DLP7000BFLP [TI]

DLP® 0.7 XGA 2xLVDS A 型 DMD | FLP | 203 | 10 to 65;
DLP7000BFLP
型号: DLP7000BFLP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DLP® 0.7 XGA 2xLVDS A 型 DMD | FLP | 203 | 10 to 65

文件: 总54页 (文件大小:1725K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
DLP7000 DLP®0.7 XGA 2x LVDS A DMD  
1 特性  
3D 生物识别  
共焦显微镜  
1
0.7 英寸对角线微镜阵列  
显示  
1024 × 768 铝制微米级微镜阵列  
13.68µm 微镜间距  
3D 成像显微镜  
自适应照明  
±12° 微镜倾斜角(相对于平面)  
设计用于角落照明  
增强现实和信息覆盖  
用于可见光(400nm 700nm):  
3 说明  
窗透射率为 97%(单通,两个窗面)  
微镜反射率为 88%  
DLP7000 XGA 芯片组是 DLP® Discovery™4100 平台  
的一部分,用于实现高分辨率、高性能的空间照明调  
制。0.7 XGA 芯片组的基础是一款数字微镜器件  
(DMD) DLP7000,这款器件是目前 DLP 系列产品组合  
中模式速率最快的一款。DLP Discovery 4100 平台还  
提供带有随机行寻址的最高级独立微镜控制。除了采用  
密封封装外,DLP7000 具有独特的功能和价值,非常  
适合支持各种工业、医疗和高级显示 应用。  
阵列衍射效率为 86%  
阵列填充系数为 92%  
两条 16 位低电压差分信令 (LVDS) 双倍数据速率  
(DDR) 输入数据总线  
输入数据时钟速率高达 400MHz  
40.64mm × 31.75mm × 6.0mm 封装  
密封封装  
除了 DLP7000 DMD 外,0.7XGA 芯片组还包括以下  
组件:  
2 应用  
工业  
DLPC410 控制器,专用于 32000Hz1 位二进  
制)和 4000Hz8 位灰度)以上的高速图形速率  
一个 DLPR410DLP Discovery 4100 配置  
PROM)  
数字成像印刷  
激光打标  
LCD OLED 修复  
计算机直接制版打印机  
SLA 3D 打印机  
一个 DLPA200DMD 微镜驱动器)  
器件信息(1)  
器件型号  
DLP7000  
封装  
封装尺寸(标称值)  
适用于机器视觉和工厂自动化的 3D 扫描仪  
平板印刷  
FLP (203)  
40.64mm × 31.75mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
医疗  
光照治疗设备  
眼科  
直接制造  
高光谱成像  
简化应用  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: DLPS026  
 
 
 
 
 
 
 
 
 
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 23  
8.3 Feature Description................................................. 25  
8.4 Device Functional Modes........................................ 32  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 5  
Pin Configuration and Functions......................... 5  
Specifications....................................................... 12  
7.1 Absolute Maximum Ratings .................................... 12  
7.2 Storage Conditions.................................................. 12  
7.3 ESD Ratings............................................................ 12  
7.4 Recommended Operating Conditions..................... 13  
7.5 Thermal Information................................................ 14  
7.6 Electrical Characteristics......................................... 15  
7.7 LVDS Timing Requirements ................................... 16  
7.8 LVDS Waveform Requirements.............................. 16  
7.9 Serial Control Bus Timing Requirements................ 16  
7.10 Systems Mounting Interface Loads....................... 19  
7.11 Micromirror Array Physical Characteristics........... 20  
7.12 Micromirror Array Optical Characteristics ............. 21  
7.13 Window Characteristics......................................... 22  
7.14 Chipset Component Usage Specification ............. 22  
Detailed Description ............................................ 23  
8.1 Overview ................................................................. 23  
8.5 Optical Interface and System Image Quality  
Considerations ........................................................ 34  
8.6 Micromirror Array Temperature Calculation............ 35  
8.7 Micromirror Landed-On/Landed-Off Duty Cycle ..... 37  
Application and Implementation ........................ 40  
9.1 Application Information............................................ 40  
9.2 Typical Application .................................................. 41  
9
10 Power Supply Recommendations ..................... 44  
10.1 DMD Power-Up and Power-Down Procedures..... 44  
11 Layout................................................................... 44  
11.1 Layout Guidelines ................................................. 44  
11.2 Layout Example .................................................... 45  
12 器件和文档支持 ..................................................... 47  
12.1 器件支持................................................................ 47  
12.2 文档支持................................................................ 47  
12.3 相关链接................................................................ 48  
12.4 ....................................................................... 48  
12.5 静电放电警告......................................................... 48  
12.6 Glossary................................................................ 48  
13 机械、封装和可订购信息....................................... 48  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision E (May 2017) to Revision F  
Page  
已删除 宽带” .......................................................................................................................................................................... 1  
已更改 更改了高速图形速率的数值......................................................................................................................................... 1  
已更改 封装类型更改为 FLP (203).......................................................................................................................................... 1  
Changed package type to FLP; deleted reference to LCCC ................................................................................................. 5  
Changed FLP package figure "bottom view".......................................................................................................................... 5  
Changed "Case temperature" to "Array temperature" ......................................................................................................... 12  
Changed "Case temperature" to "Array temperature" ......................................................................................................... 12  
Changed "Device temperature gradient - operational" to "Absolute temperature delta between the window test  
points (TP2, TP3) and the ceramic test point TP1" ............................................................................................................. 12  
Deleted "RH" after "%" ........................................................................................................................................................ 12  
Changed "Applicable before the DMD is installed in the final product" to "Applicable for the DMD as a component or  
non-operating system".......................................................................................................................................................... 12  
Changed ", non-condensing" to "(non-condensing)" ........................................................................................................... 12  
Changed "JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control  
process." to "JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD  
control process. Manufacturing with less than 500-V HBM is possible if necessary precautions are taken." .................... 12  
Changed Table "Recommended Operating Conditions" ...................................................................................................... 13  
Added "RH" under "Environmental" ..................................................................................................................................... 13  
Added cross reference to table note at row "ILLVIS" ............................................................................................................ 13  
Changed Array temperature, Long-term operational MAX from "30" to "40" ....................................................................... 13  
Changed package type to FLP in table "THERMAL METRIC" ............................................................................................ 14  
Added "or the combined loads of the thermal and electrical areas reduced" ...................................................................... 19  
2
版权 © 2012–2019, Texas Instruments Incorporated  
 
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
修订历史记录 (接下页)  
Deleted row "Window artifact size" in table "Window Characteristics"................................................................................. 22  
Changed mirror pitch to 13.68 μm........................................................................................................................................ 25  
Changed figure "DLPC410 Data Flow" to correct signals of LVDS BUS B out.................................................................... 27  
Changed "Window Characteristics and Optics" to "Optical Interface and System Image Quality Considerations" ............ 34  
Changed "a Thermal Test Point locations 1 and 2" to "thermal test points TP1, TP2, and TP3" ........................................ 35  
Added "(typically used for display applications)" to "Micromirror Array Temperature Calculation - Lumens based" .......... 36  
Deleted Subsection "Fiducials" ............................................................................................................................................ 44  
Changes from Revision D (November 2015) to Revision E  
Page  
Clarified TGRADIENT footnote................................................................................................................................................... 12  
Changed TC2 to TP1 to follow latest thermal test point nomenclature convention in Thermal Information ........................ 14  
Changed Micromirror active border from 10 to correct value of 6 ....................................................................................... 20  
Changed micromirror crossover to mean transition time and renamed previous crossover to micromirror switching  
time typical micromirror crossover time typo (16 µs to 13 µs).............................................................................................. 21  
Added typical micromirror switching time - 13 µs................................................................................................................. 21  
Changed "Micromirror switching time" to "Array switching time" for clarity ......................................................................... 21  
Added clarification to Micromirror switching time at 400 MHz with global reset ................................................................. 21  
Changed references to D4100 Discovery to DPC410 ......................................................................................................... 23  
Changed Thermal Test Point Location drawing to current numbering convention ............................................................. 35  
Changed Micromirror Array Temperature Calculations to indicate that it is based on lumens ............................................ 36  
Added Micromirror Array Temperature Calculation based on power ................................................................................... 37  
更新了22 .......................................................................................................................................................................... 47  
删除了 DLP Discovery 4100 芯片组数据表的链接................................................................................................................ 47  
已添加 DLPR410 添加到了相关链接......................................................................................................................... 48  
Changes from Revision C (April 2014) to Revision D  
Page  
更新了器件命名规则的 21 和图........................................................................................................................................ 47  
更新了器件标记的 22 ............................................................................................................................................... 47  
Changes from Revision B (June 2013) to Revision C  
Page  
已添加 添加了引脚配置和功能 部分、ESD 额定值 表、特性 说明 部分、器件功能模式应用和实施 部分、电源相关  
建议 部分、布局 部分、器件和文档支持 部分以及机械、封装和可订购信息 部分 ................................................................. 1  
已删除 芯片组列表中的 /DLPR4101 增强型 PROM ............................................................................................................... 1  
Corrected VCC2 max to 8 V ................................................................................................................................................ 12  
Added array temperature vs duty cycle graph...................................................................................................................... 14  
Replaced serial communications bus timing parameters ..................................................................................................... 18  
Converted interface loads to Newtons.................................................................................................................................. 19  
Grayed out LVDS buses that are unused on DLP7000 ....................................................................................................... 27  
Added micromirror landed duty cycle section....................................................................................................................... 37  
Changed to DLP7000 ........................................................................................................................................................... 42  
已删除 从相关文档中删除了 / DLPR4101 增强型 PROM ..................................................................................................... 47  
版权 © 2012–2019, Texas Instruments Incorporated  
3
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
Changes from Revision A (September 2012) to Revision B  
Page  
已添加 /DLPR4101 增强型 PROM 至芯片组列表中的 DLPR410 部分................................................................................... 1  
Changed pin number of DCLK_AN From: D19 To: B22 ....................................................................................................... 9  
Changed pin number of DCLK_AP From: E19 To: B24 ........................................................................................................ 9  
Changed pin number of DCLK_BN From: M19 To: AB22 ..................................................................................................... 9  
Changed pin number of DCLK_BP From: N19 To: AB24 ..................................................................................................... 9  
已添加 将 / DLPR4101 增强型 PROM 添加至相关文档中的 DLPR410 部分 ....................................................................... 47  
Changes from Original (August 2012) to Revision A  
Page  
将器件状态从产品预览更改成了生产” ................................................................................................................................. 1  
4
版权 © 2012–2019, Texas Instruments Incorporated  
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
5 说明 (续)  
DLP7000 需要与芯片组的其他元件结合使用才能实现可靠功能和操作。一套专用的芯片组能够使开发人员更加轻  
松地访问 DMD 并使用高速而独立的微镜控制。  
DLP7000 是一款数控微光机电系统 (MEMS) 空间照明调制器 (SLM)。当与适当的光系统成对使用时,DLP7000 能  
够可用于调制进入光的振幅、方向和/或相位。  
电子方面,DLP7000 1 CMOS 内存单元的两维阵列组成,其组织结构为 1024 内存单元列乘以 768 内存单元  
行的栅格。CMOS 存储器阵列通过两条 16 位低压差分信令 (LVDS) 双倍数据速率 (DDR) 总线逐行进行寻址。寻址  
由一个串行控制总线处理。特定的 CMOS 存储器访问协议由 DLPC410 数字控制器处理。  
6 Pin Configuration and Functions  
FLP Package  
203-Pin CLGA  
Bottom View  
15  
9
29 27 25 23 21 19 17  
13 11  
7
5
3
1
30 26 24 22 20 18 16 14 12 10  
8
2
28  
6
4
A
C
E
B
D
F
G
J
H
K
M
P
T
L
N
R
U
W
AA  
V
Y
AB  
AC  
Copyright © 2012–2019, Texas Instruments Incorporated  
5
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
TRACE  
Pin Functions  
PIN(1)  
TYPE  
DATA  
INTERNAL  
TERM(3)  
SIGNAL  
CLOCK  
DESCRIPTION  
(I/O/P)  
RATE(2)  
NAME  
NO.  
DATA INPUT  
Differential  
Terminated -  
100 Ω  
D_AN(0)  
D_AN(1)  
D_AN(2)  
D_AN(3)  
D_AN(4)  
D_AN(5)  
D_AN(6)  
D_AN(7)  
D_AN(8)  
D_AN(9)  
D_AN(10)  
D_AN(11)  
D_AN(12)  
D_AN(13)  
D_AN(14)  
D_AN(15)  
D_AP(0)  
D_AP(1)  
B10  
A13  
D16  
C17  
B18  
A17  
A25  
D22  
C29  
D28  
E27  
F26  
G29  
H28  
J27  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
368.72  
424.61  
433.87  
391.39  
438.57  
391.13  
563.26  
411.62  
595.11  
543.07  
455.98  
359.5  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Input data bus A  
(2x LVDS)  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
542.67  
551.51  
528.04  
484.38  
366.99  
417.47  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
K26  
B12  
A11  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
(1) The following power supplies are required to operate the DMD: VCC, VCC1, VCC2. VSS must also be connected.  
(2) DDR = Double Data Rate. SDR = Single Data Rate. Refer to the LVDS Timing Requirements for specifications and relationships.  
(3) Refer to Electrical Characteristics for differential termination specification.  
6
Copyright © 2012–2019, Texas Instruments Incorporated  
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
Pin Functions (continued)  
PIN(1)  
TYPE  
(I/O/P)  
DATA  
INTERNAL  
TERM(3)  
SIGNAL  
CLOCK  
DESCRIPTION  
TRACE  
RATE(2)  
NAME  
NO.  
Differential  
Terminated -  
100 Ω  
D_AP(2)  
D14  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DCLK_A  
434.89  
Differential  
Terminated -  
100 Ω  
D_AP(3)  
D_AP(4)  
D_AP(5)  
D_AP(6)  
D_AP(7)  
D_AP(8)  
D_AP(9)  
D_AP(10)  
D_AP(11)  
D_AP(12)  
D_AP(13)  
D_AP(14)  
D_AP(15)  
D_BN(0)  
D_BN(1)  
D_BN(2)  
D_BN(3)  
D_BN(4)  
C15  
B16  
A19  
A23  
D20  
A29  
B28  
C27  
D26  
F30  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_A  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
394.67  
437.3  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
389.01  
562.92  
410.34  
594.61  
539.88  
456.78  
360.68  
543.97  
570.85  
527.18  
481.02  
368.72  
424.61  
433.87  
391.39  
438.57  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Input data bus A -  
continued (2x  
LVDS)  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
H30  
J29  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
K28  
AB10  
AC13  
Y16  
AA17  
AB18  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Input data bus B  
(2x LVDS)  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Copyright © 2012–2019, Texas Instruments Incorporated  
7
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN(1)  
TYPE  
DATA  
INTERNAL  
TERM(3)  
SIGNAL  
CLOCK  
DESCRIPTION  
TRACE  
(I/O/P)  
RATE(2)  
NAME  
NO.  
Differential  
Terminated -  
100 Ω  
D_BN(5)  
AC17  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DCLK_B  
391.13  
Differential  
Terminated -  
100 Ω  
D_BN(6)  
D_BN(7)  
D_BN(8)  
D_BN(9)  
D_BN(10)  
D_BN(11)  
D_BN(12)  
D_BN(13)  
D_BN(14)  
D_BN(15)  
D_BP(0)  
D_BP(1)  
D_BP(2)  
D_BP(3)  
D_BP(4)  
D_BP(5)  
D_BP(6)  
D_BP(7)  
AC25  
Y22  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
563.26  
411.62  
595.11  
543.07  
455.98  
360.94  
575.85  
519.37  
532.59  
441.14  
366.99  
417.47  
434.89  
394.67  
437.3  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
AA29  
Y28  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
W27  
V26  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
T30  
Differential  
Terminated -  
100 Ω  
R29  
Differential  
Terminated -  
100 Ω  
Input data bus B -  
continued (2x  
LVDS)  
R27  
Differential  
Terminated -  
100 Ω  
N27  
Differential  
Terminated -  
100 Ω  
AB12  
AC11  
Y14  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
AA15  
AB16  
AC19  
AC23  
Y20  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
389.01  
562.92  
410.34  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
8
Copyright © 2012–2019, Texas Instruments Incorporated  
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
Pin Functions (continued)  
PIN(1)  
TYPE  
(I/O/P)  
DATA  
INTERNAL  
TERM(3)  
SIGNAL  
CLOCK  
DESCRIPTION  
TRACE  
RATE(2)  
NAME  
NO.  
Differential  
Terminated -  
100 Ω  
D_BP(8)  
AC29  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
LVCMOS  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DCLK_B  
594.61  
Differential  
Terminated -  
100 Ω  
D_BP(9)  
AB28  
AA27  
Y26  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
DCLK_B  
539.88  
456.78  
360.68  
578.46  
509.74  
534.59  
440  
Differential  
Terminated -  
100 Ω  
D_BP(10)  
D_BP(11)  
D_BP(12)  
D_BP(13)  
D_BP(14)  
Differential  
Terminated -  
100 Ω  
Input data bus B -  
continued (2x  
LVDS)  
Differential  
Terminated -  
100 Ω  
U29  
T28  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
P28  
Differential  
Terminated -  
100 Ω  
D_BP(15)  
P26  
DATA CLOCK  
DCLK_AN  
Differential  
Terminated -  
100 Ω  
B22  
B24  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
477.1  
477.14  
477.07  
477.14  
DCLK for data  
bus A (2x LVDS)  
Differential  
Terminated -  
100 Ω  
DCLK_AP  
DCLK_BN  
DCLK_BP  
Differential  
Terminated -  
100 Ω  
AB22  
AB24  
DCLK for data  
bus B (2x LVDS)  
Differential  
Terminated -  
100 Ω  
DATA CONTROL INPUTS  
Differential  
Terminated -  
100 Ω  
SCTRL_AN  
SCTRL_AP  
SCTRL_BN  
SCTRL_BP  
C21  
C23  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
DDR  
DDR  
DDR  
DDR  
DCLK_A  
DCLK_A  
DCLK_B  
DCLK_B  
477.07  
477.14  
477.07  
477.14  
Serial control for  
data bus A (2x  
LVDS)  
Differential  
Terminated -  
100 Ω  
Differential  
Terminated -  
100 Ω  
AA21  
AA23  
Serial control for  
data bus B (2x  
LVDS)  
Differential  
Terminated -  
100 Ω  
SERIAL COMMUNICATION AND CONFIGURATION  
SCPCLK  
SCPDO  
SCPDI  
E3  
B2  
F4  
D4  
C3  
Input  
Output  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Pull-down  
Serial port clock  
Serial port output  
Serial port input  
Serial port enable  
Device Reset  
379.29  
480.91  
323.56  
326.99  
406.28  
SCPCLK  
SCPCLK  
SCPCLK  
Pull-down  
Pull-down  
Pull-down  
SCPENZ  
PWRDNZ  
Input  
Input  
Copyright © 2012–2019, Texas Instruments Incorporated  
9
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
TRACE  
Pin Functions (continued)  
PIN(1)  
TYPE  
DATA  
INTERNAL  
TERM(3)  
SIGNAL  
CLOCK  
DESCRIPTION  
(I/O/P)  
RATE(2)  
NAME  
NO.  
Data bandwidth  
mode select A  
MODE_A  
D8  
Input  
LVCMOS  
LVCMOS  
Pull-down  
Pull-down  
396.05  
208.86  
Data bandwidth  
mode select B  
MODE_B  
C11  
Input  
MICROMIRROR BIAS CLOCKING PULSE  
MBRST(0)  
MBRST(1)  
MBRST(2)  
MBRST(3)  
MBRST(4)  
MBRST(5)  
MBRST(6)  
MBRST(7)  
MBRST(8)  
MBRST(9)  
MBRST(10)  
MBRST(11)  
MBRST(12)  
MBRST(13)  
MBRST(14)  
MBRST(15)  
POWER  
P2  
AB4  
AA7  
N3  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
M4  
AB6  
AA5  
L3  
Micromirror Bias  
Clocking Pulse  
"MBRST" signals  
"clock"  
micromirrors into  
state of LVCMOS  
memory cell  
Y6  
K4  
associated with  
each mirror.  
L5  
AC5  
Y8  
J5  
K6  
AC7  
A7, A15,  
C1, E1, U1,  
W1, AB2,  
Power for  
LVCMOS Logic  
VCC  
Power  
Analog  
AC9, AC15  
A21, A27,  
D30, M30,  
Y30, AC21,  
AC27  
Power supply for  
LVDS Interface  
VCC1  
Power  
Power  
Analog  
Analog  
Power for High  
Voltage CMOS  
Logic  
G1, J1, L1,  
N1, R1  
VCC2  
10  
Copyright © 2012–2019, Texas Instruments Incorporated  
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
Pin Functions (continued)  
PIN(1)  
TYPE  
(I/O/P)  
DATA  
INTERNAL  
TERM(3)  
SIGNAL  
CLOCK  
DESCRIPTION  
TRACE  
RATE(2)  
NAME  
NO.  
A1, A3, A5,  
A9, B4, B8,  
B14, B20,  
B26, B30,  
C7, C13,  
C19, C25,  
D6, D12,  
D18, D24,  
E29, F2,  
F28, G3,  
G27, H2,  
H4, H26, J3,  
J25, K2,  
K30, L25,  
L27, L29,  
M2, M6,  
M26, M28,  
N5, N25,  
N29, P4,  
P30, R3,  
R5, R25,  
T2, T26,  
Common return  
for all power  
inputs  
VSS  
Power  
Analog  
U27, V28,  
V30, W5,  
W29, Y4,  
Y12, Y18,  
Y24, AA3,  
AA9, AA13,  
AA19,  
AA25, AB8,  
AB14,  
AB20,  
AB26, AB30  
RESERVED SIGNALS (NOT FOR USE IN SYSTEM)  
RESERVED  
_AA1  
Pins should be  
connected to VSS  
AA1  
B6  
Input  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Pull-down  
Pull-down  
Pull-down  
Pull-down  
RESERVED  
_B6  
RESERVED  
_T4  
T4  
RESERVED  
_U5  
U5  
AA11, AC3,  
C5, C9,  
D10, D2,  
NO_CONN  
ECT  
E5, G5, H6,  
P6, T6, U3,  
V2, V4, W3,  
Y10, Y2  
Do not connect  
Copyright © 2012–2019, Texas Instruments Incorporated  
11  
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
ELECTRICAL  
(2) (3)  
VCC  
Voltage applied to VCC  
Voltage applied to VCCI  
–0.5  
–0.5  
–0.5  
4
4
8
V
V
V
(2) (3)  
VCCI  
VCC2  
(2) (3) (4)  
Voltage applied to VVCC2  
Micromirror Clocking Pulse Waveform Voltage applied to MBRST[15:0]  
Input Pins (supplied by DLPA200)  
VMBRST  
–28  
28  
V
(4)  
|VCC – VCCI  
|
Supply voltage delta (absolute value)  
0.3  
V
V
Voltage applied to all other input pins(2)  
–0.5  
VCC + 0.3  
Maximum differential voltage, damage can occur to internal termination  
resistor if exceeded, see Figure 3  
|VID  
IOH  
IOL  
|
700  
–20  
15  
mV  
mA  
mA  
Current required from a high-level  
VOH = 2.4 V  
VOL = 0.4 V  
output  
Current required from a low-level  
output  
ENVIRONMENTAL  
Array temperature: operational(5)  
Array temperature: non-operational(5)  
10  
65  
80  
°C  
°C  
TARRAY  
–40  
Absolute temperature delta between the window test points (TP2, TP3)  
and the ceramic test point TP1(6)  
TDELTA  
RH  
10  
95  
°C  
%
Operating relative humidity (non-condensing)  
0
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages referenced to VSS (ground).  
(3) VOFFSET supply transients must fall within specified max voltages.  
(4) To prevent excess current, the supply voltage delta |VCC – VCCI| must be less than specified limit.  
(5) DMD Temperature is the worst-case of any test point shown in Figure 18, or the active array as calculated by the Micromirror Array  
Temperature Calculation.  
(6) As either measured, predicted, or both between any two points -- measured on the exterior of the package, or as predicted at any point  
inside the micromirror array cavity. Refer to Thermal Information and Micromirror Array Temperature Calculation.  
7.2 Storage Conditions  
Applicable for the DMD as a component or non-operating in a system  
MIN  
MAX  
80  
UNIT  
°C  
Storage temperature  
–40  
Tstg  
Storage humidity (non-condensing)  
95  
%
7.3 ESD Ratings  
VALUE  
UNIT  
All pins except MBRST[15:0]  
Pins MBRST[15:0]  
±2000  
±250  
Electrostatic  
V(ESD)  
Human-body model (HBM), per  
ANSI/ESDA/JEDEC JS-001(1)  
V
discharge  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible if necessary precautions are taken.  
12  
Copyright © 2012–2019, Texas Instruments Incorporated  
 
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
7.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
UNIT  
(2) (3)  
ELECTRICAL  
VCC  
Supply voltage for LVCMOS core logic  
Supply voltage for LVDS receivers  
3.0  
3.0  
3.3  
3.3  
7.5  
3.6  
3.6  
V
V
V
VCC1  
VCC2  
Mirror electrode and HVCMOS supply voltage  
7.25  
7.75  
Clocking Pulse Waveform Voltage applied to MBRST[29:0] Input Pins (supplied by  
DLPA200s)  
VMBRST  
-27  
26.5  
0.3  
V
V
(4)  
|VCCI–VCC|  
Supply voltage delta (absolute value)  
ENVIRONMENTAL  
RH  
Operating relative humidity (non-condensing)  
95  
%
ENVIRONMENTAL (5) For Illumination Source Between 420 nm and 700 nm  
(6)(7) (8)(9)  
(10)  
Array temperature, Long–term operational  
10  
0
25-45  
65  
TARRAY  
°C  
(6)(7) (11)  
Array temperature, Short–term operational  
10  
65  
TWINDOW  
|TDELTA  
ILLVIS  
Window Temperature test points TP2 and TP3, Long-term operational(9)  
10  
°C  
°C  
Absolute Temperature delta between the window test points (TP2, TP3) and the  
ceramic test point TP1.(12)  
|
10  
Thermally  
limited  
Illumination(13)  
W/cm2  
ENVIRONMENTAL (5) For Illumination Source Between 400 nm and 420 nm  
(6)(7) (8)(9)  
TARRAY  
Array temperature, Long–term operational  
20  
30  
30  
°C  
°C  
TWINDOW  
Window Temperature test points TP2 and TP3, Long-term operational(9)  
Absolute Temperature delta between the window test points (TP2, TP3) and the  
ceramic test point TP1.(12)  
|TDELTA  
|
10  
°C  
W/cm2  
W
11  
ILL  
Illumination(13)  
16.2  
ENVIRONMENTAL (5) For Illumination Source <400 nm and >700 nm  
(6)(7) (8)(9)  
(10)  
Array temperature, Long–term operational  
20  
0
40  
TARRAY  
°C  
(6)(7) (11)  
Array temperature, Short–term operational  
20  
65  
10  
TWINDOW  
ILL  
Window Temperature test points TP2 and TP3, Long-term operational(9)  
Illumination(13)  
10  
°C  
mW/cm2  
(1) The functional performance of the device specified in this data sheet is achieved when operating the device within the limits defined by  
the Recommended Operating Conditions. No level of performance is implied when operating the device above or below the  
Recommended Operating Conditions limits.  
(2) Voltages VCC, VCC1, and VCC2 are required for proper DMD operation. VSS must also be connected.  
(3) All voltages are referenced to common ground VSS  
.
(4) Exceeding the recommended allowable absolute voltage difference between VCC and VCC1 may result in excess current draw. The  
difference between VCC and VCC1, |VCC – VCC1|, should be less than the specified limit.  
(5) Optimal, long-term performance and optical efficiency of the Digital Micromirror Device (DMD) can be affected by various application  
parameters, including illumination spectrum, illumination power density, micromirror landed duty-cycle, ambient temperature (storage  
and operating), DMD temperature, ambient humidity (storage and operating), and power on or off duty cycle. TI recommends that  
application-specific effects be considered as early as possible in the design cycle.  
(6) In some applications, the total DMD heat load can be dominated by the amount of incident light energy absorbed. See Micromirror Array  
Temperature Calculation for further details.  
(7) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point 1  
(TP1) shown in Figure 18 and the package thermal resistance in Thermal Information using Micromirror Array Temperature Calculation.  
(8) Simultaneous exposure of the DMD to the maximum Recommended Operating Conditions for temperature and UV illumination will  
reduce device lifetime.  
(9) Long-term is defined as the usable life of the device.  
(10) Per Figure 1, the maximum operational case temperature should be derated based on the micromirror landed duty cycle that the DMD  
experiences in the end application. Refer to Micromirror Landed-On/Landed-Off Duty Cycle for a definition of micromirror landed duty  
cycle.  
(11) Array temperatures beyond those specified as long-term are recommended for short-term conditions only (power-up). Short-term is  
defined as cumulative time over the usable life of the device and is less than 500 hours.  
(12) The temperature delta is the highest difference between the ceramic test point (TP1) and window test points (TP2) and (TP3) in  
Figure 18.  
(13) Total integrated illumination power density, above or below the indicated wavelength threshold or in the indicated wavelength range.  
Copyright © 2012–2019, Texas Instruments Incorporated  
13  
 
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
Figure 1. Max Recommended DMD Temperature – Derating Curve  
7.5 Thermal Information  
DLP7000  
FLP (Package)  
203 PINS  
0.90  
THERMAL METRIC  
Thermal resistance, active area to TP1(1)  
UNIT  
°C/W  
(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package where it can be removed by an appropriate  
heat sink. The heat sink and cooling system must be capable of maintaining the package within the temperature range specified in the  
Recommended Operating Conditions. The total heat load on the DMD is largely driven by the incident light absorbed by the active area;  
although other contributions include light energy absorbed by the window aperture and electrical power dissipation of the array. Optical  
systems should be designed to minimize the light energy falling outside the window clear aperture since any additional thermal load in  
this area can significantly degrade the reliability of the device.  
14  
Copyright © 2012–2019, Texas Instruments Incorporated  
 
 
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
7.6 Electrical Characteristics  
over the range of recommended supply voltage and recommended case operating temperature (unless otherwise noted).  
PARAMETERS  
High-level output voltage(1)  
See Figure 11  
TEST CONDITIONS  
VCC = 3.0 V, IOH = –20 mA  
MIN  
NOM  
MAX  
UNIT  
,
VOH  
VOL  
2.4  
V
Low-level output voltage(1)  
See Figure 11  
,
VCC = 3.6 V, IOH = 15 mA  
0.4  
V
V
Clocking Pulse Waveform applied to  
VMBRST MBRST[29:0] Input Pins (supplied  
by DLPA200)  
–27  
26.5  
IOZ  
IOH  
IOL  
High impedance output current(1)  
VCC = 3.6 V  
10  
–20  
µA  
VOH = 2.4 V, VCC 3 V  
VOH = 1.7 V, VCC 2.25 V  
VOL = 0.4 V, VCC 3 V  
VOL = 0.4 V, VCC 2.25 V  
High-level output current(1)  
mA  
–15  
15  
Low-level output current(1)  
mA  
14  
VIH  
VIL  
IIL  
High-level input voltage(1)  
Low-level input voltage(1)  
Low-level input current(1)  
High-level input current(1)  
Current into VCC pin  
1.7  
VCC + .3  
0.7  
V
V
–0.3  
VCC = 3.6 V, VI = 0 V  
VCC = 3.6 V, VI = VCC  
VCC = 3.6 V  
–60  
µA  
µA  
mA  
mA  
mA  
Ω
IIH  
200  
ICC  
ICCI  
ICC2  
ZIN  
1475  
450  
Current into VCCI pin(2)  
VCCI = 3.6 V  
Current into VCC2 pin  
VCC2 = 8.75 V  
25  
Internal Differential Impedance  
95  
90  
105  
Line Differential Impedance (PWB,  
Trace)  
ZLINE  
100  
110  
Ω
CI  
Input capacitance(1)  
Output capacitance(1)  
f = 1 MHz  
f = 1 MHz  
10  
10  
pF  
pF  
CO  
CIM  
Input capacitance for MBRST[29:0]  
pins  
f = 1 MHz  
220  
270  
pF  
(1) Applies to LVCMOS pins only.  
(2) Exceeding the maximum allowable absolute voltage difference between VCC and VCCI may result in excess current draw. See the  
Absolute Maximum Ratings for details.  
Copyright © 2012–2019, Texas Instruments Incorporated  
15  
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
7.7 LVDS Timing Requirements  
over operating free-air temperature range (unless otherwise noted). See Figure 2  
MIN  
200  
2.5  
NOM  
MAX  
UNIT  
MHz  
ns  
fDCLK_*  
DCLK_* clock frequency {where * = [A, or B]}  
Clock Cycle - DLCK_*  
400  
tc  
tw  
Pulse Width - DLCK_*  
1.25  
ns  
ts  
Setup Time - D_*[15:0] and SCTRL_* before DCLK_*  
Hold Time, D_*[15:0] and SCTRL_* after DCLK_*  
Skew between bus A and B  
0.35  
0.35  
ns  
th  
ns  
tskew  
–1.25  
1.25  
ns  
7.8 LVDS Waveform Requirements  
over operating free-air temperature range (unless otherwise noted). See Figure 3  
MIN  
NOM  
400  
MAX  
UNIT  
mV  
mV  
mV  
ps  
|VID  
|
Input Differential Voltage (absolute difference)  
Common Mode Voltage  
100  
600  
VCM  
1200  
VLVDS  
LVDS Voltage  
0
100  
100  
2000  
400  
tr  
tr  
Rise Time (20% to 80%)  
Fall Time (80% to 20%)  
400  
ps  
7.9 Serial Control Bus Timing Requirements  
over operating free-air temperature range (unless otherwise noted). See Figure 4 and Figure 5  
MIN  
NOM  
MAX  
500  
300  
960  
UNIT  
kHz  
ns  
fSCP_CLK  
SCP Clock Frequency  
50  
tSCP_SKEW  
tSCP_DELAY  
Time between valid SCP_DI and rising edge of SCP_CLK  
Time between valid SCP_DO and rising edge of SCP_CLK  
–300  
ns  
Time between falling edge of SCP_EN and the first rising edge of  
SCP_CLK  
tSCP_EN  
30  
ns  
t_SCP  
tf_SCP  
Rise time for SCP signals  
Fall time for SCP signals  
200  
200  
ns  
ns  
16  
Copyright © 2012–2019, Texas Instruments Incorporated  
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
DCLK_AN  
DCLK_AP  
t
t
h
s
t
c
t
t
s
h
SCTRL_AN  
SCTRL_AP  
D_AN(15:0)  
D_AP(15:0)  
DCLK_BN  
DCLK_BP  
t
t
h
s
t
c
t
t
s
h
SCTRL_BN  
SCTRL_BP  
D_BN(15:0)  
D_BP(15:0)  
Figure 2. LVDS Timing Waveforms  
VLVDS (v)  
VLVDSmax = VCM + |½VID|  
VLVDSmax  
Tf (20% - 80%)  
VLVDS = VCM +/- | 1/2 VID  
|
VCM  
VID  
Tr (20% - 80%)  
VLVDS min  
VLVDS min = 0  
Time  
Figure 3. LVDS Waveform Requirements  
Copyright © 2012–2019, Texas Instruments Incorporated  
17  
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
t
f
= 1 / t  
clock c  
c
SCPCLK  
50%  
50%  
tSCP_SKEW  
SCPDI  
50%  
tSCP_DELAY  
SCPD0  
50%  
Figure 4. Serial Communications Bus Timing Parameters  
tf_SCP  
tr_SCP  
Input Controller VCC  
SCP_CLK,  
SCP_DI,  
SCP_EN  
VCC/2  
0 v  
Figure 5. Serial Communications Bus Waveform Requirements  
18  
Copyright © 2012–2019, Texas Instruments Incorporated  
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
7.10 Systems Mounting Interface Loads  
MIN  
NOM  
MAX UNIT  
Maximum system mounting interface  
load to be applied to the:  
Thermal Interface area  
Electrical Interface area  
Datum “A” Interface area(1)  
(See Figure 6)  
111  
423  
400  
N
N
N
(1) Combined loads of the thermal and electrical interface areas in excess of Datum “A” load shall be evenly distributed outside the Datum  
“A” area (425 + 111 – Datum “A"), or the combined loads of the thermal and electrical areas reduced.  
Thermal Interface Area  
Electrical Interface Area  
(all area except thermal area)  
Other Areas  
Datum 'A' Areas  
Figure 6. System Interface Loads  
Copyright © 2012–2019, Texas Instruments Incorporated  
19  
 
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
7.11 Micromirror Array Physical Characteristics  
PARAMETER  
VALUE  
1024  
768  
UNIT  
micromirrors  
micromirrors  
µm  
M
N
P
Number of active columns  
Number of active rows  
Micromirror (pixel) pitch  
See Figure 7  
13.68  
14.008  
10.506  
6
Micromirror active array width  
Micromirror active array height  
Micromirror active border  
M × P  
mm  
N × P  
mm  
Pond of micromirror (POM)(1)  
micromirrors/side  
(1) The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM.  
These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical  
bias to tilt toward OFF.  
0
1
2
3
DMD Active Array  
N x P  
M x N Micromirrors  
N œ 4  
N œ 3  
N œ 2  
N œ 1  
M x P  
P
Border micromirrors omitted for clarity.  
Details omitted for clarity.  
P
Not to scale.  
P
P
Refer to Micromirror Array Physical Characteristics table for M, N, and P specifications.  
Figure 7. Micromirror Array Physical Characteristics  
20  
Copyright © 2012–2019, Texas Instruments Incorporated  
 
 
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
7.12 Micromirror Array Optical Characteristics  
TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment  
optical performance involves making trade-offs between numerous component and system design parameters.  
PARAMETER  
CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
DMD “parked” state(1) (2) (3), see  
Figure 13  
DMD “landed” state(1) (4) (5)  
see Figure 13  
0
a
Micromirror tilt angle  
degrees  
12  
β
Micromirror tilt angle tolerance(1) (4) (6) (7) (8)  
Micromirror crossover time(9)  
Micromirror switching time(10)  
See Figure 13  
–1  
43  
1
degrees  
µs  
4
13  
22  
µs  
Array switching time at 400 MHz with global  
reset(11)  
µs  
Non-adjacent micromirrors  
adjacent micromirrors  
10  
0
Non-operating micromirrors(12)  
micromirrors  
degrees  
Orientation of the micromirror axis-of-  
rotation(13)  
See Figure 12  
44  
45  
46  
400 nm to 700 nm, with all  
micromirrors in the ON state  
Micromirror array optical efficiency(14) (15)  
68%  
(1) Measured relative to the plane formed by the overall micromirror array.  
(2) “Parking” the micromirror array returns all of the micromirrors to an essentially flat (0˚) state (as measured relative to the plane formed  
by the overall micromirror array).  
(3) When the micromirror array is “parked”, the tilt angle of each individual micromirror is uncontrolled.  
(4) Additional variation exists between the micromirror array and the package datums, as shown in the 机械、封装和可订购信息.  
(5) When the micromirror array is “landed”, the tilt angle of each individual micromirror is dictated by the binary contents of the CMOS  
memory cell associated with each individual micromirror. A binary value of “1” will result in a micromirror “landing” in an nominal angular  
position of “+12°”. A binary value of 0 results in a micromirror “landing” in an nominal angular position of “–12°”.  
(6) Represents the “landed” tilt angle variation relative to the Nominal “landed” tilt angle.  
(7) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different  
devices.  
(8) For some applications, it is critical to account for the micromirror tilt angle variation in the overall System Optical Design. With some  
System Optical Designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field  
reflected from the micromirror array. With some System Optical Designs, the micromirror tilt angle variation between devices may result  
in colorimetry variations and/or system contrast variations.  
(9) Micromirror crossover time is primarily a function of the natural response time of the micromirrors and is the time it takes for the  
micromirror to crossover to the other state, but does not include mechanical settling time.  
(10) Micromirror switching time is the time before a micromirror may be addressed again. Crossover time plus mechanical settling time.  
(11) Array switching is controlled and coordinated by the DLPC410 (DLPS024) and DLPA200 (DLPS015). Nominal Switching time depends  
on the system implementation and represents the time for the entire micromirror array to be refreshed (array loaded plus reset and  
mirror settling time).  
(12) Non-operating micromirror is defined as a micromirror that is unable to transition nominally from the –12° position to +12° or vice versa.  
(13) Measured relative to the package datums “B” and “C”, shown in 机械、封装和可订购信息.  
(14) The minimum or maximum DMD optical efficiency observed depends on numerous application-specific design variables, such as:  
Illumination wavelength, bandwidth/line-width, degree of coherence  
Illumination angle, plus angle tolerance  
Illumination and projection aperture size, and location in the system optical path  
IIlumination overfill of the DMD micromirror array  
Aberrations present in the illumination source and/or path  
Aberrations present in the projection path  
The specified nominal DMD optical efficiency is based on the following use conditions:  
Visible illumination (400 nm – 700 nm)  
Input illumination optical axis oriented at 24° relative to the window normal  
Projection optical axis oriented at 0° relative to the window normal  
f/3.0 illumination aperture  
f/2.4 projection aperture  
Based on these use conditions, the nominal DMD optical efficiency results from the following four components:  
Copyright © 2012–2019, Texas Instruments Incorporated  
21  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
Micromirror array fill factor: nominally 92%  
Micromirror array diffraction efficiency: nominally 86%  
Micromirror surface reflectivity: nominally 88%  
Window transmission: nominally 97% (single pass, through two surface transitions)  
(15) Does not account for the effect of micromirror switching duty cycle, which is application dependent. Micromirror switching duty cycle  
represents the percentage of time that the micromirror is actually reflecting light from the optical illumination path to the optical projection  
path. This duty cycle depends on the illumination aperture size, the projection aperture size, and the micromirror array update rate.  
7.13 Window Characteristics  
PARAMETER(1)  
Window material designation  
Window refractive index  
Window flatness(2)  
CONDITIONS  
MIN  
TYP  
MAX UNIT  
Corning 7056  
at wavelength 589 nm  
Per 25 mm  
1.487  
4
fringes  
(3)  
Window aperture  
See  
Illumination overfill  
Refer to Illumination Overfill  
At wavelength 405 nm. Applies to 0° and 24° AOI only.  
95%  
97%  
Minimum within the wavelength range 420 nm to 680 nm.  
Applies to all angles 0° to 30° AOI.  
Window transmittance, single–pass  
(4)  
through both surfaces and glass  
Average over the wavelength range 420 nm to 680 nm.  
Applies to all angles 30° to 45° AOI.  
97%  
(1) See Optical Interface and System Image Quality Considerations for more information.  
(2) At a wavelength of 632.8 nm.  
(3) For details regarding the size and location of the window aperture, see the package mechanical characteristics listed in the Mechanical  
ICD in the 机械、封装和可订购信息.  
(4) See the TI application report DLPA031, Wavelength Transmittance Considerations for DLP DMD Window.  
7.14 Chipset Component Usage Specification  
The DLP7000 is a component of one or more DLP chipsets. Reliable function and operation of the DLP7000  
requires that it be used in conjunction with the other components of the applicable DLP chipset, including those  
components that contain or implement TI DMD control technology. TI DMD control technology is the TI  
technology and devices for operating or controlling a DLP DMD.  
22  
Copyright © 2012–2019, Texas Instruments Incorporated  
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
8 Detailed Description  
8.1 Overview  
Optically, the DLP7000 consists of 786,432 highly reflective, digitally switchable, micrometer-sized mirrors  
(“micromirrors”), organized in a two-dimensional array of 1024 micromirror columns by 768 micromirror rows  
(Figure 12). Each aluminum micromirror is approximately 13.68 microns in size (see the “Micromirror Pitch” in  
Figure 12), and is switchable between two discrete angular positions: –12° and +12°. The angular positions are  
measured relative to a 0° “flat state”, which is parallel to the array plane (see Figure 13). The tilt direction is  
perpendicular to the hinge-axis which is positioned diagonally relative to the overall array. The “On State” landed  
position is directed towards “Row 0, Column 0” (upper left) corner of the device package (see the “Micromirror  
Hinge-Axis Orientation” in Figure 12). In the field of visual displays, the 1024 by 768 “pixel” resolution is referred  
to as "XGA".  
Each individual micromirror is positioned over a corresponding CMOS memory cell. The angular position of a  
specific micromirror is determined by the binary state (logic 0 or 1) of the corresponding CMOS memory cell  
contents, after the micromirror "clocking pulse" is applied. The angular position (–12° or +12°) of the individual  
micromirrors changes synchronously with a micromirror “clocking pulse”, rather than being synchronous with the  
CMOS memory cell data update. Therefore, writing a logic 1 into a memory cell followed by a micromirror  
"clocking pulse" will result in the corresponding micromirror switching to a +12° position. Writing a logic 0 into a  
memory cell followed by a micromirror "clocking pulse" will result in the corresponding micromirror switching to a  
–12° position.  
Updating the angular position of the micromirror array consists of two steps. First, updating the contents of the  
CMOS memory. Second, application of a Micromirror Clocking Pulse to all or a portion of the micromirror array  
(depending upon the configuration of the system). Micromirror Clocking Pulses are generated externally by a  
DLPA200, with application of the pulses being coordinated by the DLPC410 controller.  
Around the perimeter of the 1024 by 768 array of micromirrors is a uniform band of “border” micromirrors. The  
border micromirrors are not user-addressable. The border micromirrors land in the –12° position once power has  
been applied to the device. There are 10 border micromirrors on each side of the 1024 by 768 active array.  
Figure 8 shows a DLPC410 and DLP7000 Chipset Block Diagram. The DLPC410 and DLPA200 control and  
coordinate the data loading and micromirror switching for reliable DLP7000 operation. The DLPR410 is the  
programmed PROM required to properly configure the DLPC410 controller. For more information on the chipset  
components, see Application and Implementation. For a typical system application using the DLPC410 chipset  
including the DLP7000, see Figure 19.  
8.2 Functional Block Diagram  
Figure 8 is a simplified system block diagram showing the use of the following components:  
DLPC410  
DLPR410  
– Xilinx [XC5VLX30] FPGA configured to provide high-speed DMD data and  
control, and DLPA200 timing and control  
– [XCF16PFSG48C] serial flash PROM contains startup configuration information  
(EEPROM)  
DLPA200  
DLP7000  
– DMD micromirror driver for the DLP7000 DMD  
– Spatial Light Modulator (DMD)  
Copyright © 2012–2019, Texas Instruments Incorporated  
23  
 
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
Figure 8. DLPC410 and DLP7000 Chipset Block Diagram  
24  
Copyright © 2012–2019, Texas Instruments Incorporated  
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
8.3 Feature Description  
8.3.1 DLPC410 Chipset DMD Features  
Table 1. DLP7000 Overview  
DMD  
ARRAY  
PATTERNS/s  
DATA RATE (Gbps)  
25.6  
MIRROR PITCH  
DLP7000 - 0.7”XGA  
1024 × 768  
32552  
13.68 μm  
8.3.1.1 DLPC410 - Digital Controller for DLP Discovery 4100 Chipset  
The DLP7000 chipset includes the DLPC410 controller which provides a high-speed LVDS data and control  
interface for DMD control. This interface is also connected to a second FPGA used to drive applications (not  
included in the chipset). The DLPC410 generates DMD and DLPA200 initialization and control signals in  
response to the inputs on the control interface.  
For more information, see the DLPC410 data sheet DLPS024.  
8.3.1.2 DLPA200 - DMD Micromirror Driver  
DLPA200 micromirror driver provides the micromirror clocking pulse driver functions for the DMD. One DLPA200  
is required for DLP7000.  
For more information on the DLPA200, see the DLPA200 data sheet DLPS015.  
8.3.1.3 DLPR410 - PROM for DLP Discovery 4100 Chipset  
The DLPC410 is configured at startup from the serial flash PROM. The contents of this PROM can not be  
altered. For more information, see the DLPR410 data sheet (DLPS027) and the DLPC410 data sheet  
(DLPS024).  
8.3.1.4 DLP7000 - DLP 0.7 XGA 2xLVDS Type-A DMD  
8.3.1.4.1 DLP7000 XGA Chip Set Interfaces  
This section will describe the interface between the different components included in the chipset. For more  
information on component interfacing, see Application and Implementation.  
8.3.1.4.1.1 DLPC410 Interface Description  
8.3.1.4.1.1.1 DLPC410 IO  
Table 2 describes the inputs and outputs of the DLPC410 to the user. For more details on these signals, see the  
DLPC410 data sheet (DLPS024).  
Table 2. Input/Output Description  
PIN NAME  
DESCRIPTION  
I/O  
ARST  
Asynchronous active low reset  
Reference clock, 50 MHz  
I
I
CLKIN_R  
DIN_[A,B,C,D](15:0)  
DCLKIN[A,B,C,D]  
DVALID[A,B,C,D]  
ROWMD(1:0)  
ROWAD(10:0)  
BLK_AD(3:0)  
BLK_MD(1:0)  
PWR_FLOAT  
DMD_TYPE(3:0)  
RST_ACTIVE  
INIT_ACTIVE  
LVDS DDR input for data bus A,B,C,D (15:0)  
LVDS inputs for data clock (200 - 400 MHz) on bus A, B, C, and D  
LVDS input used to start write sequence for bus A, B, C, and D  
DMD row address and row counter control  
DMD row address pointer  
I
I
I
I
I
DMD mirror block address pointer  
I
DMD mirror block reset and clear command modes  
Used to float DMD mirrors before complete loss of power  
DMD type in use  
I
I
O
O
O
Indicates DMD mirror reset in progress  
Initialization in progress.  
Copyright © 2012–2019, Texas Instruments Incorporated  
25  
 
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
Table 2. Input/Output Description (continued)  
PIN NAME  
VLED0  
DESCRIPTION  
I/O  
O
System “heartbeat” signal  
VLED1  
Denotes initialization complete  
O
8.3.1.4.1.1.2 Initialization  
The INIT_ACTIVE (Table 2) signal indicates that the DLP7000, DLPA200, and DLPC410 are in an initialization  
state after power is applied. During this initialization period, the DLPC410 is initializing the DLP7000 and  
DLPA200 by setting all internal registers to their correct states. When this signal goes low, the system has  
completed initialization. System initialization takes approximately 220 ms to complete. Data and command write  
cycles should not be asserted during the initialization.  
During initialization the user must send a training pattern to the DLPC410 on all data and DVALID lines to  
correctly align the data inputs to the data clock. For more information about the interface training pattern, see the  
DLPC410 data sheet (DLPS024).  
8.3.1.4.1.1.3 DMD Device Detection  
The DLPC410 automatically detects the DMD type and device ID. DMD_TYPE (Table 2) is an output from the  
DLPC410 that contains the DMD information. Only DMDs sold with the chipset or kit are recognized by the  
automatic detection function. All other DMDs do not operate with the DLPC410.  
8.3.1.4.1.1.4 Power Down  
To ensure long term reliability of the DLP7000, a shutdown procedure must be executed. Prior to power removal,  
assert the PWR_FLOAT (Table 2) signal and allow approximately 300 µs for the procedure to complete. This  
procedure assures the mirrors are in a flat state.  
8.3.1.4.2 DLPC410 to DMD Interface  
8.3.1.4.2.1 DLPC410 to DMD IO Description  
Table 3 lists the available controls and status pin names and their corresponding signal type, along with a brief  
functional description.  
Table 3. DLPC410 to DMD I/O Pin Descriptions  
PIN NAME  
DESCRIPTION  
I/O  
O
DDC_DOUT_[A,B,C,D](15:0)  
DDC_DCLKOUT_[A,B,C,D]  
DDC_SCTRL_[A,B,C,D]  
LVDS DDR output to DMD data bus A,B,C,D (15:0)  
LVDS output to DMD data clock A,B,C,D  
LVDS DDR output to DMD data control A,B,C,D  
O
O
26  
Copyright © 2012–2019, Texas Instruments Incorporated  
 
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
8.3.1.4.2.2 Data Flow  
Figure 9 shows the data traffic through the DLPC410. Special considerations are necessary when laying out the  
DLPC410 to allow best signal flow.  
LVDS BUS D  
DIN_D(15:0)  
DCLK_D  
LVDS BUS C  
DIN_C(15:0)  
DCLK_C  
DVALID_D  
DVALID_C  
DLPC410  
LVDS BUS A  
DOUT_A(15:0)  
DCLKOUT_A  
SCTRL_A  
LVDS BUS D  
DOUT_D(15:0)  
DCLKOUT_D  
SCTRL_D  
Figure 9. DLPC410 Data Flow  
Two LVDS buses transfer the data from the user to the DLPC410. Each bus has its data clock that is input edge  
aligned with the data (DCLK). Each bus also has its own validation signal that qualifies the data input to the  
DLPC410 (DVALID).  
Output LVDS buses transfer data from the DLPC410 to the DLP7000. Output buses LVDS A and LVDS B are  
used as highlighted in Figure 9.  
8.3.1.4.3 DLPC410 to DLPA200 Interface  
8.3.1.4.3.1 DLPA200 Operation  
The DLPA200 DMD Micromirror Driver is a mixed-signal Application Specific Integrated Circuit (ASIC) that  
combines the necessary high-voltage power supply generation and Micromirror Clocking Pulse functions for a  
family of DMDs. The DLPA200 is programmable and controllable to meet all current and anticipated DMD  
requirements.  
The DLPA200 operates from a 12-V power supply input. For more detailed information on the DLPA200, see the  
DLPA200 data sheet.  
8.3.1.4.3.2 DLPC410 to DLPA200 IO Description  
The Serial Communications Port (SCP) is a full duplex, synchronous, character-oriented (byte) port that allows  
exchange of commands from the DLPC410 to the DLPA200. One SCP bus is used for the DLP7000.  
Copyright © 2012–2019, Texas Instruments Incorporated  
27  
 
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
DLPA200  
SCP bus  
SCP bus  
DLPC410  
DLPA200  
(Only with 1080p DMD)  
Figure 10. Serial Port System Configuration  
There are five signal lines associated with the SCP bus: SCPEN, SCPCK, SCPDI, SCPDO, and IRQ.  
Table 4 lists the available controls and status pin names and their corresponding signal type, along with a brief  
functional description.  
Table 4. DLPC410 to DLPA200 I/O Pin Descriptions  
PIN NAME  
DESCRIPTION  
I/O  
O
O
O
O
O
O
O
O
O
O
A_SCPEN  
Active low chip select for DLPA200 serial bus  
DLPA200 control signal strobe  
DLPA200 mode control  
A_STROBE  
A_MODE(1:0)  
A_SEL(1:0)  
A_ADDR(3:0)  
B_SCPEN  
DLPA200 select control  
DLPA200 address control  
Active low chip select for DLPA200 serial bus (2)  
DLPA200 control signal strobe (2)  
DLPA200 mode control  
B_STROBE  
B_MODE(1:0)  
B_SEL(1:0)  
B_ADDR(3:0)  
DLPA200 select control  
DLPA200 address control  
The DLPA200 provides a variety of output options to the DMD by selecting logic control inputs: MODE[1:0],  
SEL[1:0] and reset group address A[3:0] (Table 4). The MODE[1:0] input determines whether a single output, two  
outputs, four outputs, or all outputs, will be selected. Output levels (VBIAS, VOFFSET, or VRESET) are selected  
by SEL[1:0] pins. Selected outputs are tri-stated on the rising edge of the STROBE signal and latched to the  
selected voltage level after a break-before-make delay. Outputs will remain latched at the last Micromirror  
Clocking Pulse waveform level until the next Micromirror Clocking Pulse waveform cycle.  
8.3.1.4.4 DLPA200 to DLP7000 Interface  
8.3.1.4.4.1 DLPA200 to DLP7000 Interface Overview  
The DLPA200 generates three voltages: VBIAS, VRESET, and VOFFSET that are supplied to the DMD MBRST  
lines in various sequences through the Micromirror Clocking Pulse driver function. VOFFSET is also supplied  
directly to the DMD as DMDVCC2. A fourth DMD power supply, DMDVCC, is supplied directly to the DMD by  
regulators.  
The function of the Micromirror Clocking Pulse driver is to switch selected outputs in patterns between the three  
voltage levels (VBIAS, VRESET and VOFFSET) to generate one of several Micromirror Clocking Pulse  
waveforms. The order of these Micromirror Clocking Pulse waveform events is controlled externally by the logic  
control inputs and timed by the STROBE signal. DLPC410 automatically detects the DMD type and then uses the  
DMD type to determine the appropriate Micromirror Clocking Pulse waveform.  
28  
Copyright © 2012–2019, Texas Instruments Incorporated  
 
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
A direct Micromirror Clocking Pulse operation causes a mirror to transition directly from one latched state to the  
next. The address must already be set up on the mirror electrodes when the Micromirror Clocking Pulse is  
initiated. Where the desired mirror display period does not allow for time to set up the address, a Micromirror  
Clocking Pulse with release can be performed. This operation allows the mirror to go to a relaxed state  
regardless of the address while a new address is set up, after which the mirror can be driven to a new latched  
state.  
A mirror in the relaxed state typically reflects light into a system collection aperture and can be thought of as “off”  
although the light is likely to be more than a mirror latched in the “off” state. System designers should carefully  
evaluate the impact of relaxed mirror conditions on optical performance.  
8.3.1.5 Measurement Conditions  
The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its  
transmission line effects must be taken into account. Figure 11 shows an equivalent test load circuit for the  
output under test. The load capacitance value stated is only for characterization and measurement of AC timing  
signals. This load capacitance value does not indicate the maximum load the device is capable of driving. All rise  
and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOL MAX and VOH  
MIN for output clocks.  
LOAD CIRCUIT  
R
L
From Output  
Under Test  
Tester  
Channel  
C
C
= 50 pF  
L
L
= 5 pF for Disable Time  
Figure 11. Test Load Circuit for AC Timing Measurements  
Copyright © 2012–2019, Texas Instruments Incorporated  
29  
 
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
Incident  
Illumination  
Package Pin  
A1 Corner  
Details Omitted For Clarity.  
Not To Scale.  
DMD  
Micromirror  
Array  
Active Micromirror Array  
(Border micromirrors eliminated for clarity)  
0
Nœ1  
Micromirror Pitch  
Micromirror Hinge-Axis Orientation  
P (um)  
—On-State“  
Tilt Direction  
45°  
—Off-State“  
Tilt Direction  
P (um)  
Figure 12. DMD Micromirror Array, Pitch, and Hinge-Axis Orientation  
30  
Copyright © 2012–2019, Texas Instruments Incorporated  
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
Package Pin  
A1 Corner  
DLP7000  
Two Two  
“On-State” “Off-State”  
Micromirrors Micromirrors  
For Reference  
Flat-State  
( “parked” )  
Micromirror Position  
a
b
-a  
b
Silicon Substrate  
Silicon Substrate  
“On-State”  
Micromirror  
“Off-State”  
Micromirror  
Figure 13. Micromirror Landed Positions and Light Paths  
Copyright © 2012–2019, Texas Instruments Incorporated  
31  
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 DMD Operation  
The DLP7000 has only one functional mode, it is set to be highly optimized for low latency and high speed in  
generating mirror clocking pulses and timings.  
When operated with the DLPC410 controller in conjunction with the DLPA200 driver, the DLP7000 can be  
operated in several display modes. The DLP7000 is loaded as 16 blocks of 48 rows each. Figure 14, Figure 15,  
Figure 16, and Figure 17 show how the image is loaded by the different Micromirror Clocking Pulse modes.  
There are four Micromirror Clocking Pulse modes that determine which blocks are "reset" when a Micromirror  
Clocking Pulse command is issued:  
Single block mode  
Dual block mode  
Quad block mode  
Global mode  
8.4.1.1 Single Block Mode  
In single block mode, a single block can be loaded and reset in any order. After a block is loaded, it can be reset  
to transfer the information to the mechanical state of the mirrors.  
Data Loaded  
Reset  
Figure 14. Single Block Mode Diagram  
8.4.1.2 Dual Block Mode  
In dual block mode, reset blocks are paired together as follows (0-1), (2-3), (4-5) . . . (14-15). These pairs can be  
reset in any order. After data is loaded a pair can be reset to transfer the information to the mechanical state of  
the mirrors.  
Data Loaded  
Reset  
Figure 15. Dual Block Mode Diagram  
32  
Copyright © 2012–2019, Texas Instruments Incorporated  
 
 
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
Device Functional Modes (continued)  
8.4.1.3 Quad Block Mode  
In quad block mode, reset blocks are grouped together in fours as follows (0-3), (4-7), (8-11) and (12-15). Each  
quad group can be randomly addressed and reset. After a quad group is loaded, it can be reset to transfer the  
information to the mechanical state of the mirrors.  
Data Loaded  
Reset  
Figure 16. Quad Block Mode Diagram  
8.4.1.4 Global Mode  
In global mode, all reset blocks are grouped into a single group and reset together. The entire DMD must be  
loaded with the desired data before issuing a Global Reset to transfer the information to the mechanical state of  
the mirrors.  
Reset  
Data Loaded  
Figure 17. Global Mode Diagram  
Copyright © 2012–2019, Texas Instruments Incorporated  
33  
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
8.5 Optical Interface and System Image Quality Considerations  
NOTE  
TI assumes no responsibility for image quality artifacts or DMD failures caused by optical  
system operating conditions exceeding limits described previously.  
8.5.1 Optical Interface and System Image Quality  
TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment  
optical performance involves making trade-offs between numerous component and system design parameters.  
Optimizing system optical performance and image quality strongly relate to optical system design parameter  
trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical  
performance is contingent on compliance to the optical system operating conditions described in the following  
sections.  
8.5.2 Numerical Aperture and Stray Light Control  
The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area  
should be the same. This angle should not exceed the nominal device mirror tilt angle unless appropriate  
apertures are added in the illumination and/or projection pupils to block out flat-state and stray light from the  
projection lens. The mirror tilt angle defines DMD capability to separate the "ON" optical path from any other light  
path, including undesirable flat-state specular reflections from the DMD window, DMD border structures, or other  
system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the mirror tilt  
angle, or if the projection numerical aperture angle is more than two degrees larger than the illumination  
numerical aperture angle, objectionable artifacts in the display’s border and/or active area could occur.  
8.5.3 Pupil Match  
TI recommends the exit pupil of the illumination is nominally centered within 2° of the entrance pupil of the  
projection optics. Misalignment of pupils can create objectionable artifacts in the display’s border and/or active  
area, which may require additional system apertures to control, especially if the numerical aperture of the system  
exceeds the pixel tilt angle.  
8.5.4 Illumination Overfill  
The active area of the device is surrounded by an aperture on the inside DMD window surface that masks  
structures of the DMD device assembly from normal view. The aperture is sized to anticipate several optical  
operating conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the  
window aperture opening and other surface anomalies that may be visible on the screen. The illumination optical  
system should be designed to limit light flux incident anywhere on the window aperture from exceeding  
approximately 10% of the average flux level in the active area. Depending on the particular system’s optical  
architecture, overfill light may have to be further reduced below the suggested 10% level in order to be  
acceptable.  
34  
Copyright © 2012–2019, Texas Instruments Incorporated  
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
8.6 Micromirror Array Temperature Calculation  
Achieving optimal DMD performance requires proper management of the maximum DMD case temperature, the  
maximum temperature of any individual micromirror in the active array, the maximum temperature of the window  
aperture, and the temperature gradient between case temperature and the predicted micromirror array  
temperature. (see Figure 18).  
See the Recommended Operating Conditions for applicable temperature limits.  
8.6.1 Package Thermal Resistance  
The DMD is designed to conduct absorbed and dissipated heat to the back of the Type A package where it can  
be removed by an appropriate heat sink. The heat sink and cooling system must be capable of maintaining the  
package within the specified operational temperatures, refer to Figure 18. The total heat load on the DMD is  
typically driven by the incident light absorbed by the active area; although other contributions include light energy  
absorbed by the window aperture and electrical power dissipation of the array.  
8.6.2 Case Temperature  
The temperature of the DMD case can be measured directly. For consistency, thermal test points TP1, TP2, and  
TP3 are defined, as shown in Figure 18.  
3X 15.88  
TP1  
TP3  
TP2  
TP3 (TP2)  
Array  
TP3  
TP2  
TP1  
10.16  
Figure 18. Thermal Test Point Location  
Copyright © 2012–2019, Texas Instruments Incorporated  
35  
 
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
Micromirror Array Temperature Calculation (continued)  
8.6.3 Micromirror Array Temperature Calculation - Lumens Based (typically used for display  
applications)  
Micromirror array temperature cannot be measured directly; therefore, it must be computed analytically from:  
the measurement points (Figure 18)  
the package thermal resistance  
the electrical power  
the illumination heat load  
The relationship between micromirror array temperature and the reference ceramic temperature (thermal test  
point TP1 in Figure 18) is provided by the following equations:  
TARRAY = T CERAMIC + (QARRAY × RARRAY-TO-CERAMIC  
QARRAY = QELECTRICAL + QILLUMINATION  
)
where  
TARRAY = computed array temperature (°C)  
TCERAMIC = measured ceramic temperature (°C) (TP1 location)  
RARRAY-TO-CERAMIC = thermal resistance of DMD package (specified in Thermal Information) from array to  
ceramic TP1 (°C/W)  
QARRAY = total power (electrical + absorbed) on the array (Watts)  
QELECTRICAL = nominal electrical power (Watts)  
QILLUMINATION = (CL2W × SL) (Watts)  
CL2W = conversion constant for screen lumens to power on DMD (Watts/lumen)  
SL = measured screen lumens  
The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating  
frequencies. A nominal electrical power dissipation to use when calculating array temperature is 4.4 Watts. The  
absorbed power from the illumination source is variable and depends on the operating state of the micromirrors  
and the intensity of the light source. The conversion constant CL2W is based on the DMD input illumination  
characteristics. It assumes a spectral efficiency of 300 lumens/Watt for the projected light and an illumination  
distribution of 83.7% on the active array and 16.3% on the array border. The equations shown above are valid for  
a system with a total projection efficiency through the projection lens from the DMD to the projection surface of  
87%.  
Sample calculation for typical application:  
TCeramic = 55°C (measured)  
SL = 2000 lm (measured)  
QELECTRICAL = 2.0 Watts  
RARRAY-TO-CERAMIC = 0.9 °C/W  
CL2W = 0.00274 W/lm  
QARRAY = 2.0 + (0.00274 W/lm × 2000 lm) = 7.48 W  
TARRAY = 55°C + (7.48 W x 0.9 °C) = 61.7 °C  
36  
Copyright © 2012–2019, Texas Instruments Incorporated  
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
Micromirror Array Temperature Calculation (continued)  
8.6.4 Micromirror Array Temperature Calculation - Power Density Based  
Micromirror array temperature cannot be measured directly; therefore, it must be computed analytically from:  
the measurement points (Figure 18)  
the package thermal resistance  
the electrical power  
the illumination heat load  
The relationship between array temperature and the reference ceramic temperature (thermal test point TP1 in  
Figure 18) is provided by the following equations:  
TARRAY = T CERAMIC + (QARRAY × RARRAY-TO-CERAMIC  
QARRAY = QELECTRICAL + (0.42 x QINCIDENT  
)
)
where  
TARRAY = computed array temperature (°C)  
TCERAMIC = measured ceramic temperature (°C) (TP1 location)  
RARRAY-TO-CERAMIC = thermal resistance of DMD package (specified in Thermal Information) from array to  
ceramic TP1 (°C/W)  
QARRAY = total power (electrical + absorbed) on the array (Watts)  
QELECTRICAL = nominal electrical power (Watts)  
QINCIDENT = total incident optical power on DMD (Watts)  
The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating  
frequencies. A nominal electrical power dissipation to use when calculating array temperature is 4.4 watts. The  
absorbed power from the illumination source is variable and depends on the operating state of the micromirrors  
and the intensity of the light source. The equations shown above are valid for each DMD chip in a system. It  
assumes an illumination distribution of 83.7% on the active array and 16.3% on the array border.  
Sample Calculation for each DMD in a system with a measured illumination power density:  
TCeramic = 20°C (measured)  
ILLDENSITY = 11 Watts per cm2 (optical power on DMD per unit area) (measured)  
Overfill = 16.3% (optical design)  
QELECTRICAL = 2.0 Watts  
RARRAY-TO-CERAMIC = 0.9 °C/W  
Area of array = ( 1.4008 cm x 1.0506 cm ) = 1.4717 cm2  
ILLAREA = 1.4717 cm2 / (83.7%) = 1.7583 cm2  
QINCIDENT =11 W/cm2 x 1.7583 cm2 = 19.34 W  
QARRAY = 2.0 W + (0.42 x 19.34 W) = 10.12 W  
TARRAY = 20°C + (10.12 W x 0.9 °C) = 29.11 °C  
8.7 Micromirror Landed-On/Landed-Off Duty Cycle  
8.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle  
The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a  
percentage) that an individual micromirror is landed in the On–state versus the amount of time the same  
micromirror is landed in the Off–state.  
As an example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the On-state 100% of the  
time (and in the Off-state 0% of the time); whereas 0/100 would indicate that the pixel is in the Off-state 100% of  
the time. Likewise, 50/50 indicates that the pixel is On 50% of the time and Off 50% of the time.  
Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other  
state (OFF or ON) is considered negligible and is thus ignored.  
Since a micromirror can only be landed in one state or the other (On or Off), the two numbers (percentages)  
always add to 100.  
Copyright © 2012–2019, Texas Instruments Incorporated  
37  
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
Micromirror Landed-On/Landed-Off Duty Cycle (continued)  
8.7.2 Landed Duty Cycle and Useful Life of the DMD  
Knowing the long-term average landed duty cycle (of the end product or application) is important because  
subjecting all (or a portion) of the DMD’s micromirror array (also called the active array) to an asymmetric landed  
duty cycle for a prolonged period of time can reduce the DMD’s usable life.  
Note that it is the symmetry/asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed  
duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed  
duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly  
asymmetrical.  
8.7.3 Landed Duty Cycle and Operational DMD Temperature  
Operational DMD Temperature and Landed Duty Cycle interact to affect the DMD’s usable life, and this  
interaction can be exploited to reduce the impact that an asymmetrical Landed Duty Cycle has on the DMD’s  
usable life. This is quantified in the de-rating curve shown in Figure 1. The importance of this curve is that:  
All points along this curve represent the same usable life.  
All points above this curve represent lower usable life (and the further away from the curve, the lower the  
usable life).  
All points below this curve represent higher usable life (and the further away from the curve, the higher the  
usable life).  
In practice, this curve specifies the Maximum Operating DMD Temperature that the DMD should be operated at  
for a give long-term average Landed Duty Cycle.  
8.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application  
During a given period of time, the Landed Duty Cycle of a given pixel follows from the image content being  
displayed by that pixel.  
For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel  
will experience a 100/0 Landed Duty Cycle during that time period. Likewise, when displaying pure-black, the  
pixel will experience a 0/100 Landed Duty Cycle.  
Between the two extremes (ignoring for the moment color and any image processing that may be applied to an  
incoming image), the Landed Duty Cycle tracks one-to-one with the gray scale value, as shown in Table 5.  
Table 5. Grayscale Value and Landed Duty Cycle  
GRAYSCALE VALUE  
LANDED DUTY CYCLE  
0%  
10%  
20%  
30%  
40%  
50%  
60%  
70%  
80%  
90%  
100%  
0/100  
10/90  
20/80  
30/70  
40/60  
50/50  
60/40  
70/30  
80/20  
90/10  
100/0  
Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from  
0% to 100%) for each constituent primary color (red, green, and/or blue) for the given pixel as well as the color  
cycle time for each primary color, where “color cycle time” is the total percentage of the frame time that a given  
primary must be displayed in order to achieve the desired white point.  
During a given period of time, the landed duty cycle of a given pixel can be calculated as follows:  
Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value) + (Blue_Cycle_%  
38  
Copyright © 2012–2019, Texas Instruments Incorporated  
 
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
× Blue_Scale_Value)  
where  
Red_Cycle_%, Green_Cycle_%, and Blue_Cycle_%, represent the percentage of the frame time that Red,  
Green, and Blue are displayed (respectively) to achieve the desired white point.  
(1)  
For example, assume that the red, green and blue color cycle times are 50%, 20%, and 30% respectively (in  
order to achieve the desired white point), then the Landed Duty Cycle for various combinations of red, green,  
blue color intensities would be as shown in Table 6.  
Table 6. Example Landed Duty Cycle for Full-Color  
RED CYCLE PERCENTAGE  
50%  
GREEN CYCLE PERCENTAGE  
20%  
BLUE CYCLE PERCENTAGE  
30%  
LANDED DUTY CYCLE  
RED SCALE VALUE  
GREEN SCALE VALUE  
BLUE SCALE VALUE  
0%  
100%  
0%  
0%  
0%  
0%  
0%  
0/100  
50/50  
20/80  
30/70  
6/94  
100%  
0%  
0%  
0%  
100%  
0%  
12%  
0%  
0%  
35%  
0%  
0%  
7/93  
0%  
60%  
0%  
18/82  
70/30  
50/50  
80/20  
13/87  
25/75  
24/76  
100/0  
100%  
0%  
100%  
100%  
0%  
100%  
100%  
0%  
100%  
12%  
0%  
35%  
35%  
0%  
60%  
60%  
100%  
12%  
100%  
100%  
Copyright © 2012–2019, Texas Instruments Incorporated  
39  
 
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DLP7000 devices require they be coupled with the DLPC410 controller to provide a reliable solution for  
many different applications. The DMDs are spatial light modulators which reflect incoming light from an  
illumination source to one of two directions, with the primary direction being into a projection collection optic.  
Each application is derived primarily from the optical architecture of the system and the format of the data  
coming into the DLPC410. Applications of interest include 3D measurement systems, lithography, medical  
systems, and compressive sensing.  
40  
Copyright © 2012–2019, Texas Instruments Incorporated  
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
9.2 Typical Application  
A typical embedded system application using the DLPC410 controller and DLP7000 is shown in Figure 19. In this configuration, the DLPC410 controller  
supports input from an FPGA. The FPGA sends low-level data to the controller, enabling the system to be highly optimized for low latency and high  
speed.  
Figure 19. DLPC410 and DLP7000 Embedded Example Block Diagram  
Copyright © 2012–2019, Texas Instruments Incorporated  
41  
 
 
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
9.2.1 Design Requirements  
All applications using the DLP7000 XGA chipset require both the controller and the DMD components for  
operation. The system also requires an external parallel flash memory device loaded with the DLPC410  
Configuration and Support Firmware. The chipset has several system interfaces and requires some support  
circuitry. The following interfaces and support circuitry are required:  
DLPC410 System Interfaces:  
Control Interface  
Trigger Interface  
Input Data Interface  
Illumination Interface  
Reference Clock  
DLP7000 Interfaces:  
DLPC410 to DLP7000 Digital Data  
DLPC410 to DLP7000 Control Interface  
DLPC410 to DLP7000 Micromirror Reset Control Interface  
DLPC410 to DLPA200 Micromirror Driver  
DLPA200 to DLP7000 Micromirror Reset  
9.2.2 Device Description  
The DLP7000 XGA chipset offers developers a convenient way to design a wide variety of industrial, medical,  
telecom and advanced display applications by delivering maximum flexibility in formatting data, sequencing data,  
and light patterns.  
The DLP7000 XGA chipset includes the following four components: DMD Digital Controller (DLPC410),  
EEPROM (DLPR410), DMD Micromirror Driver (DLPA200), and a DMD (DLP7000).  
DLPC410 Digital Controller for DLP Discovery 4100 chipset  
Provides high speed LVDS data and control interface to the DLP7000.  
Drives mirror clocking pulse and timing information to the DLPA200.  
Supports random row addressing.  
DLPR410 PROM for DLP Discovery 4100 chipset  
Contains startup configuration information for the DLPC410.  
DLPA200 DMD Micromirror Driver  
Generates Micromirror Clocking Pulse control (sometimes referred to as a "Reset") of DMD mirrors.  
DLP7000 DLP 0.7 XGA 2xLVDS Type-A DMD  
Steers light in two digital positions (+12º and -12º) using 1024 x 768 micromirror array of aluminum  
mirrors.  
Table 7. DLPC410 Chipset Configuration for 0.7 XGA Chipset  
QUANTITY  
TI PART  
DLP7000  
DLPC410  
DLPR410  
DLPA200  
DESCRIPTION  
1
1
1
1
DLP 0.7 XGA 2xLVDS Type-A DMD  
Digital Controller for DLP Discovery 4100 chipset  
PROM for DLP Discovery 4100 chipset  
DMD Micromirror Driver  
42  
Copyright © 2012–2019, Texas Instruments Incorporated  
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
Reliable function and operation of DLP7000 XGA chipsets require the components be used in conjunction with  
each other. This document describes the proper integration and use of the DLP7000 XGA chipset components.  
The DLP7000 XGA chipset can be combined with a user programmable Application FPGA (not included) to  
create high performance systems.  
9.2.3 Detailed Design Procedure  
The DLP7000 DMD is well suited for visible light applications requiring fast, spatially programmable light patterns  
using the micromirror array. See the Functional Block Diagram to see the connections between the DLP7000  
DMD, the DLPC410 digital controller, the DLPR410 EEPROM, and the DLPA200 DMD micromirror drivers. See  
the Figure 19 for an application example. Follow the Layout Guidelines for reliability.  
Copyright © 2012–2019, Texas Instruments Incorporated  
43  
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 DMD Power-Up and Power-Down Procedures  
Repeated failure to adhere to the prescribed power-up and power-down procedures may affect device reliability.  
The DLP7000 power-up and power-down procedures are defined by the DLPC410 data sheet (DLPS024). These  
procedures must be followed to ensure reliable operation of the device.  
11 Layout  
11.1 Layout Guidelines  
The DLP7000 is part of a chipset that is controlled by the DLPC410 in conjunction with the DLPA200. These  
guidelines are targeted at designing a PCB board with these components.  
A target impedance of 50 for single ended signals and 100 between LVDS signals is specified for all signal  
layers.  
11.1.1 Impedance Requirements  
Signals should be routed to have a matched impedance of 50 Ω ±10% except for LVDS differential pairs  
(DMD_DAT_Xnn, DMD_DCKL_Xn, and DMD_SCTRL_Xn), which should be matched to 100 Ω ±10% across  
each pair.  
11.1.2 PCB Signal Routing  
When designing a PCB for the DLP7000 controlled by the DLPC410 in conjunction with the DLPA200, the  
following are recommended:  
Signal trace corners should be no sharper than 45°. Adjacent signal layers should have the predominate traces  
routed orthogonal to each other. TI recommends that critical signals be hand routed in the following order: DDR2  
Memory, DMD (LVDS signals), then DLPA200 signals.  
TI does not recommend signal routing on power or ground planes.  
TI does not recommend ground plane slots.  
High speed signal traces should not cross over slots in adjacent power and/or ground planes.  
Table 8. Important Signal Trace Constraints  
SIGNAL  
CONSTRAINTS  
P-to-N data, clock, and SCTRL: <10 mils (0.25 mm); Pair-to-pair <10 mils (0.25 mm); Bundle-to-bundle  
<2000 mils (50 mm, for example DMD_DAT_Ann to DMD_DAT_Bnn)  
Trace width: 4 mil (0.1 mm)  
Trace spacing: In ball field – 4 mil (0.11 mm); PCB etch – 14 mil (0.36 mm)  
Maximum recommended trace length <6 inches (150 mm)  
LVDS (DMD_DAT_xnn,  
DMD_DCKL_xn, and  
DMD_SCTRL_xn)  
Table 9. Power Trace Widths and Spacing  
MINIMUM TRACE  
MINIMUM TRACE  
SPACING  
SIGNAL NAME  
LAYOUT REQUIREMENTS  
WIDTH  
GND  
Maximize  
5 mil (0.13 mm)  
10 mil (0.25 mm)  
15 mil (0.38 mm)  
Maximize trace width to connecting pin as a minimum  
VCC, VCC2  
MBRST[15:0]  
20 mil (0.51 mm)  
11 mil (0.23 mm)  
11.1.3 DMD Interface  
The digital interface from the DLPC410 to the DMD are LVDS signals that run at clock rates up to 400 MHz. Data  
is clocked into the DMD on both the rising and falling edge of the clock, so the data rate is 800 MHz. The LVDS  
signals should have 100 differential impedance. The differential signals should be matched but kept as short  
as possible. Parallel termination at the LVDS receiver is in the DMD; therefore, on board termination is not  
necessary.  
44  
Copyright © 2012–2019, Texas Instruments Incorporated  
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
11.1.3.1 Trace Length Matching  
The DLPC410 DMD data signals require precise length matching. Differential signals should have impedance of  
100(with 5% tolerance). It is important that the propagation delays are matched. The maximum differential pair  
uncoupled length is 100 mils with a relative propagation delay of ±25 mil between the p and n. Matching all  
signals exactly will maximize the channel margin. The signal path through all boards, flex cables and internal  
DMD routing must be considered in this calculation.  
11.1.4 DLP7000 Decoupling  
General decoupling capacitors for the DLP7000 should be distributed around the PCB and placed to minimize  
the distance from IC voltage and ground pads. Each decoupling capacitor (0.1 µF recommended) should have  
vias directly to the ground and power planes. Via sharing between components (discreet or integrated) is  
discouraged. The power and ground pads of the DLP7000 should be tied to the voltage and ground planes with  
their own vias.  
11.1.4.1 Decoupling Capacitors  
Decoupling capacitors should be placed to minimize the distance from the decoupling capacitor to the supply and  
ground pin of the component. It is recommended that the placement of and routing for the decoupling capacitors  
meet the following guidelines:  
The supply voltage pin of the capacitor should be located close to the device supply voltage pin(s). The  
decoupling capacitor should have vias to ground and voltage planes. The device can be connected directly to  
the decoupling capacitor (no via) if the trace length is less than 0.1 inch. Otherwise, the component should be  
tied to the voltage or ground plane through separate vias.  
The trace lengths of the voltage and ground connections for decoupling capacitors and components should  
be less than 0.1 inch to minimize inductance.  
The trace width of the power and ground connection to decoupling capacitors and components should be as  
wide as possible to minimize inductance.  
Connecting decoupling capacitors to ground and power planes through multiple vias can reduce inductance  
and improve noise performance.  
Decoupling performance can be improved by utilizing low ESR and low ESL capacitors.  
11.1.5 VCC and VCC2  
The VCC pins of the DMD should be connected directly to the DMD VCC plane. Decoupling for the VCC should  
be distributed around the DMD and placed to minimize the distance from the voltage and ground pads. Each  
decoupling capacitor should have vias directly connected to the ground and power planes. The VCC and GND  
pads of the DMD should be tied to the VCC and ground planes with their own vias.  
The VCC2 voltage can be routed to the DMD as a trace. Decoupling capacitors should be placed to minimize the  
distance from the DMD’s VCC2 and ground pads. Using wide etch from the decoupling capacitors to the DMD  
connection will reduce inductance and improve decoupling performance.  
11.1.6 DMD Layout  
See the respective sections in this data sheet for package dimensions, timing and pin out information.  
11.1.7 DLPA200  
The DLPA200 generates the micromirror clocking pulses for the DMD. The DMD-drive outputs from the  
DLPA200 (MBRST[15:0] should be routed with minimum trace width of 11 mil and a minimum spacing of 15 mil.  
The VCC and VCC2 traces from the output capacitors to the DLPA200 should also be routed with a minimum  
trace width and spacing of 11 mil and 15 mil, respectively. See the DLPA200 customer data sheet for mechanical  
package and layout information.  
11.2 Layout Example  
For LVDS (and other differential signal) pairs and groups, it is important to match trace lengths. In the area of the  
dashed lines, Figure 20 shows correct matching of signal pair lengths with serpentine sections to maintain the  
correct impedance.  
Copyright © 2012–2019, Texas Instruments Incorporated  
45  
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
Layout Example (continued)  
Figure 20. Mitering LVDS Traces to Match Lengths  
46  
版权 © 2012–2019, Texas Instruments Incorporated  
DLP7000  
www.ti.com.cn  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
12 器件和文档支持  
12.1 器件支持  
12.1.1 器件命名规则  
21 提供了读取任一 DLP 器件完整器件名称的图例。  
DLP7000 FLP  
Package  
TI Internal Numbering  
Device Descriptor  
21. 器件命名规则  
12.1.2 器件标记  
器件标记由 22 中显示的字段组成。  
TI Internal Numbering  
DMD Part Number  
2-Dimensional Matrix Code  
(DMD Part Number and  
Serial Number)  
YYYYYYY  
DLP7000_FLP  
GHXXXXX LLLLLLM  
LLLLLL  
Part 1 of Serial Number  
Part 2 of Serial Number  
(7 characters)  
(7 characters)  
TI Internal Numbering  
22. 器件标识  
12.2 文档支持  
12.2.1 相关文档  
以下文档包含关于使用 DLP7000 器件的更多信息:  
《适用于 DLP Discovery 4100 芯片组的 DLPC410 数字控制器数据表》,DLPS024  
DLPA200 DMD 微镜驱动器数据表》,DLPS015  
《适用于 DLP Discovery 4100 DLPR410 PROM 数据表》,DLPS027  
版权 © 2012–2019, Texas Instruments Incorporated  
47  
 
 
DLP7000  
ZHCSA87F AUGUST 2012REVISED JUNE 2019  
www.ti.com.cn  
12.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
10. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
DLP7000  
DLPA200  
DLPC410  
DLPR410  
12.4 商标  
Discovery is a trademark of Texas Instruments.  
DLP is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
48  
版权 © 2012–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLP7000BFLP  
ACTIVE  
CLGA  
FLP  
203  
18  
RoHS & Green  
NI-PD-AU  
N / A for Pkg Type  
10 to 65  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY