DLP5530AFYKQ1 [TI]

适用于内部显示应用的 DLP® 汽车 0.55" 数字微镜器件 (DMD) | FYK | 149 | -40 to 105;
DLP5530AFYKQ1
型号: DLP5530AFYKQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于内部显示应用的 DLP® 汽车 0.55" 数字微镜器件 (DMD) | FYK | 149 | -40 to 105

文件: 总44页 (文件大小:1027K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
适用于汽车内部显示的 DLP5530-Q1 0.55 英寸 130 万像素 DMD  
1 特性  
3 说明  
1
符合汽车类 应用要求  
DMD 阵列工作温度范围 -40°C 105°C  
DLP5530-Q1 汽车芯片组包括:  
DLP5530-Q1 汽车 DMD DLPC230-Q1 DMD 控制  
器、TPS99000-Q1 系统管理和照明控制器结合使用,  
能够实现高性能增强现实 HUD。采用 2:1 宽高比,支  
持超宽宽高比设计;具有 130 万像素分辨率,可在  
HUD 应用中实现视网膜受限显示。DLP5530-Q1 的光  
通量是前代 DLP3030-Q1 汽车 DMD 3 倍以上,能  
够获得更宽广的视场和更大的驾驶员眼动范围,增强用  
户的使用体验。该芯片组耦合了 LED 和光学系统,能  
够获得更饱满的 125% NTSC 色彩、超过  
15,000cd/m2 的超高亮度、超过 5000:1 的高动态调光  
比以及太阳能高负载容差。DLP5530-Q1 汽车 DMD  
微镜阵列针对底部照明而配置,可实现更高效率以及更  
紧凑的光学引擎设计。S450 封装针对 DMD 阵列而言  
具有低热阻的特点,可获得更高效的热解决方案。  
DLP5530-Q1 DMD  
DLPC230-Q1 DMD 控制器  
系统管理和照明控制器  
0.55 英寸对角线微镜阵列  
7.6μm 微镜间距  
±12° 微镜倾斜角(相对于平面)  
底部照明,实现最优的效率和光学引擎尺寸  
支持 1152 × 576 输入分辨率  
LED 或激光照明兼容  
600MHz sub-LVDS DMD 接口,可实现低功耗和低  
排放  
温度极值下 DMD 刷新率为 10kHz  
DMD 存储器单元的内置自检  
器件信息(1)(2)  
封装  
器件型号  
DLP5530-Q1  
封装尺寸(标称值)  
2 应用  
FYK (149)  
22.30mm × 32.20mm  
宽视场和增强现实平视显示 (HUD)  
波导和全息薄膜显示  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
(2) 本数据表包含了有关此 DMD 在平视显示应用中的规格以及应  
用。请参阅 DLP5531-Q1 数据表 (DLPS075),了解有关前照灯  
规格和应用的信息。  
DLP5530-Q1 DLP®芯片组系统方框图  
Control &  
Monitor  
TPS99000-Q1  
Power  
Regulation  
VBATT  
PROJ_ON  
1.1V  
Power sequencing  
and monitoring  
1.8V  
3.3V  
6.5V  
Reset &  
Power Good  
External  
Monitor  
SPI  
System Diagnostics:  
external watchdogs,  
over brightness, and  
other monitors  
DLPC230-Q1  
I2  
C
Host  
SPI  
6.5V  
SPI  
Internal  
Control  
Ultra wide  
dimming LED  
Controller  
2-TIA, 12bit ADC  
DAC, FET Drive, ...  
LED  
drive  
HOST  
IRQ  
LED  
Control  
Illumination  
Control  
& feedback  
MPU  
FET  
Drive  
F
E
T
s
DMD Power  
Regulation  
OpenLDI  
Image Scaling &  
Bezel  
adjustment  
24-bit RGB  
& Syncs  
GPIO  
(configurable)  
Photodiode  
DMD Power  
eSRAM  
frame buffer  
Sub-LVDS  
TMP411  
Flash  
SPI  
I2  
C
DLP5530-Q1  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: DLPS073  
 
 
 
 
 
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
目录  
7.4 System Optical Considerations............................... 26  
7.5 DMD Image Performance Specification.................. 28  
7.6 Micromirror Array Temperature Calculation............ 28  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle .... 30  
Application and Implementation ........................ 31  
8.1 Application Information............................................ 31  
8.2 Typical Application .................................................. 31  
Power Supply Recommendations...................... 34  
9.1 Power Supply Power-Up Procedure ....................... 34  
9.2 Power Supply Power-Down Procedure................... 34  
9.3 Power Supply Sequencing Requirements .............. 35  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 8  
6.1 Absolute Maximum Ratings ..................................... 8  
6.2 Storage Conditions.................................................... 8  
6.3 ESD Ratings.............................................................. 8  
6.4 Recommended Operating Conditions....................... 9  
6.5 Thermal Information................................................ 11  
6.6 Electrical Characteristics......................................... 11  
6.7 Timing Requirements.............................................. 12  
6.8 Switching Characteristics ....................................... 16  
6.9 System Mounting Interface Loads .......................... 17  
6.10 Physical Characteristics of the Micromirror Array. 18  
6.11 Micromirror Array Optical Characteristics ............. 20  
6.12 Window Characteristics......................................... 20  
6.13 Chipset Component Usage Specification ............. 21  
Detailed Description ............................................ 22  
7.1 Overview ................................................................. 22  
7.2 Functional Block Diagram ....................................... 23  
7.3 Feature Description................................................. 24  
8
9
10 Layout................................................................... 36  
10.1 Layout Guidelines ................................................. 36  
11 器件和文档支持 ..................................................... 37  
11.1 器件支持................................................................ 37  
11.2 相关链接................................................................ 37  
11.3 社区资源................................................................ 38  
11.4 ....................................................................... 38  
11.5 静电放电警告......................................................... 38  
11.6 DMD 处理.............................................................. 38  
11.7 Glossary................................................................ 38  
12 机械、封装和可订购信息....................................... 38  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision E (September 2018) to Revision F  
Page  
Added illumination overfill maximum to Recommended Operating Conditions ..................................................................... 9  
Changed ILLOVERFILL from total power (mW) to power density (mW/mm2) in Recommended Operating Conditions ............. 9  
Added pulse duration LS_CLK high to Timing Requirements.............................................................................................. 12  
Added pulse duration LS_CLK low to Timing Requirements ............................................................................................... 12  
Added LPSDR setup time to Timing Requirements ............................................................................................................. 12  
Added LPSDR hold time to Timing Requirements ............................................................................................................... 12  
Deleted illumination overfill maximum from Window Characteristics ................................................................................... 20  
Changes from Revision D (June 2018) to Revision E  
Page  
Changed IIH from 100 nA : to 300 nA ................................................................................................................................... 12  
Changed tWINDOW to be a minimum rather than a maximum ................................................................................................ 12  
Changes from Revision C (March 2018) to Revision D  
Page  
已更改 将器件状态从产品预览更改为生产数据.................................................................................................................. 1  
2
Copyright © 2016–2019, Texas Instruments Incorporated  
 
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
5 Pin Configuration and Functions  
FYK Package  
149-Pin CPGA  
Bottom View  
Pin Functions – Connector Pins  
PIN  
TYPE  
SIGNAL  
DATA RATE  
DESCRIPTION  
NAME  
NO.  
DATA INPUTS  
D_AN(0)  
D_AN(1)  
D_AN(2)  
D_AN(3)  
D_AN(4)  
D_AN(5)  
D_AN(6)  
D_AN(7)  
D_AP(0)  
D_AP(1)  
D_AP(2)  
D_AP(3)  
D_AP(4)  
D_AP(5)  
D_AP(6)  
D_AP(7)  
D_BN(0)  
D_BN(1)  
D_BN(2)  
D_BN(3)  
D_BN(4)  
D_BN(5)  
D_BN(6)  
D_BN(7)  
D_BP(0)  
D_BP(1)  
L2  
K2  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Negative  
Data, Positive  
Data, Positive  
J2  
H2  
F2  
E2  
D2  
C2  
L1  
K1  
J1  
H1  
F1  
E1  
D1  
C1  
K19  
J19  
H19  
G19  
E19  
D19  
C19  
B19  
K20  
J20  
Copyright © 2016–2019, Texas Instruments Incorporated  
3
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
Pin Functions – Connector Pins (continued)  
PIN  
TYPE  
SIGNAL  
DATA RATE  
DESCRIPTION  
NAME  
NO.  
H20  
G20  
E20  
D20  
C20  
B20  
G2  
D_BP(2)  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
SubLVDS  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Double  
Single  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Data, Positive  
Clock, Negative  
Clock, Positive  
Clock, Negative  
Clock, Positive  
D_BP(3)  
D_BP(4)  
D_BP(5)  
D_BP(6)  
D_BP(7)  
DCLK_AN  
DCLK_AP  
DCLK_BN  
DCLK_BP  
LS_CLKN  
LS_CLKP  
LS_WDATAN  
LS_WDATAP  
CONTROL INPUTS  
G1  
F19  
F20  
R3  
Clock for Low Speed Interface, Negative  
Clock for Low Speed Interface, Positive  
Write Data for Low Speed Interface, Negative  
Write Data for Low Speed Interface, Positive  
T3  
Single  
R2  
Single  
T2  
Single  
Asynchronous Reset Active Low. Logic High  
Enables DMD.  
DMD_DEN_ARSTZ  
T10  
I
LPSDR  
LS_RDATA_A  
LS_RDATA_B  
T5  
T6  
O
O
LPSDR  
LPSDR  
Single  
Single  
Read Data for Low Speed Interface  
Read Data for Low Speed Interface  
TEMPERATURE SENSE DIODE  
TEMP_N  
TEMP_P  
P1  
N1  
O
I
Calibrated temperature diode used to assist  
accurate temperature measurements of DMD  
die.  
RESERVED PINS  
VCCH  
A8  
A9  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
VCCH  
VCCH  
A10  
B8  
Reserved Pin. Connect to Ground.  
VCCH  
VCCH  
B9  
VCCH  
B10  
A11  
A12  
A13  
B11  
B12  
B13  
VSSH  
VSSH  
VSSH  
Reserved Pin. Connect to Ground.  
VSSH  
VSSH  
VSSH  
4
Copyright © 2016–2019, Texas Instruments Incorporated  
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
Pin Functions – Connector Pins (continued)  
PIN  
TYPE  
SIGNAL  
DATA RATE  
DESCRIPTION  
NAME  
POWER  
VBIAS  
VBIAS  
VOFFSET  
VOFFSET  
VOFFSET  
VOFFSET  
VOFFSET  
VOFFSET  
VRESET  
VRESET  
VDD  
NO.  
T7  
T15  
T9  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Supply voltage for positive bias level at  
micromirrors.  
T13  
A5  
Supply voltage for High Voltage CMOS core  
logic. Supply voltage for offset level at  
micromirrors  
B5  
A16  
B16  
T8  
Supply voltage for negative reset level at  
micromirrors.  
T14  
R4  
VDD  
R10  
R11  
R20  
N2  
VDD  
VDD  
VDD  
VDD  
M20  
L3  
VDD  
Supply voltage for Low Voltage CMOS core  
logic; for LPSDR inputs; for normal high level at  
micromirror address electrodes.  
VDD  
K18  
H3  
VDD  
VDD  
G18  
E3  
VDD  
VDD  
D18  
C3  
VDD  
VDD  
A6  
VDD  
A18  
T4  
VDDI  
VDDI  
R1  
VDDI  
M3  
L18  
J3  
VDDI  
VDDI  
Supply voltage for SubLVDS receivers.  
VDDI  
H18  
F3  
VDDI  
VDDI  
E18  
B3  
VDDI  
VDDI  
B18  
Copyright © 2016–2019, Texas Instruments Incorporated  
5
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
Pin Functions – Connector Pins (continued)  
PIN  
TYPE  
SIGNAL  
DATA RATE  
DESCRIPTION  
NAME  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NO.  
T1  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
T16  
T19  
T20  
R5  
R6  
R7  
R8  
R9  
R13  
R14  
R15  
P2  
P3  
P20  
N19  
N20  
M1  
M2  
Common return. Ground for all power.  
L19  
L20  
K3  
J18  
G3  
F18  
D3  
C18  
B2  
B4  
B15  
B17  
A3  
A4  
A7  
A15  
A17  
A19  
A20  
6
Copyright © 2016–2019, Texas Instruments Incorporated  
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
Pin Functions – Test Pads  
NUMBER  
SYSTEM BOARD  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
Do not connect  
T11  
T12  
T17  
T18  
R12  
R16  
R17  
R18  
R19  
P18  
P19  
N3  
N18  
M18  
M19  
B6  
B7  
B14  
A14  
Copyright © 2016–2019, Texas Instruments Incorporated  
7
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)  
see  
MIN  
MAX  
UNIT  
SUPPLY VOLTAGE  
Supply voltage for LVCMOS core logic(2)  
VDD  
–0.5  
2.3  
V
Supply voltage for LPSDR low speed interface  
Supply voltage for SubLVDS receivers(2)  
Supply voltage for HVCMOS and micromirror electrode(2)(3)  
Supply voltage for micromirror electrode(2)  
Supply voltage for micromirror electrode(2)  
Supply voltage delta (absolute value)(4)  
VDDI  
–0.5  
–0.5  
–0.5  
–11  
2.3  
8.75  
17  
V
V
V
V
V
V
V
VOFFSET  
VBIAS  
VRESET  
0.5  
0.3  
8.75  
28  
| VDDI–VDD |  
| VBIAS–VOFFSET |  
| VBIAS–VRESET |  
INPUT VOLTAGE  
Supply voltage delta (absolute value)(5)  
Supply voltage delta (absolute value)(6)  
Input voltage for other inputs LPSDR(2)  
Input voltage for other inputs SubLVDS(2)(7)  
INPUT PINS  
–0.5  
–0.5  
VDD + 0.5  
VDDI + 0.5  
V
V
| VID  
IID  
|
SubLVDS input differential voltage (absolute value)(7)  
810  
10  
mV  
mA  
SubLVDS input differential current  
CLOCK FREQUENCY  
ƒclock  
Clock frequency for low speed interface LS_CLK  
Clock frequency for high speed interface DCLK  
130  
620  
MHz  
MHz  
ƒclock  
ENVIRONMENTAL  
Operating DMD array temperature  
TARRAY  
–40  
105  
°C  
(Monitored by TMP411 via DLPC230-Q1)(8)  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device is not implied at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure above or below the Recommended Operating Conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to the ground terminals (VSS). The following power supplies are all required to operate the DMD:  
VDD, VDDI, VOFFSET, VBIAS, and VRESET. All VSS connections are also required.  
(3) VOFFSET supply transients must fall within specified voltages.  
(4) Exceeding the recommended allowable absolute voltage difference between VDDI and VDD may result in excessive current draw.  
(5) Exceeding the recommended allowable absolute voltage difference between VBIAS and VOFFSET may result in excessive current  
draw.  
(6) Exceeding the recommended allowable absolute voltage difference between VBIAS and VRESET may result in excessive current draw.  
(7) This maximum input voltage rating applies when each input of a differential pair is at the same voltage potential. Sub-LVDS differential  
inputs must not exceed the specified limit or damage to the internal termination resistors may result.  
(8) See Micromirror Array Temperature Calculation section.  
6.2 Storage Conditions  
Applicable for the DMD as a component or non-operating in a system.  
MIN  
MAX  
UNIT  
Tstg  
DMD storage temperature (Reference location TP1 in Figure 19)  
–40  
125  
°C  
6.3 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), Corner Pins, per JESD22-C101(2)  
Charged-device model (CDM), All Other Pins, per JESD22-C101(2)  
Electrostatic  
V(ESD)  
V
discharge  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8
Copyright © 2016–2019, Texas Instruments Incorporated  
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
6.4 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
NOM  
MAX  
UNIT  
SUPPLY VOLTAGE RANGE(3)  
Supply voltage for LVCMOS core logic  
Supply voltage for LPSDR low-speed interface  
VDD  
1.7  
1.8  
1.95  
V
VDDI  
Supply voltage for SubLVDS receivers  
Supply voltage for HVCMOS and micromirror electrode(4)  
Supply voltage for mirror electrode  
1.7  
8.25  
15.5  
–9.5  
1.8  
8.5  
16  
1.95  
8.75  
16.5  
–10.5  
0.3  
V
V
V
V
V
V
VOFFSET  
VBIAS  
VRESET  
Supply voltage for micromirror electrode  
Supply voltage delta (absolute value)(5)  
Supply voltage delta (absolute value)(6)  
–10  
| VDDI–VDD |  
| VBIAS–VOFFSET |  
CLOCK FREQUENCY  
ƒclock  
8.75  
Clock frequency for low speed interface LS_CLK  
Clock frequency for high speed interface DCLK(7)  
Duty cycle distortion DCLK  
120  
600  
MHz  
MHz  
ƒclock  
44%  
150  
56%  
SUBLVDS INTERFACE(7)  
SubLVDS input differential voltage (absolute value,  
see Figure 6, Figure 7)  
| VID  
VCM  
|
250  
900  
350  
mV  
Common mode voltage (see Figure 6, Figure 7)  
SubLVDS voltage (see Figure 6, Figure 7)  
700  
575  
90  
1100  
1225  
110  
mV  
mV  
Ω
VSUBLVDS  
ZLINE  
Line differential impedance (PWB/trace)  
100  
100  
ZIN  
Internal differential termination resistance (see Figure 8)  
80  
120  
Ω
TEMPERATURE DIODE  
ITEMP_DIODE  
Max current source into Temperature Diode(8)  
120  
µA  
ENVIRONMENTAL  
TARRAY  
Operating DMD array temperature(9)(10)(11)  
Illumination, wavelength < 395 nm(10)  
–40  
105  
2
°C  
mW/cm2  
ILLUV  
Illumination overfill maximum  
TARRAY <= 75°C  
ILLOVERFILL  
ILLOVERFILL  
40 mW/mm2  
29 mW/mm2  
heat load per side.(12)(13)  
Illumination overfill maximum  
TARRAY > 75°C  
heat load per side.(12)(13)  
(1) The following power supplies are all required to operate the DMD: VDD, VDDI, VOFFSET, VBIAS, and VRESET. All VSS connections  
are also required.  
(2) Recommended Operating Conditions are applicable after the DMD is installed in the final product.  
(3) All voltage values are with respect to the ground pins (VSS).  
(4) VOFFSET supply transients must fall within specified max voltages.  
(5) To prevent excess current, the supply voltage delta |VDDI – VDD| must be less than the specified limit.  
(6) To prevent excess current, the supply voltage delta |VBIAS – VOFFSET| must be less than the specified limit.  
(7) Refer to the SubLVDS timing requirements in Timing Requirements.  
(8) Temperature Diode is to allow accurate measurement of the DMD array temperature during operation.  
(9) DMD Active Array temperature can be calculated using the TMP411 and DLPC230-Q1 as shown in the Micromirror Array Temperature  
Calculation section.  
(10) The maximum operation conditions for operating temperature and UV illumination shall not be implemented simultaneously.  
(11) Operating profile information for device micromirror landed duty-cycle and temperature may be provided if requested.  
(12) The active area of the DLP5530-Q1 device is surrounded by an aperture on the inside of the DMD window surface that masks  
structures of the DMD device assembly from normal view. The aperture is sized to anticipate several optical conditions. Overfill light  
illuminating the area outside the active array can scatter and create adverse effects to the performance of an end application using the  
DMD. The illumination optical system should be designed to minimize light flux incident outside the active array. Depending on the  
particular system's optical architecture and assembly tolerances, the amount of overfill light on the outside of the active array may cause  
system performance degradation.  
(13) Applies to the two regions in Figure 1.  
Copyright © 2016–2019, Texas Instruments Incorporated  
9
 
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
Limited illumination area  
on window aperture  
Window  
Window  
Aperture  
Window  
0.5 mm  
Window Aperture  
0.5 mm  
Figure 1. Illumination Overfill Diagram  
10  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
6.5 Thermal Information  
DLP5530-Q1  
THERMAL METRIC(1)  
Active area-to-test point 1 (TP1)(1)  
FYK (CPGA)  
149 PINS  
1.1  
UNIT  
Thermal resistance  
°C/W  
(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of  
maintaining the package within the temperature range specified in the Recommended Operating Conditions. The total heat load on the  
DMD is largely driven by the incident light absorbed by the active area, although other contributions include light energy absorbed by the  
window aperture and electrical power dissipation of the array. Optical systems should be designed to minimize the light energy falling  
outside the window clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.  
6.6 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS(2)  
MIN  
TYP(3)  
MAX  
369  
UNIT  
CURRENT  
VDD = 1.95 V  
IDD  
Supply current: VDD(4)(5)  
Supply current: VDDI(4)(5)  
Supply current: VOFFSET(6)  
Supply current: VBIAS(6)  
Supply current: VRESET  
mA  
mA  
mA  
mA  
mA  
VDD = 1.8 V  
VDDI = 1.95 V  
VDD = 1.8 V  
62  
IDDI  
VOFFSET = 8.75 V  
VOFFSET = 8.5 V  
VBIAS = 16.5 V  
VBIAS = 16 V  
16.1  
1.3  
IOFFSET  
IBIAS  
VRESET = –10.5 V  
VRESET = –10 V  
–10.2  
IRESET  
POWER(7)  
PDD  
VDD = 1.95 V  
720  
121  
141  
22  
Supply power dissipation: VDD(4)(5)  
Supply power dissipation: VDDI(4)(5)  
Supply power dissipation: VOFFSET(6)  
Supply power dissipation: VBIAS(6)  
mW  
mW  
mW  
mW  
VDD = 1.8 V  
VDDI = 1.95 V  
VDD = 1.8 V  
PDDI  
VOFFSET = 8.75 V  
VOFFSET = 8.5 V  
VBIAS = 16.5 V  
VBIAS = 16 V  
POFFSET  
PBIAS  
VRESET = –10.5 V  
VRESET = –10 V  
108  
1110  
PRESET  
PTOTAL  
Supply power dissipation: VRESET  
Supply power dissipation: Total  
mW  
mW  
(1) Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.  
(2) All voltage values are with respect to the ground pins (VSS).  
(3) Typical current consumption is application and video content dependent. Please see a TI applications engineer for additional  
information.  
(4) To prevent excess current, the supply voltage delta |VDDI – VDD| must be less than the specified limit.  
(5) Supply power dissipation based on non–compressed commands and data.  
(6) To prevent excess current, the supply voltage delta |VBIAS – VOFFSET| must be less than the specified limit.  
(7) The following power supplies are all required to operate the DMD: VDD, VDDI, VOFFSET, VBIAS, VRESET. All VSS connections are  
also required.  
Copyright © 2016–2019, Texas Instruments Incorporated  
11  
 
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS(2)  
MIN  
TYP(3)  
MAX  
UNIT  
LPSDR INPUT(8)  
VIH(DC)  
VIL(DC)  
VIH(AC)  
VIL(AC)  
VT  
DC input high voltage(9)  
DC input low voltage(9)  
AC input high voltage(9)  
AC input low voltage  
0.7 × VDD  
–0.3  
VDD + 0.3  
0.3 × VDD  
VDD + 0.3  
0.2 × VDD  
0.4 × VDD  
V
V
0.8 × VDD  
–0.3  
V
V
Hysteresis (VT+ – VT–  
)
Figure 9  
0.1 × VDD  
–100  
V
IIL  
Low–level input current  
VDD = 1.95 V; VI = 0 V  
VDD = 1.95 V; VI = 1.95 V  
nA  
nA  
IIH  
High–level input current  
300  
LPSDR OUTPUT(10)  
VOH  
VOL  
DC output high voltage  
DC output low voltage  
IOH = –2 mA  
IOL = 2 mA  
0.8 × VDD  
V
V
0.2 × VDD  
CAPACITANCE  
Input capacitance LPSDR  
ƒ = 1 MHz  
ƒ = 1 MHz  
ƒ = 1 MHz  
10  
20  
10  
CIN  
pF  
Input capacitance SubLVDS  
Output capacitance  
COUT  
pF  
pF  
pF  
ƒ = 1 MHz; (1152 × 144)  
micromirrors  
CRESET  
CTEMP  
Reset group capacitance  
350  
400  
450  
20  
Temperature sense diode capacitance  
ƒ = 1 MHz  
(8) LPSDR input specifications are for pin DMD_DEN_ARSTZ.  
(9) Low-speed interface is LPSDR and adheres to the Electrical Characteristics and AC/DC Operating Conditions table in JEDEC Standard  
No. 209B, Low-Power Double Data Rate (LPDDR) JESD209B.  
(10) LPSDR output specification is for pins LS_RDATA_A and LS_RDATA_B.  
6.7 Timing Requirements  
Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.  
MIN NOM  
MAX UNIT  
LPSDR  
tr  
Rise slew rate(1)  
Fall slew rate(1)  
(20% to 80%) × VDD, see Figure 2  
0.25  
0.25  
0.75  
0.75  
V/ns  
V/ns  
ns  
tƒ  
(80% to 20%) × VDD, see Figure 2  
tW(H)  
tW(L)  
Pulse duration LS_CLK high  
Pulse duration LS_CLK low  
50% to 50% reference points, see Figure 4  
50% to 50% reference points, see Figure 4  
ns  
LS_WDATA valid before LS_CLK or LS_CLK ,  
see Figure 4  
tsu  
th  
Setup time  
Hold time  
1.5  
1.5  
ns  
ns  
LS_WDATA valid after LS_CLK or LS_CLK ,  
see Figure 4  
SubLVDS  
tr  
Rise slew rate  
20% to 80% reference points, see Figure 3  
80% to 20% reference points, see Figure 3  
See Figure 4  
0.7  
0.7  
1
1
V/ns  
V/ns  
ns  
tƒ  
Fall slew rate  
tc  
Cycle time DCLK  
Pulse duration DCLK high  
Pulse duration DCLK low  
Window time  
1.61  
0.75  
0.75  
0.3  
1.67  
tW(H)  
tW(L)  
tWINDOW  
50% to 50% reference points, see Figure 4  
50% to 50% reference points, see Figure 4  
Setup time + Hold time, see Figure 4, Figure 5  
ns  
ns  
ns  
tLVDS-  
ENABLE+REFGEN  
Power-up receiver(2)  
2000  
ns  
(1) Specification is for DMD_DEN_ARSTZ pin. Refer to LPSDR input rise and fall slew rate in Figure 2.  
(2) Specification is for SubLVDS receiver time only and does not take into account commanding and latency after commanding.  
12  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
DMD_DEN_ARSTZ  
1.0 * VDD  
0.8 * VDD  
0.2 * VDD  
0.0 * VDD  
tr  
tf  
Figure 2. LPSDR Input Rise and Fall Slew Rate  
VLS_CLK_P , VLS_CLK_N , VLS_WDATA_P , VLS_WDATA_N  
VDCLK_AP , VDCLK_BP , VDCLK_AN , VDCLK_BN  
VD_AP(7:0) , VD_BP(7:0) , VD_AN(7:0) , VD_BN(7:0)  
1.0 * V  
0.8 * V  
ID  
ID  
V
CM  
0.2 * V  
0.0 * V  
ID  
ID  
tr  
tf  
Figure 3. SubLVDS Input Rise and Fall Slew Rate  
t
c
t
w
t
(H)  
w
(L)  
DCLK_AP , DCLK_BP , LS_CLK_P  
DCLK_AN , DCLK_BN , LS_CLK_N  
50%  
50%  
50%  
t
h
t
su  
D_AP(7:0) , D_BP(7:0) , LS_WDATA_P  
D_AN(7:0) , D_BN(7:0) , LS_WDATA_N  
50%  
50%  
t
window  
Figure 4. SubLVDS Switching Parameters  
Copyright © 2016–2019, Texas Instruments Incorporated  
13  
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
High Speed Training Scan Window  
t
c
DCLK_AP, DCLK_BP  
DCLK_AN, DCLK_BN  
¼ t  
c
¼ t  
c
D_AP(7:0), D_BP(7:0)  
D_AN(7:0), D_BN(7:0)  
Figure 5. High-Speed Training Scan Window  
DCLK_AP , D_AP(7:0) ,  
DCLK_BP , D_BP(7:0) ,  
LS_CLK_P , LS_WDATA_P  
VID  
SubLVDS  
Receiver  
VCM = (VIP + VIN) / 2  
DCLK_AN , D_AN(7:0) ,  
DCLK_BN , D_BN(7:0) ,  
LS_CLK_N , LS_WDATA_N  
VIP  
VIN  
Figure 6. SubLVDS Voltage Parameters  
1.225V  
V
= V  
+ | 1/2 * V  
|
SubLVDS max  
CM max  
ID max  
V
CM  
V
ID  
V
= V  
œ | 1/2 * V  
|
SubLVDS min  
CM min  
ID max  
0.575V  
Figure 7. SubLVDS Waveform Parameters  
DCLK_AP  
DCLK_BP  
D_AP(7:0)  
D_BP(7:0)  
ESD  
Internal  
Termination  
(ZIN)  
SubLVDS  
Receiver  
DCLK_AN  
DCLK_BN  
D_AN(7:0)  
D_BN(7:0)  
ESD  
Figure 8. SubLVDS Equivalent Input Circuit  
14  
Copyright © 2016–2019, Texas Instruments Incorporated  
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
V
V
IH  
V
T+  
û V  
T
V
T-  
IL  
DMD_DEN_ARSTZ  
Figure 9. LPSDR Input Hysteresis  
Copyright © 2016–2019, Texas Instruments Incorporated  
15  
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
6.8 Switching Characteristics(1)  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
Output propagation, clock to Q, rising edge of LS_CLK  
(differential clock signal) input to LS_RDATA output.  
See Figure 10, Figure 11  
tPD  
CL = 45 pF  
15  
Slew rate, LS_RDATA  
0.5  
V/ns  
Output duty cycle distortion, LS_RDATA_A and  
LS_RDATA_B  
40%  
60%  
(1) Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.  
LS_CLK_P  
1
0
1
0
1
0
1
0
1
0
LS_CLK_N  
LS_WDATA_P  
LS_WDATA_N  
Stop(1) Start(0)  
tPD  
LS_RDATA  
Acknowledge  
Figure 10. LPSDR Read Out  
Data Sheet Timing Reference Point  
Device Pin  
Tester Channel  
Output Under Test  
CL  
See Sub-LVDS Data Interface for more information.  
Figure 11. Test Load Circuit for Output Propagation Measurement  
16  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
 
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
6.9 System Mounting Interface Loads  
PARAMETER  
Condition 1: Maximum load evenly distributed within each area(1)  
Thermal Interface Area  
MIN NOM  
MAX  
UNIT  
110.8  
111.3  
N
Electrical Interface Area  
Condition 2: Maximum load evenly distributed within each area(1)  
Thermal Interface Area  
0
N
Electrical Interface Area  
222.1  
(1) See Figure 12.  
Figure 12. System Interface Loads  
Copyright © 2016–2019, Texas Instruments Incorporated  
17  
 
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
6.10 Physical Characteristics of the Micromirror Array  
PARAMETER  
VALUE  
1152  
1152  
7.6  
UNIT  
micromirrors  
M
N
ε
Number of active columns  
See Figure 13  
Number of active rows  
See Figure 13  
micromirrors  
Micromirror (pixel) pitch - diagonal  
Micromirror (pixel) pitch - horizontal and vertical  
Micromirror active array width  
Micromirror active array height  
Micromirror active border  
See Figure 14  
µm  
P
See Figure 14  
10.8  
µm  
mm  
P × M + P / 2; see Figure 13  
(P × N) / 2 + P / 2; see Figure 13  
Pond of micromirrors (POM)(1)  
12.447  
6.226  
10  
mm  
micromirrors/side  
(1) The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM.  
These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical  
bias to tilt toward OFF.  
18  
Copyright © 2016–2019, Texas Instruments Incorporated  
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
(0,0)  
Illumination  
Pond of Micromirrors (POM) are Omitted for Clarity  
Row 1151  
Row 1150  
Row 1149  
Row 1148  
Row 1147  
Row 1146  
Row 1145  
Row 1144  
Off-State  
Tilt Direction  
On-State  
Tilt Direction  
DMD Active Mirror Array  
Row 7  
Row 6  
Row 5  
Row 4  
Row 3  
Row 2  
Row 1  
Row 0  
Width  
DMD Periphery  
Illumination  
Copyright © 2018, Texas Instruments Incorporated  
Figure 13. Micromirror Array Physical Characteristics  
Copyright © 2016–2019, Texas Instruments Incorporated  
19  
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
P (um)  
Figure 14. Mirror (Pixel) Pitch  
6.11 Micromirror Array Optical Characteristics  
PARAMETER  
Micromirror tilt angle  
Micromirror tilt angle tolerance(2)  
(1) Measured relative to the plane formed by the overall micromirror array at 25°C.  
TEST CONDITIONS  
DMD landed state(1)  
MIN  
NOM  
MAX  
UNIT  
degree  
degree  
12  
–1  
1
(2) For some applications, it is critical to account for the micromirror tilt angle variation in the overall optical system design. With some  
optical system designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field  
reflected from the micromirror array. With some optical system designs, the micromirror tilt angle variation between devices may result in  
colorimetry variations, system efficiency variations, or system contrast variations.  
6.12 Window Characteristics  
PARAMETER  
MIN  
NOM  
Corning Eagle XG  
1.5119  
MAX UNIT  
Window material designation  
Window refractive index  
DMD efficiency(1)  
at wavelength 546.1 nm  
420 nm - 700 nm  
66%  
(2)  
Window aperture(2)  
See  
(1) DMD efficiency is measured photopically under the following conditions: 24° illumination angle, F/2.4 illumination and collection  
apertures, uniform source spectrum (halogen), uniform pupil illumination, the optical system is telecentric at the DMD, and the efficiency  
numbers are measured with 100% electronic micromirror landed duty-cycle and do not include system optical efficiency or overfill loss.  
This number is measured under conditions described above and deviations from these specified conditions could result in a different  
efficiency value in a different optical system. The factors that can influence the DMD efficiency related to system application include:  
light source spectral distribution and diffraction efficiency at those wavelengths (especially with discrete light sources such as LEDs or  
lasers), and illumination and collection apertures (F/#) and diffraction efficiency. The interaction of these system factors as well as the  
DMD efficiency factors that are not system dependent are described in detail in the DMD Optical Efficiency Application Note.  
(2) See the mechanical package ICD for details regarding the size and location of the window aperture.  
20  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
6.13 Chipset Component Usage Specification  
The DLP5530-Q1 is a component of a chipset. Reliable function and operation of the DLP5530-Q1 requires that  
it be used in conjunction with the TPS99000-Q1 and DLPC230-Q1, and includes components that contain or  
implement TI DMD control technology. TI DMD control technology consists of the TI technology and devices  
used for operating or controlling a DLP DMD.  
NOTE  
TI assumes no responsibility for image quality artifacts or DMD failures caused by optical  
system operating conditions exceeding limits described previously  
Copyright © 2016–2019, Texas Instruments Incorporated  
21  
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DLP5530-Q1 Automotive DMD consists of 1,327,104 highly reflective, digitally switchable, micrometer-sized  
mirrors organized in a two-dimensional array. As shown in Figure 15, the micromirror array consists of 1152  
micromirror columns × 1152 micromirror rows in a diamond pixel configuration with a 2:1 aspect ratio.  
Around the perimeter of the 1152 × 1152 array of micromirrors is a uniform band of border micromirrors called  
the Pond of Micromirrors (POM). The border micromirrors are not user-addressable. The border micromirrors  
land in the –12° position once power has been applied to the device. There are 10 border micromirrors on each  
side of the 1152 × 1152 active array.  
Due to the diamond pixel configuration, the columns of each odd row are offset by half a pixel from the columns  
of the even row. Each mirror is switchable between two discrete angular positions: –12° and +12°. The mirrors  
are illuminated from the bottom which allows for compact and efficient system optical design.  
Although the native resolution of the DLP5530-Q1 is 1152 × 1152, when paired with the DLPC230-Q1 controller,  
the DLP5530-Q1 can be driven with different resolutions to utilize the 2:1 aspect ratio. For example, Head-Up  
Display applications typically use a resolution of 1152 × 576. Please see the DLPC230-Q1 automotive DMD  
controller data sheet (DLPS054) for a list of supported resolutions. Diamond pixel arrays also have the capability  
to increase display resolution beyond native resolution. Future controllers or video formatters may take  
advantage of this enhanced resolution.  
Pond of Micromirrors (POM) are Omitted for Clarity  
Row 1151  
Row 1150  
Row 1149  
Row 1148  
Row 1147  
Row 1146  
Row 1145  
Row 1144  
Off-State  
Tilt Direction  
On-State  
Tilt Direction  
DMD Active Mirror Array  
Row 7  
Row 6  
Row 5  
Row 4  
Row 3  
Row 2  
Row 1  
Row 0  
Width  
Illumination  
Figure 15. 0.55-in 1.3-MP Micromirror Array  
22  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
7.2 Functional Block Diagram  
High Speed Data Path &  
Training: Bus A  
High Speed Data Path &  
Training: Bus B  
(1151, 1151)  
TEMP_P  
TEMP_N  
1.3 Mega Pixel 2:1 Aspect ratio  
SRAM & Micromirror Array  
(0,0)  
DMD Mirror & SRAM Voltage Control  
Low Speed Bus Interface & DMD Mirror  
Voltage control  
Copyright © 2018, Texas Instruments Incorporated  
Copyright © 2016–2019, Texas Instruments Incorporated  
23  
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
7.3 Feature Description  
The DLP5530-Q1 consists of a two-dimensional array of 1-bit CMOS memory cells driven by a sub-LVDS bus  
from the DLPC230-Q1 and powered by the TPS99000-Q1. The temperature sensing diode is used to  
continuously monitor the DMD array temperature.  
To ensure reliable operation the DLP5530-Q1 must be used with the DLPC230-Q1 DMD display controller and  
the TPS99000-Q1 system management and illumination controller.  
7.3.1 Sub-LVDS Data Interface  
The Sub-LVDS signaling protocol was designed to enable very fast DMD data refresh rates while simultaneously  
maintaining low power and low emission.  
Data is loaded into the SRAM under each micromirror using the sub-LVDS interface from the DLPC230-Q1. This  
interface consists of 16 pairs of differential data signals plus two clock pairs into two separate buses A and B  
loading the left and right half of the SRAM array. The data is latched on both transitions creating a double data  
rate (DDR) interface. The sub-LVDS interface also implements a continuous training algorithm to optimize the  
data and clock timing to allow for a more robust interface.  
The entire DMD array of 1.3 million pixels can be updated at a rate of less than 100 µs as a result of the high  
speed sub-LVDS interface.  
7.3.2 Low Speed Interface for Control  
The purpose of the low speed interface is to configure the DMD at power up and power down and to control the  
micromirror reset voltage levels that are synchronized with the data loading. The micromirror reset voltage  
controls the time when the mirrors are mechanically switched. The low speed differential interface includes 2  
pairs of signals for write data and clock, and 2 single-ended signals for output (A and B).  
7.3.3 DMD Voltage Supplies  
The micromirrors require unique voltage levels to control the mechanical switching from –12° to +12°. These  
voltage levels are nominally 16 V, 8.5 V, and –10 V (VBIAS, VOFFSET, and VRESET), and are generated by the  
TPS99000-Q1.  
7.3.4 Asynchronous Reset  
Reset of the DMD is required and controlled by the DLPC230-Q1 via the signal DMD_DEN_ARSTZ.  
7.3.5 Temperature Sensing Diode  
The DMD includes a temperature sensing diode designed to be used with the TMP411 temperature monitoring  
device. The DLPC230-Q1 monitors the DMD array temperature via the TMP411 and temperature sense diode.  
The DLPC230-Q1 operation of the DMD timing is based in part on the DMD array temperature, therefore this  
connection is essential to ensure reliable operation of the DMD.  
Figure 16 shows the typical connection between the DLPC230-Q1, TMP411, and the DMD.  
24  
Copyright © 2016–2019, Texas Instruments Incorporated  
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
Feature Description (continued)  
DLPC230-Q1  
DLP5530-Q1  
TEMP_N  
TEMP_P  
56  
56 Ω  
SCL  
D +  
SCA  
100 pF  
THERM1  
THERM2  
D t  
TMP411 œ Q1  
Copyright © 2017, Texas Instruments Incorporated  
Figure 16. Temperature Sense Diode Typical Circuit Configuration  
7.3.5.1 Temperature Sense Diode Theory  
A temperature sensing diode is based on the fundamental current and temperature characteristics of a transistor.  
The diode is formed by connecting the transistor base to the collector. Three different known currents flow  
through the diode and the resulting diode voltage is measured in each case. The difference in their base–emitter  
voltages is proportional to the absolute temperature of the transistor.  
Refer to the TMP411-Q1 data sheet for detailed information about temperature diode theory and measurement.  
Figure 17 and Figure 18 illustrate the relationships between the current and voltage through the diode.  
IE1  
IE2  
TEMP_N  
+
VBE 1,2  
-
TEMP_P  
Figure 17. Temperature Measurement Theory  
Copyright © 2016–2019, Texas Instruments Incorporated  
25  
 
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
Feature Description (continued)  
100uA  
10uA  
1uA  
Temperature (°C)  
Temperature (°C)  
Figure 18. Example of Delta VBE Versus Temperature  
7.4 System Optical Considerations  
Optimizing system optical performance and image performance strongly relates to optical system design  
parameter trades. Although it is not possible to anticipate every conceivable application, projector image and  
optical performance is contingent on compliance to the optical system operating conditions described in the  
following sections.  
7.4.1 Numerical Aperture and Stray Light Control  
The numerical aperture of the illumination and projection optics at the DMD optical area should be the same.  
This cone angle defined by the numerical aperture should not exceed the nominal device mirror tilt angle unless  
appropriate apertures are added in the illumination and/or projection pupils to block out flat-state and stray light  
from the projection lens. The mirror tilt angle defines the DMD's capability to separate the "On" optical path from  
any other light path, including undesirable flat-state specular reflections from the DMD window, DMD border  
structures, or other system surfaces near the DMD such as prism or lens surfaces.  
7.4.2 Pupil Match  
TI’s optical and image performance specifications assume that the exit pupil of the illumination optics is nominally  
centered and located at the entrance pupil position of the projection optics. Misalignment of pupils between the  
illumination and projection optics can degrade screen image uniformity and cause objectionable artifacts in the  
display’s border and/or active area. These artifacts may require additional system apertures to control, especially  
if the numerical aperture of the system exceeds the pixel tilt angle.  
7.4.3 Illumination Overfill  
Overfill light illuminating the area outside the active array can create artifacts from the mechanical features and  
other surfaces that surround the active array. These artifacts may be visible in the projected image. The  
illumination optical system should be designed to minimize light flux incident outside the active array and on the  
window aperture. Depending on the particular system’s optical architecture and assembly tolerances, this amount  
of overfill light on the area outside of the active array may still cause artifacts to be visible.  
Illumination light and overfill can also induce undesirable thermal conditions on the DMD, especially if illumination  
light impinges directly on the DMD window aperture or near the edge of the DMD window. Heat load on the  
aperture in the areas shown in Figure 1 should not exceed the values listed in Window Characteristics. This area  
is a 0.5-mm wide area the length of the aperture opening. The values listed in Window Characteristics assume a  
uniform distribution. For a non-uniform distribution please contact TI for additional information.  
26  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
System Optical Considerations (continued)  
NOTE  
TI ASSUMES NO RESPONSIBILITY FOR IMAGE QUALITY ARTIFACTS OR DMD  
FAILURES CAUSED BY OPTICAL SYSTEM OPERATING CONDITIONS EXCEEDING  
LIMITS DESCRIBED PREVIOUSLY.  
Copyright © 2016–2019, Texas Instruments Incorporated  
27  
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
7.5 DMD Image Performance Specification  
Table 1. DMD Image Performance(1)(2)  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
Dark Blemishes - Viewed on a linear blue 60 screen.(3)  
Light Blemishes - Viewed on a linear gray 10 screen.  
Bright Pixels - Viewed on a linear gray 10 screen.  
Dark Pixels - Viewed on a white screen.  
4
4
0
4
micromirrors  
micromirrors  
(1) See the System Optical Considerations section.  
(2) Blemish counts do not include reflections or shadows of the same artifact. Any artifact that is not specifically called out in this table is  
acceptable. Viewing distance must be > 60 in. Screen size should be similar to application image size. All values referenced are in linear  
gamma. Non-linear gamma curves may be running by default, and it should be ensured with a TI applications engineer that the  
equivalent linear gamma value as specified is used to judge artifacts.  
(3) Linear gray 5 may be substituted in monochrome applications.  
7.6 Micromirror Array Temperature Calculation  
Figure 19. DMD Thermal Test Points  
The active array temperature can be computed analytically from measurement points on the outside of the  
package, the package thermal resistance, the electrical power, and the illumination heat load.  
Relationship between array temperature and the reference ceramic temperature (thermocouple location TP1 in  
Figure 19) is provided by the following equations:  
TARRAY = TCERAMIC + (QARRAY × RARRAY–TO–CERAMIC  
QARRAY = QELECTRICAL + QILLUMINATION  
)
(1)  
where  
TARRAY = computed DMD array temperature (°C)  
TCERAMIC = measured ceramic temperature, TP1 location in Figure 19 (°C)  
RARRAY–TO–CERAMIC = DMD package thermal resistance from array to thermal test point TP1 (°C/W), see  
Thermal Information  
QARRAY = total power, electrical plus absorbed, on the DMD array (W)  
QELECTRICAL = nominal electrical power dissipation by the DMD (W)  
QILLUMINATION = (CL2W × SL)  
CL2W = conversion constant for screen lumens to power on the DMD (W/lm)  
SL = measured screen lumens (lm)  
(2)  
Electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating  
frequencies.  
Absorbed power from the illumination source is variable and depends on the operating state of the mirrors and  
the intensity of the light source.  
28  
Copyright © 2016–2019, Texas Instruments Incorporated  
 
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
Micromirror Array Temperature Calculation (continued)  
Equations shown above are valid for a 1–chip DMD system with a total projection efficiency from DMD to the  
screen of 87%.  
The constant CL2W is based on the DMD array characteristics. It assumes a spectral efficiency of 300 lm/W for  
the projected light and illumination distribution of 83.7% on the active array, and 16.3% on the array border.  
The following is a sample calculation for a typical projection application:  
1. SL = 50 lm  
2. CL2W = 0.00293 W/lm  
3. QELECTRICAL = 0.4 W (This number does not represent an actual DMD electrical power; for illustration  
purposes only)  
4. RARRAY–TO–CERAMIC = 1.1°C/W  
5. TCERAMIC = 55°C  
6. QARRAY = 0.4 W + (0.00293 W/lm × 50 lm) = 0.5465 W  
7. TARRAY = 55°C + (0.5465 W × 1.1°C/W) = 55.6°C  
Copyright © 2016–2019, Texas Instruments Incorporated  
29  
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle  
7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle  
The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a  
percentage) that an individual micromirror is landed in the ON state versus the amount of time the same  
micromirror is landed in the OFF state.  
As an example, a landed duty cycle of 90/10 indicates that the referenced pixel is in the ON state 90% of the  
time (and in the OFF state 10% of the time), whereas 10/90 would indicate that the pixel is in the OFF state 90%  
of the time. Likewise, 50/50 indicates that the pixel is ON 50% of the time and OFF 50% of the time.  
Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other  
state (OFF or ON) is considered negligible and is thus ignored.  
Since a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages)  
always add to 100.  
30  
Copyright © 2016–2019, Texas Instruments Incorporated  
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DLP5530-Q1 chipset is designed to support projection-based automotive applications such as head-up  
display systems.  
8.2 Typical Application  
The chipset consists of three components—the DLP5530-Q1 automotive DMD, the DLPC230-Q1, and the  
TPS99000-Q1. The DMD is a light modulator consisting of tiny mirrors that are used to form and project images.  
The DLPC230-Q1 is a controller for the DMD; it formats incoming video and controls the timing of the DMD  
illumination sources and the DMD in order to display the incoming video. The TPS99000-Q1 is a controller for  
the illumination sources (LEDs) and a management IC for the entire chipset. In conjunction, the DLPC230-Q1  
and the TPS99000-Q1 can also be used for system-level monitoring, diagnostics, and failure detection features.  
Figure 20 is a system level block diagram with these devices in the DLP head-up display configuration and  
displays the primary features and functions of each device.  
topology and capacity  
tailored to specific  
system application  
TPS62260(3)  
or numerous  
other options  
VLED  
6.5 V  
SHUTDOWN.  
VBATT.  
Pre-  
regulator  
6.5 V  
3.3 V  
1.1 V  
1.8 V  
3.3 V  
External  
regulators  
LDO  
(optional)  
Power sequencing  
and monitoring  
High-side  
current limiting  
PROJ_ON.  
SPI (4).  
up to 42-V tolerance  
when pre-regulation  
not in use  
12 bit  
ADC  
External ADC inputs  
for general usage  
LM3409  
LED drive  
PMIC diagnostics  
port  
with up to 64 HW timed  
samples per frame  
AC3  
SPI_2  
ADC_CTRL (2).  
SPI (4).  
F
shu  
nt(2)  
RED.  
GREEN.  
E
T
s
MPU  
ECC  
WD (2).  
LED_SEL (4).  
SEQ_START.  
S_EN.  
Ultra wide dimming  
LED controller  
SPI_1  
Low-side current  
measurement  
HOST_IRQ.  
OpenLDI.  
TPS99000-Q1  
D_EN.  
DLPC230-Q1  
illumination  
optics  
External watchdogs /  
over brightness / and  
other monitors  
photo diode  
CTRL  
COMPOUT.  
SEQ_CLK.  
Parallel  
28.  
4.  
DATA  
24.  
eSRAM  
frame buffer  
General  
purpose  
PARKZ.  
RESETZ.  
INTZ.  
Photo diode  
PD neg  
measurement  
LDO  
I2C (2).  
SPI (4).  
I2C_0  
SPI_0  
system  
BIAS, RST, OFS  
(3).  
Eye box  
motor ctl  
GPIOx  
6
Sys clock  
monitor  
DMD bias  
regulator  
VCC_FLASH  
VCC_INTF  
Spare  
GPIO  
3.3 V  
1.8 V  
1.1 V  
GPIOx  
I2C_1  
EEPROM  
VIO  
TMP411  
(2).  
DMD die temperature  
Calibration data  
sub-LVDS DATA.  
Control.  
VCORE  
DLP5530-Q1  
DMD  
Sub-LVDS  
Interface  
Figure 20. Head-Up Display System Block Diagram  
Copyright © 2016–2019, Texas Instruments Incorporated  
31  
 
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
Typical Application (continued)  
8.2.1 Application Overview  
Figure 20 shows the system block diagram for a DLP HUD system. The system uses the DLPC230-Q1,  
TPS99000-Q1, and the DLP5530-Q1 automotive DMD to enable a head-up display with high brightness, high  
efficiency, and a large virtual image distance. The combination of the DLPC230-Q1 and TPS99000-Q1 removes  
the need for external SDRAM and a dedicated microprocessor. The chipset manages the illumination control of  
LED sources, power sequencing functions, and system management functions. Additionally, the chipset supports  
numerous system diagnostic and built-in self test (BIST) features. The following paragraphs describe the  
functionality of the chipset used for a HUD system in more detail.  
The DLPC230-Q1 is a controller for the DMD and the light sources in the DLP HUD module. It receives input  
video from the host and synchronizes DMD and light source timing in order to achieve the desired video. The  
DLPC230-Q1 formats input video data that is displayed on the DMD. It synchronizes these video segments with  
light source timing in order to create a video with a multi-colored display.  
The DLPC230-Q1 receives inputs from a host processor in the vehicle. The host provides commands and input  
video data. Host commands can be sent using either the I2C bus or SPI bus. The bus that is not being used for  
host commands can be used as a read-only bus for diagnostic purposes. Input video can be sent over an  
OpenLDI bus or a parallel 24-bit bus. The SPI flash memory provides the embedded software for the DLPC230-  
Q1’s ARM core and default settings. The provides diagnostic and monitoring information to the DLPC230-Q1  
using an SPI bus and several other control signals such as PARKZ, INTZ, and RESETZ to manage power-up  
and power-down sequencing. The TMP411 uses an I2C interface to provide the DMD array temperature to the  
DLPC230-Q1.  
The outputs of the DLPC230-Q1 are configuration and monitoring commands to the , timing controls to the LED  
or laser driver, control and data signals to the DMD, and monitoring and diagnostics information to the host  
processor. The DLPC230-Q1 communicates with the over an SPI bus. It uses this to configure the and to read  
monitoring and diagnostics information from the . The DLPC230-Q1 sends drive enable signals to the LED or  
laser driver, and synchronizes this with the DMD mirror timing. The control signals to the DMD are sent using a  
sub-LVDS interface.  
The is a highly integrated mixed-signal IC that controls DMD power and provides monitoring and diagnostics  
information for the DLP HUD system. The power sequencing and monitoring blocks of the properly power up the  
DMD and provide accurate DMD voltage rails (–16 V, 8.5 V, and 10 V), and then monitor the system’s power  
rails during operation. The integration of these functions into one IC significantly reduces design time and  
complexity.  
The receives inputs from the DLPC230-Q1, the power rails it monitors, the host processor, and potentially  
several other ADC ports. The DLPC230-Q1 sends configuration and control commands to the over an SPI bus  
and several other control signals. The DLPC230-Q1’s clocks are also monitored by the watchdogs in the to  
detect any errors. The power rails are monitored by the in order to detect power failures or glitches and request a  
proper power down of the DMD in case of an error. The host processor can read diagnostics information from the  
using a dedicated SPI bus, which enables independent monitoring. Additionally the host can request the image to  
be turned on or off using a PROJ_ON signal. Lastly, the has several general-purpose ADCs that can be used to  
implement system level monitoring functions.  
32  
Copyright © 2016–2019, Texas Instruments Incorporated  
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
Typical Application (continued)  
The outputs of the are diagnostic information and error alerts to the DLPC230-Q1, and control signals to the LED  
or laser driver. The can output diagnostic information to the host and the DLPC230-Q1 over two SPI buses. In  
case of critical system errors, such as power loss, it outputs signals to the DLPC230-Q1 that trigger power down  
or reset sequences. It also has output signals that can be used to implement various LED or laser driver  
topologies.  
The DMD is a micro-electro-mechanical system (MEMS) device that receives electrical signals as an input (video  
data), and produces a mechanical output (mirror position). The electrical interface to the DMD is a sub-LVDS  
interface with the DLPC230-Q1. The mechanical output is the state of more than 1.3 million mirrors in the DMD  
array that can be tilted ±12°. In a projection system the mirrors are used as pixels in order to display an image.  
8.2.2 Reference Design  
For information about connecting together the DLP5530-Q1 DMD, DLPC230-Q1 controller, and TPS99000-Q1,  
please contact the TI Application Team for additional information about the DLP5530-Q1 evaluation module  
(EVM). TI has optical-mechanical reference designs available, see the TI Application team for more information.  
8.2.3 Application Mission Profile Consideration  
Each application is anticipated to have different mission profiles, or number of operating hours at different  
temperatures. To assist in evaluation the Application Report Reliability Lifetime Estimates for DLP3030-Q1 and  
DLP553x-Q1 DMDs in Automotive Applications may be provided. See the TI Application team for more  
information.  
Copyright © 2016–2019, Texas Instruments Incorporated  
33  
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
The following power supplies are all required to operate the DMD: VDD, VDDI, VOFFSET, VBIAS, and VRESET.  
All VSS connections are also required. DMD power-up and power-down sequencing is strictly controlled by the  
TPS99000-Q1 devices.  
CAUTION  
For reliable operation of the DMD, the following power supply sequencing  
requirements must be followed. Failure to adhere to the prescribed power-up and  
power-down procedures may affect device reliability.  
VDD, VDDI, VOFFSET, VBIAS, and VRESET power supplies have to be coordinated  
during power-up and power-down operations. Failure to meet any of the below  
requirements will result in a significant reduction in the DMD’s reliability and lifetime.  
VSS must also be connected.  
9.1 Power Supply Power-Up Procedure  
During power-up, VDD and VDDI must always start and settle before VOFFSET, VBIAS, and VRESET  
voltages are applied to the DMD.  
During power-up, it is a strict requirement that the delta between VBIAS and VOFFSET must be within the  
specified limit shown in the Recommended Operating Conditions.  
During power-up, the DMD’s LPSDR input pins shall not be driven high until after VDD and VDDI have settled  
at operating voltage.  
During power-up, there is no requirement for the relative timing of VRESET with respect to VOFFSET and  
VBIAS. Power supply slew rates during power-up are flexible, provided that the transient voltage levels follow  
the requirements listed previously and in Figure 21.  
9.2 Power Supply Power-Down Procedure  
The power-down sequence is the reverse order of the previous power-up sequence. VDD and VDDI must be  
supplied until after VBIAS, VRESET, and VOFFSET are discharged to within 4 V of ground.  
During power-down, it is not mandatory to stop driving VBIAS prior to VOFFSET, but it is a strict requirement  
that the delta between VBIAS and VOFFSET must be within the specified limit shown in the Recommended  
Operating Conditions (Refer to Note 2 in Figure 21).  
During power-down, the DMD’s LPSDR input pins must be less than VDDI, the specified limit shown in the  
Recommended Operating Conditions.  
During power-down, there is no requirement for the relative timing of VRESET with respect to VOFFSET and  
VBIAS.  
Power supply slew rates during power-down are flexible, provided that the transient voltage levels follow the  
requirements listed previously and in Figure 21.  
34  
Copyright © 2016–2019, Texas Instruments Incorporated  
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
9.3 Power Supply Sequencing Requirements  
TPS99000 initiates DMD power-down  
sequence. DLPC230 executes critical  
commands.  
Note 5  
DLPC230 and TPS99000  
disables VBIAS, VOFFSET,  
and VRESET  
Drawing Not To Scale.  
DLPC230 and TPS99000  
control start of DMD operation  
Mirror Park Sequence  
Note 4  
Details Omitted For Clarity.  
Power Off  
VDD / VDDI  
VDD / VDDI  
VDD / VDDI  
VSS  
VSS  
VBIAS  
VBIAS  
VBIAS  
VBIAS < 4 V  
ûV < Specification  
Note 1  
ûV < Specification  
VSS  
VSS  
Note 3  
ûV < Specification  
Note 2  
Note 2  
VOFFSET  
VOFFSET  
VOFFSET < 4 V  
VOFFSET  
VSS  
VSS  
VSS  
VSS  
VRESET < 0.5 V  
VRESET > - 4 V  
VRESET  
VRESET  
VDD  
VRESET  
VDD  
DMD_DEN_ARSTZ  
VSS  
VSS  
VSS  
VSS  
Initialization  
LS_CLK_P  
LS_CLK_N  
LS_WDATA_P  
LS_WDATA_N  
Waveforms Not To Scale.  
D_AP(7:0) , D_AN(7:0)  
D_BP(7:0) , D_BN(7:0)  
DCLK_AP , DCLK_AN  
DCLK_BP , DCLK_BN  
VSS  
VSS  
Refer to the sections —Absolute Maximum Ratings“ and —Recommended Operating Conditions“.  
(1) To prevent excess current, the supply voltage delta |VBIAS – VOFFSET| must be less than specified in the  
Recommended Operating Conditions. OEMs may find that the most reliable way to ensure this is to power VOFFSET  
prior to VBIAS during power-up and to remove VBIAS prior to VOFFSET during power-down. Also, is capable of  
managing the timing between VBIAS and VOFFSET.  
(2) To prevent excess current, the supply voltage delta |VBIAS – VRESET| must be less than specified than the limit  
shown in the Recommended Operating Conditions.  
(3) When system power is interrupted, the TPS9000 initiates hardware power-down that disables VBIAS, VRESET and  
VOFFSET after the Micromirror Park Sequence.  
(4) Drawing is not to scale and details are omitted for clarity.  
Figure 21. Power Supply Sequencing Requirements (Power Up and Power Down)  
Copyright © 2016–2019, Texas Instruments Incorporated  
35  
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Please refer to the DLPC230-Q1 and data sheets for specific PCB layout and routing guidelines. For specific  
DMD PCB guidelines, use the following:  
Match lengths for the LS_WDATA and LS_CLK signals.  
Minimize vias, layer changes, and turns for the HS bus signals.  
Minimum of two 220-nF decoupling capacitors close to VBIAS.  
Minimum of two 220-nF decoupling capacitors close to VRESET.  
Minimum of two 220-nF decoupling capacitors close to VOFFSET.  
Minimum of four 100-nF decoupling capacitors close to VDDI and VDD.  
Temperature diode pins  
The DMD has an internal diode (PN junction) that is intended to be used with an external TI TMP411  
temperature sensing IC. PCB traces from the DMD’s temperature diode pins to the TMP411 are sensitive to  
noise. Please see the TMP411 data sheet for specific routing recommendations.  
36  
版权 © 2016–2019, Texas Instruments Incorporated  
DLP5530-Q1  
www.ti.com.cn  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 器件命名规则  
DLP5530 A FYK Q1  
Automotive  
Package Type  
Temperature Rating (-40°C to 105°C)  
Device Descriptor  
22. 器件型号 说明  
11.1.2 器件标记  
器件标记包括清晰可辨的字符串 GHJJJJK DLP5530AFYKQ1GHJJJJK 是批次跟踪代码。DLP5530AFYKQ1 是  
器件型号。  
TI Internal Numbering  
Part 2 of Serial Number  
(7 Characters)  
Part 1 of Serial Number  
(7 Characters)  
2-Dimension Matrix Code  
(Part Number and Serial Number)  
DMD Part Number  
23. DMD 标记  
11.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
2. 相关链接  
器件  
产品文件夹  
链接  
样片与购买  
链接  
技术文档  
链接  
工具与软件  
链接  
支持和社区  
链接  
DLP5530-Q1  
DLPC230-Q1  
TPS99000-Q1  
链接  
链接  
链接  
链接  
链接  
链接  
链接  
链接  
链接  
链接  
版权 © 2016–2019, Texas Instruments Incorporated  
37  
DLP5530-Q1  
ZHCSIF9F MARCH 2016REVISED MAY 2019  
www.ti.com.cn  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
DLP is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 DMD 处理  
DMD 是光学器件,故应注意避免损坏玻璃窗口。有关正确处理 DMD 的说明,请参阅DLPA019 DMD 处理》应  
用手册。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
38  
版权 © 2016–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLP5530AFYKQ1  
ACTIVE  
CPGA  
FYK  
149  
33  
RoHS & Green  
Call TI  
N / A for Pkg Type  
-40 to 105  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
DWG NO.  
SH  
8
5
3
6
1
7
4
1
2514853  
REVISIONS  
C
COPYRIGHT 2015 TEXAS INSTRUMENTS  
UN-PUBLISHED, ALL RIGHTS RESERVED.  
NOTES UNLESS OTHERWISE SPECIFIED:  
REV  
A
DESCRIPTION  
DATE  
BY  
12/7/2015  
4/25/2017  
11/9/2017  
ECO 2155049: INITIAL RELEASE  
ECO 2165903: UPDATE SUBSTRATE BACK MARKING, SH. 4  
ECO 2170159: RELAX DIE HEIGHT TOL., WAS +/-0.08  
BMH  
BMH  
BMH  
1
2
3
SUBSTRATE EDGE PERPENDICULARITY TOLERANCE APPLIES TO ENTIRE SURFACE.  
B
C
DIE PARALLELISM TOLERANCE APPLIES TO DMD ACTIVE ARRAY ONLY.  
ROTATION ANGLE OF DMD ACTIVE ARRAY IS A REFINEMENT OF THE LOCATION  
TOLERANCE AND HAS A MAXIMUM VALUE OF 0.8 DEGREES.  
4
SUBSTRATE SYMBOLIZATION PAD AND PLATING AT BOTTOM OF DATUMS B AND C  
HOLES TO BE ELECTRICALLY CONNECTED TO VSS PLANE WITHIN THE SUBSTRATE.  
D
C
B
A
D
C
B
A
5
6
7
BOUNDARY MIRRORS SURROUNDING THE ACTIVE ARRAY.  
MAXIMUM ENCAPSULANT PROFILE SHOWN.  
ENCAPSULANT ALLOWED ON THE SURFACE OF THE CERAMIC IN THE AREA SHOWN  
IN VIEW B (SHEET 2). ENCAPSULATION SHALL NOT EXCEED 0.2 THICKNESS MAXIMUM.  
A
8
INDICATED CERAMIC SUBSTRATE FEATURES TO BE PLATED WITH 0.3 MICROMETERS  
MINIMUM ELECTROLYTIC GOLD OVER 0.1 MICROMETER MINIMUM PALLADIUM OVER  
1.27-8.89 MICROMETERS ELECTROLYTIC NICKEL PER ASTM B488-01, ASTM  
B679-95(2009), AND AMS-QQ-N-290, RESPECTIVELY.  
1
0.2E  
SEE VIEW E (SHEET 3)  
FOR WINDOW AND ACTIVE  
ARRAY DIMENSIONS  
9
NOTE THAT THE ACTIVE ARRAY CENTER IS IN A DIFFERENT LOCATION FROM ALL  
PRIOR SERIES 450 DMD'S.  
E
3 0.5  
(Ø2)  
B
A
1.0640.15  
3 0.5  
A
A
22.30.22  
12.6870.15  
C
(1.5)  
2.335 0.15  
23.330.15  
32.20.32  
6
SUBSTRATE  
3 PLACES  
ENCAPSULANT  
(0.56)  
INCIDENT  
LIGHT  
0.8 MAX  
WINDOW  
G
WINDOW APERTURE  
INDICATED  
(SHEET 2)  
A
1.1 0.05  
1.61 0.077  
2
0.0254A  
0.02G  
1.050.1  
2.925 0.24  
(0.51)  
(0.75)  
ACTIVE ARRAY  
149X 1.4 0.1  
DATE  
DRAWN  
UNLESS OTHERWISE SPECIFIED  
DIMENSIONS ARE IN MILLIMETERS  
TEXAS  
12/7/2015  
B. HASKETT  
ENGINEER  
B. HASKETT  
QA/CE  
INSTRUMENTS  
TOLERANCES:  
Dallas Texas  
12/7/2015  
12/8/2015  
12/8/2015  
12/8/2015  
12/8/2015  
ANGLES 1  
TITLE  
ICD, MECHANICAL, DMD  
.55 2:1 1.3MP SERIES 450 -A1  
(FYK PACKAGE)  
(Ø0.305)  
2 PLACE DECIMALS 0.25  
1 PLACE DECIMALS 0.50  
DIMENSIONAL LIMITS APPLY BEFORE PROCESSES  
INTERPRET DIMENSIONS IN ACCORDANCE WITH ASME  
Y14.5M-1994  
SECTION A-A  
P. KONRAD  
CM  
SCALE 20 : 1  
S. SUSI  
THIRD ANGLE  
PROJECTION  
DWG NO  
REV  
SIZE  
D
NONE  
0314DA  
USED ON  
REMOVE ALL BURRS AND SHARP EDGES  
PARENTHETICAL INFORMATION FOR REFERENCE ONLY  
M. DORAK  
APPROVED  
B. RAY  
2514853  
C
NEXT ASSY  
SCALE  
SHEET  
OF  
APPLICATION  
4:1  
1
4
INV2013-DLPa  
5
3
6
1
2
7
8
4
DWG NO.  
SH  
8
5
3
6
1
7
4
2514853  
2
D
D
C
B
A
D
C
B
A
0.5 MIN  
(Ø2)  
B
A
F
1.840.13  
280.28  
(DATUM B TO CENTER OF DATUM C SLOT)  
25.85 MAX  
2.1 0.15  
2 MIN  
A2  
ENCAPSULANT ALLOWED  
ON CERAMIC AREA  
A
7
E
2±0.05  
B
SECTION C-C  
DATUM B  
SCALE 16 : 1  
5.150.15  
2.9  
C
C
6
23.2° 1°  
120.12  
14.9  
0.5 MIN  
A1  
(1.5)  
C
3X 4  
D
1.840.13  
C
D
1.5 0.05  
0.750.025  
1 0.1  
WINDOW  
SECTION D-D  
DATUM C  
0.5 0.05  
A3  
(VIEW ROTATED FOR CLARITY)  
SCALE 16 : 1  
2X 28  
(DATUM B TO A2 AND A3)  
VIEW B  
DATUMS AND ENCAPSULANT ALLOWABLE AREA  
SCALE 10 : 1  
DWG NO  
REV  
SIZE  
DRAWN  
DATE  
12/7/2015  
TEXAS  
2514853  
B. HASKETT  
C
4
D
INSTRUMENTS  
Dallas Texas  
SCALE  
SHEET  
OF  
2
INV2013-DLPa  
5
3
6
1
2
7
8
4
DWG NO.  
SH  
8
5
3
6
1
7
4
2514853  
3
D
C
B
A
D
C
B
A
3
9
(2.1)  
(12.447)  
ACTIVE ARRAY  
7.7760.076  
4X (0.108)  
5
(Ø2)  
B
(5.15)  
1.073±0.0885  
3
9
2.887 0.076  
2.0750.05  
(8.033)  
WINDOW  
APERTURE  
(10)  
WINDOW  
2
(6.2262)  
ACTIVE ARRAY  
6.96±0.0885  
7.925±0.05  
C
(1.5)  
0.356±0.0885  
12.802±0.0885  
(13.158)  
WINDOW APERTURE  
2.68440.05  
15.13140.05  
(17.8158)  
WINDOW  
VIEW E  
ACTIVE ARRAY AND WINDOW  
SCALE 12 : 1  
DWG NO  
REV  
SIZE  
DRAWN  
DATE  
12/7/2015  
TEXAS  
2514853  
B. HASKETT  
C
4
D
INSTRUMENTS  
Dallas Texas  
SCALE  
SHEET  
OF  
3
INV2013-DLPa  
5
3
6
1
2
7
8
4
DWG NO.  
SH  
8
5
3
6
1
7
4
4
2514853  
D
C
B
A
D
C
B
A
F
19.145  
9 X 1.27 = 11.43  
9 X 1.27 = 11.43  
1.625  
(A1, A2, & B1 OMITTED)  
1.625  
E
A
D
A
3.8950.25  
B
C
D
E
F
G
H
J
14.510.25  
15 X 1.27 = 19.05  
K
L
M
N
P
R
T
G
8
SYMBOLIZATION  
PAD  
+
-
0.05  
8.5 0.25  
11.85 0.25  
149X 0.305  
0.5DEF  
PINS  
0.025  
4
8
8
0.25D  
VIEW F  
PINS AND SYMBOLIZATION PAD  
SCALE 8 : 1  
0.28 MAX  
(BRAZE AREA)  
Ø0.85 MAX  
(BRAZE AREA)  
(R0.05)  
(Ø0.305)  
(1.4)  
DETAIL G  
PIN AND BRAZE DIMENSIONS  
149 PLACES  
SCALE 40 : 1  
DWG NO  
REV  
SIZE  
DRAWN  
DATE  
12/7/2015  
TEXAS  
2514853  
B. HASKETT  
C
4
D
INSTRUMENTS  
Dallas Texas  
SCALE  
SHEET  
OF  
4
INV2013-DLPa  
5
3
6
1
2
7
8
4
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY