DLP3020-Q1 [TI]

采用小型 S247 封装的汽车类 0.3 英寸 DLP® 数字微镜器件 (DMD);
DLP3020-Q1
型号: DLP3020-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用小型 S247 封装的汽车类 0.3 英寸 DLP® 数字微镜器件 (DMD)

文件: 总39页 (文件大小:1520K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
适用于汽车内部显示DLP3020-Q1 0.3 WVGA DMD  
1 特性  
3 说明  
• 已通过汽车认证  
0.3 英寸对角线微镜阵列  
DLP3020-Q1 DMD 主要面向具有大视场或增强现  
实功能需要长焦距的汽车抬头显示 (HUD) 应用。  
该芯片组能够与 LED 或激光器搭配使用以生成具有  
125% 以上 NTSC 色域的深度饱和颜色并支持 24 位  
RGB 视频输入。此外该芯片组可以凭借宽动态范围  
和快速开关功能不随温度的变化而变化实现高亮度  
15,000cd/m2 典型值HUD 系统。当用TI 参考设  
计中时能够实现超过 5000:1 的极高动态范围以满  
足汽车 HUD 系统针对明亮的白昼和黑暗的夜晚驾驶条  
件的工作范围要求。该器件与 DLP3030-Q1 具有相同  
的微镜阵列但封装尺寸更小从而可以减小光学系统  
设计的整体体积。  
7.6µm 微镜间距  
±12° 微镜倾斜角相对于平面)  
– 用于效率优化的侧向照明  
WVGA (864 × 480) 分辨率  
• 偏振无关型空间光调制器  
LED 或激光光源兼容  
– 可通过偏光眼镜看到图像  
• 低功耗105mW典型值)  
• 工作温度范围40°C 105°C  
• 具7.0°C/W 热效率的气密封装  
• 可实现系统内验证JTAG 边界扫描  
DLPC120-Q1 DMD 控制器兼容  
78MHz DDR DMD 接口  
器件信息  
封装  
器件型号(1)  
DLP3020-Q1  
封装尺寸标称值)  
FQR (64)  
8.55 mm × 16.80 mm  
DLP3030-Q1 具有相同的微镜阵列但封装尺寸  
更小  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
宽视场和增强现实抬头显(HUD)  
• 数字仪表组、导航和信息娱乐系统挡风玻璃显示  
• 车内投影显示和照明  
Color & Dimming control  
Flash  
SPI  
I2C  
TMS320  
F28023  
Color  
Controller  
& Driver  
Host  
SPI  
DLPC120-Q1  
LEDs  
Illumination  
Control  
& Feedback  
Video  
Processing &  
DMD  
real-time  
optical  
feedback  
loop  
24-bit RGB  
& Syncs  
Formatting  
photo diode  
LED Enable  
Timing Control  
Data & Control  
Reset  
DLP3020-Q1  
Power Good  
I2C  
TMP411  
-Q1  
Data &  
Address  
DMD Power  
DDR-2 DRAM  
frame buffer  
TPS65100-Q1  
Power Enable  
DLP3020-Q1 系统方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: DLPS081  
 
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
Table of Contents  
7.5 DMD Image Performance Specification....................26  
7.6 Micromirror Array Temperature Calculation.............. 26  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle....... 27  
8 Application and Implementation..................................28  
8.1 Application Information............................................. 28  
8.2 Typical Application.................................................... 28  
8.3 Application Mission Profile Consideration.................29  
9 Power Supply Recommendations................................30  
9.1 Power Supply Sequencing Requirements................ 30  
10 Layout...........................................................................32  
10.1 Layout Guidelines................................................... 32  
10.2 Temperature Diode Pins......................................... 32  
11 Device and Documentation Support..........................33  
11.1 Device Support........................................................33  
11.2 Documentation Support.......................................... 34  
11.3 接收文档更新通知................................................... 34  
11.4 支持资源..................................................................34  
11.5 Trademarks............................................................. 34  
11.6 Electrostatic Discharge Caution..............................34  
11.7 Device Handling......................................................34  
11.8 术语表..................................................................... 34  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 Storage Conditions..................................................... 6  
6.3 ESD Ratings............................................................... 6  
6.4 Recommended Operating Conditions.........................7  
6.5 Thermal Information....................................................8  
6.6 Electrical Characteristics.............................................9  
6.7 Timing Requirements................................................ 11  
6.8 Switching Characteristics..........................................15  
6.9 System Mounting Interface Loads............................ 15  
6.10 Physical Characteristics of the Micromirror Array...16  
6.11 Micromirror Array Optical Characteristics............... 18  
6.12 Window Characteristics.......................................... 19  
6.13 Chipset Component Usage Specification............... 19  
7 Detailed Description......................................................20  
7.1 Overview...................................................................20  
7.2 Functional Block Diagram.........................................20  
7.3 Feature Description...................................................21  
7.4 System Optical Considerations.................................25  
Information.................................................................... 34  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
February 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DLP3020-Q1  
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
16 15 14 13 12  
4
3
5
2
1
G
F
E
D
C
B
A
5-1. FQR Package, 64-Pin LGA (Bottom View)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DLP3020-Q1  
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
DATA(0)  
DATA(1)  
DATA(2)  
DATA(3)  
DATA(4)  
DATA(5)  
DATA(6)  
DATA(7)  
DATA(8)  
DATA(9)  
DATA(10)  
DATA(11)  
DATA(12)  
DATA(13)  
DATA(14)  
DCLK  
A2  
A4  
B2  
B3  
B5  
C2  
C3  
B4  
C5  
D2  
D3  
D4  
D5  
E2  
F5  
Data bus. Synchronous to rising edge and falling edge of DCLK.  
LVCMOS  
input  
F4  
Data clock.  
LOADB  
F3  
Parallel latch load enable. Synchronous to rising edge and falling edge of DCLK.  
Serial control (sync). Synchronous to rising edge and falling edge of DCLK.  
Toggle rate control. Synchronous to rising edge and falling edge of DCLK.  
Reset control serial bus. Synchronous to rising edge of SAC_CLK.  
Active low. Output enable signal for internal reset driver circuitry.  
SCTRL  
E4  
F2  
TRC  
DAD_BUS  
RESET_OEZ  
B15  
C15  
RESET_STROB  
E
B13  
Rising edge on RESET_STROBE latches in the control signals.  
SAC_BUS  
SAC_CLK  
TCK  
A15  
A14  
F15  
Stepped address control serial bus. Synchronous to rising edge of SAC_CLK.  
Stepped address control clock.  
JTAG clock.  
JTAG data input. Synchronous to rising edge of TCK. Bond pad connects to internal pull  
up resistor.  
TDI  
E13  
G15  
G14  
LVCMOS  
output  
TDO  
TMS  
JTAG data output. Synchronous to falling edge of TCK. Tri-state fail-safe output buffer.  
LVCMOS  
input  
JTAG mode select. Synchronous to rising edge of TCK. Bond pad connects to internal  
pull up resistor.  
TEMP_MINUS  
TEMP_PLUS  
VBIAS  
G13  
G2  
Calibrated temperature diode used to assist accurate temperature measurements of  
DMD die.  
Analog input  
D15  
Power supply for positive bias level of mirror reset signal.  
Power supply for low voltage CMOS logic. Power supply for normal high voltage at  
mirror address electrodes. Power supply for offset level of mirror reset signal during  
power down.  
Power  
A5, B12, C14,  
D12, F13, G3  
VCC  
Power supply for high voltage CMOS logic. Power supply for stepped high voltage at  
mirror address electrodes. Power supply for offset level of mirror reset signal.  
VOFFSET  
E14  
VREF  
E15  
D14  
Power supply for low voltage CMOS DDR interface.  
VRESET  
Power supply for negative reset level of mirror reset signal.  
Power  
A3, A13, B14,  
C4, C12, C13,  
D13, E3, E5,  
E12, F12, F14,  
G4, G12  
VSS  
Common return for all power.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DLP3020-Q1  
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
A1, A12,  
A16,B1, B16,  
F1, F16, G1,  
G5, G16  
RESERVED  
Reserved Do not connect.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DLP3020-Q1  
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
See (2)  
MIN  
MAX  
UNIT  
SUPPLY VOLTAGE(1)  
VREF  
LVCMOS logic supply voltage  
LVCMOS logic supply voltage  
Mirror electrode and HVCMOS voltage  
Mirror electrode voltage  
4
4
V
V
0.5  
0.5  
0.5  
0.5  
VCC  
VOFFSET  
VBIAS  
8.75  
17  
V
V
Supply voltage delta(3)  
8.75  
0.5  
V
|VBIAS VOFFSET  
|
VRESET  
Mirror electrode voltage  
V
11  
0.5  
60  
Input voltage: other inputs  
fDCLK  
VREF + 0.3  
82  
V
Clock frequency  
MHz  
µA  
ITEMP_DIODE  
Temperature diode current  
500  
ENVIRONMENTAL  
TARRAY  
Operating DMD array temperature(4)  
105  
°C  
40  
(1) All voltage values are with respect to the ground pins (VSS).  
(2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Unless otherwise  
indicated, these are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond  
those indicated under Recommended Operating Conditions. Exposure to absolute maximum rated conditions for extended periods  
may affect device reliability.  
(3) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than or equal to 8.75 V.  
(4) See 7.6.  
6.2 Storage Conditions  
Applicable for the DMD as a component or non-operating in a system. The device is not designed to be exposed to corrosive  
environments.  
MIN  
MAX  
UNIT  
Tstg  
DMD storage temperature  
125  
°C  
40  
6.3 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM) per AEC Q100-011  
All Pins  
All Pins  
±2000  
±750  
±750  
V(ESD) Electrostatic discharge  
V
Corner Pins(2)  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) Corner pins are A1, G1, A16, and G16.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DLP3020-Q1  
 
 
 
 
 
 
 
 
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
6.4 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX  
UNIT  
SUPPLY VOLTAGE RANGE  
VREF  
LVCMOS interface power supply voltage  
LVCMOS logic power supply voltage  
Mirror electrode and HVCMOS voltage  
Mirror electrode voltage  
1.65  
2.25  
8.25  
15.5  
1.8  
2.5  
8.5  
16  
1.95  
2.75  
8.75  
16.5  
8.75  
V
V
VCC  
VOFFSET  
VBIAS  
V
V
Supply voltage delta (2)  
V
|VBIAS VOFFSET  
VRESET  
VP VT+  
VN VT–  
VH VT  
IOH_TDO  
IOL_TDO  
|
Mirror electrode voltage  
V
9.5  
0.4 × VREF  
0.3 × VREF  
0.1 × VREF  
10  
10.5  
0.7 × VREF  
0.6 × VREF  
0.4 × VREF  
Positive going threshold voltage  
Negative going threshold voltage  
V
V
V
Hysteresis voltage (Vp Vn)  
High level output current @ Voh = 2.25 V, TDO, Vcc = 2.25 V  
Low level output current @ Vol = 0.4 V, TDO, Vcc = 2.25 V  
mA  
mA  
2  
2
TEMPERATURE DIODE  
ITEMP_DIODE  
Max current source into temperature diode (4)  
120  
µA  
ENVIRONMENTAL  
(5)  
TARRAY  
Operating DMD array temperature - steady state (1)  
Illumination, wavelength < 395 nm  
105  
2.0  
°C  
40  
(3)  
ILLUV  
mW/cm2  
Illumination overfill maximum heat load in  
ILLOVERFILL  
ILLOVERFILL  
26  
20  
T
ARRAY 75°C  
area shown in 6-1 (6)  
mW/mm2  
Illumination overfill maximum heat load in  
area shown in 6-1 (6)  
TARRAY > 75°C  
(1) DMD active array temperature can be calculated as shown in 7.6 and assumes uniform illumination across the array.  
(2) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than or equal to 8.75 V.  
(3) The maximum operation conditions for DMD array temperature and illumination UV shall not be implemented simultaneously.  
(4) Temperature diode is to assist in the calculation of the DMD array temperature during operation.  
(5) Operating profile information for device micromirror landed duty-cycle and temperature may be provided if requested.  
(6) The active area of the DLP3020-Q1 device is surrounded by an aperture on the inside of the DMD window surface that masks  
structures of the DMD device assembly from normal view. The aperture is sized to anticipate several optical conditions. Overfill light  
illuminating the area outside the active array can scatter and create adverse effects to the performance of an end application using the  
DMD. The illumination optical system should be designed to minimize light flux incident outside the active array. Depending on the  
particular system's optical architecture and assembly tolerances, the amount of overfill light on the outside of the active array may  
cause system performance degradation. Overfill illumination in excess of this specification may also impact thermal performance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DLP3020-Q1  
 
 
 
 
 
 
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
Window  
Window  
Aperture  
Window  
0.5 mm  
Window  
Aperture  
0.5 mm  
Limited illumination area  
on window aperture  
6-1. Illumination Overfill Diagram  
6.5 Thermal Information  
DLP3020-Q1  
THERMAL METRIC(1)  
FQR (LGA)  
64 PINS  
7.0  
UNIT  
Thermal resistance  
Active area to test point 1 (TP1)(1)  
°C/W  
(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of  
maintaining the package within the temperature range specified in 6.4. The total heat load on the DMD is largely driven by the  
incident light absorbed by the active area, although other contributions include light energy absorbed by the window aperture and  
electrical power dissipation of the array. Optical systems should be designed to minimize the light energy falling outside the window  
clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DLP3020-Q1  
 
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
6.6 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)(2)  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX  
UNIT  
VCC = 2.25 V  
IOH = 8 mA  
VREF = 1.8 V  
IOH = 2 mA  
VCC = 2.75 V  
IOL = 8 mA  
VOH  
VOH2  
VOL  
High level output voltage  
1.7  
V
High level output voltage(6)  
Low level output voltage  
Low level output voltage(6)  
1.44  
V
V
V
0.4  
VREF = 1.8 V  
IOL = 2 mA  
VOL2  
0.36  
VREF = 1.95 V  
VOL = 0 V  
10  
5  
IOZ  
Output high impedance current  
µA  
VREF = 1.95 V  
VOH = VREF  
VREF = 1.95 V  
VI = 0 V  
10  
6
IIL  
Low level input current(3)  
High level input current(3)  
Low level input current(4)  
High level input current(4)  
Low level input current(5)  
High level input current(5)  
µA  
µA  
µA  
µA  
µA  
µA  
VREF = 1.95 V  
VI = VREF  
IIH  
VREF = 1.95 V  
VI = 0 V  
IIL2  
IIH2  
IIL3  
IIH3  
785  
5  
VREF = 1.95 V  
VI = VREF  
6
VREF = 1.95 V  
VI = 0 V  
VREF = 1.95 V  
VI = VREF  
785  
CURRENT  
IREF  
Current at VREF = 1.95 V  
Current at VCC = 2.75 V  
fDCLK = 80 MHz  
fDCLK = 80 MHz  
2.80  
59.90  
2.93  
mA  
mA  
mA  
mA  
mA  
Icc  
IOFFSET  
IBIAS  
Current at VOFFSET = 8.75 V  
Current at VBIAS = 16.5 V  
Current at VRESET = 10.5 V  
2.30  
IRESET  
2.00  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DLP3020-Q1  
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
6.6 Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted)(2)  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX  
UNIT  
POWER  
PREF  
Power at VREF = 1.95 V  
fDCLK = 80 MHz  
fDCLK = 80 MHz  
5.46  
164.73  
25.64  
mW  
mW  
mW  
mW  
mW  
mW  
PCC  
Power at VCC = 2.75 V  
POFFSET  
PBIAS  
Power at VOFFSET = 8.75 V  
Power at VBIAS = 16.5 V  
Power at VRESET = 10.5 V  
Total power at nominal conditions  
37.95  
PRESET  
PTOTAL  
CAPACITANCE  
CIN  
21.00  
fDCLK = 80 MHz  
254.77  
Input pin capacitance  
20  
65  
20  
pF  
pF  
pF  
ƒ= 1 MHz  
ƒ= 1 MHz  
ƒ= 1 MHz  
Analog pin capacitance (TEMP_PLUS and  
TEMP_MINUS pins)  
CA  
Co  
Output pin capacitance  
(1) All voltage values are with respect to the ground pins (VSS).  
(2) Device electrical characteristics are over 6.4 unless otherwise noted.  
(3) Specification is for LVCMOS input pins, which do not have pull up or pull down resistors. See 5.  
(4) Specification is for LVCMOS input pins which do have pull up resistors (JTAG: TDI, TMS). See 5.  
(5) Specification is for LVCMOS input pins which do have pull down resistors. See 5.  
(6) Specification is for LVCMOS JTAG output pin TDO.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DLP3020-Q1  
 
 
 
 
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
6.7 Timing Requirements  
Over 6.4 unless otherwise noted.  
MIN  
NOM  
MAX  
UNIT  
DMD MIRROR AND SRAM CONTROL LOGIC SIGNALS  
tSU  
tH  
tSU  
tH  
1.0  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time SAC_BUS low before SAC_CLK↑  
Hold time SAC_BUS low after SAC_CLK↑  
Setup time DAD_BUS high before SAC_CLK↑  
Hold time DAD_BUS after SAC_CLK↑  
1.0  
1.0  
tC  
Cycle time SAC_CLK  
12.5  
5.0  
16.67  
tW  
tR  
Pulse width 50% to 50% reference points: SAC_CLK high or low  
Rise time 20% to 80% reference points: SAC_CLK  
Fall time 80% to 20% reference points: SAC_CLK  
2.5  
2.5  
tF  
DMD DATA PATH AND LOGIC CONTROL SIGNALS  
tSU  
tH  
tSU  
tH  
tSU  
tH  
tSU  
tH  
tSU  
tH  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
3.5  
12.5  
5.0  
7.0  
7.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time DATA(14:0) before DCLKor DCLK↓  
Hold time DATA(14:0) after DCLKor DCLK↓  
Setup time SCTRL before DCLKor DCLK↓  
Hold time SCTRL after DCLKor DCLK↓  
Setup time TRC before DCLKor DCLK↓  
Hold time TRC after DCLKor DCLK↓  
Setup time LOADB low before DCLK↑  
Hold time LOADB low after DCLK↓  
Setup time RESET_STROBE high before DCLK↑  
Hold time RESET_STROBE after DCLK↑  
tC  
Cycle time DCLK  
16.67  
tW  
Pulse width 50% to 50% reference points: DCLK high or low  
Pulse width 50% to 50% reference points: LOADB low  
Pulse width 50% to 50% reference points: RESET_STROBE high  
Rise time 20% to 80% reference points: DCLK, DATA, SCTRL, TRC, LOADB  
Fall time 80% to 20% reference points: DCLK, DATA, SCTRL, TRC, LOADB  
tW(L)  
tW(H)  
tR  
2.5  
2.5  
tF  
JTAG BOUNDARY SCAN CONTROL LOGIC SIGNALS  
fTCK  
tC  
Clock frequency TCK  
10  
MHz  
ns  
Cycle time TCK  
100  
10  
5
tW  
tSU  
tH  
Pulse width 50% to 50% reference points: TCK high or low  
Setup time TDI valid before TCK↑  
Hold time TDI valid after TCK↑  
ns  
ns  
25  
5
ns  
tSU  
tH  
ns  
Setup time TMS valid before TCK↑  
Hold time TMS valid after TCK↑  
25  
ns  
tR  
Rise time 20% to 80% reference points: TCK, TDI, TMS  
Fall time 80% to 20% reference points: TCK, TDI, TMS  
2.5  
2.5  
ns  
tR  
ns  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DLP3020-Q1  
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
tW  
tW  
tC  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
SAC_CLK  
tH  
tSU  
50%  
50%  
SAC_BUS  
tSU  
tH  
50%  
50%  
DAD_BUS  
VREF  
80%  
20%  
SAC_CLK  
VSS  
tR  
tF  
6-2. DMD Mirror and SRAM Control Logic Timing Requirements  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DLP3020-Q1  
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
tW  
tW  
tC  
DCLK  
50%  
50%  
50%  
50%  
50%  
tH  
tH  
tSU  
tSU  
DATA  
SCTRL  
TRC  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
tSU  
tH  
50%  
50%  
LOADB  
tW(L)  
tH  
tSU  
50%  
50%  
RESET_STROBE  
tW(L)  
VREF  
80%  
DCLK  
DATA  
SCTRL  
TRC  
LOADB  
20%  
VSS  
tR  
tF  
6-3. DMD Data Path and Control Logic Timing Requirements  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DLP3020-Q1  
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
tW  
tW  
tC  
50%  
50%  
50%  
50%  
TCK  
tH  
tSU  
TDI  
50%  
50%  
TMS  
50%  
50%  
tPD  
50%  
TDO  
VREF  
80%  
20%  
TCK  
TDI  
TMS  
VSS  
tR  
tF  
6-4. JTAG Boundary Scan Control Logic Timing Requirements  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DLP3020-Q1  
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
6.8 Switching Characteristics  
Over operating free-air temperature range (unless otherwise noted).(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CL = 11 pF, from (Input) falling edge of  
TCK to (Output) TDO, see 6-4  
tPD  
3
25  
ns  
Output propagation, clock to Q (see 6-4)  
(1) Device electrical characteristics are over Recommended Operating Characteristics unless otherwise noted.  
Data Sheet Timing Reference Point  
Device Pin  
Tester Channel  
Output Under Test  
CL  
6-5. Test Load Circuit for Output Propagation Measurement  
6.9 System Mounting Interface Loads  
PARAMETER  
MIN NOM MAX  
UNIT  
N
70  
Uniformly distributed within the Thermal Interface Area shown in 6-6  
Uniformly distributed within the Electrical Interface Area shown in 6-6  
100  
N
Thermal Interface Area  
Electrical Interface Area  
6-6. System Interface Loads  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DLP3020-Q1  
 
 
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
UNIT  
6.10 Physical Characteristics of the Micromirror Array  
PARAMETER  
VALUE  
684  
N
Number of active columns  
micromirrors  
See 6-7  
M Number of active rows  
608  
micromirrors  
See 6-7  
7.6  
µm  
Micromirror (pixel) pitch diagonal  
Micromirror (pixel) pitch horizontal and vertical  
Micromirror active array width  
See 6-8  
ε
P
10.8  
6.5718  
3.699  
10  
µm  
mm  
See 6-8  
P × M + P / 2; see 6-7  
(P × N) / 2 + P / 2; see 6-7  
Pond of micromirror (POM)(1)  
Micromirror active array height  
mm  
Micromirror active border  
micromirrors/side  
(1) The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM.  
These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical  
bias to tilt toward OFF.  
'/+/(  
Hkktlhm`shnm  
Anqcdq Lhqqnqr 'ONL( `qd Nlhssdc enq Bk`qhsx  
Bnk /  
Bnk 0  
Bnk 1  
Bnk 2  
Bnk 3  
Bnk 4  
Bnk 5  
Bnk 6  
Hkktlhm`shnm  
Nm‚Rs`sd  
Nee‚Rs`sd  
Shks Chqdbshnm  
Shks Chqdbshnm  
CLC @bshud Lhqqnq @qq`x  
Bnk 565  
Bnk 566  
Bnk 567  
Bnk 568  
Bnk 57/  
Bnk 570  
Bnk 571  
Bnk 572  
5-4607 ll  
CLC Odqhogdqx  
6-7. Micromirror Array Physical Characteristics  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DLP3020-Q1  
 
 
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
x
(
u
m
)
P (um)  
6-8. Mirror (Pixel) Pitch  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DLP3020-Q1  
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
6.11 Micromirror Array Optical Characteristics  
6-1. Optical Parameters  
PARAMETER  
Micromirror tilt angle, landed (on-state or off-state)(1)  
Micromirror tilt angle tolerance(1)  
MIN  
NOM  
MAX  
UNIT  
12  
°
°
1
1  
DMD efficiency, 420 nm680 nm(2)  
66%  
(1) For some applications, it is critical to account for the micromirror tilt angle variation in the overall optical system design. With some  
optical system designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field  
reflected from the micromirror array. With some optical system designs, the micromirror tilt angle variation between devices may result  
in colorimetry variations, system efficiency variations, or system contrast variations.  
(2) DMD efficiency is measured photopically under the following conditions: 24° illumination angle, F/2.4 illumination and collection  
apertures, uniform source spectrum (halogen), uniform pupil illumination, the optical system is telecentric at the DMD, and the  
efficiency numbers are measured with 100% electronic mirror duty cycle and do not include system optical efficiency or overfill loss.  
Note that this number is measured under conditions described above and deviations from these specified conditions could result in a  
different efficiency value in a different optical system. The factors that can influence the DMD efficiency related to system application  
include: light source spectral distribution and diffraction efficiency at those wavelengths (especially with discrete light sources such as  
LEDs or lasers), and illumination and collection apertures (F/#) and diffraction efficiency. The interaction of these system factors as well  
as the DMD efficiency factors that are not system dependent are described in detail in DMD Optical Efficiency for Visible Wavelengths.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DLP3020-Q1  
 
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
6.12 Window Characteristics  
PARAMETER  
MIN  
NOM  
MAX UNIT  
Window material designation  
Window refractive index  
Window aperture(1)  
Corning Eagle XG  
1.5119  
at wavelength 546.1 nm  
See (1)  
(1) See the package mechanical ICD for details regarding the size and location of the window aperture.  
6.13 Chipset Component Usage Specification  
The DLP3020-Q1 DMD is a component of a DLP® chipset including a DLP products controller. Reliable function  
and operation of the DMD requires that it be used in conjunction with a DLP products controller.  
备注  
TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system  
operating conditions exceeding limits described previously  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DLP3020-Q1  
 
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DLP3020-Q1 DMD has a resolution of 608 × 684 mirrors configured in a diamond format that results in an  
aspect ratio of 16:9 which creates an effective resolution of 864 × 480 square pixels. By configuring the pixels in  
a diamond format, the illumination input to the DMD enters from the side allowing for smaller mechanical  
packaging of the optical system.  
7.2 Functional Block Diagram  
V
V
V
REF  
CC  
TCK  
TDI  
JTAG  
Controller  
SS  
TDO  
TMS  
DMD Mirror &  
SRAM  
Control Logic  
RESET_OEZ  
DAD_BUS  
RESET_SROBE  
SAC_BUS  
DMD Mirror &  
SRAM Voltage  
Control  
V
CC  
SAC_CLK  
V
0.3 WVGA 16:9 Aspect Ratio  
SRAM & Micromirror Array  
REF  
V
SS  
V
V
V
V
V
RESET  
BIAS  
OFFSET  
CC  
DMD Data  
Path and  
Logic  
DATA(14:0)  
DCLK  
Control  
LOADB  
SCTRL  
SS  
TRC  
TEMP_PLUS  
TEMP_MINUS  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DLP3020-Q1  
 
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
7.3 Feature Description  
To ensure reliable operation, the DLP3020-Q1 DMD must be used with a DLP products controller.  
7.3.1 Micromirror Array  
The DLP3020-Q1 DMD consists of a two-dimensional array of 1-bit CMOS memory cells that determine the state  
of the each of the 608 × 684 micromirrors in the array. Refer to 6.10 for a calculation of how the 608 × 684  
micromirror array represents a 16:9 dimensional aspect ratio to the user. Each micromirror is either ON”  
(tilted +12°) or OFF(tilted 12°). Combined with appropriate projection optical system the DMD can be  
used to create sharp, colorful, and vivid digital images.  
7.3.2 Double Data Rate (DDR) Interface  
Each DMD micromirror and its associated SRAM memory cell is loaded with data from the DLP controller via the  
DDR interface (DATA(14:0), DCLK, LOADB, SCRTL, and TRC). These signals are low voltage CMOS nominally  
operating at 1.8-V level to reduce power and switching noise. This high speed data input to the DMD allows for a  
maximum update rate of the entire micromirror array to be nearly 5 kHz, enabling the creation of seamless digital  
images using Pulse Width Modulation (PWM).  
7.3.3 Micromirror Switching Control  
Once data is loaded onto the DMD, the mirrors switch position (+12° or 12°) based on the timing signal sent to  
the DMD Mirror and SRAM control logic. The DMD mirrors will be switched from OFF to ON or ON to OFF, or  
stay in the same position based on control signals DAD_BUS, RESET_STROBE, SAC_BUS, and SAC_CLK,  
which are coordinated with the data loading by the DLP controller. In general, the DLP controller loads the DMD  
SRAM memory cells over the DDR interface, and then commands to the micromirrors to switch position.  
At power down, the DMD Mirrors are commanded by the DLP controller to move to a near flat (0°) position as  
shown in 9. The flat state position of the DMD mirrors are referred to as the Parkedstate. To maintain  
long-term DMD reliability, the DMD must be properly Parkedprior to every power down of the DMD power  
supplies.  
7.3.4 DMD Voltage Supplies  
The micromirrors switching requires unique voltage levels to control the mechanical switching. These voltages  
levels are nominally 16 V, 8.5 V, and 10 V (VBIAS, VOFFSET, and VRESET). The specification values for VBIAS  
,
V
OFFSET, and VRESET are shown in 6.4.  
7.3.5 Logic Reset  
Reset of the DMD is required and controlled by the DLP products controller.  
7.3.6 Temperature Sensing Diode  
The DMD includes a temperature sensing diode designed to be used with the TMP411-Q1 temperature  
monitoring device. The DLP products controller may monitor the DMD array temperature via the TMP411-Q1  
and temperature sense diode.  
7-1 shows the typical connection between the DLP products controller, TMP411-Q1, and the DLP3020-Q1  
DMD. The signals to the temperature sense diode are sensitive to system noise, and care should be taken in the  
routing and implementation of this circuit. See the TMP411-Q1 data sheet for detailed PCB layout  
recommendations.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DLP3020-Q1  
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
DLPC120  
DLP3020-Q1  
50  
50  
SCL  
SCA  
D+  
D-  
100 pF  
TMP411-Q1  
7-1. Temperature Sense Diode Typical Circuit Configuration  
It is recommended that the host controller manage parking of the DMD based on the allowable temperature  
specifications and temperature measurements.  
7.3.6.1 Temperature Sense Diode Theory  
A temperature sensing diode is based on the fundamental current and temperature characteristics of a transistor.  
The diode is formed by connecting the transistor base to the collector. Two different known currents flow through  
the diode and the resulting diode voltage is measured in each case. The difference in the base-emitter voltages  
is proportional to the absolute temperature of the transistor.  
Refer to the TMP411-Q1 data sheet for detailed information about temperature diode theory and measurement.  
7-2 and 7-3 illustrate the relationship between the current and voltage through the diode.  
IE1  
IE2  
+
VBE 1,2  
-
7-2. Temperature Measurement Theory  
100uA  
10uA  
1uA  
Temperature (°C)  
Temperature (°C)  
7-3. Example of Delta VBE vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DLP3020-Q1  
 
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
7.3.7 DMD JTAG Interface  
The DMD uses 4 standard JTAG signals for sending and receiving boundary scan test data. TCK is the test  
clock used to drive an IEEE 1149.1 TAP state machine and logic. TMS directs the next state of the TAP state  
machine. TDI is the scan data input and TDO is the scan data output.  
The DMD does not support IEEE 1149.1 signals TRST (Test Logic Reset) and RTCK (Returned Test Clock).  
Boundary scan cells on the DMD are Observe-Only. To initiate the JTAG boundary scan operation on the DMD,  
a minimum of 6 TCK clock cycles are required after TMS is set to logic high.  
Refer to 7-4 for a JTAG system board routing example.  
DLP Products  
DLP302X-Q1  
Controller  
DMD_JTCK  
DMD_JTMS  
DMD_JTDI  
DMD_JTDO  
TCK  
TMS  
TDI  
TDO  
7-4. System Interface Connection to DLP Products Controller  
The DMD Device ID can be read via the JTAG interface. The ID and 32-bit shift order is shown in 7-5.  
MSB  
31  
28 27  
12 11  
1 0  
Version (4 Bits)  
Part Number (16 Bits)  
Manufacturer ID (11 Bits)  
LSB  
1
TDI  
TDO  
0000  
1011-1011-0001-1011  
0000-0010-111  
7-5. DMD Device ID and 32-bit Shift Order  
Refer to 7-6 for a JTAG boundary scan block diagram for the DMD. These show the pins and the scan order  
that are observed during the JTAG boundary scan.  
DATA(0)  
DATA(1)  
DATA(2)  
SAC_BUS  
DATA(3)  
SAC_CLK  
DATA(4)  
DAD_BUS  
DATA(5)  
RESET_STROBE  
DATA(6)  
RESET_OEZ  
DATA(7)  
DATA(8)  
DATA(9)  
DMD Active Mirror Array  
DATA(10)  
DATA(11)  
DATA(12)  
DATA(13)  
DATA(14)  
DCLK  
LOADB  
TCK  
Controller  
Decoder  
Registers  
SCTRL  
TRC  
TMS  
TDI  
JTAG Boundary Scan Path  
TDO  
7-6. JTAG Boundary Scan Path  
Refer to 7-7 for a functional block diagram of the JTAG control logic.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DLP3020-Q1  
 
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
BSC  
BSC  
BSC  
BSC  
BSC  
BSC  
BSC  
Mirror Array & Core Logic  
BSC  
BSC  
Device ID Register  
Bypass Register  
Instruction Decoder  
Instruction Register  
TDI  
TCK  
TMS  
TAP Controller  
TDO  
BSC = Boundary Scan Cell [Observe Only]  
TAP = Test Access Port  
7-7. JTAG Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DLP3020-Q1  
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
7.4 System Optical Considerations  
Optimizing system optical performance and image performance strongly relates to optical system design  
parameter trades. Although it is not possible to anticipate every conceivable application, projector image quality  
and optical performance is contingent on compliance to the optical system operating conditions described in the  
following sections.  
7.4.1 Numerical Aperture and Stray Light Control  
The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area  
should be the same. This angle should not exceed the nominal device mirror tilt angle unless appropriate  
apertures are added in the illumination and/or projection pupils to block flat-state and stray light from passing  
through the projection lens. The mirror tilt angle defines DMD capability to separate the "On" optical path from  
any other light path, including undesirable flat-state specular reflections from the DMD window, DMD border  
structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture  
exceeds the mirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than  
the illumination numerical aperture angle, contrast ratio can be reduced and objectionable artifacts in the image  
border and/or active area could occur.  
7.4.2 Pupil Match  
TIs optical and image quality specifications assume that the exit pupil of the illumination optics is nominally  
centered within two degrees of the entrance pupil of the projection optics. Misalignment of pupils can create  
objectionable artifacts in the image border and/or active area, which may require additional system apertures to  
control, especially if the numerical aperture of the system exceeds the pixel tilt angle.  
7.4.3 Illumination Overfill and Alignment  
Overfill light illuminating the area outside the active array can create artifacts from the mechanical features and  
other surfaces that surround the active array. These artifacts may be visible in the projected image. The  
illumination optical system should be designed to minimize light flux incident outside the active array and on the  
window aperture. Depending on the particular systems optical architecture and assembly tolerances, this  
amount of overfill light on the area outside of the active array may still cause artifacts to be visible. Illumination  
light and overfill can also induce undesirable thermal conditions on the DMD, especially if illumination light  
impinges directly on the DMD window aperture or near the edge of the DMD window. Refer to 6.4 for a  
specification on this maximum allowable heat load due to illumination overfill.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DLP3020-Q1  
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
7.5 DMD Image Performance Specification  
PARAMETER (1)  
Bright Pixels - Viewed on a linear gray 10 screen  
Dark Pixels - Viewed on a white screen  
Optical performance  
MIN  
NOM  
MAX  
UNIT  
0
4
micromirrors  
micromirrors  
See System Optical Considerations  
(1) Any artifact that is not specifically called out in this table is acceptable. Viewing distance must be > 60 in. Screen size should be similar  
to application image size. All values referenced are in linear gamma. Non-linear gamma curves may be running by default, and it  
should be ensured with a TI applications engineer that the equivalent linear gamma value as specified is used to judge artifacts.  
7.6 Micromirror Array Temperature Calculation  
Active array temperature can be computed analytically from measurement points on the outside of the package,  
the package thermal resistance, the electrical power, and the illumination heat load.  
Relationship between array temperature and the reference ceramic temperature (thermocouple location TP1 in  
7-8) is provided by the following equations.  
TARRAY = TCERAMIC + (QARRAY × RARRAY-TO-CERAMIC  
)
(1)  
(2)  
QARRAY = QELECTRICAL + QILLUMINATION  
where  
TARRAY = computed DMD array temperature (°C)  
TCERAMIC = measured ceramic temperature (TP1 location in 7-8) (°C)  
RARRAY-TO-CERAMIC = DMD package thermal resistance from array to TP1 (°C/watt) (see 6.5)  
QARRAY = total power, electrical plus absorbed, on the DMD array (watts)  
QELECTRICAL = nominal electrical power dissipation by the DMD (watts)  
QILLUMINATION = (CL2W × SL)  
CL2W = conversion constant for screen lumens to power on the DMD (watts/lumen)  
SL = measured screen lumens (lm)  
Electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating  
frequencies.  
Absorbed power from the illumination source is variable and depends on the operating state of the mirrors and  
the intensity of the light source.  
Equations shown previous are valid for a 1-Chip DMD system with total projection efficiency from DMD to the  
screen of 87%.  
The constant CL2W is based on the DMD array characteristics. It assumes a spectral efficiency of 300 lumens/  
watt for the projected light and illumination distribution of 83.7% on the active array, and 16.3% on the array  
border.  
Sample calculation:  
SL = 50 lm  
CL2W = 0.00293 W/lm  
QELECTRICAL = 0.162 W  
RARRAY-TO-CERAMIC = 7.0°C/W  
TCERAMIC = 55°C  
QARRAY = 0.162 W + (0.00293 × 50 lm) = 0.309 W  
(3)  
(4)  
TARRAY = 55°C + (0.309 W × 7.0°C/W) = 57.2°C  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DLP3020-Q1  
 
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
Illumination  
Direction  
Off-State  
Light  
Array  
TP1  
TP1  
10.00  
0.80  
7-8. Thermocouple Location  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle  
The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a  
percentage) that an individual micromirror is landed in the ON state versus the amount of time the same  
micromirror is landed in the OFF state.  
As an example, assuming a fully-saturated white pixel, a landed duty cycle of 90/10 indicates that the referenced  
pixel is in the ON state 90% of the time (and in the OFF state 10% of the time), whereas 10/90 would indicate  
that the pixel is in the OFF state 90% of the time. Likewise, 50/50 indicates that the pixel is ON 50% of the time  
and OFF 50% of the time.  
Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other  
state (OFF or ON) is considered negligible and is thus ignored.  
Since a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages)  
always add to 100.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DLP3020-Q1  
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The DLP3020-Q1 DMD was designed to be used in automotive applications such as head-up display (HUD).  
The information shown in this section describes the HUD application based on the TI reference design. Contact  
TI application engineer for information on this design.  
8.2 Typical Application  
The DLP3020-Q1 DMD combined with the DLPC120-Q1 are the primary devices that make up the reference  
design for a HUD system as shown in the block diagram 8-1.  
Color & Dimming control  
Flash  
SPI  
I2C  
TMS320  
F28023  
Color  
Controller  
& Driver  
Host  
SPI  
DLPC120-Q1  
LEDs  
Illumination  
Control  
& Feedback  
Video  
Processing &  
DMD  
real-time  
optical  
feedback  
loop  
24-bit RGB  
& Syncs  
Formatting  
photo diode  
LED Enable  
Timing Control  
Data & Control  
Reset  
DLP3020-Q1  
Power Good  
I2C  
TMP411  
-Q1  
Data &  
Address  
DMD Power  
DDR-2 DRAM  
frame buffer  
TPS65100-Q1  
Power Enable  
8-1. HUD Reference Design Block Diagram  
The DLPC120-Q1 accepts input video over the parallel RGB data interface up to 8 bits per color from a video  
graphics processor. The DLPC120-Q1 then processes the video data (864 × 480 manhattan orientation) by  
scaling the image to match the DMD resolution (608 × 684 diamond pixel), applies de-gamma correction, bezel  
adjustment, and then formats the data into DMD bit plane information and stores the data into the DDR2 DRAM.  
The DMD bit planes are read from DDR2 DRAM, and are then displayed on the DMD using pulse width  
modulation (PWM) timing. The DLPC120-Q1 synchronizes the DMD bit plane data with the RGB enable timing  
for the LED color controller and Driver circuit. Finally, the DMD accepts the bit plane formatted data from the  
DLPC120-Q1 and displays the data according to the timing controlled by the DLPC120-Q1.  
Due to the mechanical nature of the micromirrors, the latency of the DLP3020-Q1 and DLPC120-Q1 chipset is  
fixed across all temperature and operating conditions. The observed video latency is one frame, or 16.67 ms at  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DLP3020-Q1  
 
 
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
an input frame rate of 60 Hz. However, please note that the use of the DLPC120-Q1 bezel adjustment feature, if  
enabled by the host controller, requires an additional frame of processing.  
The DLPC120-Q1 is configured at power up by data stored in the flash file which stores configuration data, DMD  
and sequence timing information, LED drive information, and other information related to the system functions.  
See the DLPC120-Q1 programmer's guide for information about the this flash configuration data.  
The HUD reference design from TI includes the TMS320F28023 microcontroller (Piccolo) which is used to  
control the color point by adjusting the RGB flux levels, and drives each RGB LED. This circuit also manages the  
dimming function for the HUD system. The dimming level of a HUD system requires very large dynamic range of  
over 5000:1. For example, on a bright day, the HUD system may require a brightness level as high as 15,000  
cd/m2 and conversely at night time the minimum brightness level desired may only be 3 cd/m2.  
8.3 Application Mission Profile Consideration  
Each application is anticipated to have different mission profiles, or number of operating hours at different  
temperatures. To assist in evaluation, the automotive DMD reliability lifetime estimates Application Report may  
be provided. See the TI Application team for more information.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DLP3020-Q1  
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
9.1 Power Supply Sequencing Requirements  
VBIAS, VCC, VOFFSET, VREF, VRESET, VSS are required to operate the DMD.  
CAUTION  
For reliable operation of the DMD, the following power supply sequencing requirements must be  
followed. Failure to adhere to the prescribed power up and power down procedures may affect  
device reliability.  
The VCC, VREF, VOFFSET, VBIAS, and VRESET power supplies have to be coordinated during power  
up and power down operations. Failure to meet any of the following requirements will result in a  
significant reduction in the DMDs reliability and lifetime. Refer to 9-1. VSS must also be  
connected.  
DMD Power Supply Power Up Procedure:  
During power up, VCC and VREF must always start and settle before VOFFSET, VBIAS and VRESET voltages are  
applied to the DMD.  
During power up, VBIAS does not have to start after VOFFSET. However, it is a strict requirement that the delta  
between VBIAS and VOFFSET must be within ±8.75 V (refer to Note 1 for 9-1).  
During power up, the DMDs LVCMOS input pins shall not be driven high until after VCC and VREF have  
settled at operating voltage.  
During power up, there is no requirement for the relative timing of VRESET with respect to VOFFSET and VBIAS  
Power supply slew rates during power up are flexible, provided that the transient voltage levels follow the  
requirements listed previously in 6.4 and in 9-1.  
.
DMD Power Supply Power Down Procedure  
VCC and VREF must be supplied until after VBIAS, VRESET, and VOFFSET are discharged to within 4 V of ground.  
During power down it is not mandatory to stop driving VBIAS prior to VOFFSET, but it is a strict requirement that  
the delta between VBIAS and VOFFSET must be within ±8.75 V (refer to Note 1 for 9-1).  
During power down, the DMDs LVCMOS input pins must be less than VREF + 0.3 V.  
During power down, there is no requirement for the relative timing of VRESET with respect to VOFFSET and  
VBIAS  
.
Power supply slew rates during power down are flexible, provided that the transient voltage levels follow the  
requirements listed previously in 6.4 and in 9-1.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DLP3020-Q1  
 
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
9.1.1 Power Up and Power Down  
Power  
Off  
VBIAS, VOFFSET, and VRESET  
Disabled by DLP Products Controller  
VCC / VREF  
Mirror Park Sequence  
RESET_OEZ  
VSS  
VCC / VREF  
VCC  
/
VREF  
VSS  
VSS  
VBIAS  
VBIAS  
VBIAS < 4 V  
ûV < 8.75 v  
VSS  
VSS  
VOFFSET  
ûV < 8.75 v  
VOFFSET  
VSS  
VSS  
VOFFSET < 4 V  
VRESET < 0.5 V  
VSS  
VSS  
VRESET > - 4 V  
VRESET  
VRESET  
VCC  
LVCMOS  
Inputs  
VSS  
VSS  
Note 1: ±8.75-V delta, V, shall be considered the max operating delta between VBIAS and VOFFSET. Customers may find that the most  
reliable way to ensure this is to power VOFFSET prior to VBIAS during power up and to remove VBIAS prior to VOFFSET during power down.  
9-1. Power Supply Sequencing Requirements (Power Up and Power Down)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DLP3020-Q1  
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For specific DMD PCB guidelines, use the following:  
VCC should have at least 1 × 2.2-µF and 4 × 0.1-µF capacitors evenly distributed among the VCC pins.  
A 0.1-µF, X7R rated capacitor should be placed near every pin for the VREF, VBIAS, VRSET, and VOFF  
.
10.2 Temperature Diode Pins  
The DMD has an internal diode (PN junction) that is intended to be used with an external TI TMP411-Q1  
temperature sensing IC. PCB traces from the DMDs temperature diode pins to the TMP411-Q1 are sensitive  
to noise. See the TMP411-Q1 data sheet for specific routing recommendations.  
Avoid routing the temperature diodes signals near other traces to reduce coupling of noise onto these signals.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DLP3020-Q1  
 
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Device Nomenclature  
DLP3020 A FQR Q1  
Automotive  
Package  
Temperature Range  
Device Descriptor  
11-1. Part Number Description  
11.1.2 Device Markings  
The device marking is shown in 11-2. The marking will include both human-readable information and a 2-  
dimensional matrix code.  
The human-readable information is described in 11-2. The 2-dimensional matrix code is an alpha-numeric  
character string that contains the DMD part number and lot trace code.  
Two-Dimensional Matrix Code  
(DMD part number and lot trace code)  
Part Marking  
Lot Trace Code  
11-2. DMD Marking  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DLP3020-Q1  
 
 
 
DLP3020-Q1  
ZHCSPE1 FEBRUARY 2022  
www.ti.com.cn  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
DLPC120-Q1 product folder for the DLPC120-Q1 data sheet and other documentation  
Texas instruments, TMS320F2802x Microcontrollers (Piccolo™) data sheet  
Texas Instruments, TMP411-Q1 ±1°C Remote and Local Temperature Sensor With N-Factor and Series  
Resistance Correction data sheet  
Texas Instruments, DMD Optical Efficiency for Visible Wavelengths application report  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Device Handling  
The DMD is an optical device so precautions should be taken to avoid damaging the glass window. Please see  
the DMD Handling application note for instructions on how to properly handle the DMD.  
11.8 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DLP3020-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Feb-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLP3020AFQRQ1  
ACTIVE  
CLGA  
FQR  
54  
126  
RoHS & Green  
Call TI  
N / A for Pkg Type  
-40 to 105  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
DWG NO.  
SH  
8
5
3
6
1
7
4
1
2516663  
REVISIONS  
C
COPYRIGHT 2019 TEXAS INSTRUMENTS  
UN-PUBLISHED, ALL RIGHTS RESERVED.  
NOTES UNLESS OTHERWISE SPECIFIED:  
REV  
A
B
DESCRIPTION  
ECO 2181963: INITIAL RELEASE  
ECO 2184085: ADD FRONT AND BACK SIDE INDEX MARKS  
DATE  
BY  
BMH  
BMH  
6/25/2019  
11/8/2019  
1
2
DIE PARALLELISM TOLERANCE APPLIES TO DMD ACTIVE ARRAY ONLY.  
ROTATION ANGLE OF DMD ACTIVE ARRAY IS A REFINEMENT OF THE LOCATION  
TOLERANCE AND HAS A MAXIMUM ALLOWED VALUE OF 0.6 DEGREES.  
3
4
BOUNDARY MIRRORS SURROUNDING THE DMD ACTIVE ARRAY.  
NOTCH DIMENSIONS ARE DEFINED BY UPPERMOST LAYERS OF CERAMIC,  
AS SHOWN IN SECTION A-A.  
D
C
B
A
D
C
B
A
5
ENCAPSULANT TO BE CONTAINED WITHIN DIMENSIONS SHOWN IN VIEW C  
(SHEET 2). NO ENCAPSULANT IS ALLOWED ON TOP OF THE WINDOW.  
6
7
ENCAPSULANT NOT TO EXCEED THE HEIGHT OF THE WINDOW.  
DATUM B IS DEFINED BY A DIA. 2.5 PIN, WITH A FLAT ON THE SIDE FACING  
TOWARD THE CENTER OF THE ACTIVE ARRAY, AS SHOWN IN VIEW B (SHEET 2).  
WHILE ONLY THE THREE DATUM A TARGET AREAS A1, A2, AND A3 ARE USED  
FOR MEASUREMENT, ALL 4 CORNERS SHOULD BE CONTACTED, INCLUDING E1,  
TO SUPPORT MECHANICAL LOADS.  
8
4X (R0.2)  
4
1.176 0.05  
4
+
-
0.2  
3.025  
0.1  
4
4.275  
4
+
-
0.2  
0.1  
C
4
(ILLUMINATION  
DIRECTION)  
1.25  
2X 2.5 0.075  
4
(2.5)  
2X R0.4 0.1  
+
-
0.3  
0.1  
4
4
8.55  
A
90°1°  
4
4
B
7
A
2X FRONT SIDE  
INDEX MARKS  
4
+
0.8  
-
0.2  
0.1  
(1)  
15 0.08  
+
-
0.3  
0.1  
16.8  
D
2X ENCAPSULANT  
1.10.05  
1.610.077  
5 6  
(2.39)  
3 SURFACES INDICATED  
IN VIEW B (SHEET 2)  
A
0.038A  
0.02D  
1 8  
8
0.780.063  
ACTIVE ARRAY  
1.6 0.1  
(1.6)  
(2.5)  
4
0.4 MIN  
TYP.  
H
H
(SHEET 3)  
(SHEET 3)  
0 MIN TYP.  
DATE  
DRAWN  
UNLESS OTHERWISE SPECIFIED  
TEXAS  
6/25/2019  
B. HASKETT  
ENGINEER  
DIMENSIONS ARE IN MILLIMETERS  
TOLERANCES:  
INSTRUMENTS  
Dallas Texas  
6/24/2019  
6/24/2019  
6/30/2019  
6/24/2019  
6/26/2019  
B. HASKETT  
QA/CE  
ANGLES 1  
TITLE  
SECTION A-A  
NOTCH OFFSETS  
ICD, MECHANICAL, DMD,  
.3 WVGA SERIES 247  
(FQR PACKAGE)  
2 PLACE DECIMALS 0.25  
1 PLACE DECIMALS 0.50  
DIMENSIONAL LIMITS APPLY BEFORE PROCESSES  
INTERPRET DIMENSIONS IN ACCORDANCE WITH ASME  
Y14.5M-1994  
S. HUDGENS  
CM  
M. LOPEZ  
THIRD ANGLE  
PROJECTION  
DWG NO  
REV  
SIZE  
D
0314DA  
USED ON  
REMOVE ALL BURRS AND SHARP EDGES  
PARENTHETICAL INFORMATION FOR REFERENCE ONLY  
B. RAY  
APPROVED  
2516663  
B
NEXT ASSY  
SCALE  
SHEET  
OF  
APPLICATION  
J. GRIMMETT  
20:1  
1
3
INV11-2006a  
5
3
6
1
2
7
8
4
DWG NO.  
SH  
8
5
3
6
1
7
4
2516663  
2
2X (1)  
2X 1.176  
2X (0.8)  
2X 15  
A2  
A3  
D
C
B
A
D
C
B
A
C
4X 1.7  
1.25  
2.5  
B
4X (2.575)  
8
E1  
1.176  
15  
(1.1)  
7
VIEW B  
A1  
DATUMS A, B, C, AND E  
(FROM SHEET 1)  
C
8.75  
1.25  
(2.5)  
B
4.375  
VIEW C  
ENCAPSULANT MAXIMUM X/Y DIMENSIONS  
5
6
2X 0 MIN  
(FROM SHEET 1)  
VIEW D  
DWG NO  
REV  
SIZE  
DRAWN  
DATE  
6/25/2019  
TEXAS  
2516663  
ENCAPSULANT MAXIMUM HEIGHT  
B. HASKETT  
B
3
D
INSTRUMENTS  
Dallas Texas  
SCALE  
SHEET  
OF  
2
INV11-2006a  
5
3
6
1
2
7
8
4
DWG NO.  
SH  
8
5
3
6
1
7
4
2516663  
3
(6.5718)  
ACTIVE ARRAY  
5.850.075  
3
4X (0.108)  
0.634 0.0635  
1.602 0.05  
D
C
B
A
D
C
B
A
C
2
2.2230.075  
(4.584)  
APERTURE  
3.95 0.0635  
1.25  
(ILLUMINATION  
DIRECTION)  
(7.65)  
WINDOW  
(3.699)  
ACTIVE ARRAY  
F
(2.5)  
6.048 0.05  
B
0.5060.0635  
7.090.0635  
(7.596)  
APERTURE  
2.20.05  
8.039 0.05  
(10.239)  
WINDOW  
54X LGA PADS  
0.75±0.05 X 0.75±0.05  
VIEW E  
SYMBOLIZATION PAD  
(5.75 X 7.65)  
0.2ABC  
WINDOW AND ACTIVE ARRAY  
10X TEST PADS  
(Ø0.75)  
0.1A  
(FROM SHEET 1)  
(42°)  
TYP.  
G
F
B
E
D
C
B
A
(0.15) TYP.  
(2.5)  
6 X 1 = 6  
1.25  
C
3
(42°)  
TYP.  
16  
15  
14  
13  
12  
DETAIL F  
5
4
3
2
1
1.276  
15 X 1 = 15  
APERTURE LEFT AND RIGHT EDGES  
BACK SIDE  
INDEX MARK  
(WINDOW OMITTED FOR CLARITY)  
SCALE 60 : 1  
VIEW H-H  
BACK SIDE METALLIZATION  
(FROM SHEET 1)  
DWG NO  
REV  
SIZE  
DRAWN  
DATE  
6/25/2019  
TEXAS  
2516663  
B. HASKETT  
B
3
D
INSTRUMENTS  
Dallas Texas  
SCALE  
SHEET  
OF  
3
INV11-2006a  
5
3
6
1
2
7
8
4
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DLP3020AFQRQ1

Automotive 0.3-inch DLP® digital micromirror device (DMD) in small S247 package | FQR | 54 | -40 to 105
TI

DLP3021-Q1

DLP® 汽车类 0.3 英寸数字微镜器件 (DMD)
TI

DLP3021FFQRQ1

DLP® 汽车类 0.3 英寸数字微镜器件 (DMD) | FQR | 54 | -40 to 105
TI

DLP3030-Q1

DLP® 汽车类 0.3 英寸数字微镜器件 (DMD)
TI

DLP3030AFYJQ1

DLP® 汽车类 0.3 英寸数字微镜器件 (DMD) | FYJ | 149 | -40 to 105
TI

DLP3034-Q1

DLP® 车用 0.3 英寸 405nm 数字微镜器件 (DMD)
TI

DLP3034AFYJQ1

DLP® 车用 0.3 英寸 405nm 数字微镜器件 (DMD) | FYJ | 149 | -40 to 105
TI

DLP31D

SMD/BLOCK Type EMI Suppression Filters
MURATA

DLP31DN131ML4

On-Board Type (DC) EMI Suppression Filters
MURATA

DLP31DN131ML4B

Common Mode Choke Coil Film Type (Array) DLP31D Series (1206 Size)
MURATA

DLP31DN131ML4L

Common Mode Choke Coil Film Type (Array) DLP31D Series (1206 Size)
MURATA

DLP31DN161SL4B

Data Line Filter, 4 Function(s), 10V, 0.1A, EIA STD PACKAGE SIZE 1206
MURATA