DLP4710AFQL [TI]

0.47-inch 1080p DLP® digital mirror device (DMD) | FQL | 100 | 0 to 70;
DLP4710AFQL
型号: DLP4710AFQL
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

0.47-inch 1080p DLP® digital mirror device (DMD) | FQL | 100 | 0 to 70

商用集成电路
文件: 总45页 (文件大小:1715K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLP4710  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
DLP4710 0.47 1080p DMD  
1 特性  
3 说明  
0.47 (11.93mm) 对角线微镜阵列  
DLP4710 数字微镜器件 (DMD) 是一款数控微光机电系  
(MOEMS) 空间照明调制(SLM)。当与适当的光学  
系统配合使用时DLP4710LC DMD 可显示非常清晰  
的高质量图像或视频。此器件是 DLP4710 DMD、  
1920 × 1080 铝制微米级微镜阵列采用正交布  
– 微镜间距5.4μm  
– 微镜倾斜相对于平坦表面):±17°  
– 底部照明实现最优的效率和光学引擎尺寸  
– 偏振无关型铝微镜表面  
DLPC3479  
控 制 器 和  
DLPA3000/DLPA3005  
PMIC/LED 驱 动 器 所 组 成 的 芯 片 组 的 组 件 。  
DLP4710LC 外形小巧与控制器PMIC/LED 驱动器  
共同组成完整的系统解决方案从而实现小尺寸、低功  
耗和高分辨率的高清显示产品。  
32 SubLVDS 输入数据总线  
• 专DLP3439 显示控制器  
• 专DLPA3000 DLPA3005 PMIC/LED 驱动器  
确保可靠运行  
请访问 TI DLP®Pico显示技术入门了解如何开始  
使DLP4710。  
2 应用  
DLP4710 生态系统包含现成的资源可帮助用户加快  
设计周期。这些资源包括可直接用于生产环境的光学模  
光学模块制造商设计公司。  
• 智能全高(HD) 投影仪  
• 移动式附件全高清投影仪  
• 无屏幕显示  
• 交互式显示  
• 低延迟游戏显示  
• 头戴式显示器  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
DLP4710  
FQL (100)  
24.50mm × 11mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
DLP Pico Analog Device  
VRESET  
VOFFSET VBIAS  
DLP  
Pico Processor  
DLP  
Pico Processor  
D_BP(0:7)  
D_AP(0:7)  
D_AN(0:7)  
D_BP(0:7)  
600 MHz  
SubLVDS  
DDR  
600 MHz  
SubLVDS  
DDR  
DLP DMD  
DCLK_AP  
DCLK_AN  
DCLK_BP  
DCLK_BN  
Interface  
Interface  
Digital  
Micromirror  
Device  
LS_WDATA  
LS_CLK  
120 MHz  
SDR  
Interface  
120 MHz  
SDR  
Interface  
LS_RDATA_B  
LS_RDATA  
DMD_DEN_ARSTZ  
Slave  
Master  
VDDI  
VDD  
VSS  
(System signal routing omitted for clarity)  
0.47 1080p 芯片组  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: DLPS125  
 
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
Table of Contents  
7.5 Optical Interface and System Image Quality  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 8  
6.1 Absolute Maximum Ratings ....................................... 8  
6.2 Storage Conditions..................................................... 8  
6.3 ESD Ratings............................................................... 9  
6.4 Recommended Operating Conditions.........................9  
6.5 Thermal Information..................................................11  
6.6 Electrical Characteristics...........................................11  
6.7 Timing Requirements................................................12  
6.8 Switching Characteristics .........................................17  
6.9 System Mounting Interface Loads............................ 17  
6.10 Physical Characteristics of the Micromirror Array...18  
6.11 Micromirror Array Optical Characteristics............... 20  
6.12 Window Characteristics.......................................... 21  
6.13 Chipset Component Usage Specification............... 21  
6.14 Software Requirements.......................................... 22  
7 Detailed Description......................................................23  
7.1 Overview...................................................................23  
7.2 Functional Block Diagram.........................................24  
7.3 Feature Description...................................................25  
7.4 Device Functional Modes..........................................25  
Considerations............................................................ 25  
7.6 Micromirror Array Temperature Calculation.............. 26  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle ...... 27  
8 Application and Implementation..................................31  
8.1 Application Information............................................. 31  
8.2 Typical Application.................................................... 31  
9 Power Supply Recommendations................................33  
9.1 DMD Power Supply Power-Up Procedure................33  
9.2 DMD Power Supply Power-Down Procedure........... 33  
9.3 Power Supply Sequencing Requirements................ 34  
10 Layout...........................................................................36  
10.1 Layout Guidelines................................................... 36  
10.2 Layout Example...................................................... 36  
11 Device and Documentation Support..........................37  
11.1 Device Support........................................................37  
11.2 Related Links.......................................................... 37  
11.3 接收文档更新通知................................................... 38  
11.4 支持资源..................................................................38  
11.5 Trademarks............................................................. 38  
11.6 Electrostatic Discharge Caution..............................38  
11.7 术语表..................................................................... 38  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 39  
4 Revision History  
Changes from Revision A (November 2021) to Revision B (May 2022)  
Page  
Updated Absolute Maximum Ratings disclosure to the latest TI standard......................................................... 8  
Updated Micromirror Array Optical Characteristics ......................................................................................... 20  
Added Third-Party Products Disclaimer ...........................................................................................................37  
Changes from Revision * (November 2018) to Revision A (November 2021)  
Page  
• 更新了整个文档中的表、图和交叉参考的编号格式.............................................................................................1  
Updated |TDELTA| MAX from 30°C to 15°C..........................................................................................................9  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DLP4710  
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
5 Pin Configuration and Functions  
L
J
G
E
C
A
K
H
F
D
B
1
3
5
2
4
6
25  
26  
27  
28  
29  
30  
31  
5-1. FQL Package. 100-Pin LGA. Bottom View.  
5-1. Connector Pins  
PIN(1)  
NAME  
PACKAGE NET  
LENGTH(2) (mm)  
TYPE  
SIGNAL  
DATA RATE  
DESCRIPTION  
NO.  
DATA INPUTS  
D_AN(0)  
D_AN(1)  
D_AN(2)  
D_AN(3)  
D_AN(4)  
D_AN(5)  
D_AN(6)  
D_AN(7)  
D_AP(0)  
D_AP(1)  
D_AP(2)  
D_AP(3)  
D_AP(4)  
D_AP(5)  
D_AP(6)  
D_AP(7)  
D_BN(0)  
D_BN(1)  
G3  
F4  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Data, Negative  
5.01  
2.03  
2.41  
4.71  
3.23  
3.87  
6.32  
1.84  
5.01  
2.03  
2.41  
4.71  
3.23  
3.87  
6.32  
1.84  
2.51  
4.43  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Negative  
Data, Negative  
E3  
E6  
J5  
L5  
G5  
L3  
H3  
G4  
E4  
E5  
J6  
L6  
G6  
L4  
G27  
E26  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DLP4710  
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
5-1. Connector Pins (continued)  
PIN(1)  
NAME  
D_BN(2)  
PACKAGE NET  
TYPE  
SIGNAL  
DATA RATE  
DESCRIPTION  
LENGTH(2) (mm)  
NO.  
D28  
D26  
L25  
K25  
L28  
K27  
F27  
E27  
D27  
D25  
L26  
J25  
K28  
J27  
J3  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Data, Negative  
2.76  
5.47  
4.85  
4.10  
2.53  
2.76  
2.51  
4.43  
2.76  
5.47  
4.85  
4.10  
2.53  
2.76  
3.77  
3.77  
2.98  
2.98  
D_BN(3)  
D_BN(4)  
D_BN(5)  
D_BN(6)  
D_BN(7)  
D_BP(0)  
D_BP(1)  
D_BP(2)  
D_BP(3)  
D_BP(4)  
D_BP(5)  
D_BP(6)  
D_BP(7)  
DCLK_AN  
DCLK_AP  
DCLK_BN  
DCLK_BP  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Clock, Negative  
Clock, Positive  
Clock, Negative  
Clock, Positive  
K3  
H26  
H27  
CONTROL INPUTS  
LS_WDATA  
D3  
C3  
I
I
LPSDR (1)  
LPSDR  
Single  
Single  
Write data for low speed interface.  
Clock for low-speed interface  
1.20  
1.20  
LS_CLK  
Asynchronous reset DMD signal. A low  
signal places the DMD in reset. A high  
signal releases the DMD from reset  
and places it in active mode.  
DMD_DEN_ARSTZ  
B6  
I
LPSDR  
4.19  
LS_RDATA_A  
LS_RDATA_B  
POWER (3)  
VBIAS  
C6  
C4  
O
O
LPSDR  
LPSDR  
Single  
Single  
Read data for low-speed interface  
Read data for low-speed interface  
3.93  
2.57  
B27  
B4  
Power  
Power  
Power  
24.51  
24.51  
49.56  
Supply voltage for positive bias level at  
micromirrors  
VBIAS  
VOFFSET  
B2  
Supply voltage for HVCMOS core  
logic. Supply voltage for stepped high  
level at micromirror address  
electrodes.  
Supply voltage for offset level at  
micromirrors.  
VOFFSET  
C29  
Power  
49.56  
VRESET  
VRESET  
B28  
B3  
Power  
Power  
24.82  
24.82  
Supply voltage for negative reset level  
at micromirrors.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DLP4710  
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
5-1. Connector Pins (continued)  
PIN(1)  
NAME  
PACKAGE NET  
LENGTH(2) (mm)  
TYPE  
SIGNAL  
DATA RATE  
DESCRIPTION  
NO.  
C2  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDI  
VDDI  
VDDI  
VDDI  
VDDI  
VDDI  
VDDI  
VDDI  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
D2  
D29  
E2  
E29  
H2  
Supply voltage for LVCMOS core logic.  
Supply voltage for LPSDR inputs.  
Supply voltage for normal high level at  
micromirror address electrodes.  
H28  
H29  
J2  
J28  
J29  
K2  
K29  
L2  
L29  
E28  
F2  
F28  
F29  
F3  
Supply voltage for SubLVDS receivers.  
G2  
G28  
G29  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DLP4710  
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
5-1. Connector Pins (continued)  
PIN(1)  
NAME  
PACKAGE NET  
LENGTH(2) (mm)  
TYPE  
SIGNAL  
DATA RATE  
DESCRIPTION  
NO.  
B25  
B26  
B29  
B5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
C25  
C26  
C27  
C28  
C5  
D4  
D5  
D6  
E25  
F25  
F26  
F5  
Common return.  
Ground for all power.  
F6  
G25  
G26  
H25  
H4  
H5  
H6  
J26  
J4  
K26  
K4  
K5  
K6  
L27  
(1) Low speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC  
Standard No. 209B, Low Power Double Data Rate (LPDDR) JESD209B.  
(2) Net trace lengths inside the package:  
Relative dielectric constant for the FQL ceramic package is 9.8.  
Propagation speed = 11.8 / sqrt (9.8) = 3.769 inches/ns.  
Propagation delay = 0.265 ns/inch = 265 ps/inch = 10.43 ps/mm.  
(3) The following power supplies are all required to operate the DMD: VDD, VDDI, VOFFSET, VBIAS, VRESET. All VSS connections are  
also required.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DLP4710  
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
5-2. Test Pads  
NUMBER  
A1  
SYSTEM BOARD  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
A5  
A6  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
B30  
B31  
C30  
C31  
D1  
E1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DLP4710  
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
see (1)  
MIN  
MAX  
UNIT  
Supply voltage for LVCMOS core logic(2)  
Supply voltage for LPSDR low speed interface  
VDD  
2.3  
V
0.5  
VDDI  
Supply voltage for SubLVDS receivers(2)  
2.3  
11  
V
V
V
V
V
0.5  
0.5  
0.5  
15  
VOFFSET  
VBIAS  
Supply voltage for HVCMOS and micromirror electrode(2) (3)  
Supply voltage for micromirror electrode(2)  
Supply voltage for micromirror electrode(2)  
Supply voltage delta (absolute value)(4)  
19  
Supply voltage  
VRESET  
| VDDIVDD |  
0.5  
0.3  
| VBIAS–  
VOFFSET |  
Supply voltage delta (absolute value)(5)  
Supply voltage delta (absolute value)(6)  
11  
34  
V
V
| VBIAS–  
VRESET |  
Input voltage for other inputs LPSDR(2)  
VDD + 0.5  
V
V
0.5  
0.5  
Input voltage  
VDDI +  
0.5  
Input voltage for other inputs SubLVDS(2) (7)  
| VID |  
IID  
SubLVDS input differential voltage (absolute value)(7)  
810  
10  
mV  
mA  
MHz  
MHz  
°C  
Input pins  
SubLVDS input differential current  
Clock frequency for low speed interface LS_CLK  
Clock frequency for high speed interface DCLK  
Temperature operational (8)  
130  
620  
90  
ƒclock  
Clock frequency  
ƒclock  
20  
40  
TARRAY and  
TWINDOW  
Temperature non-operational(8)  
90  
°C  
Dew Point Temperature - operating and non-operating (non-  
condensing)  
Environmental  
TDP  
81  
30  
°C  
°C  
Absolute Temperature delta between any point on the window edge  
and the ceramic test point TP1(9)  
|TDELTA  
|
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to the ground terminals (VSS). The following power supplies are all required to operate the DMD:  
VDD, VDDI, VOFFSET, VBIAS, and VRESET. All VSS connections are also required.  
(3) VOFFSET supply transients must fall within specified voltages.  
(4) Exceeding the recommended allowable absolute voltage difference between VDDI and VDD may result in excessive current draw.  
(5) Exceeding the recommended allowable absolute voltage difference between VBIAS and VOFFSET may result in excessive current  
draw.  
(6) Exceeding the recommended allowable absolute voltage difference between VBIAS and VRESET may result in excessive current  
draw.  
(7) This maximum input voltage rating applies when each input of a differential pair is at the same voltage potential. Sub-LVDS differential  
inputs must not exceed the specified limit or damage may result to the internal termination resistors.  
(8) The highest temperature of the active array (as calculated by the 7.6) or of any point along the Window Edge as defined in 7-1.  
The locations of thermal test points TP2, TP3, TP4, and TP5 in 7-1 are intended to measure the highest window edge temperature.  
If a particular application causes another point on the window edge to be at a higher temperature, that point should be used.  
(9) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in 图  
7-1. The window test points TP2, TP3, TP4, and TP5 shown in 7-1 are intended to result in the worst case delta. If a particular  
application causes another point on the window edge to result in a larger delta temperature, that point should be used.  
6.2 Storage Conditions  
applicable for the DMD as a component or non-operational in a system  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DLP4710  
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
MIN  
MAX  
85  
24  
36  
6
UNIT  
°C  
TDMD  
DMD storage temperature  
40  
TDP-AVG  
TDP-ELR  
CTELR  
Average dew point temperature, (non-condensing)(1)  
Elevated dew point temperature range, (non-condensing)(2)  
Cumulative time in elevated dew point temperature range  
°C  
28  
°C  
Months  
(1) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.  
(2) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total  
cumulative time of CTELR  
.
6.3 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.  
6.4 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)(1) (2) (3)  
MIN  
NOM  
MAX  
UNIT  
SUPPLY VOLTAGE RANGE(4)  
Supply voltage for LVCMOS core logic  
VDD  
1.7  
1.8  
1.95  
V
Supply voltage for LPSDR low-speed interface  
Supply voltage for SubLVDS receivers  
Supply voltage for HVCMOS and micromirror electrode(5)  
Supply voltage for mirror electrode  
VDDI  
1.7  
9.5  
1.8  
10  
1.95  
10.5  
18.5  
13.5  
0.3  
V
V
V
V
V
V
V
VOFFSET  
VBIAS  
17.5  
18  
VRESET  
Supply voltage for micromirror electrode  
Supply voltage delta (absolute value)(6)  
Supply voltage delta (absolute value)(7)  
Supply voltage delta (absolute value)(8)  
14.5  
14  
|VDDIVDD  
|
10.5  
33  
|VBIASVOFFSET  
|VBIASVRESET  
|
|
CLOCK FREQUENCY  
Clock frequency for low speed interface LS_CLK(9)  
Clock frequency for high speed interface DCLK(10)  
Duty cycle distortion DCLK  
108  
300  
120  
540  
MHz  
MHz  
ƒclock  
ƒclock  
44%  
56%  
SUBLVDS INTERFACE(10)  
| VID  
VCM  
|
150  
700  
575  
90  
250  
900  
350  
1100  
1225  
110  
mV  
mV  
mV  
SubLVDS input differential voltage (absolute value) 6-8, 6-9  
Common mode voltage 6-8, 6-9  
VSUBLVDS  
ZLINE  
SubLVDS voltage 6-8, 6-9  
Line differential impedance (PWB/trace)  
Internal differential termination resistance 6-10  
100-Ωdifferential PCB trace  
100  
100  
ZIN  
80  
120  
6.35  
152.4  
mm  
ENVIRONMENTAL  
40 to  
70(13)  
Array Temperature long-term operational(11) (12) (13) (14)  
0
Array Temperature - short-term operational, 25 hr max(12) (15)  
Array Temperature - short-term operational, 500 hr max(12) (15)  
Array Temperature short-term operational, 500 hr max(12) (15)  
-10  
0
20  
10  
70  
TARRAY  
°C  
75  
Absolute Temperature difference between any point on the window  
edge and the ceramic test point TP1 (16)  
|TDELTA  
|
15  
90  
°C  
°C  
Window Temperature operational(11) (17)  
TWINDOW  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DLP4710  
 
 
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
MIN  
NOM  
MAX  
UNIT  
°C  
TDP-AVG  
TDP-ELR  
CTELR  
ILLUV  
Average dew point temperature (non-condensing)(18)  
24  
36  
6
Elevated dew point temperature range (non-condensing)(19)  
Cumulative time in elevated dew point temperature range  
Illumination wavelengths < 420 nm (11)  
28  
°C  
Months  
0.68 mW/cm2  
Thermally limited  
10 mW/cm2  
55 degrees  
ILLVIS  
ILLIR  
Illumination wavelengths between 420 nm and 700 nm  
Illumination wavelengths > 700 nm  
ILLθ  
Illumination marginal ray angle(20)  
(1) The following power supplies are all required to operate the DMD: VDD, VDDI, VOFFSET, VBIAS, and VRESET. All VSS connections  
are also required.  
(2) 6.4 are applicable after the DMD is installed in the final product.  
(3) The functional performance of the device specified in this data sheet is achieved when operating the device within the limits defined by  
the 6.4. No level of performance is implied when operating the device above or below the 6.4 limits.  
(4) All voltage values are with respect to the ground pins (VSS).  
(5) VOFFSET supply transients must fall within specified max voltages.  
(6) To prevent excess current, the supply voltage delta |VDDI VDD| must be less than specified limit.  
(7) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than specified limit.  
(8) To prevent excess current, the supply voltage delta |VBIAS VRESET| must be less than specified limit.  
(9) LS_CLK must run as specified to ensure internal DMD timing for reset waveform commands.  
(10) Refer to the SubLVDS timing requirements in 6.7.  
(11) Simultaneous exposure of the DMD to the maximum 6.4 for temperature and UV illumination will reduce device lifetime.  
(12) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1  
(TP1) shown in 7-1 and the Package Thermal Resistance using 7.6.  
(13) Per 6-1, the maximum operational array temperature should be derated based on the micromirror landed duty cycle that the DMD  
experiences in the end application. Refer to 7.7 for a definition of micromirror landed duty cycle.  
(14) Long-term is defined as the usable life of the device  
(15) Short-term is the total cumulative time over the useful life of the device.  
(16) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge shown in 7-1.  
The window test points TP2, TP3, TP4, and TP5 shown in 7-1 are intended to result in the worst case delta temperature. If a  
particular application causes another point on the window edge to result in a larger delta temperature, that point should be used.  
(17) Window temperature is the highest temperature on the window edge shown in 7-1. The locations of thermal test points TP2, TP3,  
TP4, and TP5 in 7-1 are intended to measure the highest window edge temperature. If a particular application causes another point  
on the window edge to be at a higher temperature, that point should be used.  
(18) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range.  
(19) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total  
cumulative time of CTELR  
.
(20) The maximum marginal ray angle of the incoming illumination light at any point in the micromirror array, including Pond of Micromirrors  
(POM), should not exceed 55 degrees from the normal to the device array plane. The device window aperture has not necessarily  
been designed to allow incoming light at higher maximum angles to pass to the micromirrors, and the device performance has not  
been tested nor qualified at angles exceeding this. Illumination light exceeding this angle outside the micromirror array (including POM)  
will contribute to thermal limitations described in this document, and may negatively affect lifetime.  
80  
70  
60  
50  
40  
30  
0/100 5/95 10/90 15/85 20/80 25/75 30/70 35/65 40/60 45/55 50/50  
90/10 85/15 80/20 75/25 70/30 65/35 60/40 55/45  
100/0 95/5  
D001  
Micromirror Landed Duty Cycle  
6-1. Max Recommended Array Temperature Derating Curve  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DLP4710  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
6.5 Thermal Information  
DLP4710LC  
THERMAL METRIC(1)  
FQL (LGA)  
100 PINS  
1.1  
UNIT  
Thermal resistance  
Active area to test point 1 (TP1)(1)  
°C/W  
(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of  
maintaining the package within the temperature range specified in the 6.4. The total heat load on the DMD is largely driven by the  
incident light absorbed by the active area; although other contributions include light energy absorbed by the window aperture and  
electrical power dissipation of the array. Optical systems should be designed to minimize the light energy falling outside the window  
clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.  
6.6 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS(2)  
MIN  
TYP  
MAX  
260  
62  
UNIT  
CURRENT  
VDD = 1.95 V  
IDD  
Supply current: VDD(3) (4)  
Supply current: VDDI(3) (4)  
Supply current: VOFFSET(5) (6)  
Supply current: VBIAS(5) (6)  
Supply current: VRESET(6)  
mA  
mA  
mA  
mA  
mA  
VDD = 1.8 V  
180  
40  
VDDI = 1.95 V  
IDDI  
VDDI = = 1.8 V  
VOFFSET = 10.5 V  
VOFFSET = 10 V  
VBIAS = 18.5 V  
VBIAS = 18 V  
7.4  
1.1  
5.4  
IOFFSET  
6.3  
0.9  
IBIAS  
VRESET = 14.5 V  
VRESET = 14 V  
IRESET  
4.4  
POWER(7)  
PDD  
Supply power dissipation: VDD(3)  
VDD = 1.95 V  
507  
120.9  
77.7  
mW  
mW  
mW  
mW  
(4)  
VDD = 1.8 V  
324  
72  
Supply power dissipation: VDDI(3)  
VDDI = 1.95 V  
VDD = 1.8 V  
PDDI  
(4)  
VOFFSET = 10.5 V  
VOFFSET = 10 V  
VBIAS = 18.5 V  
VBIAS = 18 V  
Supply power dissipation:  
VOFFSET(5) (6)  
POFFSET  
63  
20.35  
78.3  
Supply power dissipation:  
VBIAS(5) (6)  
PBIAS  
16.2  
VRESET = 14.5 V  
VRESET = 14 V  
Supply power dissipation:  
VRESET(6)  
PRESET  
mW  
mW  
61.6  
PTOTAL  
Supply power dissipation: Total  
536.8  
804.25  
LPSDR INPUT(8)  
VIH(DC)  
DC input high voltage(9)  
DC input low voltage(9)  
AC input high voltage(9)  
AC input low voltage(9)  
0.7 × VDD  
0.3  
VDD + 0.3  
0.3 × VDD  
VDD + 0.3  
0.2 × VDD  
0.4 × VDD  
V
V
VIL(DC)  
VIH(AC)  
0.8 × VDD  
0.3  
V
VIL(AC)  
V
0.1 × VDD  
V
VT  
IIL  
Hysteresis ( VT+ VT–  
Lowlevel input current  
)
6-10  
VDD = 1.95 V; VI = 0 V  
VDD = 1.95 V; VI = 1.95 V  
nA  
nA  
100  
IIH  
100  
Highlevel input current  
LPSDR OUTPUT(10)  
VOH  
DC output high voltage  
0.8 × VDD  
V
IOH = 2 mA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DLP4710  
 
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
PARAMETER  
TEST CONDITIONS(2)  
IOL = 2 mA  
MIN  
TYP  
MAX  
UNIT  
VOL  
DC output low voltage  
0.2 × VDD  
V
CAPACITANCE  
Input capacitance LPSDR  
Input capacitance SubLVDS  
Output capacitance  
10  
20  
10  
pF  
pF  
pF  
ƒ= 1 MHz  
ƒ= 1 MHz  
ƒ= 1 MHz  
CIN  
COUT  
ƒ= 1 MHz; (1080 × 240)  
micromirrors  
CRESET  
Reset group capacitance  
400  
450  
pF  
(1) Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.  
(2) All voltage values are with respect to the ground pins (VSS).  
(3) To prevent excess current, the supply voltage delta |VDDI VDD| must be less than specified limit.  
(4) Supply power dissipation based on noncompressed commands and data.  
(5) To prevent excess current, the supply voltage delta |VBIAS VOFFSET| must be less than specified limit.  
(6) Supply power dissipation based on 3 global resets in 200 µs.  
(7) The following power supplies are all required to operate the DMD: VDD, VDDI, VOFFSET, VBIAS, VRESET. All VSS connections are  
also required.  
(8) LPSDR specifications are for pins LS_CLK and LS_WDATA.  
(9) Low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC  
Standard No. 209B, Low-Power Double Data Rate (LPDDR) JESD209B.  
(10) LPSDR specification is for pin LS_RDATA.  
6.7 Timing Requirements  
Device electrical characteristics are over 6.4 unless otherwise noted.  
MIN  
NOM  
MAX  
UNIT  
LPSDR  
tr  
Rise slew rate(1)  
1
1
3
3
V/ns  
V/ns  
V/ns  
V/ns  
ns  
(30% to 80%) × VDD, 6-3  
(70% to 20%) × VDD, 6-3  
(20% to 80%) × VDD, 6-3  
(80% to 20%) × VDD, 6-3  
6-2  
tƒ  
Fall slew rate(1)  
tr  
Rise slew rate(2)  
0.25  
0.25  
7.7  
3.1  
3.1  
tƒ  
Fall slew rate(2)  
tc  
Cycle time LS_CLK,  
Pulse duration LS_CLK high  
Pulse duration LS_CLK low  
8.3  
tW(H)  
tW(L)  
tsu  
ns  
50% to 50% reference points, 6-2  
50% to 50% reference points, 6-2  
ns  
LS_WDATA valid before LS_CLK ,  
6-2  
Setup time  
1.5  
ns  
LS_WDATA valid after LS_CLK , 图  
6-2  
t h  
Hold time  
1.5  
3.0  
ns  
ns  
ns  
tWINDOW  
tDERATING  
Window time(1) (3)  
Window time derating(1) (3)  
Setup time + Hold time, 6-2  
For each 0.25 V/ns reduction in slew  
rate below 1 V/ns, 6-5  
0.35  
SubLVDS  
tr  
Rise slew rate  
0.7  
0.7  
1
1
V/ns  
V/ns  
ns  
20% to 80% reference points, 6-4  
80% to 20% reference points, 6-4  
6-6  
tƒ  
Fall slew rate  
tc  
Cycle time DCLK,  
Pulse duration DCLK high  
Pulse duration DCLK low  
1.79  
0.79  
0.79  
1.85  
tW(H)  
tW(L)  
ns  
50% to 50% reference points, 6-6  
50% to 50% reference points, 6-6  
ns  
D(0:7) valid before  
DCLK or DCLK , 6-6  
tsu  
Setup time  
D(0:7) valid after  
DCLK or DCLK , 6-6  
t h  
Hold time  
tWINDOW  
Window time  
3.0  
ns  
Setup time + Hold time, 6-6, 6-7  
Product Folder Links: DLP4710  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
 
 
 
 
 
 
 
 
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
MIN  
NOM  
MAX  
UNIT  
tLVDS-  
Power-up receiver(4)  
2000  
ns  
ENABLE+REFGEN  
(1) Specification is for LS_CLK and LS_WDATA pins. Refer to LPSDR input rise slew rate and fall slew rate in 6-3.  
(2) Specification is for DMD_DEN_ARSTZ pin. Refer to LPSDR input rise and fall slew rate in 6-3 .  
(3) Window time derating example: 0.5-V/ns slew rate increases the window time by 0.7 ns, from 3 to 3.7 ns.  
(4) Specification is for SubLVDS receiver time only and does not take into account commanding and latency after commanding.  
t
c
t
t
w(L)  
w(H)  
LS_CLK  
50%  
50%  
50%  
t
h
t
su  
LS_WDATA  
50%  
50%  
t
window  
Low-speed interface is LPSDR and adheres to the 6.6 and AC/DC Operating Conditions table in JEDEC Standard No. 209B, Low  
Power Double Data Rate (LPDDR) JESD209B.  
6-2. LPSDR Switching Parameters  
LS_CLK, LS_WDATA  
DMD_DEN_ARSTZ  
1.0 * VDD  
1.0 * VDD  
0.8 * VDD  
VIH(AC)  
VIH(DC)  
0.8 * VDD  
0.7 * VDD  
VIL(DC)  
VIL(AC)  
0.3 * VDD  
0.2 * VDD  
0.2 * VDD  
0.0 * VDD  
0.0 * VDD  
tr  
tf  
tr  
tf  
6-3. LPSDR Input Rise and Fall Slew Rate  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DLP4710  
 
 
 
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
VDCLK_P , VDCLK_N  
VD_P(0:7) , VD_N(0:7)  
1.0 * V  
0.8 * V  
ID  
ID  
V
CM  
0.2 * V  
0.0 * V  
ID  
ID  
tr  
tf  
6-4. SubLVDS Input Rise and Fall Slew Rate  
VIH MIN  
LS_CLK Midpoint  
VIL MAX  
tSU  
tH  
VIH MIN  
LS_WDATA Midpoint  
VIL MAX  
tWINDOW  
VIH MIN  
Midpoint  
LS_CLK  
VIL MAX  
tDERATING  
tH  
tSU  
VIH MIN  
Midpoint  
VIL MAX  
LS_WDATA  
tWINDOW  
6-5. Window Time Derating Concept  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DLP4710  
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
t
c
t
t
w(H)  
w(L)  
DCLK_P  
DCLK_N  
50%  
50%  
50%  
t
h
t
su  
D_P(0:7)  
D_N(0:7)  
50%  
50%  
t
window  
6-6. SubLVDS Switching Parameters  
High Speed Training Scan Window  
t
c
DCLK_P  
DCLK_N  
¼ t  
c
¼ t  
c
D_P(0:7)  
D_N(0:7)  
Note: Refer to 7.3.3 for details.  
6-7. High-Speed Training Scan Window  
(V + V ) / 2  
IP IN  
DCLK_P , D_P(0:7)  
DCLK_N , D_N(0:7)  
SubLVDS  
Receiver  
V
ID  
V
IP  
V
CM  
V
IN  
6-8. SubLVDS Voltage Parameters  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DLP4710  
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
1.225V  
V
= V  
+ | 1/2 * V  
|
ID max  
SubLVDS max  
CM max  
V
CM  
V
ID  
V
= V  
– | 1/2 * V  
|
SubLVDS min  
CM min  
ID max  
0.575V  
6-9. SubLVDS Waveform Parameters  
DCLK_P , D_P(0:7)  
ESD  
Internal  
Termination  
SubLVDS  
Receiver  
DCLK_N , D_N(0:7)  
ESD  
6-10. SubLVDS Equivalent Input Circuit  
Not to Scale  
V
IH  
V
T+  
Δ V  
T
V
T-  
V
LS_CLK  
IL  
LS_WDATA  
6-11. LPSDR Input Hysteresis  
LS_CLK  
LS_WDATA  
Stop Start  
tPD  
LS_RDATA  
Acknowledge  
6-12. LPSDR Read Out  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DLP4710  
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
Timing specification reference point  
Device pin  
Tester channel  
output under test  
CL  
See Timing for more information.  
6-13. Test Load Circuit for Output Propagation Measurement  
6.8 Switching Characteristics  
Over operating free-air temperature range (unless otherwise noted).(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
15  
UNIT  
ns  
Output propagation, Clock to Q, rising  
edge of LS_CLK input to LS_RDATA  
output. (figure 12 xref)  
tPD  
CL = 45 pF  
Slew rate, LS_RDATA  
0.5  
V/ns  
Output duty cycle distortion, LS_RDATA  
40%  
60%  
(1) Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.  
6.9 System Mounting Interface Loads  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
62  
N
Thermal interface area (see 6-14)  
Maximum system mounting interface  
load to be applied to the:  
Clamping and electrical interface area (see 图  
6-14)  
110  
N
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DLP4710  
 
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
Datum 'A' area (3 places)  
Datum 'E' area (1 place)  
Thermal Interface Area  
Clamping and Electrical Interface Area  
6-14. System Interface Loads  
6.10 Physical Characteristics of the Micromirror Array  
PARAMETER  
VALUE  
1920  
1080  
5.4  
UNIT  
micromirrors  
micromirrors  
µm  
Number of active columns  
Number of active rows  
Micromirror (pixel) pitch  
See 6-15  
See 6-15  
See 6-16  
ε
Micromirror active array  
width  
10.368  
mm  
Micromirror pitch × number of active columns; see 6-15  
Micromirror active array  
height  
5.832  
20  
mm  
Micromirror pitch × number of active rows; see 6-15  
Micromirror active border Pond of micromirror (POM)(1)  
micromirrors/side  
(1) The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM.  
These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical  
bias to tilt toward OFF.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DLP4710  
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
Width .  
Mirror 1079  
Mirror 1078  
Mirror 1077  
Mirror 1076  
1920 × 1080 mirrors  
Height  
Mirror 3  
Mirror 2  
Mirror 1  
Mirror 0  
Illumination  
6-15. Micromirror Array Physical Characteristics  
e
e
e
e
6-16. Mirror (Pixel) Pitch  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DLP4710  
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
6.11 Micromirror Array Optical Characteristics  
PARAMETER  
Micromirror tilt angle  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
degree  
degree  
DMD landed state(1)  
17  
Micromirror tilt angle tolerance(2) (3) (4) (5)  
1.4  
1.4  
Landed ON state  
180  
270  
1
Micromirror tilt direction (6) (7)  
degree  
µs  
Landed OFF state  
Typical performance  
Typical performance  
Micromirror crossover time(8)  
Micromirror switching time(9)  
3
10  
Bright pixel(s) in active area  
Gray 10 Screen (12)  
0
1
4
0
0
(11)  
Bright pixel(s) in the POM (13) Gray 10 Screen (12)  
Image  
Dark pixel(s) in the active  
White Screen  
micromirrors  
performance(10)  
area (14)  
Adjacent pixel(s) (15)  
Any Screen  
Any Screen  
Unstable pixel(s) in active  
area (16)  
(1) Measured relative to the plane formed by the overall micromirror array.  
(2) Additional variation exists between the micromirror array and the package datums.  
(3) Represents the landed tilt angle variation relative to the nominal landed tilt angle.  
(4) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different  
devices.  
(5) For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some  
system optical designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field  
reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result  
in colorimetry variations, system efficiency variations, or system contrast variations.  
(6) When the micromirror array is landed (not parked), the tilt direction of each individual micromirror is dictated by the binary contents of  
the CMOS memory cell associated with each individual micromirror. A binary value of 1 results in a micromirror landing in the ON state  
direction. A binary value of 0 results in a micromirror landing in the OFF state direction. See 6-17.  
(7) Micromirror tilt direction is measured as in a typical polar coordinate system: Measuring counter-clockwise from a 0° reference which is  
aligned with the +X Cartesian axis.  
(8) The time required for a micromirror to nominally transition from one landed state to the opposite landed state.  
(9) The minimum time between successive transitions of a micromirror.  
(10) Conditions of Acceptance: All DMD image quality returns will be evaluated using the following projected image test conditions:  
Test set degamma shall be linear  
Test set brightness and contrast shall be set to nominal  
The diagonal size of the projected image shall be a minimum of 20 inches  
The projections screen shall be 1X gain  
The projected image shall be inspected from a 38 inch minimum viewing distance  
The image shall be in focus during all image quality tests  
(11) Bright pixel definition: A single pixel or mirror that is stuck in the ON position and is visibly brighter than the surrounding pixels  
(12) Gray 10 screen definition: All areas of the screen are colored with the following settings:  
Red = 10/255  
Green = 10/255  
Blue = 10/255  
(13) POM definition: Rectangular border of off-state mirrors surrounding the active area  
(14) Dark pixel definition: A single pixel or mirror that is stuck in the OFF position and is visibly darker than the surrounding pixels  
(15) Adjacent pixel definition: Two or more stuck pixels sharing a common border or common point, also referred to as a cluster  
(16) Unstable pixel definition: A single pixel or mirror that does not operate in sequence with parameters loaded into memory. The unstable  
pixel appears to be flickering asynchronously with the image  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DLP4710  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
Off-state  
light path  
(1079, 1919)  
Off-state  
landed edge  
Tilted axis of  
pixel rotation  
On-state  
landed edge  
(0, 0)  
Incident  
illumination  
light path  
6-17. Landed Pixel Orientation and Tilt  
6.12 Window Characteristics  
PARAMETER(1)  
MIN  
NOM  
Corning Eagle XG  
1.5119  
MAX UNIT  
Window material designation  
Window refractive index  
Window aperture(2)  
at wavelength 546.1 nm  
See (2)  
See (3)  
Illumination overfill(3)  
Window transmittance, single-pass  
through both surfaces and glass  
Minimum within the wavelength range  
420 to 680 nm. Applies to all angles 0° to  
30° AOI.  
97%  
97%  
Window Transmittance, single-pass  
through both surfaces and glass  
Average over the wavelength range 420  
to 680 nm. Applies to all angles 30° to  
45° AOI.  
(1) See Optical Interface and System Image Quality Considerations for more information.  
(2) See the package mechanical characteristics for details regarding the size and location of the window aperture.  
(3) The active area of the DLP4710LC device is surrounded by an aperture on the inside of the DMD window surface that masks  
structures of the DMD device assembly from normal view. The aperture is sized to anticipate several optical conditions. Overfill light  
illuminating the area outside the active array can scatter and create adverse effects to the performance of an end application using the  
DMD. The illumination optical system should be designed to limit light flux incident outside the active array to less than 10% of the  
average flux level in the active area. Depending on the particular system's optical architecture and assembly tolerances, the amount of  
overfill light on the outside of the active array may cause system performance degradation.  
SPACER  
6.13 Chipset Component Usage Specification  
The DLP4710 is a component of one or more TI ®DLP chipsets. Reliable function and operation of the DLP4710  
requires that it be used in conjunction with the other components of the applicable DLP chipset, including those  
components that contain or implement TI DMD control technology. TI DMD control technology is the TI  
technology and devices for operating or controlling a DLP DMD.  
备注  
TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system  
operating conditions exceeding limits described previously.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DLP4710  
 
 
 
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
6.14 Software Requirements  
备注  
The DLP4710 DMD has mandatory software requirements. Refer to Software Requirements for TI  
®DLP Pico TRP Digital Micromirror Devices application report for additional information. Failure to  
use the specified software will result in failure at power up.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DLP4710  
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
7 Detailed Description  
7.1 Overview  
The DLP4710LC device is a 0.47 inch diagonal spatial light modulator of aluminum micromirrors. Pixel array size  
is 1920 columns by 1080 rows in a square grid pixel arrangement. The electrical interface is Sub Low Voltage  
Differential Signaling (SubLVDS) data.  
DLP4710LC device is part of the chipset comprising the DLP4710LC DMD, DLPC3479 controller, and  
DLPA3000 or DLPA3005 PMIC/LED driver. To ensure reliable operation, the DLP4710LC DMD must always be  
used with either the DLPC3479 controller and the DLPA3000 or DLPA3005 PMIC/LED drivers.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DLP4710  
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
7.2 Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DLP4710  
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
备注  
Simplified for clarity.  
7.3 Feature Description  
7.3.1 Power Interface  
The power management IC, DLPA3000/DLPA3005, contains three regulated DC supplies for the DMD reset  
circuitry: VBIAS, VRESET and VOFFSET, as well as the 2 regulated DC supplies for the DLPC3479 controller.  
7.3.2 Low-Speed Interface  
The Low Speed Interface handles instructions that configure the DMD and control reset operation. LS_CLK is  
the lowspeed clock, and LS_WDATA is the low speed data input.  
7.3.3 High-Speed Interface  
The purpose of the high-speed interface is to transfer pixel data rapidly and efficiently, making use of high speed  
DDR transfer and compression techniques to save power and time. The high-speed interface is composed of  
differential SubLVDS receivers for inputs, with a dedicated clock.  
7.3.4 Timing  
The data sheet provides timing test results at the device pin. For output timing analysis, the tester pin electronics  
and its transmission line effects must be considered. 6-13 shows an equivalent test load circuit for the output  
under test. Timing reference loads are not intended as a precise representation of any particular system  
environment or depiction of the actual load presented by a production test. TI recommends that system  
designers use IBIS or other simulation tools to correlate the timing reference load to a system environment. The  
load capacitance value stated is intended for characterization and measurement of AC timing signals only. This  
load capacitance value does not indicate the maximum load the device is capable of driving.  
7.4 Device Functional Modes  
DMD functional modes are controlled by the DLPC3479 controller. See the DLPC3479 controller data sheet or  
contact a TI applications engineer.  
7.5 Optical Interface and System Image Quality Considerations  
备注  
TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system  
operating conditions exceeding limits described previously.  
7.5.1 Optical Interface and System Image Quality  
TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment  
optical performance involves making trade-offs between numerous component and system design parameters.  
Optimizing system optical performance and image quality strongly relate to optical system design parameter  
trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical  
performance is contingent on compliance to the optical system operating conditions described in the following  
sections.  
7.5.1.1 Numerical Aperture and Stray Light Control  
The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area is  
typically the same. Ensure this angle does not exceed the nominal device micromirror tilt angle unless  
appropriate apertures are added in the illumination or projection pupils to block out flat-state and stray light from  
the projection lens. The micromirror tilt angle defines DMD capability to separate the "ON" optical path from any  
other light path, including undesirable flatstate specular reflections from the DMD window, DMD border  
structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture  
exceeds the micromirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DLP4710  
 
 
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
than the illumination numerical aperture angle (and vice versa), contrast degradation and objectionable artifacts  
in the display border and/or active area may occur.  
7.5.1.2 Pupil Match  
The optical and image quality specifications assume that the exit pupil of the illumination optics is nominally  
centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable  
artifacts in the display border and/or active area. These artifacts may require additional system apertures to  
control, especially if the numerical aperture of the system exceeds the pixel tilt angle.  
7.5.1.3 Illumination Overfill  
The active area of the device is surrounded by an aperture on the inside DMD window surface that masks  
structures of the DMD chip assembly from normal view, and is sized to anticipate several optical operating  
conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window  
aperture opening and other surface anomalies that may be visible on the screen. Be sure to design an  
illumination optical system that limits light flux incident anywhere on the window aperture from exceeding  
approximately 10% of the average flux level in the active area. Depending on the particular optical architecture,  
overfill light may require further reduction below the suggested 10% level in order to be acceptable.  
7.6 Micromirror Array Temperature Calculation  
2X 12.89  
TP2  
Off-state  
Light  
TP4  
TP5  
2X 5.50  
TP3  
Illumination  
Direction  
Window Edge  
(4 surfaces)  
TP3 (TP2)  
TP5  
TP4  
TP1  
TP1  
12.70  
2.00  
7-1. DMD Thermal Test Points  
Micromirror array temperature can be computed analytically from measurement points on the outside of the  
package, the ceramic package thermal resistance, the electrical power dissipation, and the illumination heat  
load. The relationship between micromirror array temperature and the reference ceramic temperature is provided  
by the following equations:  
TARRAY = TCERAMIC + (QARRAY × RARRAYTOCERAMIC  
QARRAY = QELECTRICAL + QILLUMINATION  
)
(1)  
(2)  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DLP4710  
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
QILLUMINATION = (CL2W × SL)  
(3)  
where  
TARRAY = Computed DMD array temperature (°C)  
TCERAMIC = Measured ceramic temperature (°C), TP1 location in 7-1  
RARRAYTOCERAMIC = DMD package thermal resistance from array to outside ceramic (°C/W) specified in 节  
6.5  
QARRAY = Total DMD power; electrical plus absorbed (calculated) (W)  
QELECTRICAL = Nominal DMD electrical power dissipation (W)  
CL2W = Conversion constant for screen lumens to absorbed optical power on the DMD (W/lm) specified below  
SL = Measured ANSI screen lumens (lm)  
The electrical power dissipation of the DMD varies and depends on the voltages, data rates and operating  
frequencies. Use a nominal electrical power dissipation of 0.25 W to calculate array temperature. Absorbed  
optical power from the illumination source varies and depends on the operating state of the micromirrors and the  
intensity of the light source. Equations shown above are valid for a 1-chip DMD system with total projection  
efficiency through the projection lens from DMD to the screen of 87%.  
The conversion constant CL2W is based on the DMD micromirror array characteristics. The conversion constant  
assumes a spectral efficiency of 300 lm/W for the projected light and illumination distribution of 83.7% on the  
DMD active array, and 16.3% on the DMD array border and window aperture. The conversion constant is  
calculated to be 0.00266 W/lm.  
The following is a sample calculation for typical projection application:  
TCERAMIC = 55°C (measured)  
SL = 1500 lm (measured)  
QELECTRICAL = 0.25 W  
CL2W = 0.00266 W/lm  
QARRAY = 0.25 W + (0.00266 W/lm × 1500 lm) = 4.24 W  
TARRAY = 55°C + (4.24 W × 1.1°C/W) = 59.66°C  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle  
7.7.1 Definition of Micromirror Landed-On and Landed-Off Duty Cycle  
The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a  
percentage) that an individual micromirror is landed in the ON state versus the amount of time the same  
micromirror is landed in the OFF state.  
As an example, a landed duty cycle of 75/25 indicates that the referenced pixel is in the ON state 75% of the  
time (and in the OFF state 25% of the time), whereas 25/75 indicates that the pixel is in the OFF state 75% of  
the time. Likewise, 50/50 indicates that the pixel is ON 50% of the time and OFF 50% of the time.  
When assessing landed duty cycle, the time spent switching from the current state to the opposite state is  
considered negligible and is thus ignored.  
Because a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages)  
nominally add to 100.In practice, image processing algorithms in the DLP chipset can result a total of less that  
100.  
7.7.2 Landed Duty Cycle and Useful Life of the DMD  
Knowing the long-term average landed duty cycle (of the end product or application) is important because  
subjecting all (or a portion) of the DMDs micromirror array (also called the active array) to an asymmetric  
landed duty cycle for a prolonged period of time can reduce the DMDs usable life.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DLP4710  
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
It is the symmetry or asymmetry of the landed duty cycle that is relevant. The symmetry of the landed duty cycle  
is determined by how close the two numbers (percentages) are to being equal. For example, a landed duty cycle  
of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly asymmetrical.  
7.7.3 Landed Duty Cycle and Operational DMD Temperature  
Operational DMD temperature and landed duty cycle interact to affect the usable life of the DMD. This interaction  
can be used to reduce the impact that an asymmetrical landed duty cycle has on the useable life of the DMD. 图  
6-1 describes this relationship. The importance of this curve is that:  
All points along this curve represent the same usable life.  
All points above this curve represent lower usable life (and the further away from the curve, the lower the  
usable life).  
All points below this curve represent higher usable life (and the further away from the curve, the higher the  
usable life).  
In practice, this curve specifies the maximum operating DMD temperature that the DMD should be operated at  
for a give long-term average landed duty cycle.  
7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application  
During a given period of time, the landed duty cycle of a given pixel depends on the image content being  
displayed by that pixel.  
In the simplest case for example, when the system displays pure-white on a given pixel for a given time period,  
that pixel operates very close to a 100/0 landed duty cycle during that time period. Likewise, when the system  
displays pure-black, the pixel operates very close to a 0/100 landed duty cycle.  
Between the two extremes (ignoring for the moment color and any image processing that may be applied to an  
incoming image), the landed duty cycle tracks one-to-one with the gray scale value, as shown in 7-1.  
7-1. Grayscale Value  
and Landed Duty Cycle  
Nominal  
Grayscale  
Landed Duty  
Value  
Cycle  
0%  
10%  
20%  
30%  
40%  
50%  
60%  
70%  
80%  
90%  
100%  
0/100  
10/90  
20/80  
30/70  
40/60  
50/50  
60/40  
70/30  
80/20  
90/10  
100/0  
To account for color rendition (and continuing to ignore image processing for this example) requires knowing  
both the color intensity (from 0% to 100%) for each constituent primary color (red, green, and/or blue) for the  
given pixel as well as the color cycle time for each primary color, where color cycle time describes the total  
percentage of the frame time that a given primary must be displayed in order to achieve the desired white point.  
During a given period of time, the nominal landed duty cycle of a given pixel can be calculated as shown in 方程  
4:  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DLP4710  
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value) + (Blue_Cycle_% (4)  
×
Blue_Scale_Value)  
where  
Red_Cycle_% represents the percentage of the frame time that red displays to achieve the desired white  
point  
Green_Cycle_% represents the percentage of the frame time that green displays to achieve the desired white  
point  
Blue_Cycle_% represents the percentage of the frame time that blue displays to achieve the desired white  
point  
For example, assume that the ratio of red, green and blue color cycle times are as listed in 7-2 (in order to  
achieve the desired white point) then the resulting nominal landed duty cycle for various combinations of red,  
green, blue color intensities are as shown in 7-3.  
7-2. Example Landed Duty Cycle for Full-Color  
Pixels  
Red Cycle  
Percentage  
Green Cycle  
Percentage  
Blue Cycle  
Percentage  
50%  
20%  
30%  
7-3. Color Intensity Combinations  
Nominal  
Landed Duty  
Cycle  
Red Scale  
Value  
Green Scale  
Value  
Blue Scale  
Value  
0%  
100%  
0%  
0%  
0%  
0%  
0%  
0/100  
50/50  
20/80  
30/70  
6/94  
100%  
0%  
0%  
0%  
100%  
0%  
12%  
0%  
0%  
35%  
0%  
0%  
7/93  
0%  
60%  
0%  
18/82  
70/30  
50/50  
80/20  
13/87  
25/75  
24/76  
100/0  
100%  
0%  
100%  
100%  
0%  
100%  
100%  
0%  
100%  
12%  
0%  
35%  
35%  
0%  
60%  
60%  
100%  
12%  
100%  
100%  
The last factor to consider when estimating the landed duty cycle is any applied image processing. In the  
DLPC34xx controller family, the two functions which influence the actual landed duty cycle are Gamma and  
IntelliBright, and bitplane sequencing rules.  
Gamma is a power function of the form Output_Level = A × Input_LevelGamma, where A is a scaling factor that is  
typically set to 1.  
In the DLPC34xx controller family, gamma is applied to the incoming image data on a pixel-by-pixel basis. A  
typical gamma factor is 2.2, which transforms the incoming data as shown in 7-2.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DLP4710  
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
Gamma = 2.2  
0
0
10  
20  
30  
40  
50  
60  
Input Level (%)  
70  
80  
90 100  
D002  
7-2. Example of Gamma = 2.2  
As shown in 7-2, when the gray scale value of a given input pixel is 40% (before gamma is applied), then gray  
scale value is 13% after gamma is applied. Because gamma has a direct impact on the displayed gray scale  
level of a pixel, it also has a direct impact on the landed duty cycle of a pixel.  
The IntelliBright algorithms content adaptive illumination control (CAIC) and local area brightness boost (LABB)  
also apply transform functions on the gray scale level of each pixel.  
But while amount of gamma applied to every pixel (of every frame) is constant (the exponent, gamma, is  
constant), CAIC and LABB are both adaptive functions that can apply a different amounts of either boost or  
compression to every pixel of every frame.  
Consideration must also be given to any image processing which occurs before the DLPC3439 or DLPC3479  
controller.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DLP4710  
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
8 Application and Implementation  
8.1 Application Information  
The DMDs are spatial light modulators which reflect incoming light from an illumination source to one of two  
directions, with the primary direction being into a projection or collection optic. Each application is derived  
primarily from the optical architecture of the system and the format of the data coming into the dual DLPC3479  
controllers. The new high tilt pixel in the bottom-illuminated DMD increases brightness performance and enables  
a smaller system footprint for thickness constrained applications. Applications of interest include  
DMD power-up and power-down sequencing is strictly controlled by the DLPA3000/DLPA3005. Refer to Power  
Supply Recommendations for power-up and power-down specifications. To ensure reliable operation, the  
DLP4710LC DMD must always be used with two DLPC3479 controllers and a DLPA3000 or DLPA3005  
PMIC/LED driver.  
8.2 Typical Application  
A pico-projector that can be used as an accessory to a smartphone, tablet or a laptop is a common application  
when using a DLP4710LC DMD and two DLPC3479 devices. The two DLPC3479 devices in the pico-projector  
receive images from a multimedia front end within the product as shown in 8-1.  
PROJ_ON  
PROJ_ON  
GPIO_8 (Normal Park)  
Focus stepper motor  
VLED  
SPI  
Flash  
SPI(4)  
RESETZ  
INTZ  
Current Sense  
Microcontroller  
Front End  
Monochrome  
Illumination(1)  
SPI_1  
VCC_FLSH  
SPI_0  
DLPA3000  
PARKZ  
MSP430  
Tiva  
LED_SEL(2)  
Illuminator  
HOST_IRQ  
I2C  
DLPC3479  
eDRAM  
1.1 V for DLPC3479  
1.8 V  
VSPI  
1.8 V for DMD and DLPC3479  
VCC_INTF  
BIAS, RST, OFS  
3
Illumination  
Optics  
SYSPWR  
TSTPT_4  
GPIO_7  
TRIG_OUT1  
TRIG_OUT2  
TRIG_IN  
3DR  
1.8 V  
1.1 V  
VIO  
Sub-LVDS DATA (18)  
CTRL  
DLP4710LC  
VCORE  
DMD  
Image  
Sync  
GPIO5  
I2C_1  
GPIO6  
RESETZ  
INTZ  
I2C  
I2C_0  
VCC_FLSH  
Oscillator  
DLPC3479  
eDRAM  
SPI_0  
SPI Flash  
VCC_INTF  
LS RDATA  
Included in DLP® Chip Set  
Non-DLP components  
1.8 V  
1.1 V  
VIO  
Sub-LVDS DATA (18)  
VCORE  
8-1. Typical Application Diagram  
8.2.1 Design Requirements  
A pico-projector is created by using a DLP chip set comprised of a DLP4710 DMD, two DLPC3439 controllers  
and a DLPA3000/DLPA3005 PMIC/LED driver. The DLPC3439 controllers do the digital image processing, the  
DLPA3000/DLPA3005 provides the needed analog functions for the projector, and the DLP4710 DMD is the  
display device for producing the projected image.  
In addition to the three DLP chips in the chip set, other chips are needed. At a minimum a Flash part is needed  
to store the software and firmware to control each DLPC3439 controller.  
The illumination light that is applied to the DMD is typically from red, green, and blue LEDs. These are often  
contained in three separate packages, but sometimes more than one color of LED die may be in the same  
package to reduce the overall size of the pico-projector.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DLP4710  
 
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
For connecting the DLPC3439 controllers to the multimedia front end for receiving images, a 24-bit parallel  
interface is used. An I2C interface should be connected to the multimedia front end for sending commands to  
one of the DLPC3439 controllers for configuring the DLPC3439 controller for different features.  
8.2.2 Detailed Design Procedure  
For connecting the two DLPC3439 controllers, the DLPA3000/DLPA3005, and the DLP4710 DMD, see the  
reference design schematic. When a circuit board layout is created from this schematic a very small circuit board  
is possible. An example small board layout is included in the reference design data base. Layout guidelines  
should be followed to achieve a reliable projector.  
The optical engine that has the LED packages and the DMD mounted to it is typically supplied by an optical  
OEM who specializes in designing optics for DLP projectors.  
8.2.3 Application Curve  
As the LED currents that are driven time-sequentially through the red, green, and blue LEDs are increased, the  
brightness of the projector increases. This increase is somewhat non-linear, and the curve for typical white  
screen lumens changes with LED currents is as shown in 8-2. For the LED currents shown, its assumed  
that the same current amplitude is applied to the red, green, and blue LEDs.  
8-2. Luminance vs Current  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DLP4710  
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
9 Power Supply Recommendations  
The following power supplies are all required to operate the DMD: VDD, VDDI, VOFFSET, VBIAS, and VRESET.  
All VSS connections are also required. DMD power-up and power-down sequencing is strictly controlled by the  
DLPA3000/DLPA3005 devices.  
备注  
For reliable operation of the DMD, the following power supply sequencing requirements must be  
followed. Failure to adhere to the prescribed power-up and power-down procedures may affect device  
reliability. VDD, VDDI, VOFFSET, VBIAS, and VRESET power supplies have to be coordinated during  
power-up and power-down operations. Failure to meet any of the below requirements will result in a  
significant reduction in the DMDs reliability and lifetime. Refer to Figure 23. VSS must also be  
connected.  
VDD, VDDI, VOFFSET, VBIAS, and VRESET power supplies have to be coordinated during power-up  
and power-down operations. Failure to meet any of the below requirements will result in a significant  
reduction in the DMDs reliability and lifetime. Refer to Figure 23. VSS must also be connected.  
9.1 DMD Power Supply Power-Up Procedure  
During the power-up sequence, VDD and VDDI must always start and settle before VOFFSET, VBIAS, and  
VRESET voltages are applied to the DMD.  
During the power-up sequence, it is a strict requirement that the voltage difference between VBIAS and  
VOFFSET must be within the specified limit shown in 6.4. Refer to 9-1 for the power-up sequence,  
delay requirements.  
During the power-up sequence, there is no requirement for the relative timing of VRESET with respect to  
VBIAS and VOFFSET.  
Power supply slew rates during the power-up sequence are flexible, provided that the transient voltage levels  
follow the requirements specified in 6.1, in 6.4, and in 9.3.  
During the power-up sequence, LPSDR input pins must not be driven high until after VDD/VDDI have settled  
at operating voltages listed in 6.4.  
9.2 DMD Power Supply Power-Down Procedure  
The power-down sequence is the reverse order of the previous power-up sequence. During the power-down  
sequence, VDD and VDDI must be supplied until after VBIAS, VRESET, and VOFFSET are discharged to  
within 4 V of ground.  
During the power-down sequence, it is a strict requirement that the voltage difference between VBIAS and  
VOFFSET must be within the specified limit shown in 6.4.  
During the power-down sequence, there is no requirement for the relative timing of VRESET with respect to  
VBIAS and VOFFSET.  
Power supply slew rates during the power-down sequence, are flexible, provided that the transient voltage  
levels follow the requirements specified in 6.1, in 6.4, and in 9.3.  
During the power-down sequence, LPSDR input pins must be less than VDD/VDDI specified in 6.4.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DLP4710  
 
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
9.3 Power Supply Sequencing Requirements  
DLP Display Controller and  
PMIC control start of DMD  
operation  
DRAWING NOT TO SCALE.  
DLP Display Controller and PMIC  
disable VBIAS, VOFFSET and  
VRESET  
Mirror Park  
Sequence  
DETAILS OMITTED FOR CLARITY.  
Note 4  
Power Off  
VDD / VDDI  
VDD / VDDI  
VDD / VDDI  
VSS  
VSS  
VBIAS  
VBIAS  
VBIAS  
VDD ≤ VBIAS < 6 V  
VBIAS < 4 V  
VSS  
VSS  
VOFFSET  
VOFFSET  
VDD ≤ VOFFSET < 6 V  
VOFFSET < 4 V  
VOFFSET  
VSS  
VSS  
VSS  
VRESET < 0.5 V  
VSS  
VRESET > - 4 V  
VRESET  
VRESET  
VDD  
VRESET  
VDD  
DMD_DEN_ARSTZ  
VSS  
VSS  
VSS  
VSS  
INITIALIZATION  
VDD  
VDD  
LS_CLK  
VSS  
LS_WDATA  
VID  
VID  
D_P(0:7), D_N(0:7)  
DCLK_P, DCLK_N  
VSS  
A. DLP controller and PMIC controls start of DMD operation  
B. Mirror park sequence starts  
C. Mirror park sequence ends. DLP controller and PMIC disables VBIAS, VOFFSET, and VRESET.  
D. Power off.  
E. Refer to 9-1 and 9-2 for critical power-up sequence delay requirements.  
F. When system power is interrupted, the ASIC driver initiates hardware the power-down sequence, that disables VBIAS, VRESET and  
VOFFSET after the micromirror park sequence is complete. Software the power-down sequence, disables VBIAS, VRESET, and  
VOFFSET after the micromirror park sequence through software control.  
G. To prevent excess current, the supply voltage delta |VBIAS VRESET| must be less than specified limit shown in 6.4.  
H. Drawing is not to scale and details are omitted for clarity.  
9-1. Power Supply Sequencing Requirements (Power Up and Power Down)  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DLP4710  
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
9-1. Power-Up Sequence Delay Requirement  
PARAMETER  
MIN  
MAX  
UNIT  
ms  
V
tDELAY  
Delay requirement from VOFFSET power up to VBIAS power up  
Supply voltage level during powerup sequence delay (see 9-2)  
Supply voltage level during powerup sequence delay (see 9-2)  
2
VOFFSET  
VBIAS  
6
6
V
12 V  
VOFFSET  
8 V  
VDD VOFFSET < 6 V  
4 V  
VSS  
0 V  
tDELAY  
20 V  
16 V  
12 V  
8 V  
VBIAS  
VDD VBIAS < 6 V  
4 V  
VSS  
0 V  
A. Refer to 9-1 for VOFFSET and VBIAS supply voltage levels during power-up sequence delay.  
9-2. Power-Up Sequence Delay Requirement  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DLP4710  
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
10 Layout  
10.1 Layout Guidelines  
There are no specific layout guidelines for the DMD as typically DMD is connected using a board to board  
connector to a flex cable. Flex cable provides the interface of data and Ctrl signals between the DLPC3439  
controller and the DLP4710 DMD. For detailed layout guidelines refer to the layout design files. Some layout  
guideline for the flex cable interface with DMD are:  
Match lengths for the LS_WDATA and LS_CLK signals.  
Minimize vias, layer changes, and turns for the HS bus signals. Refer 10-1.  
Minimum of two 220-nF decoupling capacitor close to VBIAS. Capacitor C3 and C10 in 10-1.  
Minimum of two 220-nF decoupling capacitor close to VRST. Capacitor C1 and C9 in 10-1.  
Minimum of two 220-nF decoupling capacitor close to VOFS. Capacitor C2 and C8 in 10-1.  
Minimum of four 220-nF decoupling capacitor close to VDDI and VDD. Capacitor C4, C5, C6 and C7 in 图  
10-1.  
10.2 Layout Example  
10-1. Power Supply Connections  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DLP4710  
 
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.1.2 Device Nomenclature  
DLP4710A FQL  
Package Type  
Device Descriptor  
11-1. Part Number Description  
11.1.3 Device Markings  
The device marking includes the legible character string GHJJJJK DLP4710AFQL. GHJJJJK is the lot trace  
code. DLP4710AFQL is the device marking.  
Two-dimensional matrix code  
DMD part number and lot trace code  
Lot Trace Code  
GHJJJJK  
DLP4710AFQL  
Part Marking  
11-2. DMD Marking Locations  
11.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
11-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
DLP4710  
DLPC3439  
DLPA3000  
DLPA3005  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DLP4710  
 
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
Pico, IntelliBright, and TI E2Eare trademarks of Texas Instruments.  
DLP® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DLP4710  
 
 
 
 
 
DLP4710  
www.ti.com.cn  
ZHCSJ13B NOVEMBER 2018 REVISED MAY 2022  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DLP4710  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLP4710AFQL  
ACTIVE  
CLGA  
FQL  
100  
80  
RoHS & Green  
NI/AU  
N / A for Pkg Type  
0 to 70  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-May-2022  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
DLP4710AFQL  
FQL  
CLGA  
100  
80  
8 x 10  
150  
315 135.9 12190  
28  
31.5 15.45  
Pack Materials-Page 1  
DWG NO.  
SH  
8
5
3
6
1
7
4
1
2513652  
REVISIONS  
C
COPYRIGHT 2014 TEXAS INSTRUMENTS  
UN-PUBLISHED, ALL RIGHTS RESERVED.  
NOTES UNLESS OTHERWISE SPECIFIED:  
REV  
A
DESCRIPTION  
DATE  
BY  
2/20/2014  
3/6/2014  
5/22/2014  
7/20/2016  
4/23/2020  
ECO 2140050: INITIAL RELEASE  
ECO 2140429: CORRECT DATUM C IN VIEW J-J, SH. 3  
ECO 2142093: DELETE BACK SIDE FLATNESS SPEC  
ECO 2145057: ADD "FQL PACKAGE" TO DRAWING TITLE  
BMH  
BMH  
BMH  
BMH  
BMH  
1
2
3
4
NOTCH DIMENSIONS ARE DEFINED BY UPPERMOST LAYERS OF CERAMIC, AS SHOWN IN SECTION A-A.  
B
C
SEE DETAIL B FOR "V-NOTCH" DIMENSIONS.  
D
E
ECO 2187241: ADD APERTURE SLOT PICTORIALLY  
DIE PARALLELISM TOLERANCE APPLIES TO DMD ACTIVE ARRAY ONLY.  
WHILE ONLY THE THREE DATUM A TARGET AREAS A1, A2, AND A3 ARE USED FOR MEASUREMENT, ALL  
4 CORNERS SHOULD BE CONTACTED, INCLUDING E1, TO SUPPORT MECHANICAL LOADS.  
D
C
B
A
D
C
B
A
5
ENCAPSULANT TO BE CONTAINED WITHIN DIMENSIONS SHOWN IN VIEW D (SHEET 2). NO  
ENCAPSULANT IS ALLOWED ON TOP OF THE WINDOW.  
6
7
ENCAPSULANT NOT TO EXCEED THE HEIGHT OF THE WINDOW.  
ROTATION ANGLE OF DMD ACTIVE ARRAY IS A REFINEMENT OF THE LOCATION TOLERANCE AND HAS  
A MAXIMUM ALLOWED VALUE OF 0.6 DEGREES.  
8
BOUNDARY MIRRORS SURROUNDING THE DMD ACTIVE ARRAY.  
+
-
0.2  
0.1  
(1.3)  
0.188  
23.0120.1  
1
(OFF-STATE  
DIRECTION)  
4X (R0.2)  
1
B
1
2
1.5  
1
2X R0.40.1  
(1.6)  
+
-
0.3  
0.1  
11  
3 0.075  
1
(3)  
1
0.4 MIN TYP.  
C
1.5  
A
A
0 MIN TYP.  
+
-
0.2  
0.1  
5.5  
+
-
0.2  
0.1  
SECTION A-A  
NOTCH OFFSETS  
4
1
(ILLUMINATION  
DIRECTION)  
FRONT SIDE  
INDEX MARK  
+
-
0.3  
0.1  
24.5  
(1)  
2X ENCAPSULANT  
(2.183)  
D
1.4030.077  
1.1 0.05  
5
6
1
45°1°  
3 SURFACES INDICATED  
IN VIEW D (SHEET 2)  
3
4
A
0.042A  
2X (0.2)  
(3)  
4
0.02D  
1.60.1  
0.780.063  
ACTIVE ARRAY  
R0.6 0.1  
1
J
J
(SHEET 3)  
(SHEET 3)  
1
45°1°  
DATE  
DRAWN  
UNLESS OTHERWISE SPECIFIED  
DIMENSIONS ARE IN MILLIMETERS  
TOLERANCES:  
TEXAS  
2/20/2014  
2/20/2014  
2/26/2014  
2/25/2014  
2/23/2014  
2/26/2014  
B. HASKETT  
ENGINEER  
B. HASKETT  
QA/CE  
INSTRUMENTS  
Dallas Texas  
ANGLES 1  
TITLE  
ICD, MECHANICAL, DMD,  
.47 1080p SERIES 312  
(FQL PACKAGE)  
2 PLACE DECIMALS 0.25  
1 PLACE DECIMALS 0.50  
DIMENSIONAL LIMITS APPLY BEFORE PROCESSES  
INTERPRET DIMENSIONS IN ACCORDANCE WITH ASME  
Y14.5M-1994  
DETAIL B  
P. KONRAD  
CM  
V-NOTCH  
S. SUSI  
SCALE 30 : 1  
THIRD ANGLE  
PROJECTION  
DWG NO  
REV  
SIZE  
D
0314DA  
USED ON  
REMOVE ALL BURRS AND SHARP EDGES  
PARENTHETICAL INFORMATION FOR REFERENCE ONLY  
M. DORAK  
APPROVED  
R. LONG  
2513652  
E
NEXT ASSY  
SCALE  
SHEET  
OF  
APPLICATION  
15:1  
1
3
INV11-2006a  
5
3
6
1
2
7
8
4
DWG NO.  
SH  
8
5
3
6
1
7
4
2513652  
2
4X (1.5)  
2X 1.312  
A3  
2X 21.5  
4X (3.25)  
D
C
B
A
D
C
B
A
B
A2  
1.5  
2X 2.25  
2X 2.25  
C
1.5  
4
E1  
A1  
1.312  
21.5  
VIEW C  
DATUMS A AND E  
(SUBSTRATE METALLIZATION OMITTED FOR CLARITY)  
(FROM SHEET 1)  
B
1.5  
11.2  
C
1.5  
5.6  
VIEW D  
ENCAPSULANT MAXIMUM X/Y DIMENSIONS  
5
2X 0 MIN  
(FROM SHEET 1)  
6
VIEW E  
ENCAPSULANT MAXIMUM HEIGHT  
DWG NO  
REV  
SIZE  
DRAWN  
DATE  
2/20/2014  
TEXAS  
2513652  
B. HASKETT  
E
3
D
INSTRUMENTS  
Dallas Texas  
SCALE  
SHEET  
OF  
2
INV11-2006a  
5
3
6
1
2
7
8
4
DWG NO.  
SH  
8
5
3
6
1
7
4
2513652  
3
(10.368)  
ACTIVE ARRAY  
7.513 0.075  
4X (0.108)  
8
0.5750.0635  
6.9280.0635  
G
1.771 0.05  
D
C
B
A
D
C
B
A
7
2.916 0.075  
8.009 0.05  
(9.78)  
WINDOW  
(5.832)  
ACTIVE ARRAY  
(7.503)  
APERTURE  
C
1.5  
1.5  
B
H
(ILLUMINATION  
DIRECTION)  
0.683  
11.1860.0635  
±0.0635  
(11.869) APERTURE  
3.8940.05  
12.9920.05  
(16.886) WINDOW  
100X SQUARE LGA PADS  
0.52±0.05 X 0.52±0.05  
VIEW F  
WINDOW AND ACTIVE ARRAY  
0.2ABC  
(FROM SHEET 1)  
0.1A  
2.04  
(1)  
27 X 0.7424 = 20.0448  
2
3
4
5
6
25 26 27 28 29 (30) (31)  
16X CIRCULAR  
TEST PADS  
(0.52)  
BACK SIDE  
INDEX MARK  
(A)  
B
(0.068) TYP.  
(42°) TYP.  
C
D
E
3.341  
(0.075) TYP.  
1.5  
C
F
9 X 0.7424  
= 6.6816  
G
H
J
1.5  
DETAIL G  
APERTURE TOP EDGE  
B
SCALE 60 : 1  
K
(42°) TYP.  
(42°) TYP.  
L
(0.15) TYP.  
(0.068) TYP.  
SYMBOLIZATION PAD  
(7 X 3)  
VIEW J-J  
BACK SIDE METALLIZATION  
DETAIL H  
(FROM SHEET 1)  
APERTURE BOTTOM EDGE  
SCALE 60 : 1  
DWG NO  
REV  
SIZE  
DRAWN  
DATE  
2/20/2014  
TEXAS  
2513652  
B. HASKETT  
E
3
D
INSTRUMENTS  
Dallas Texas  
SCALE  
SHEET  
OF  
3
INV11-2006a  
5
3
6
1
2
7
8
4
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY