................... 36  
11.4 支持资源..................................................................37  
11.5 Trademarks............................................................. 37  
11.6 Electrostatic Discharge Caution..............................37  
11.7 术语表..................................................................... 37  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 显示应用............................................................................ 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 Storage Conditions..................................................... 7  
6.3 ESD Ratings............................................................... 7  
6.4 Recommended Operating Conditions.........................7  
6.5 Thermal Information..................................................10  
6.6 Electrical Characteristics...........................................10  
6.7 Timing Requirements................................................12  
6.8 Switching Characteristics(1) ..................................... 16  
6.9 System Mounting Interface Loads............................ 17  
6.10 Micromirror Array Physical Characteristics.............18  
6.11 Micromirror Array Optical Characteristics............... 19  
6.12 Window Characteristics.......................................... 21  
6.13 Chipset Component Usage Specification............... 21  
7 Detailed Description......................................................22  
7.1 Overview...................................................................22  
7.2 Functional Block Diagram.........................................22  
7.3 Feature Description...................................................23  
7.4 Device Functional Modes..........................................23  
7.5 Optical Interface and System Image Quality  
Information.................................................................... 38  
12.1 Package Option Addendum....................................39  
Considerations............................................................ 23  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (April 2022) to Revision C (May 2022)  
Page  
Updated Absolute Maximum Ratings disclosure to the latest TI standard......................................................... 6  
Updated Micromirror Array Optical Characteristics ......................................................................................... 19  
Added Third-Party Products Disclaimer ...........................................................................................................36  
Changes from Revision A (September 2018) to Revision B (April 2022)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Updated maximum |TDELTA| specification from "25°C" to "15°C" in Recommended Operating Conditions ..... 10  
Changed Related Links section title to Chipset Resources..............................................................................36  
Changed Related Links table title to Chipset Resources..................................................................................36  
Changes from Revision * (July 2018) to Revision A (September 2018)  
Page  
• 更新了简化版应..............................................................................................................................................1  
• 将数据表状态从预告信息更改为量产数..........................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
3
5
7
9
11  
13  
15  
2
4
6
8
10  
12  
14  
A
B
C
D
E
F
5-1. FQP Package, 54-Pin CLGA (Bottom View)  
5-1. Pin Functions Connector Pins  
PIN(1)  
PACKAGE NET  
LENGTH(2) (mm)  
TYPE  
SIGNAL  
DATA RATE  
DESCRIPTION  
NAME  
NO.  
DATA INPUTS  
D_N(0)  
A2  
A1  
C1  
B4  
F5  
D4  
E1  
F3  
A3  
B1  
C2  
A4  
E5  
D5  
E2  
F2  
C3  
D3  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Data, negative  
1.96  
1.42  
1.35  
3.36  
4.29  
3.20  
1.76  
2.66  
1.97  
1.49  
1.44  
3.45  
4.32  
3.27  
1.85  
2.75  
1.94  
2.02  
D_N(1)  
Data, negative  
Data, negative  
Data, negative  
Data, negative  
Data, negative  
Data, negative  
Data, negative  
Data, positive  
Data, positive  
Data, positive  
Data, positive  
Data, positive  
Data, positive  
Data, positive  
Data, positive  
Clock, negative  
Clock, positive  
D_N(2)  
D_N(3)  
D_N(4)  
D_N(5)  
D_N(6)  
D_N(7)  
D_P(0)  
D_P(1)  
D_P(2)  
D_P(3)  
D_P(4)  
D_P(5)  
D_P(6)  
D_P(7)  
DCLK_N  
DCLK_P  
CONTROL INPUTS  
LS_WDATA  
LS_CLK  
DMD_DEN_ARSTZ  
A12  
B12  
B14  
I
I
I
LPSDR(1)  
LPSDR  
LPSDR  
Single  
Single  
Single  
Write data for low speed interface.  
Clock for low-speed interface.  
2.16  
3.38  
0.67  
Asynchronous reset DMD signal. A low  
signal places the DMD in reset. A high  
signal releases the DMD from reset  
and places it in active mode.  
DMD_DEN_ARSTZ  
F1  
I
LPSDR  
LPSDR  
Single  
Single  
14.90  
2.44  
LS_RDATA  
C13  
O
Read data for low-speed interface.  
POWER  
(3)  
VBIAS  
A15  
A5  
Power  
Power  
Supply voltage for positive bias level at  
micromirrors.  
(3)  
VBIAS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DLP230KP  
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
5-1. Pin Functions Connector Pins (continued)  
PIN(1)  
PACKAGE NET  
LENGTH(2) (mm)  
TYPE  
SIGNAL  
DATA RATE  
DESCRIPTION  
NAME  
NO.  
(3)  
(3)  
VOFFSET  
F13  
Power  
Supply voltage for HVCMOS core  
logic. Supply voltage for stepped high  
level at micromirror address  
electrodes.  
Supply voltage for offset level at  
micromirrors.  
VOFFSET  
F4  
Power  
VRESET  
VRESET  
B15  
B5  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Supply voltage for negative reset level  
at micromirrors.  
(3)  
VDD  
C15  
C5  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDI  
VDDI  
VDDI  
VDDI  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D14  
D15  
E14  
E15  
F14  
F15  
C14  
C4  
Supply voltage for LVCMOS core logic.  
Supply voltage for LPSDR inputs.  
Supply voltage for normal high level at  
micromirror address electrodes.  
Supply voltage for SubLVDS receivers.  
D13  
E13  
A13  
A14  
B13  
B2  
B3  
C12  
D1  
Common return.  
Ground for all power.  
D12  
D2  
E12  
E3  
E4  
F12  
(1) Low speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC  
Standard No. 209B, Low Power Double Data Rate (LPDDR). See JESD209B.  
(2) Net trace lengths inside the package:  
Relative dielectric constant for the FQP ceramic package is 9.8.  
Propagation speed = 11.8 / sqrt (9.8) = 3.769 in/ns.  
Propagation delay = 0.265 ns/inch = 265 ps/in = 10.43 ps/mm.  
(3) The following power supplies are all required to operate the DMD: VDD, VDDI, VOFFSET, VBIAS, VRESET. All VSS connections are also  
required.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
5-2. Pin Functions Test Pads  
NUMBER  
SYSTEM BOARD  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
A6  
A7  
A8  
A9  
A10  
A11  
F6  
F7  
F8  
F9  
F10  
F11  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DLP230KP  
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted(1)  
MIN  
0.5  
0.5  
0.5  
MAX  
2.3  
2.3  
11  
UNIT  
Supply voltage for LVCMOS core logic(2)  
Supply voltage for LPSDR low speed interface  
VDD  
V
V
V
VDDI  
Supply voltage for SubLVDS receivers(2)  
Supply voltage for HVCMOS and micromirror  
electrode(2) (3)  
VOFFSET  
Supply voltage for micromirror electrode(2)  
Supply voltage for micromirror electrode(2)  
Supply voltage delta (absolute value)(4)  
Supply voltage delta (absolute value)(5)  
Supply voltage delta (absolute value)(6)  
19  
0.5  
0.3  
11  
V
V
V
V
V
Supply voltage  
VBIAS  
0.5  
15  
VRESET  
|VDDIVDD  
|
|VBIASVOFFSET  
|VBIASVRESET  
|
34  
|
Input voltage for other inputs LPSDR(2)  
VDD + 0.5  
VDDI + 0.5  
810  
V
V
0.5  
0.5  
Input voltage  
Input pins  
Input voltage for other inputs SubLVDS(2) (7)  
|VID  
|
SubLVDS input differential voltage (absolute value)(7)  
SubLVDS input differential current  
mV  
mA  
MHz  
MHz  
°C  
IID  
10  
Clock frequency for low speed interface LS_CLK  
Clock frequency for high speed interface DCLK  
130  
ƒclock  
ƒclock  
Clock  
frequency  
620  
Temperature operational (8)  
20  
40  
90  
TARRAY and TWINDOW  
Temperature non-operational(8)  
90  
°C  
Environmental  
Absolute temperature delta between any point on the  
window edge and the ceramic test point TP1(9)  
|TDELTA  
TDP  
|
30  
81  
°C  
°C  
Dew Point - operating and non-operating  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and  
this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to the ground terminals (VSS). The following power supplies are all required to operate the DMD:  
VDD, VDDI, VOFFSET, VBIAS, and VRESET. All VSS connections are also required.  
(3) VOFFSET supply transients must fall within specified voltages.  
(4) Exceeding the recommended allowable absolute voltage difference between VDDI and VDD may result in excessive current draw.  
(5) Exceeding the recommended allowable absolute voltage difference between VBIAS and VOFFSET may result in excessive current draw.  
(6) Exceeding the recommended allowable absolute voltage difference between VBIAS and VRESET may result in excessive current draw.  
(7) This maximum input voltage rating applies when each input of a differential pair is at the same voltage potential. SubLVDS differential  
inputs must not exceed the specified limit or damage may result to the internal termination resistors.  
(8) The highest temperature of the active array (as calculated in 7.6) or of any point along the window edge is defined in 7-1. The  
location of thermal test point TP2 in 7-1 is intended to measure the highest window edge temperature. If a particular application  
causes another point on the window edge to be at a higher temperature, that point should be used.  
(9) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in 图  
7-1. The window test point TP2 shown in 7-1 is intended to result in the worst case delta. If a particular application causes another  
point on the window edge to result in a larger delta temperature, that point should be used.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
 
 
 
 
 
 
 
 
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
6.2 Storage Conditions  
Applicable for the DMD as a component or non-operating in a system.  
MIN  
MAX  
85  
24  
36  
6
UNIT  
°C  
TDMD  
TDP  
DMD storage temperature  
40  
Average dew point temperature (non-condensing) (1)  
Elevated dew point temperature range (non-condensing) (2)  
Cumulative time in elevated dew point temperature range  
°C  
TDP-ELR  
CTELR  
28  
°C  
months  
(1) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.  
(2) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total  
cumulative time of CTELR  
.
6.3 ESD Ratings  
VALUE  
UNIT  
V(ESD) Electrostatic discharge  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.4 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
NOM  
MAX  
UNIT  
SUPPLY VOLTAGE RANGE(3)  
VDD  
Supply voltage for LVCMOS core logic  
1.65  
1.8  
1.95  
V
Supply voltage for LPSDR low-speed interface  
Supply voltage for SubLVDS receivers  
Supply voltage for HVCMOS and micromirror electrode(4)  
Supply voltage for mirror electrode  
VDDI  
1.65  
9.5  
1.8  
10  
1.95  
10.5  
18.5  
13.5  
0.3  
V
V
V
V
V
V
V
VOFFSET  
VBIAS  
17.5  
18  
VRESET  
Supply voltage for micromirror electrode  
Supply voltage delta (absolute value)(5)  
Supply voltage delta (absolute value)(6)  
Supply voltage delta (absolute value)(7)  
14.5  
14  
|VDDIVDD  
|
10.5  
33  
|VBIASVOFFSET  
|VBIASVRESET  
|
|
CLOCK FREQUENCY  
Clock frequency for low speed interface LS_CLK(8)  
Clock frequency for high speed interface DCLK(9)  
Duty cycle distortion DCLK  
108  
300  
120  
540  
MHz  
MHz  
ƒclock  
ƒclock  
44%  
56%  
SUBLVDS INTERFACE(9)  
|VID  
|
SubLVDS input differential voltage (absolute value). See  
6-8, 6-9  
150  
250  
900  
350  
mV  
VCM  
700  
575  
90  
1100  
1225  
110  
mV  
mV  
Common mode voltage. See 6-8, 6-9  
SubLVDS voltage. See 6-8, 6-9  
Line differential impedance (PWB/trace)  
Internal differential termination resistance. See 6-10  
100-Ωdifferential PCB trace  
VSUBLVDS  
ZLINE  
ZIN  
100  
100  
80  
120  
6.35  
152.4  
mm  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DLP230KP  
 
 
 
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
UNIT  
Over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
NOM  
MAX  
ENVIRONMENTAL  
TARRAY  
0
40 to 70(12)  
°C  
°C  
Array temperature long-term operational(10) (11) (12) (13)  
Array temperature short-term operational, 25 hr max(11)  
20  
10  
(14)  
0
°C  
°C  
Array temperature short-term operational, 500 hr  
10  
max(11) (14)  
70  
75  
Array temperature short-term operational, 500 hr  
max(11) (14)  
Window temperature operational(15) (16)  
TWINDOW  
90  
15  
°C  
°C  
|TDELTA  
|
Absolute temperature diffference between any point on  
the window edge and the ceramic test point TP1(17)  
TDP-AVG  
TDP-ELR  
Average dew point temperature (non-condensing) (18)  
24  
36  
°C  
°C  
Elevated dew point temperature range (non-condensing)  
28  
(19)  
CTELR  
ILLUV  
ILLVIS  
Cumulative time in elevated dew point temperature range  
Illumination wavelengths < 420 nm (10)  
6
months  
0.68  
mW/cm2  
Illumination wavelengths between 420 nm and 700 nm  
Thermally  
limited  
ILLIR  
ILLθ  
Illumination wavelengths > 700 nm  
Illumination marginal ray angle(15)  
10  
55  
mW/cm2  
degrees  
(1) The functional performance of the device specified in this data sheet is achieved when operating the device within the limits defined by  
the 6.4. No level of performance is implied when operating the device above or below the 6.4 limits.  
(2) The following power supplies are all required to operate the DMD: VDD, VDDI, VOFFSET, VBIAS, and VRESET. All VSS connections are also  
required.  
(3) All voltage values are with respect to the ground pins (VSS).  
(4) VOFFSET supply transients must fall within specified max voltages.  
(5) To prevent excess current, the supply voltage delta |VDDI VDD| must be less than the specified limit.  
(6) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than the specified limit.  
(7) To prevent excess current, the supply voltage delta |VBIAS VRESET| must be less than the specified limit.  
(8) LS_CLK must run as specified to ensure internal DMD timing for reset waveform commands.  
(9) Refer to the SubLVDS timing requirements in 6.7.  
(10) Simultaneous exposure of the DMD to the maximum Recommended Operating Conditions for temperature and UV illumination will  
reduce device lifetime.  
(11) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1  
(TP1) shown in 7-1 and the package thermal resistance using 7.6.  
(12) Per 6-1, the maximum operational array temperature should be derated based on the micromirror landed duty cycle that the DMD  
experiences in the end application. Refer to 7.7 for a definition of micromirror landed duty cycle.  
(13) Long-term is defined as the usable life of the device.  
(14) Short-term is the total cumulative time over the useful life of the device.  
(15) The maximum marginal ray angle of the incoming illumination light at any point in the micromirror array, including at the pond of  
micromirrors (POM), should not exceed 55 degrees from the normal to the device array plane. The device window aperture has not  
necessarily been designed to allow incoming light at higher maximum angles to pass to the micromirrors, and the device performance  
has not been tested nor qualified at angles exceeding this. Illumination light exceeding this angle outside the micromirror array  
(including POM) will contribute to thermal limitations described in this document and may negatively affect lifetime.  
(16) Window temperature is the highest temperature on the window edge shown in 7-1. The location of thermal test point TP2 in 7-1  
is intended to measure the highest window edge temperature. If a particular application causes another point on the window edge to  
be at a higher temperature, that point should be used.  
(17) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge shown in 7-1.  
The window test point TP2 shown in 7-1 is intended to result in the worst case delta temperature. If a particular application causes  
another point on the window edge to result in a larger delta temperature, that point should be used.  
(18) The average over time (including storage and operating) that the device is not in the 'elevated dew point temperature range'.  
(19) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total  
cumulative time of CTELR  
.
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
80  
70  
60  
50  
40  
30  
0/100 5/95 10/90 15/85 20/80 25/75 30/70 35/65 40/60 45/55 50/50  
90/10 85/15 80/20 75/25 70/30 65/35 60/40 55/45  
100/0 95/5  
D001  
Micromirror Landed Duty Cycle  
6-1. Maximum Recommended Array Temperature Derating Curve  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DLP230KP  
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
6.5 Thermal Information  
DLP230KP  
FQP (CLGA)  
54 PINS  
THERMAL METRIC(1)  
UNIT  
Thermal resistance  
Active area to test point 1 (TP1)(1)  
9.0  
°C/W  
(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of  
maintaining the package within the temperature range specified in the 6.4. The total heat load on the DMD is largely driven by the  
incident light absorbed by the active area, although other contributions include light energy absorbed by the window aperture and  
electrical power dissipated by the array. Optical systems should be designed to minimize the light energy falling outside the window  
clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.  
6.6 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS(2)  
MIN  
TYP  
MAX UNIT  
CURRENT  
VDD = 1.95 V  
65  
(3) (4)  
(3) (4)  
IDD  
Supply current: VDD  
Supply current: VDDI  
mA  
VDD = 1.8 V  
53  
11  
VDDI = 1.95 V  
VDD = 1.8 V  
12  
IDDI  
mA  
VOFFSET = 10.5 V  
VOFFSET = 10 V  
VBIAS = 18.5 V  
VBIAS = 18 V  
1.5  
mA  
(5) (6)  
IOFFSET  
Supply current: VOFFSET  
1.4  
0.3  
mA  
(5) (6)  
IBIAS  
Supply current: VBIAS  
Supply current: VRESET  
0.29  
VRESET = 14.5 V  
VRESET = 14 V  
1.3  
(6)  
IRESET  
mA  
1.2  
POWER(7)  
PDD  
VDD = 1.95 V  
126.75  
mW  
(3) (4)  
(3) (4)  
Supply power dissipation: VDD  
Supply power dissipation: VDDI  
VDD = 1.8 V  
95.4  
19.8  
14  
VDDI = 1.95 V  
VDD = 1.8 V  
23.4  
mW  
PDDI  
(5)  
VOFFSET = 10.5 V  
VOFFSET = 10 V  
VBIAS = 18.5 V  
VBIAS = 18 V  
15.75  
mW  
Supply power dissipation: VOFFSET  
POFFSET  
(6)  
5.55  
mW  
(5) (6)  
PBIAS  
Supply power dissipation: VBIAS  
5.22  
18.85  
mW  
VRESET = 14.5 V  
VRESET = 14 V  
(6)  
PRESET  
Supply power dissipation: VRESET  
Supply power dissipation: Total  
16.80  
PTOTAL  
LPSDR INPUT(8)  
151.22  
190.3  
mW  
VIH(DC)  
VIL(DC)  
VIH(AC)  
VIL(AC)  
VT  
DC input high voltage(9)  
0.7 × VDD  
0.3  
VDD + 0.3  
0.3 × VDD  
VDD + 0.3  
0.2 × VDD  
0.4 × VDD  
V
V
DC input low voltage(9)  
AC input high voltage(9)  
AC input low voltage(9)  
Hysteresis ( VT+ VT–  
Lowlevel input current  
0.8 × VDD  
0.3  
V
V
0.1 × VDD  
V
)
6-10  
IIL  
VDD = 1.95 V; VI = 0 V  
VDD = 1.95 V; VI = 1.95 V  
nA  
nA  
100  
IIH  
100  
Highlevel input current  
LPSDR OUTPUT(10)  
VOH DC output high voltage  
0.8 × VDD  
V
IOH = 2 mA  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
Over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS(2)  
MIN  
TYP  
MAX UNIT  
0.2 × VDD  
VOL  
DC output low voltage  
IOL = 2 mA  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DLP230KP  
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
MAX UNIT  
Over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS(2)  
MIN  
TYP  
CAPACITANCE  
Input capacitance LPSDR  
Input capacitance SubLVDS  
Output capacitance  
10  
20  
pF  
pF  
pF  
pF  
ƒ= 1 MHz  
CIN  
ƒ= 1 MHz  
COUT  
10  
ƒ= 1 MHz  
CRESET  
Reset group capacitance  
90  
150  
ƒ= 1 MHz; (540 × 120) micromirrors  
(1) Device electrical characteristics are over 6.4 unless otherwise noted.  
(2) All voltage values are with respect to the ground pins (VSS).  
(3) To prevent excess current, the supply voltage delta |VDDI VDD| must be less than the specified limit.  
(4) Supply power dissipation based on noncompressed commands and data.  
(5) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than the specified limit.  
(6) Supply power dissipation based on 3 global resets in 200 µs.  
(7) The following power supplies are all required to operate the DMD: VDD, VDDI, VOFFSET, VBIAS, VRESET. All VSS connections are also  
required.  
(8) LPSDR specifications are for pins LS_CLK and LS_WDATA.  
(9) Low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC  
Standard No. 209B, Low-Power Double Data Rate (LPDDR) JESD209B.  
(10) LPSDR specification is for pin LS_RDATA.  
6.7 Timing Requirements  
Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.  
MIN  
NOM  
MAX UNIT  
LPSDR  
Rise slew rate(1)  
Fall slew rate(1)  
Rise slew rate(2)  
Fall slew rate(2)  
Cycle time LS_CLK  
1
1
3
3
V/ns  
V/ns  
V/ns  
V/ns  
ns  
tr  
(30% to 80%) × VDD, 6-3  
(70% to 20%) × VDD, 6-3  
(20% to 80%) × VDD, 6-3  
(80% to 20%) × VDD, 6-3  
6-2  
tƒ  
0.25  
0.25  
7.7  
tr  
tƒ  
tc  
8.3  
tW(H)  
Pulse duration LS_CLK  
high  
3.1  
ns  
50% to 50% reference points, 6-2  
tW(L)  
tsu  
3.1  
1.5  
1.5  
3
ns  
ns  
ns  
ns  
ns  
Pulse duration LS_CLK low  
Setup time  
50% to 50% reference points, 6-2  
LS_WDATA valid before LS_CLK , 6-2  
LS_WDATA valid after LS_CLK , 6-2  
Setup time + hold time, 6-2  
t h  
Hold time  
tWINDOW  
Window time(1) (3)  
For each 0.25 V/ns reduction in slew rate  
below 1 V/ns, 6-5  
0.35  
tDERATING  
Window time derating(1) (3)  
SubLVDS  
tr  
Rise slew rate  
0.7  
0.7  
1
1
V/ns  
V/ns  
ns  
20% to 80% reference points, 6-4  
80% to 20% reference points, 6-4  
6-6  
tƒ  
Fall slew rate  
tc  
Cycle time DCLK  
1.79  
0.79  
0.79  
1.85  
tW(H)  
tW(L)  
Pulse duration DCLK high  
Pulse duration DCLK low  
ns  
50% to 50% reference points, 6-6  
50% to 50% reference points, 6-6  
ns  
D(0:7) valid before  
DCLK or DCLK , 6-6  
tsu  
Setup time  
D(0:7) valid after  
DCLK or DCLK , 6-6  
t h  
Hold time  
tWINDOW  
Window time  
0.3  
ns  
ns  
Setup time + hold time, 6-6, 6-7  
tLVDS-  
Power-up receiver(4)  
2000  
ENABLE+REFGEN  
(1) Specification is for LS_CLK and LS_WDATA pins. Refer to LPSDR input rise slew rate and fall slew rate in 6-3.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
 
 
 
 
 
 
 
 
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
(2) Specification is for DMD_DEN_ARSTZ pin. Refer to LPSDR input rise and fall slew rate in 6-3.  
(3) Window time derating example: 0.5-V/ns slew rate increases the window time by 0.7 ns, from 3 to 3.7 ns.  
(4) Specification is for SubLVDS receiver time only and does not take into account commanding and latency after commanding.  
t
c
t
t
w(L)  
w(H)  
LS_CLK  
50%  
50%  
50%  
t
h
t
su  
LS_WDATA  
50%  
50%  
t
window  
Low-speed interface is LPSDR and adheres to the 6.6 and AC/DC Operating Conditions table in JEDEC Standard No. 209B, Low  
Power Double Data Rate (LPDDR) JESD209B.  
6-2. LPSDR Switching Parameters  
LS_CLK, LS_WDATA  
DMD_DEN_ARSTZ  
1.0 * VDD  
1.0 * VDD  
0.8 * VDD  
VIH(AC)  
VIH(DC)  
0.8 * VDD  
0.7 * VDD  
VIL(DC)  
VIL(AC)  
0.3 * VDD  
0.2 * VDD  
0.2 * VDD  
0.0 * VDD  
0.0 * VDD  
tr  
tf  
tr  
tf  
6-3. LPSDR Input Rise and Fall Slew Rate  
6-4. SubLVDS Input Rise and Fall Slew Rate  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DLP230KP  
 
 
 
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
VIH MIN  
LS_CLK Midpoint  
VIL MAX  
tSU  
tH  
VIH MIN  
LS_WDATA Midpoint  
VIL MAX  
tWINDOW  
VIH MIN  
Midpoint  
LS_CLK  
VIL MAX  
tDERATING  
tH  
tSU  
VIH MIN  
Midpoint  
VIL MAX  
LS_WDATA  
tWINDOW  
6-5. Window Time Derating Concept  
6-6. SubLVDS Switching Parameters  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
Note: Refer to 7.3.3 for details.  
6-7. High-Speed Training Scan Window  
6-8. SubLVDS Voltage Parameters  
1.225V  
V
= V  
+ | 1/2 * V  
ID max  
|
SubLVDS max  
CM max  
V
CM  
V
ID  
V
= V  
– | 1/2 * V  
|
SubLVDS min  
CM min  
ID max  
0.575V  
6-9. SubLVDS Waveform Parameters  
6-10. SubLVDS Equivalent Input Circuit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DLP230KP  
 
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
Not to Scale  
V
V
IH  
V
T+  
Δ V  
T
V
T-  
LS_CLK  
IL  
LS_WDATA  
6-11. LPSDR Input Hysteresis  
LS_CLK  
LS_WDATA  
Stop Start  
tPD  
LS_RDATA  
Acknowledge  
6-12. LPSDR Read Out  
Data Sheet Timing Reference Point  
Device Pin  
Tester Channel  
Output Under Test  
C
L
See 7.3.4 for more information.  
6-13. Test Load Circuit for Output Propagation Measurement  
6.8 Switching Characteristics(1)  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
CL = 5 pF  
11.1  
11.3  
15  
Output propagation, clock to Q, rising  
edge of LS_CLK input to LS_RDATA  
output. See 6-12.  
tPD  
CL = 10 pF  
CL = 85 pF  
ns  
ns  
Slew rate, LS_RDATA  
0.5  
V/ns  
Output duty cycle distortion, LS_RDATA  
40%  
60%  
(1) Device electrical characteristics comply with the values in 6.4 unless otherwise noted.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
6.9 System Mounting Interface Loads  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
Maximum system mounting interface load to be applied to the:  
45  
N
N
Thermal interface area (1)  
Clamping and electrical interface area (1)  
100  
(1) Uniformly distributed within area shown in 6-14.  
Datum 'A' Area  
(3 places)  
Datum 'E' Area  
(1 place)  
Thermal Interface Area  
Electrical Interface Area  
6-14. System Interface Loads  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DLP230KP  
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
6.10 Micromirror Array Physical Characteristics  
PARAMETER  
VALUE  
UNIT  
Number of active  
columns(1)  
960  
See 6-15  
micromirrors  
Number of active rows(1)  
micromirrors  
µm  
540  
5.4  
See 6-15  
See 6-16  
Micromirror (pixel) pitch  
ε
Micromirror active array  
width  
5.184  
mm  
Micromirror pitch × number of active columns; see 6-15  
Micromirror active array  
height  
2.916  
20  
mm  
Micromirror pitch × number of active rows; see 6-15  
Micromirror active border Pond of micromirror (POM)(2)  
micromirrors/side  
(1) The fast switching speed of the DMD micromirrors combined with advanced DLP image processing algorithms enables each  
micromirror to display two distinct pixels on the screen during every frame, resulting in a full 1280 × 720 pixel image being displayed.  
(2) The structure and qualities of the border around the active array include a band of partially functional micromirrors called the POM.  
These micromirrors are structurally or electrically prevented from tilting toward the bright or ON state, but require an electrical bias to  
tilt toward OFF.  
6-15. Micromirror Array Physical Characteristics  
ε
ε
ε
ε
6-16. Mirror (Pixel) Pitch  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
 
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
6.11 Micromirror Array Optical Characteristics  
PARAMETER  
Micromirror tilt angle  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
DMD landed state(1)  
17  
°
°
Micromirror tilt angle tolerance(2) (3) (4) (5)  
1.4  
1.4  
Landed ON state  
180  
270  
1
Micromirror tilt direction(6) (7)  
°
Landed OFF state  
Typical performance  
Typical performance  
Micromirror crossover time(8)  
Micromirror switching time(9)  
3
μs  
10  
Bright pixel(s) in active  
Gray 10 screen (12)  
Gray 10 screen (12)  
0
1
area (11)  
Bright pixel(s) in the  
POM (13)  
Image performance(10) Dark pixel(s) in the  
active area (14)  
micromirrors  
White screen  
Any screen  
Any screen  
4
0
0
Adjacent pixel(s) (15)  
Unstable pixel(s) in  
active area (16)  
(1) Measured relative to the plane formed by the overall micromirror array.  
(2) Additional variation exists between the micromirror array and the package datums.  
(3) Represents the landed tilt angle variation relative to the nominal landed tilt angle.  
(4) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different  
devices.  
(5) For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some  
system optical designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field  
reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result  
in colorimetry variations, system efficiency variations or system contrast variations.  
(6) When the micromirror array is landed (not parked), the tilt direction of each individual micromirror is dictated by the binary contents of  
the CMOS memory cell associated with each individual micromirror. A binary value of 1 results in a micromirror landing in the ON state  
direction. A binary value of 0 results in a micromirror landing in the OFF state direction. See 6-17  
(7) Micromirror tilt direction is measured as in a typical polar coordinate system: Measuring counter-clockwise from a 0° reference which is  
aligned with the +X Cartesian axis.  
(8) The time required for a micromirror to nominally transition from one landed state to the opposite landed state.  
(9) The minimum time between successive transitions of a micromirror  
(10) Conditions of Acceptance: All DMD image quality returns will be evaluated using the following projected image test conditions:  
Test set degamma shall be linear  
Test set brightness and contrast shall be set to nominal  
The diagonal size of the projected image shall be a minimum of 20 inches  
The projections screen shall be 1X gain  
The projected image shall be inspected from a 38 inch minimum viewing distance  
The image shall be in focus during all image quality tests  
(11) Bright pixel definition: A single pixel or mirror that is stuck in the ON position and is visibly brighter than the surrounding pixels  
(12) Gray 10 screen definition: All areas of the screen are colored with the following settings:  
Red = 10/255  
Green = 10/255  
Blue = 10/255  
(13) POM definition: Rectangular border of off-state mirrors surrounding the active area  
(14) Dark pixel definition: A single pixel or mirror that is stuck in the OFF position and is visibly darker than the surrounding pixels  
(15) Adjacent pixel definition: Two or more stuck pixels sharing a common border or common point, also referred to as a cluster  
(16) Unstable pixel definition: A single pixel or mirror that does not operate in sequence with parameters loaded into memory. The unstable  
pixel appears to be flickering asynchronously with the image.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DLP230KP  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
6-17. Landed Pixel Orientation and Tilt  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
6.12 Window Characteristics  
PARAMETER(1)  
MIN  
NOM  
Corning Eagle XG  
1.5119  
MAX UNIT  
Window material designation  
Window refractive index  
Window aperture(2)  
At wavelength 546.1 nm  
See (2)  
See (3)  
Illumination overfill(3)  
Minimum within the wavelength range  
420 to 680 nm. Applies to all angles 0° to  
30° AOI.  
97%  
97%  
Window transmittance, single-pass  
through both surfaces and glass  
Average over the wavelength range 420  
to 680 nm. Applies to all angles 30° to  
45° AOI.  
(1) See 7.5 for more information.  
(2) See the package mechanical characteristics for details regarding the size and location of the window aperture.  
(3) The active area of the DLP230KP device is surrounded by an aperture on the inside of the DMD window surface that masks structures  
of the DMD device assembly from normal view. The aperture is sized to anticipate several optical conditions. Overfill light illuminating  
the area outside the active array can scatter and create adverse effects to the performance of an end application using the DMD. The  
illumination optical system should be designed to limit light flux incident outside the active array to less than 10% of the average flux  
level in the active area. Depending on the particular system's optical architecture and assembly tolerances, the amount of overfill light  
on the outside of the active array may cause system performance degradation.  
6.13 Chipset Component Usage Specification  
备注  
TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system  
operating conditions exceeding limits described previously.  
The DLP230KP is a component of one or more DLP® chipsets. Reliable function and operation of the DLP230KP  
requires that it be used in conjunction with the other components of the applicable DLP chipset, including those  
components that contain or implement TI DMD control technology. TI DMD control technology consists of the TI  
technology and devices used for operating or controlling a DLP DMD.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DLP230KP  
 
 
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DLP230KP is a 0.23-inch diagonal spatial light modulator of aluminum micromirrors. Micromirror array size  
is 960 columns by 540 rows in a square micromirror arrangement. The fast switching speed of the DMD  
micromirrors combined with advanced DLP image processing algorithms enables each micromirror to display  
two distinct pixels on the screen during every frame, resulting in a full 1280 × 720 pixel image being displayed.  
The electrical interface is sub low voltage differential signaling (SubLVDS) data.  
This chipset comprises this DMS and the DLPC3434 controller. The DLPA2000, DLP2005, and DLP3000  
PMIC/LED drivers also support this chipset. To ensure reliable operation, the DLP230KP DMD must always be  
used with the DLPC3434 ZVB display controller and the DLPA2000, DLP2005, or DLP3000 PMIC/LED driver.  
7.2 Functional Block Diagram  
High-Speed  
Interface  
Control  
Misc  
Column Write  
Bit Lines  
(0,0)  
Word  
Lines  
Voltages  
Voltage  
Generators  
SRAM  
(539,959)  
Row  
Control  
Column Read  
Control  
Low-Speed  
Interface  
A. Details omitted for clarity.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Power Interface  
The power management IC DLPA2000, DLPA2005, and DLPA3000 contain three regulated DC supplies for the  
DMD reset circuitry: VBIAS, VRESET and VOFFSET, as well as the two regulated DC supplies for the DLPC3434ZVB  
controller.  
7.3.2 Low-Speed Interface  
The low speed interface handles instructions that configure the DMD and control reset operation. LS_CLK is the  
lowspeed clock, and LS_WDATA is the low speed data input.  
7.3.3 High-Speed Interface  
The purpose of the high-speed interface is to transfer pixel data rapidly and efficiently, making use of high speed  
DDR transfer and compression techniques to save power and time. The high-speed interface is composed of  
differential SubLVDS receivers for inputs with a dedicated clock.  
7.3.4 Timing  
The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its  
transmission line effects must be taken into account. 6-13 shows an equivalent test load circuit for the output  
under test. Timing reference loads are not intended as a precise representation of any particular system  
environment or depiction of the actual load presented by a production test. System designers should use IBIS or  
other simulation tools to correlate the timing reference load to a system environment. The load capacitance  
value stated is only for characterization and measurement of AC timing signals. This load capacitance value  
does not indicate the maximum load the device is capable of driving.  
7.4 Device Functional Modes  
The DLPC3434 controller manages the functional modes of the DMD. For more infromation, download the  
controller data sheet or contact a TI applications engineer.  
7.5 Optical Interface and System Image Quality Considerations  
TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment  
optical performance involves making trade-offs between numerous component and system design parameters.  
Optimizing system optical performance and image quality strongly relate to optical system design parameter  
trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical  
performance is contingent on compliance to the optical system operating conditions described in the following  
sections.  
7.5.1 Numerical Aperture and Stray Light Control  
The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area  
should be the same. This angle should not exceed the nominal device mirror tilt angle unless appropriate  
apertures are added in the illumination and/or projection pupils to block out flat-state and stray light from the  
projection lens. The mirror tilt angle defines DMD capability to separate the ON optical path from any other light  
path, including undesirable flatstate specular reflections from the DMD window, DMD border structures, or  
other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the  
mirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than the  
illumination numerical aperture angle, objectionable artifacts in the displays border and/or active area could  
occur.  
7.5.2 Pupil Match  
TIs optical and image quality specifications assume that the exit pupil of the illumination optics is nominally  
centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable  
artifacts in the displays border and/or active area, which may require additional system apertures to control,  
especially if the numerical aperture of the system exceeds the pixel tilt angle.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DLP230KP  
 
 
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
7.5.3 Illumination Overfill  
The active area of the device is surrounded by an aperture on the inside DMD window surface that masks  
structures of the DMD chip assembly from normal view and is sized to anticipate several optical operating  
conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window  
aperture opening and other surface anomalies that may be visible on the screen. The illumination optical system  
should be designed to limit light flux incident anywhere on the window aperture from exceeding approximately  
10% of the average flux level in the active area. Depending on the particular systems optical architecture,  
overfill light may have to be further reduced below the suggested 10% level in order to be acceptable.  
7.6 Micromirror Array Temperature Calculation  
Array  
2.96  
Illumination  
Direction  
TP2  
Off-state  
Window Edge  
(4 surfaces)  
TP2  
TP1  
8.00  
TP1  
1.10  
7-1. DMD Thermal Test Points  
Micromirror array temperature cannot be measured directly, therefore it must be computed analytically from  
measurement points on the outside of the package, the package thermal resistance, the electrical power, and  
the illumination heat load. The relationship between array temperature and the reference ceramic temperature  
(thermal test point TP1 in 7-1) is provided by the following equations:  
TARRAY = TCERAMIC + (QARRAY × RARRAYTOCERAMIC  
QARRAY = QELECTRICAL + QILLUMINATION  
QILLUMINATION = (CL2W × SL)  
)
where  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
TARRAY = Computed DMD array temperature (°C)  
TCERAMIC = Measured ceramic temperature (°C), TP1 location in 7-1  
RARRAYTOCERAMIC = Thermal resistance from array to TP1 on ceramic (°C/W) specified in 6.5  
QARRAY = Total (electrical + absorbed) DMD power on array (W)  
QELECTRICAL = Nominal DMD electrical power dissipation (W)  
CL2W = Conversion constant for screen lumens to absorbed optical power on the DMD (W/lm) specified below  
SL = Measured ANSI screen lumens (lm)  
Electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating  
frequencies. Nominal electrical power dissipation to use when calculating array temperature is 0.17 W. Absorbed  
optical power from the illumination source is variable and depends on the operating state of the micromirrors and  
the intensity of the light source. Equations shown above are valid for a 1-chip DMD system with total projection  
efficiency through the projection lens from DMD to the screen of 87%.  
The conversion constant CL2W is based on the DMD micromirror array characteristics. It assumes a spectral  
efficiency of 300 lm/W for the projected light and illumination distribution of 83.7% on the DMD active array, and  
16.3% on the DMD array border and window aperture. The conversion constant is calculated to be 0.00266  
W/lm.  
Sample calculations for typical projection application:  
TCERAMIC = 55°C (measured)  
SL = 200 lm (measured)  
QELECTRICAL = 0.17 W  
CL2W = 0.00266 W/lm  
QARRAY = 0.17 W + (0.00266 W/lm × 200 lm) = 0.702 W  
TARRAY = 55°C + (0.702 W × 9°C/W) = 61.32°C  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle  
7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle  
The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a  
percentage) that an individual micromirror is landed in the ON state versus the amount of time the same  
micromirror is landed in the OFF state.  
As an example, a landed duty cycle of 75/25 indicates that the referenced pixel is in the ON state 75% of the  
time and in the OFF state 25% of the time, whereas 25/75 would indicate that the pixel is in the ON state 25% of  
the time. Likewise, 50/50 indicates that the pixel is ON 50% of the time and OFF 50% of the time.  
Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other  
state (OFF or ON) is considered negligible and is thus ignored.  
Since a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages)  
nominally add to 100.  
7.7.2 Landed Duty Cycle and Useful Life of the DMD  
Knowing the long-term average landed duty cycle (of the end product or application) is important because  
subjecting all (or a portion) of the DMDs micromirror array to an asymmetric landed duty cycle for a prolonged  
period of time can reduce the DMDs usable life.  
Note that it is the symmetry/asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed  
duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed  
duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly  
asymmetrical.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DLP230KP  
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
7.7.3 Landed Duty Cycle and Operational DMD Temperature  
Operational DMD temperature and landed duty cycle interact to affect the DMDs usable life. This is quantified  
in the de-rating curve shown in 6-1. The importance of this curve is that:  
All points along this curve represent the same usable life.  
All points above this curve represent lower usable life (and the further away from the curve, the lower the  
usable life).  
All points below this curve represent higher usable life (and the further away from the curve, the higher the  
usable life).  
In practice, this curve specifies the maximum operating DMD temperature that the DMD should be operated at  
for a given long-term average landed duty cycle.  
7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application  
During a given period of time, the nominal landed duty cycle of a given pixel is determined by the image content  
being displayed by that pixel.  
For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel  
will experience very close to a 100/0 landed duty cycle during that time period. Likewise, when displaying pure-  
black, the pixel will experience very close to a 0/100 landed duty cycle.  
Between the two extremes (ignoring for the moment color and any image processing that may be applied to an  
incoming image), the landed duty cycle tracks one-to-one with the gray scale value, as shown in 7-1.  
7-1. Grayscale Value  
and Landed Duty Cycle  
Grayscale  
Value  
Nominal Landed  
Duty Cycle  
0%  
10%  
20%  
30%  
40%  
50%  
60%  
70%  
80%  
90%  
100%  
0/100  
10/90  
20/80  
30/70  
40/60  
50/50  
60/40  
70/30  
80/20  
90/10  
100/0  
Accounting for color rendition (but still ignoring image processing) requires knowing both the color scale value  
(from 0% to 100%) for each constituent primary color (red, green, and/or blue) for the given pixel as well as the  
color cycle time for each primary color, where color cycle timeis the total percentage of the frame time that  
a given primary must be displayed in order to achieve the desired white point.  
During a given period of time, the nominal landed duty cycle of a given pixel can be calculated as follows:  
Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value) +  
(Blue_Cycle_%×Blue_Scale_Value)  
(1)  
where  
Red_Cycle_%, Green_Cycle_%, and Blue_Cycle_% represent the percentage of the frame time that red, green,  
and blue are displayed (respectively) to achieve the desired white point.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
For example, assuming that the red, green and blue color cycle times are 50%, 20%, and 30% respectively (in  
order to achieve the desired white point), then the nominal landed duty cycle for various combinations of red,  
green, blue color intensities would be as shown in 7-2.  
7-2. Example Landed Duty Cycle for Full-Color  
Pixels  
Red Cycle  
Percentage  
Green Cycle  
Percentage  
Blue Cycle  
Percentage  
50%  
20%  
30%  
Nominal  
Landed Duty  
Cycle  
Red Scale  
Value  
Green Scale  
Blue Scale  
Value  
Value  
0%  
100%  
0%  
0%  
0%  
0%  
0%  
0/100  
50/50  
20/80  
30/70  
6/94  
100%  
0%  
0%  
0%  
100%  
0%  
12%  
0%  
0%  
35%  
0%  
0%  
7/93  
0%  
60%  
0%  
18/82  
70/30  
50/50  
80/20  
13/87  
25/75  
24/76  
100/0  
100%  
0%  
100%  
100%  
0%  
100%  
100%  
0%  
100%  
12%  
0%  
35%  
35%  
0%  
60%  
60%  
100%  
12%  
100%  
100%  
The last factor to account for in estimating the landed duty cycle is any applied image processing. Within the  
DLP controller DLPC3434ZVB, the three functions which influence the actual landed duty cycle are gamma,  
IntelliBright, and bitplane sequencing rules.  
Gamma is a power function of the form Output_Level = A × Input_LevelGamma, where A is a scaling factor that is  
typically set to 1.  
In the DLPC3434ZVB controller, gamma is applied to the incoming image data on a pixel-by-pixel basis. A  
typical gamma factor is 2.2, which transforms the incoming data as shown in 7-2.  
100  
90  
80  
Gamma = 2.2  
70  
60  
50  
40  
30  
20  
10  
0
0
10  
20  
30  
40  
50  
60  
Input Level (%)  
70  
80  
90 100  
D002  
7-2. Example of Gamma = 2.2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DLP230KP  
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
For example, from 7-2, if the gray scale value of a given input pixel is 40% (before gamma is applied), then  
the gray scale value is 13% after gamma is applied. This reduction indicates that gamma has a direct impact on  
the displayed gray scale level of a pixel, and it also has a direct impact on the landed duty cycle of a pixel.  
The IntelliBright algorithm for content adaptive illumination control (CAIC) and local area brightness boost  
(LABB) also apply transform functions on the gray scale level of each pixel.  
But while the amount of gamma applied to every pixel of every frame is constant (the exponent, gamma, is  
constant), CAIC and LABB are both adaptive functions that can apply different amounts of either boost or  
compression to every pixel of every frame.  
Give consideration to any image processing which occurs before the DLPC3434 controller.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DLP230KP  
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The DMDs are spatial light modulators which reflect incoming light from an illumination source to one of two  
directions, with the primary direction being into a projection or collection optic. Each application is derived  
primarily from the optical architecture of the system and the format of the data coming into the DLPC3434  
controller. The new high tilt pixel in the side-illuminated DMD increases brightness performance and enables a  
smaller system footprint for thickness-constrained applications. Applications of interest include projection  
technology embedded in display devices such as ultra low-power battery operated mobile accessory projectors,  
phones, tablets, ultra mobile low end smart TVs, and virtual assistants.  
The PMIC/LED driver strictly controls the DMD power-up and power-down sequencing. Refer to 9 for power-  
up and power-down specifications. To ensure reliable operation, the DLP230KP DMD must always be used with  
the DLPC3434 display controller and either the DLPA2000, DLPA2005, or DLPA3000 PMIC/LED driver.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DLP230KP  
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
8.2 Typical Application  
A common application when using a DLP230KP DMD and a DLPC3434 is for creating a Pico projector that can  
be used as an accessory to a smartphone, tablet, or a laptop. The DLPC3434 controller in the Pico projector  
receives images from a multimedia front end within the product as shown in 8-1.  
DMD/  
DLPC  
Bucks  
1.1 V  
1.8 V  
2.5 V  
3.3 V  
AUX  
LDOs  
+ Battery  
SYSPWR  
V
LED  
DC  
Supplies  
Charger  
DLPA3000  
Fan(s)  
Sensors  
SPI(4)  
INTZ  
R
LIM  
SPI1  
RESETZ  
PARKZ  
Thermistor  
CMP_OUT  
Illumination  
optics  
PROJ_ON  
GPIO_8  
1.1 V  
VDD  
DLPC3436  
I2C  
HOST_IRQ  
HDMI  
GPIO_10  
Parallel (28)  
SUB_FRAME  
ACT_SYNC  
Parallel (28)  
Front-End  
Chip  
RC_CHARGE  
VCC, V  
,
BIAS  
Flash,  
SDRAM  
FPD-Link  
V
, V  
OFFSET RESET  
DLP230NP  
FPGA  
RESETZ  
I2C  
FPGA RSTZ  
1.8 V  
CTRL, DATA  
(XC7Z020-  
1CLG484I4493)  
Frame  
Memory  
Keypad  
SPI0  
SPI (4)  
Flash  
ꢀꢁOSD  
ꢀꢁAutolock  
ꢀꢁScaler  
ꢀꢁDeinterlacer  
ꢀꢁMicro-controller  
VCC_18  
SD Card  
Reader,  
Video  
Flash  
TI Device  
VCC_INTF  
VCC_FLSH  
Non-TI Device  
Decoder  
DAC_DATA,  
DAC_CLK  
Actuator  
Driver  
Actuator  
8-1. Typical Application Diagram  
8.2.1 Design Requirements  
A pico projector is created by using a DLP chipset comprised of a DLP230KP DMD, a DLPC3434 controller, and  
a DLPA2000/2005/3000 PMIC/LED driver. The DLPC3434 controller performs the digital image processing, the  
DLPA2000/2005/3000 provides the needed analog functions for the projector, and the DLP230KP DMD is the  
display device for producing the projected image.  
In addition to the three DLP chips in the chipset, other chips are needed. At a minimum a flash part is needed to  
store the DLPC3434 controller software.  
The illumination light that is applied to the DMD is typically from red, green, and blue LEDs. These are often  
contained in three separate packages, but sometimes more than one color of LED die may be in the same  
package to reduce the overall size of the pico projector.  
The DLPC3434 controller receives image data from the multimedia front end over a 24-bit parallel interface. An  
I2C interface should be connected from the multimedia front end for sending commands to the DLPC3434  
controller for configuring the chipset for different features.  
8.2.2 Detailed Design Procedure  
For connecting together the DLPC3434 controller, the DLPA2000/2005/3000, and the DLP230KP DMD, see the  
reference design schematic. When a circuit board layout is created from this schematic a very small circuit board  
is possible. An example small board layout is included in the reference design data base. Layout guidelines  
should be followed to achieve a reliable projector.  
The optical engine that has the LED packages and the DMD mounted to it is typically supplied by an optical  
OEM who specializes in designing optics for DLP projectors.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
8.2.3 Application Curve  
As the LED currents that are driven time-sequentially through the red, green, and blue LEDs are increased, the  
brightness of the projector increases. This increase is somewhat non-linear, and the curve for typical white  
screen lumens changes with LED currents is as shown in 8-2. For the LED currents shown, it is assumed that  
the same current amplitude is applied to the red, green, and blue LEDs.  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
500  
1000  
1500  
Current (mA)  
2000  
2500  
3000  
D001  
8-2. Luminance vs LED Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DLP230KP  
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
The following power supplies are all required to operate the DMD: VDD, VDDI, VOFFSET, VBIAS, and VRESET. All  
VSS connections are also required. DMD power-up and power-down sequencing is strictly controlled by the  
DLPA2000/2005/3000 devices.  
CAUTION  
For reliable operation of the DMD, the following power supply sequencing requirements must be  
followed. Failure to adhere to the prescribed power-up and power-down procedures may affect  
device reliability.  
VDD, VDDI, VOFFSET, VBIAS, and VRESET power supplies have to be coordinated during power-up and  
power-down operations. Failure to meet any of the specified requirements results in a significant  
reduction in the DMD reliability and lifetime. Refer to 9-2. VSS must also be connected.  
9.1 Power Supply Power-Up Procedure  
During power-up, VDD and VDDI must always start and settle before VOFFSET, VBIAS, and VRESET voltages are  
applied to the DMD.  
During power-up, it is a strict requirement that the delta between VBIAS and VOFFSET must be within the  
specified limit shown in 6.4. Refer to 9-2 for power-up delay requirements.  
During power-up, the DMDs LPSDR input pins shall not be driven high until after VDD and VDDI have settled  
at operating voltage.  
During power-up, there is no requirement for the relative timing of VRESET with respect to VOFFSET and VBIAS  
Power supply slew rates during power-up are flexible, provided that the transient voltage levels follow the  
requirements listed previously and in 9-1.  
.
9.2 Power Supply Power-Down Procedure  
The power-down sequence is the reverse order of the previous power-up sequence. VDD and VDDI must be  
supplied until after VBIAS, VRESET, and VOFFSET are discharged to within 4 V of ground.  
During power-down, it is not mandatory to stop driving VBIAS prior to VOFFSET, but it is a strict requirement that  
the delta between VBIAS and VOFFSET must be within the specified limit shown in 6.4 (Refer to Note 2 for 图  
9-1).  
During power-down, the DMDs LPSDR input pins must be less than VDDI, the specified limit shown in 节  
6.4.  
During power-down, there is no requirement for the relative timing of VRESET with respect to VOFFSET and  
VBIAS  
.
Power supply slew rates during power-down are flexible, provided that the transient voltage levels follow the  
requirements listed previously and in 9-1.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
9.3 Power Supply Sequencing Requirements  
A. Refer to 9-1 and 9-2 for critical power-up sequence delay requirements.  
B. To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than specified in 6.4. OEMs may find that the  
most reliable way to ensure this is to power VOFFSET prior to VBIAS during power-up and to remove VBIAS prior to VOFFSET during power-  
down. Refer to 9-1 and 9-2 for power-up delay requirements.  
C. To prevent excess current, the supply voltage delta |VBIAS VRESET| must be less than the specified limit shown in 6.4.  
D. When system power is interrupted, the DLPA2000/2005/3000 initiates hardware power-down that disables VBIAS, VRESET and VOFFSET  
after the micromirror park sequence.  
E. Drawing is not to scale and details are omitted for clarity.  
9-1. Power Supply Sequencing Requirements (Power Up and Power Down)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DLP230KP  
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
9-1. Power-Up Sequence Delay Requirement  
PARAMETER  
MIN  
MAX UNIT  
tDELAY  
VOFFSET  
VBIAS  
Delay requirement from VOFFSET power up to VBIAS power up  
Supply voltage level at beginning of powerup sequence delay (see 9-2)  
Supply voltage level at end of powerup sequence delay (see 9-2)  
2
ms  
6
6
V
V
12  
8
VOFFSET  
VDD VOFFSET 6 V  
4
VSS  
0
t
DELAY  
20  
16  
12  
8
VBIAS  
VDD VBIAS 6 V  
4
VSS  
0
Time  
Refer to 9-1 for VOFFSET and VBIAS supply voltage levels during power-up sequence delay.  
9-2. Power-Up Sequence Delay Requirement  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The DLP230KP DMD connects to a PCB or a flex circuit using an interposer. For additional layout guidelines  
regarding length matching, and impedance, see the DLPC3434 controller datasheet. For a detailed layout  
example refer to the layout design files. Some layout guidelines for routing to the DMD are:  
Match lengths for the LS_WDATA and LS_CLK signals.  
Minimize vias, layer changes, and turns for the HS bus signals. Refer to 10-1.  
Minimum of two 100-nF (25 V) capacitors - one close to VBIAS pin. Capacitors C4 and C8 in 10-1.  
Minimum of two 100-nF (25 V) capacitors - one close to each VRST pin. Capacitors C3 and C7 in 10-1.  
Minimum of two 220-nF (25 V) capacitors - one close to each VOFS pin. Capacitors C5 and C6 in 10-1.  
Minimum of four 100-nF (6.3 V) capacitors - two close to each side of the DMD. Capacitors C1, C2, C9 and  
C10 in 10-1.  
10.2 Layout Example  
10-1. Power Supply Connections  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DLP230KP  
 
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.1.2 Device Nomenclature  
11-1. Part Number Description  
11.1.3 Device Markings  
The device marking includes the legible character string GHJJJJK. DLP230KPAFQP is the device marking.  
Lot Trace Code  
GHJJJJK  
DLP230KPAFQP  
Part Marking  
11-2. DMD Marking  
11.2 Chipset Resources  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
11-1. Chipset Resources  
Technical  
documents  
Design &  
development  
Chipset Devices  
Product folder  
Ordering & quality  
Support & training  
DLP230KP  
DLPC3434  
DLPA3000  
DLPA2000  
DLPA2005  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
 
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
Picoand TI E2Eare trademarks of Texas Instruments.  
IntelliBrightis a trademark of Texas Instruments.  
DLP® is a registered trademark of Texas Instruments.  
is a registered trademark of TI.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DLP230KP  
 
 
 
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DLP230KP  
 
DLP230KP  
ZHCSIP9C JULY 2018 REVISED MAY 2022  
www.ti.com.cn  
12.1 Package Option Addendum  
12.1.1 Packaging Information  
Package  
Type  
Package  
Drawing  
Package  
Qty  
Orderable Device  
Status (1)  
Pins  
Eco Plan (2) Lead/Ball Finish  
RoHS & Green Call TI  
MSL Peak Temp (3)  
Op Temp (°C)  
40°C to 90°C  
Device Marking(4) (5)  
DLP230KPAFQP  
ACTIVE  
CLGA  
FQP  
54  
100  
Level-1-NC-NC  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1%  
by weight in homogeneous material)  
space  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(5) Multiple Device markings will be inside parentheses. Only on Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by  
third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable  
steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain  
information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DLP230KP  
 
 
 
 
 
 
DWG NO.  
SH  
8
5
3
6
1
7
4
1
2515699  
REVISIONS  
C
COPYRIGHT 2017 TEXAS INSTRUMENTS  
UN-PUBLISHED, ALL RIGHTS RESERVED.  
NOTES UNLESS OTHERWISE SPECIFIED:  
REV  
A
DESCRIPTION  
ECO 2168534: INITIAL RELEASE  
ECO 2168970: CORRECT SUBSTRATE THICKNESS TOL;  
ENLARGE APERTURE SLIGHTLY  
ECO 2186788: ADD APERTURE SLOT PICTORIALLY  
DATE  
BY  
BMH  
9/5/2017  
1
2
DIE PARALLELISM TOLERANCE APPLIES TO DMD ACTIVE ARRAY ONLY.  
9/15/17  
B
C
BMH  
BMH  
ROTATION ANGLE OF DMD ACTIVE ARRAY IS A REFINEMENT OF THE LOCATION  
TOLERANCE AND HAS A MAXIMUM ALLOWED VALUE OF 0.6 DEGREES.  
4/7/2020  
3
4
BOUNDARY MIRRORS SURROUNDING THE DMD ACTIVE ARRAY.  
NOTCH DIMENSIONS ARE DEFINED BY UPPERMOST LAYERS OF CERAMIC,  
AS SHOWN IN SECTION A-A.  
D
C
B
A
D
C
B
A
5
ENCAPSULANT TO BE CONTAINED WITHIN DIMENSIONS SHOWN IN VIEW C  
(SHEET 2). NO ENCAPSULANT IS ALLOWED ON TOP OF THE WINDOW.  
6
7
ENCAPSULANT NOT TO EXCEED THE HEIGHT OF THE WINDOW.  
DATUM B IS DEFINED BY A DIA. 2.5 PIN, WITH A FLAT ON THE SIDE FACING  
TOWARD THE CENTER OF THE ACTIVE ARRAY, AS SHOWN IN VIEW B (SHEET 2).  
WHILE ONLY THE THREE DATUM A TARGET AREAS A1, A2, AND A3 ARE USED  
FOR MEASUREMENT, ALL 4 CORNERS SHOULD BE CONTACTED, INCLUDING E1,  
TO SUPPORT MECHANICAL LOADS.  
8
4
1.1760.05  
4
+
-
0.2  
0.1  
1.71  
+
-
0.2  
0.1  
C
2.96  
4
4
(ILLUMINATION  
DIRECTION)  
1.25  
4
90° 1°  
4
+
-
0.3  
2.50.075  
5.92  
0.1  
4X R0.4 0.1  
4
2.5  
7
4
A
B
A
4
4
4X (R0.2)  
+
-
0.2  
0.1  
150.08  
0.8  
4
+
0.3  
0.1  
FRONT SIDE INDEX MARK  
16.8  
-
(OFF-STATE  
DIRECTION)  
5
6
2X ENCAPSULANT  
SEE VIEWS C AND D (SHEET 2)  
FOR DIMENSIONS  
D
1.10.05  
1.4030.077  
(2.183)  
1
8
3 SURFACES INDICATED  
IN VIEW B (SHEET 2)  
0.038A  
0.02D  
A
8
4
0.780.063  
(2.5)  
ACTIVE ARRAY  
1.4 0.1  
H
H
(SHEET 3)  
(SHEET 3)  
(1.4)  
0.4 MIN TYP  
DATE  
DRAWN  
UNLESS OTHERWISE SPECIFIED  
TEXAS  
0 MIN TYP  
9/5/2017  
9/5/2017  
9/10/2017  
9/6/2017  
9/5/2017  
9/11/2017  
B. HASKETT  
ENGINEER  
B. HASKETT  
QA/CE  
DIMENSIONS ARE IN MILLIMETERS  
TOLERANCES:  
INSTRUMENTS  
Dallas Texas  
ANGLES 1  
TITLE  
ICD, MECHANICAL, DMD,  
.23 TRP SERIES 246  
(FQP PACKAGE)  
SECTION A-A  
2 PLACE DECIMALS 0.25  
1 PLACE DECIMALS 0.50  
P. KONRAD  
CM  
(ROTATED 90°)  
SCALE 20 : 1  
DIMENSIONAL LIMITS APPLY BEFORE PROCESSES  
INTERPRET DIMENSIONS IN ACCORDANCE WITH ASME  
Y14.5M-1994  
J. GRIMMETT  
THIRD ANGLE  
PROJECTION  
DWG NO  
REV  
SIZE  
D
0314DA  
USED ON  
REMOVE ALL BURRS AND SHARP EDGES  
M. DORAK  
APPROVED  
R. LONG  
2515699  
C
PARENTHETICAL INFORMATION FOR REFERENCE ONLY  
NEXT ASSY  
SCALE  
SHEET  
OF  
APPLICATION  
20:1  
1
3
INV11-2006a  
5
3
6
1
2
7
8
4
DWG NO.  
SH  
8
5
3
6
1
7
4
2515699  
2
2X (1)  
A3  
2X 15  
2X 1.176  
A2  
2X (0.8)  
D
C
B
A
D
C
B
A
4X 1.46  
1.25  
C
2.5  
B
7
4X (1.5)  
(1.1)  
8
E1  
A1  
7
VIEW B  
DATUMS A, B, C, AND E  
(FROM SHEET 1)  
15  
1.176  
3.06  
1.25  
C
6.12  
2.5  
B
5
VIEW C  
ENCAPSULANT MAXIMUM X/Y DIMENSIONS  
(FROM SHEET 1)  
2X 0 MIN  
6
VIEW D  
DWG NO  
REV  
SIZE  
DRAWN  
DATE  
9/5/2017  
TEXAS  
2515699  
B. HASKETT  
C
3
D
ENCAPSULANT MAXIMUM HEIGHT  
INSTRUMENTS  
Dallas Texas  
SCALE  
SHEET  
OF  
2
INV11-2006a  
5
3
6
1
2
7
8
4
DWG NO.  
SH  
8
5
3
6
1
7
4
2515699  
3
3
4X (0.108)  
(5.184)  
ACTIVE ARRAY  
5.4410.075  
0.9830.05  
0.203 0.0635  
D
C
B
A
D
C
B
A
2
1.4580.075  
1.25  
C
(ILLUMINATION  
DIRECTION)  
(3.556)  
APERTURE  
(2.916)  
(5.16)  
WINDOW  
ACTIVE ARRAY  
2.5  
F
3.353 0.0635  
G
B
4.1770.05  
0.4480.0635  
2.989 0.05  
5.5350.0635  
(5.983)  
APERTURE  
(OFF-STATE  
DIRECTION)  
7.0870.05  
(10.076) WINDOW  
VIEW E  
WINDOW AND ACTIVE ARRAY  
(FROM SHEET 1)  
4 X 0.7424  
= 2.9696  
3.49  
9 X 0.7424 = 6.6816  
2.106  
12X CIRCULAR TEST PADS  
(Ø0.52)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
BACK SIDE  
INDEX MARK  
(42°)  
TYP.  
(0.15) TYP.  
(42°)  
TYP.  
A
(0.075) TYP.  
B
1.856  
C
5 X 0.7424  
= 3.712  
D
2.5  
1.25  
C
E
F
B
(0.068) TYP.  
(0.068) TYP.  
(42°)  
TYP.  
DETAIL G  
APERTURE RIGHT EDGE  
DETAIL F  
APERTURE LEFT EDGE  
54X SQUARE LGA PADS  
0.52±0.05 X 0.52±0.05  
VIEW H-H  
SCALE 60 : 1  
BACK SIDE METALLIZATION  
0.2ABC  
0.1A  
SCALE 60 : 1  
(FROM SHEET 1)  
DWG NO  
REV  
SIZE  
DRAWN  
DATE  
9/5/2017  
TEXAS  
2515699  
B. HASKETT  
C
3
D
INSTRUMENTS  
Dallas Texas  
SCALE  
SHEET  
OF  
3
INV11-2006a  
5
3
6
1
2
7
8
4
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY