DLPC150 [TI]

适用于 DLP2010NIR DMD 的 数字控制器;
DLPC150
型号: DLPC150
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 DLP2010NIR DMD 的 数字控制器

控制器
文件: 总54页 (文件大小:2287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
DLPC150 DLP®用于高级照明控制的数字控制器  
1 特性  
3 说明  
1
DLP2010 DLP2010NIR DMD 可靠运行所需的  
显示控制器  
DLPC150 控制器在用户电子设备与可见光 DLP2010  
或近红外 (NIR) DLP2010NIR 数字微镜器件 (DMD) 之  
间提供了一个方便、可靠的多功能接口,可快速、准确  
且高效地操控照明以及生成图案。DLPC150 控制器支  
持高速模式速率以及 LED 控制和数据格式化,适用于  
多种输入格式。DLPC150 控制器还提供输入和输出触  
发信号,用于将显示的图案与摄像机、传感器等外设同  
步。DLPC150 控制器属于 0.2 WVGA 芯片组,该芯片  
组包含 DLP2010 DLP2010NIR DMD 以及  
高速图形序列模式  
1 位二进制图形速率可达 2880Hz  
输入与微镜 1 1 映射  
与摄像头和传感器轻松同步  
一个输入触发器  
两个输出触发器  
I2C 配置接口  
DLPA2000 DLPA2005 电源管理集成芯片  
输入像素接口支持:  
(PMIC)DLPC150 控制器能够将 DLP®0.2 WVGA 可  
见光或 NIR 芯片组集成到低功耗且低成本的小外形尺  
寸 应用 中,从而实现可编程光谱和波长控制。例如  
3D 扫描或计量系统、光谱仪、交互式显示屏、化学分  
析仪、医疗仪器、皮肤分析、材料鉴别和化学检测。  
24 位并行 RGB888 接口协议  
16 位并行 RGB565 接口协议  
高达 75MHz 的像素时钟  
集成微镜驱动器  
集成时钟生成功能  
断电时自动 DMD 停止  
器件信息(1)  
201 引脚、13mm × 13mm0.8mm 间距、VFBGA  
封装  
器件型号  
DLPC150  
封装  
封装尺寸(标称值)  
13.00 × 13.00 mm2  
VFBGA (201)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
2 应用  
分光计(化学分析)  
便携式过程分析仪  
便携式设备  
压缩传感(单像素 NIR 摄像机)  
3D 生物识别  
机器视觉  
红外场景投影  
显微镜  
激光打标  
光学斩波器  
光纤网络  
DLP 0.2 英寸 WVGA 芯片组  
DLPA2000  
or  
DLPA2005  
(PMIC and LED  
Driver)  
DLPC150  
Display Controller  
DLP2010 DMD  
or  
DLP2010NIR DMD  
D_P(0)  
D_N(0)  
VOFFSET  
VBIAS  
D_P(1)  
D_N(1)  
532-MHz  
SubLVDS  
DDR  
D_P(2)  
D_N(2)  
VRESET  
Interface  
D_P(3)  
D_N(3)  
VDDI  
VDD  
DCLK_P  
DCLK_N  
LS_WDATA  
LS_CLK  
120-MHz  
SDR  
Interface  
LS_RDATA  
VSS  
DMD_DEN_ARSTZ  
System Signal Routing Omitted For Clarity  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: DLPS048  
 
 
 
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 27  
8.3 Feature Description................................................. 27  
8.4 Device Functional Modes........................................ 33  
Application and Implementation ........................ 34  
9.1 Application Information............................................ 34  
9.2 Typical Application ................................................. 35  
1
2
3
4
5
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
5.1 DLPC150 Mechanical Data..................................... 11  
Specifications....................................................... 13  
6.1 Absolute Maximum Ratings .................................... 13  
6.2 ESD Ratings............................................................ 13  
6.3 Recommended Operating Conditions..................... 14  
6.4 Thermal Information................................................ 14  
9
10 Power Supply Recommendations ..................... 37  
10.1 System Power-Up and Power-Down Sequence ... 37  
10.2 DLPC150 Power-Up Initialization Sequence ........ 39  
10.3 DMD Fast Park Control (PARKZ) ......................... 40  
10.4 Hot Plug Usage..................................................... 40  
10.5 Maximum Signal Transition Time.......................... 40  
11 Layout................................................................... 41  
11.1 Layout Guidelines ................................................. 41  
11.2 Layout Example .................................................... 46  
11.3 Thermal Considerations........................................ 46  
12 器件和文档支持 ..................................................... 47  
12.1 器件支持................................................................ 47  
12.2 相关链接................................................................ 48  
12.3 社区资源................................................................ 48  
12.4 ....................................................................... 48  
12.5 静电放电警告......................................................... 48  
12.6 Glossary................................................................ 48  
13 "机械、封装和可订购信..................................... 48  
13.1 Package Option Addendum .................................. 49  
6
6.5 Electrical Characteristics Over Recommended  
Operating Conditions ............................................... 15  
6.6 Electrical Characteristics......................................... 16  
6.7 High-Speed Sub-LVDS Electrical Characteristics... 18  
6.8 Low-Speed SDR Electrical Characteristics............. 19  
6.9 System Oscillators Timing Requirements............... 20  
6.10 Power-Up and Reset Timing Requirements ......... 20  
6.11 Parallel Interface Frame Timing Requirements .... 21  
6.12 Parallel Interface General Timing Requirements.. 23  
6.13 Flash Interface Timing Requirements................... 24  
Parameter Measurement Information ................ 25  
7.1 Host_irq Usage Model ............................................ 25  
7.2 Input Source............................................................ 26  
Detailed Description ............................................ 27  
8.1 Overview ................................................................. 27  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (March 2018) to Revision C  
Page  
Changed normal park time from 500 µs to 20 ms ................................................................................................................. 3  
Deleted mention of bit weight for parallel data input ............................................................................................................. 4  
Changes from Revision A (March 2015) to Revision B  
Page  
Changed maximum binary pattern rate to 2880 Hz in Table 4 ............................................................................................ 27  
更新了器件标记 ................................................................................................................................................................ 47  
已添加社区资源部分 ............................................................................................................................................................. 48  
Added MSL Peak Temp and Op Temp to Packaging Option Addendum ........................................................................... 49  
Changes from Original (March 2015) to Revision A  
Page  
Consolidated the Pin Functions table .................................................................................................................................... 3  
Moved Storage temperature to Absolute Maximum Ratings ............................................................................................... 13  
Changed Handling Ratings to ESD Ratings ........................................................................................................................ 13  
2
Copyright © 2015–2019, Texas Instruments Incorporated  
 
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
5 Pin Configuration and Functions  
ZEZ Package  
201-Pin VFBGA  
Bottom View  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
CONTROL AND INITIALIZATION  
DLPC150 power-on reset (active low input) (hysteresis buffer). Self-configuration starts when a low-  
to-high transition is detected on RESETZ. All DLPC150 controller power and clocks must be stable  
before this reset is de-asserted. Connect to the reset output pin (RESETZ) of the DLPA2000 or  
DLPA2005 PMIC. Note that the following signals will be tri-stated while RESETZ is asserted:  
SPI0_CLK, SPI0_DOUT, SPI0_CSZ0, SPI0_CSZ1, PMIC_SPI_CLK, PMIC_SPI_CSZ,  
PMIC_SPI_DIN, PMIC_SPI_DOUT, TRIG_OUT_1, TRIG_OUT_2, and GPIO[19:05]  
External pullups or downs (as appropriate) should be added to all tri-stated output signals listed  
(including bidirectional signals to be configured as outputs) to avoid floating DLPC150 controller  
outputs during reset if connected to devices on the PCB that can malfunction. For SPI, at a  
minimum, any chip selects connected to the devices should have a pullup.  
Unused bidirectional signals can be functionally configured as outputs to avoid floating DLPC150  
controller inputs after RESETZ is set high.  
RESETZ  
C11  
I6  
The following signals are forced to a logic low state while RESETZ is asserted and corresponding  
I/O power is applied:  
LED_SEL_0, LED_SEL_1 and DMD_DEN_ARSTZ  
No signals will be in their active state while RESETZ is asserted.  
Note that no I2C activity is permitted for a minimum of 500 ms after RESETZ (and PARKZ) are set  
high.  
DMD fast PARK control (active low Input) (hysteresis buffer). PARKZ must be set high to enable  
normal operation. PARKZ should be set high prior to releasing RESETZ (that is, prior to the low-to-  
high transition on the RESETZ input). PARKZ should be set low for a minimum of 40 µs before any  
power is removed from the DLPC150 such that the fast DMD PARK operation can be completed.  
Note for PARKZ, fast PARK control should only be used when loss of power is eminent and beyond  
the control of the host processor (for example, when the external power source has been  
disconnected or the battery has dropped below a minimum level). The longest lifetime of the DMD  
may not be achieved with the fast PARK operation. The longest lifetime is achieved with a normal  
PARK operation. Because of this, PARKZ is typically used in conjunction with a normal PARK  
request control input through PROJ_ON. The difference being that when the host sets PROJ_ON  
low, which connects to both DLPC150 and the DLPA200x PMIC chip, the DLPC150 takes much  
longer than 40 µs to park the mirrors. The DLPA200x holds on all power supplies, and keep  
RESETZ high, until the longer mirror parking has completed. This longer mirror parking time, of up  
to 20 ms, ensures the longest DMD lifetime and reliability.  
PARKZ  
C13  
I6  
The DLPA2000 or DLPA2005 monitors power to the DLPC150 and detects an eminent power loss  
condition and drives the PARKZ signal accordingly. Connect to the interrupt output pin of the  
DLPA2000 or DLPA2005 PMIC.  
(1) Refer to Table 1.  
Copyright © 2015–2019, Texas Instruments Incorporated  
3
 
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
Normal mirror parking request (active low): To be driven by the PROJ_ON output of the host. A  
logic low on this signal will cause the DLPC150 to PARK the DMD, but it will not power down the  
DMD (the DLPA2000 or DLPA2005 controls the power down). The minimum high time is 200 ms.  
The minimum low time is also 200 ms.  
PROJ_ON  
G14  
B1  
Host interrupt (output)  
This signal has two primary uses. The first use is to indicate when DLPC150 auto-initialization is in  
progress and most importantly when it completes. The second is to indicate when service is  
requested (that is an interrupt request).  
HOST_IRQ(2)  
N8  
O9  
The DLPC150 tri-states this output during reset and requires an external pullup to drive this signal  
to its inactive state.  
I2C slave (port 0) SCL A bidirectional, open-drain signal with input hysteresis that requires an  
external pullup. The slave I2C I/Os are 3.6-V tolerant (high-volt-input tolerant) and are powered by  
VCC_INTF (which can be 1.8, 2.5, or 3.3 V). External I2C pullups must be connected to an equal or  
higher supply voltage, up to a maximum of 3.6 V (a lower pullup supply voltage would not likely  
satisfy the VIH specification of the slave I2C input buffers).  
I2C slave (port 0) SDA. A bidirectional, open-drain signal with input hysteresis that requires an  
external pullup. The slave I2C I/Os are 3.6-V tolerant (high-volt-input tolerant) and are powered by  
VCC_INTF (which can be 1.8, 2.5, or 3.3 V). External I2C pullups must be connected to an equal or  
higher supply voltage, up to a maximum of 3.6 V (a lower pullup supply voltage would not likely  
satisfy the VIH specification of the slave I2C input buffers).  
IIC0_SCL  
IIC0_SDA  
N10  
N9  
B7  
B7  
PARALLEL PORT INPUT DATA AND CONTROL  
PCLK  
P3  
N4  
P1  
N5  
I11  
B5  
I11  
I11  
Pixel clock(3)  
Parallel data mask(4)  
Vsync(5)  
PDM_CVS_TE  
VSYNC_WE  
HSYNC_CS  
Hsync(5)  
Data valid active high framing signal.(5) DLPC150 also offers a manual data framing mode through  
a software command. Refer to the DLPC150 Programmer's Guide for more information on the  
manual data framing command.  
DATAEN_CMD  
P2  
I11  
(TYPICAL RGB 888)  
PDATA_0  
PDATA_1  
PDATA_2  
PDATA_3  
PDATA_4  
PDATA_5  
PDATA_6  
PDATA_7  
K2  
K1  
L2  
Blue  
Blue  
Blue  
Blue  
Blue  
Blue  
Blue  
Blue  
L1  
I11  
M2  
M1  
N2  
N1  
(TYPICAL RGB 888)  
PDATA_8  
PDATA_9  
PDATA_10  
PDATA_11  
PDATA_12  
PDATA_13  
PDATA_14  
PDATA_15  
R1  
R2  
R3  
P4  
R4  
P5  
R5  
P6  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
I11  
(2) For more information about usage, see Host_irq Usage Model.  
(3) Pixel clock capture edge is software programmable.  
(4) The parallel data mask signal input is optional for parallel interface operations. If unused, inputs should be grounded or pulled down to  
ground through an external resistor (8 kΩ or less).  
(5) VSYNC, HSYNC, and DATAEN polarity is software programmable.  
4
Copyright © 2015–2019, Texas Instruments Incorporated  
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
Pin Functions (continued)  
PIN  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
(TYPICAL RGB 888)  
PDATA_16  
R6  
P7  
R7  
P8  
R8  
P9  
R9  
P10  
Red  
Red  
Red  
Red  
Red  
Red  
Red  
Red  
PDATA_17  
PDATA_18  
PDATA_19  
PDATA_20  
PDATA_21  
PDATA_22  
PDATA_23  
I11  
DMD RESET AND BIAS CONTROL  
DMD driver enable (active high)/ DMD reset (active low). Assuming the corresponding I/O power is  
supplied, this signal will be driven low after the DMD is parked and before power is removed from  
the DMD. If the 1.8-V power to the DLPC150 is independent of the 1.8-V power to the DMD, then  
TI recommends a weak, external pulldown resistor to hold the signal low in the event DLPC150  
power is inactive while DMD power is applied.  
DMD_DEN_ARSTZ  
B1  
O2  
DMD_LS_CLK  
A1  
A2  
B2  
O3  
O3  
I6  
DMD, low speed interface clock  
DMD, low speed serial write data  
DMD, low speed serial read data  
DMD_LS_WDATA  
DMD_LS_RDATA  
DMD SUB-LVDS INTERFACE  
DMD_HS_CLK_P  
DMD_HS_CLK_N  
A7  
B7  
O4  
DMD high speed interface  
DMD_HS_WDATA  
_H_P  
DMD_HS_WDATA  
_H_N  
DMD_HS_WDATA  
_G_P  
DMD_HS_WDATA  
_G_N  
DMD_HS_WDATA  
_F_P  
A3  
B3  
DMD_HS_WDATA  
_F_N  
A4  
B4  
DMD_HS_WDATA  
_E_P  
A5  
B5  
DMD_HS_WDATA  
_E_N  
DMD_HS_WDATA  
_D_P  
A6  
B6  
A8  
B8  
DMD high speed interface lanes, write data bits: (The true numbering and application of the  
DMD_HS_DATA pins are software configuration dependent)  
O4  
DMD_HS_WDATA  
_D_N  
A9  
B9  
DMD_HS_WDATA  
_C_P  
DMD_HS_WDATA  
_C_N  
A10  
B10  
A11  
B11  
DMD_HS_WDATA  
_B_P  
DMD_HS_WDATA  
_B_N  
DMD_HS_WDATA  
_A_P  
DMD_HS_WDATA  
_A_N  
Copyright © 2015–2019, Texas Instruments Incorporated  
5
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
SERIAL FLASH MEMORY INTERFACE  
Synchronous serial port 0, clock output. Connect to clock input pin of the serial Flash memory  
device.  
SPI0_CLK  
A13  
A14  
O13  
Synchronous serial port 0, chip select 0 output. Active low output. Connect to chip select pin of the  
serial Flash memory device.  
TI recommends an external pullup resistor to avoid floating inputs to the external SPI device during  
DLPC150 controller reset assertion.  
SPI0_CSZ0  
O13  
Synchronous serial port 0, chip select 1 output. Active low output. Connect to chip select pin of a  
second serial Flash memory device.  
TI recommends an external pullup resistor to avoid floating inputs to the external SPI device during  
DLPC150 controller reset assertion.  
SPI0_CSZ1  
C12  
O13  
Synchronous serial port 0, receive data input. Connect to the data output of the serial Flash  
memory device.  
SPI0_DIN  
B12  
B13  
I12  
Synchronous serial port 0, transmit data output. Connect to the data input of the serial Flash  
memory device.  
SPI0_DOUT  
O13  
DLPA2000 OR DLPA2005 PMIC INTERFACE  
Synchronous PMIC serial port, clock output. Connect to the clock input (SPI_CLK) of the  
DLPA2000 or DLPA2005 PMIC.  
PMIC_SPI_CLK  
C15  
B1  
Synchronous PMIC serial port, chip select output. Active low output. Connect to the chip select  
input (SPI_CSZ) of the DLPA2000 or DLPA2005 PMIC.  
TI recommends an external pullup resistor to avoid floating inputs to the external SPI device during  
DLPC150 controller reset assertion.  
PMIC_SPI_CSZ  
D15  
B1  
Synchronous PMIC serial port, receive data input. Connect to the data output (SPI_DOUT) of the  
DLPA2000 or DLPA2005 PMIC.  
PMIC_SPI_DIN  
C14  
D14  
B1  
B1  
Synchronous PMIC serial port, receive data output. Connect to the data input (SPI_DIN) of the  
DLPA2000 or DLPA2005 PMIC.  
PMIC_SPI_DOUT  
Successive approximation ADC comparator input. Assumes a successive approximation ADC is  
implemented with a WPC light sensor and/or a thermistor feeding one input of an external  
comparator and the other side of the comparator is driven from the DLPC150 controller’s  
CMP_PWM pin. Connect to the analog comparator output (CMP_OUT) of the DLPA2000 or  
DLPA2005 PMIC. If this function is not used, pulled-down to ground.  
PMIC_CMP_IN  
A12  
I6  
Successive approximation comparator pulse-duration modulation output. Supplies a PWM signal to  
drive the successive approximation ADC comparator used in WPC light-to-voltage sensor  
applications. Connect to the reference voltage input for analog comparator (PWM_IN) of the  
DLPA2000 or DLPA2005. If this function is not used, leave this pin unconnected.  
PMIC_CMP_PWM  
PMIC_LED_SEL_0  
A15  
B15  
O1  
O1  
LED enable select. Controlled by programmable DMD sequence  
Enabled LED Timing  
DLPA2000 or DLPA2005 application  
00 = None  
LED_SEL(1:0)  
01 = Red  
10 = Green  
11 = Blue  
These signals will be driven low when RESETZ is asserted and the corresponding I/O power is  
supplied. They will continue to be driven low throughout the auto-initialization process. A weak,  
external pulldown resistor is still recommended to ensure that the LEDs are disabled when I/O  
power is not applied.  
PMIC_LED_SEL_1  
B14  
N6  
O1  
TRIGGER CONTROL  
Input Trigger mode 1. Active high input signal that display the next pattern in the pattern sequence.  
Pull-down this signal with an external resistor.  
TRIG_IN_1  
I11  
TRIG_OUT_1  
TRIG_OUT_2  
L14  
E14  
B1  
B1  
Output Trigger mode 1. Active high output signal during pattern exposure  
Output Trigger mode 2. Active high output signal that indicates the first pattern in a sequence.  
6
Copyright © 2015–2019, Texas Instruments Incorporated  
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
Pin Functions (continued)  
PIN  
NAME  
GPIO PERIPHERAL INTERFACE  
I/O(1)  
DESCRIPTION  
NO.  
General purpose I/O 19 (hysteresis buffer). Options:  
1. Optional GPIO. Should be configured as a logic zero GPIO output and left unconnected if not  
used (otherwise it will require an external pullup or pulldown to avoid a floating GPIO input).  
GPIO_19  
M15  
B1  
2. KEYPAD_4 (input): keypad applications  
General purpose I/O 18 (hysteresis buffer). Options:  
1. Optional GPIO. Should be configured as a logic zero GPIO output and left unconnected if not  
used (otherwise it will require an external pullup or pulldown to avoid a floating GPIO input).  
GPIO_18  
GPIO_17  
GPIO_15  
M14  
L15  
K15  
B1  
B1  
B1  
2. KEYPAD_3 (input): keypad applications  
General purpose I/O 17 (hysteresis buffer). Options:  
1. Optional GPIO. Configured as a logic zero GPIO output and left unconnected if not used.  
General purpose I/O 15 (hysteresis buffer). Options:  
1. Optional GPIO. Should be configured as a logic zero GPIO output and left unconnected if not  
used (otherwise it will require an external pullup or pulldown to avoid a floating GPIO input).  
2. KEYPAD_0 (input): keypad applications  
General purpose I/O 14 (hysteresis buffer). Option:  
GPIO_14  
GPIO_13  
K14  
J15  
B1  
B1  
1. Optional GPIO. Should be configured as a logic zero GPIO output and left unconnected if not  
used (otherwise it will require an external pullup or pulldown to avoid a floating GPIO input).  
General purpose I/O 13 (hysteresis buffer). Options:  
1. CAL_PWR (output): Intended to feed the calibration control of the successive approximation  
ADC light sensor.  
2. Optional GPIO. Should be configured as a logic zero GPIO output and left unconnected if not  
used (otherwise it will require an external pullup or pulldown to avoid a floating GPIO input).  
General purpose I/O 12 (hysteresis buffer). Option:  
GPIO_12  
GPIO_11  
J14  
B1  
B1  
1. Optional GPIO. Should be configured as a logic zero GPIO output and left unconnected if not  
used (otherwise it will require an external pullup or pulldown to avoid a floating GPIO input).  
General purpose I/O 11 (hysteresis buffer). Options:  
1. (Output): thermistor power enable.  
H15  
2. Optional GPIO. Should be configured as a logic zero GPIO output and left unconnected if not  
used (otherwise it will require an external pullup or pulldown to avoid a floating GPIO input).  
General Purpose I/O 10 (hysteresis buffer). Options:  
1. RC_CHARGE (output): Intended to feed the RC charge circuit of the successive approximation  
ADC used to control the light sensor comparator.  
GPIO_10  
GPIO_09  
H14  
G15  
B1  
2. Optional GPIO. Should be configured as a logic zero GPIO output and left unconnected if not  
used (otherwise it will require an external pullup or pulldown to avoid a floating GPIO input).  
General purpose I/O 09 (hysteresis buffer). Options:  
1. LS_PWR (active high output): Intended to feed the power control signal of the successive  
approximation ADC light sensor.  
B1  
2. Optional GPIO. Should be configured as a logic zero GPIO output and left unconnected if not  
used (otherwise it will require an external pullup or pulldown to avoid a floating GPIO input).  
General purpose I/O 07 (hysteresis buffer). Options:  
1. (All) LED_ENABLE (active high input). This signal can be used as an optional shutdown  
interlock for the LED driver. Specifically, when so configured, setting LED_ENABLE = 0  
(disabled), will cause LDEDRV_ON to be forced to 0 and LED_SEL(2:0) to be forced to b000.  
Otherwise when LED_ENABLE = 1 (enabled), the DLPC150 controller is free to control the  
LED SEL signals as it desires. There is however a 100-ms delay after LED_ENABLE  
transitions from low-to-high before the interlock is released.  
GPIO_07  
GPIO_06  
F15  
F14  
B1  
2. (Output): LABB output sample and hold sensor control signal.  
3. (All) GPIO (bidirectional): Optional GPIO. Should be configured as a logic zero GPIO output  
and left unconnected if not used (otherwise it will require an external pullup or pulldown to  
avoid a floating GPIO input).  
General purpose I/O 06 (hysteresis buffer). Option:  
1. Optional GPIO. Should be configured as a logic zero GPIO output and left unconnected if not  
used. An external pulldown resistor is required to deactivate this signal during reset and auto-  
initialization processes.  
B1  
Copyright © 2015–2019, Texas Instruments Incorporated  
7
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
General purpose I/O 05 (hysteresis buffer). Option:  
GPIO_05  
E15  
B1  
1. Optional GPIO. Should be configured as a logic zero GPIO output and left unconnected if not  
used (otherwise it will require an external pullup or pulldown to avoid a floating GPIO input).  
CLOCK AND PLL SUPPORT  
Reference clock crystal input. If an external oscillator is used in place of a crystal, then this pin  
serves as the oscillator input.  
PLL_REFCLK_I  
PLL_REFCLK_O  
H1  
J1  
I11  
O5  
Reference clock crystal return. If an external oscillator is used in place of a crystal, then leave this  
pin unconnected with no capacitive load.  
BOARD LEVEL TEST AND DEBUG  
Reserved Manufacturing test enable pin. For proper device operation, connect this signal directly to  
ground.  
HWTEST_EN  
C10  
I6  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
P12  
P13  
N13(6)  
N12(6)  
R10  
I6  
I6  
Reserved pin. For proper device operation, leave this pin unconnected.  
Reserved pin. For proper device operation, leave this pin unconnected.  
Reserved pin. For proper device operation, leave this pin unconnected.  
Reserved pin. For proper device operation, leave this pin unconnected.  
Reserved pin. For proper device operation, pull high to Vcc18 with external pullup resistor.  
Reserved pin. For proper device operation, pull high to Vcc18 with external pullup resistor.  
Reserved pin. For proper device operation, leave this pin unconnected.  
Reserved pin. For proper device operation, leave this pin unconnected.  
O1  
O1  
B8  
B8  
I6  
R11  
M13  
N11  
I6  
Reserved pin.  
Reserved  
P11  
I6  
For proper device operation, this pin must be tied to ground, through an external 8-kΩ, or less,  
resistor. Failure to tie this pin low will cause startup and initialization problems.  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
E1  
E2  
F1  
F2  
F3  
G1  
G2  
D1  
D2  
C1  
C2  
Reserved pin. For proper device operation, leave this pin unconnected.  
Reserved pin. For proper device operation, leave this pin unconnected.  
Reserved pin. For proper device operation, leave this pin unconnected.  
Reserved pin. For proper device operation, leave this pin unconnected.  
Reserved pin. For proper device operation, leave this pin unconnected.  
Reserved pin. For proper device operation, leave this pin unconnected.  
Reserved pin. For proper device operation, leave this pin unconnected.  
Reserved pin. For proper device operation, leave this pin unconnected.  
Reserved pin. For proper device operation, leave this pin unconnected.  
Reserved pin. For proper device operation, leave this pin unconnected.  
Reserved pin. For proper device operation, leave this pin unconnected.  
Reserved Test pin 0. For proper device operation, leave this pin unconnected (includes weak  
internal pulldown).Tri-stated while RESETZ is asserted low. Sampled as an input test mode  
selection control approximately 1.5 µs after de-assertion of RESETZ, and then driven as an output.  
Note: An external pullup should not be applied to this pin to avoid putting the DLPC150 in a test  
mode.  
TSTPT_0  
TSTPT_1  
TSTPT_2  
R12  
R13  
R14  
B1  
B1  
B1  
Reserved Test pin 1. For proper device operation, leave this pin unconnected (includes weak  
internal pulldown). Tri-stated while RESETZ is asserted low. Sampled as an input test mode  
selection control approximately 1.5 µs after de-assertion of RESETZ and then driven as an output.  
Note: An external pullup should not be applied to this pin to avoid putting the DLPC150 in a test  
mode.  
Reserved Test pin 2. For proper device operation, leave this pin unconnected (includes weak  
internal pulldown). Tri-stated while RESETZ is asserted low. Sampled as an input test mode  
selection control approximately 1.5 µs after de-assertion of RESETZ and then driven as an output.  
Note: An external pullup should not be applied to this pin to avoid putting the DLPC150 in a test  
mode.  
(6) If operation does not call for an external pullup and there is no external logic that might overcome the weak internal pulldown resistor,  
then this I/O can be left open or unconnected for normal operation. If operation does not call for an external pullup, but there is external  
logic that might overcome the weak internal pulldown resistor, then an external pulldown resistor is recommended to ensure a logic low.  
8
Copyright © 2015–2019, Texas Instruments Incorporated  
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
Pin Functions (continued)  
PIN  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
Reserved Test pin 3. For proper device operation, leave this pin unconnected (includes weak  
internal pulldown).Tri-stated while RESETZ is asserted low. Sampled as an input test mode  
selection control approximately 1.5 µs after de-assertion of RESETZ and then driven as an output.  
TSTPT_3  
R15  
B1  
Reserved Test pin 4. For proper device operation, leave this pin unconnected (includes weak  
internal pulldown).Tri-stated while RESETZ is asserted low. Sampled as an input test mode  
selection control approximately 1.5 µs after de-assertion of RESETZ and then driven as an output.  
TSTPT_4  
TSTPT_5  
TSTPT_6  
TSTPT_7  
P14  
P15  
N14  
N15  
B1  
B1  
B1  
B1  
Reserved Test pin 5. For proper device operation, leave this pin unconnected (includes weak  
internal pulldown). Tri-stated while RESETZ is asserted low. Sampled as an input test mode  
selection control approximately 1.5 µs after de-assertion of RESETZ and then driven as an output.  
Reserved Test pin 6. For proper device operation, leave this pin unconnected (includes weak  
internal pulldown). Tri-stated while RESETZ is asserted low. Sampled as an input test mode  
selection control approximately 1.5 µs after de-assertion of RESETZ and then driven as an output.  
Reserved Test pin 7. For proper device operation, leave this pin unconnected (includes weak  
internal pulldown). Tri-stated while RESETZ is asserted low. Sampled as an input test mode  
selection control approximately 1.5 µs after de-assertion of RESETZ and then driven as an output.  
POWER AND GROUND  
C5, D5,  
D7,  
D12,  
J4, J12,  
K3, L4,  
L12,  
M6, M9,  
D9,  
VDD  
PWR Core power 1.1 V (main 1.1 V)  
D13,  
F13,  
H13,  
L13,  
M10,  
D3, E3  
VDDLP12  
C3  
PWR Core power 1.1 V  
C4, D6,  
D8,  
D10,  
E4,  
E13,  
F4, G4,  
G12,  
H4,  
H12,  
J3, J13,  
K4,  
K12,  
L3, M4,  
M5, M8,  
M12,  
VSS  
G13,  
GND Core ground (eDRAM, I/O ground, thermal ground)  
C6, C8,  
F6, F7,  
F8, F9,  
F10,  
G6, G7,  
G8, G9,  
G10,  
H6, H7,  
H8, H9,  
H10,  
J6, J7,  
J8, J9,  
J10, K6,  
K7, K8,  
K9, K10  
Copyright © 2015–2019, Texas Instruments Incorporated  
9
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
C7, C9,  
D4,  
E12,  
F12,  
K13,  
M11  
All 1.8-V I/O power:  
VCC18  
PWR (1.8-V power supply for all I/O other than the host or parallel interface and the SPI flash interface.  
This includes RESETZ, PARKZ LED_SEL, CMP, GPIO, IIC1, TSTPT, and JTAG pins)  
M3, M7,  
N3, N7  
Host or parallel interface I/O power: 1.8 to 3.3 V (Includes IIC0, PDATA, video syncs, and  
HOST_IRQ pins)  
VCC_INTF  
VCC_FLSH  
PWR  
Flash interface I/O power:1.8 to 3.3 V  
PWR  
D11  
(Dedicated SPI0 power pin)  
VDD_PLLM  
VSS_PLLM  
VDD_PLLD  
VSS_PLLD  
H2  
G3  
J2  
PWR MCG PLL 1.1-V power  
RTN MCG PLL return  
PWR DCG PLL 1.1-V power  
RTN DCG PLL return  
H3  
10  
Copyright © 2015–2019, Texas Instruments Incorporated  
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
5.1 DLPC150 Mechanical Data  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
DMD_LS_WDAT  
A
DMD_HS_  
WDATA_H_P  
DMD_HS_  
WDATA_G_P  
DMD_HS_  
WDATA_F_P  
DMD_HS_  
WDATA_E_P  
DMD_HS_  
CLK_P  
DMD_HS_  
WDATA_D_P  
DMD_HS_  
WDATA_C_P  
DMD_HS_  
WDATA_B_P  
DMD_HS_  
WDATA_A_P  
PMIC_  
CMP_PWM  
DMD_LS_CLK  
PMIC_CMP_IN SPI0_CLK  
SPI0_CSZ0  
A
B
C
D
E
F
DMD_DEN_ARS DMD_LS_RDAT  
DMD_HS_  
WDATA_H_N  
DMD_HS_  
WDATA_G_N  
DMD_HS_  
WDATA_F_N  
DMD_HS_  
WDATA_E_N  
DMD_HS_  
CLK_N  
DMD_HS_  
WDATA_D_N  
DMD_HS_  
WDATA_C_N  
DMD_HS_  
WDATA_B_N  
DMD_HS_  
WDATA_A_N  
PMIC_LED_  
SEL_1  
PMIC_LED_  
SEL_0  
SPI0_DIN  
SPI0_CSZ1  
VDD  
SPI0_DOUT  
PARKZ  
VDD  
TZ  
A
Reserved  
Reserved  
VDDLP12  
VDD  
VSS  
VCC18  
VSS  
VDD  
VDD  
VSS  
VSS  
VCC18  
VDD  
VSS  
VSS  
VCC18  
VDD  
HWTEST_EN  
VSS  
RESETZ  
PMIC_SPI_DIN PMIC_SPI_CLK  
PMIC_  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
VDD_PLLM  
VDD_PLLD  
PDATA_0  
PDATA_2  
PDATA_4  
PDATA_6  
DATEN_CMD  
PDATA_9  
VCC_FLSH  
PMIC_SPI_CSZ  
SPI_DOUT  
VDD  
VCC18  
VCC18  
VSS  
VSS  
TRIG_OUT_2  
GPIO_06  
GPIO_05  
GPIO_07  
GPIO_09  
GPIO_11  
GPIO_13  
GPIO_15  
GPIO_17  
GPIO_19  
TSTPT_7  
TSTPT_5  
TSTPT_3  
Reserved  
Reserved  
VSS_PLLM  
VSS_PLLD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
Reserved  
VSS  
VSS  
PROJ_ON  
GPIO_10  
G
H
J
PLL_REFCLK_I  
PLL_REFCLK_O  
PDATA_1  
VSS  
VSS  
VDD  
VDD  
VDD  
VSS  
GPIO_12  
VDD  
VSS  
VSS  
VCC18  
VDD  
GPIO_14  
K
L
PDATA_3  
VSS  
VDD  
VDD  
GPIO_16  
PDATA_5  
VCC_INTF  
VCC_INTF  
PCLK  
VSS  
VSS  
VDD  
VCC_INTF  
VCC_INTF  
PDATA_17  
PDATA_18  
VSS  
VDD  
VDD  
VCC18  
VSS  
Reserved  
Reserved  
Reserved  
TSTPT_1  
TRIG_OUT_1  
TSTPT_6  
TSTPT_4  
TSTPT_2  
M
N
P
R
PDATA_7  
PDM_CVS_TE  
PDATA_11  
PDATA_12  
HSYNC_CS  
PDATA_13  
PDATA_14  
TRIG_IN_1  
PDATA_15  
PDATA_16  
HOST_IRQ  
PDATA_19  
PDATA_20  
IIC0_SDA  
PDATA_21  
PDATA_22  
IIC0_SCL  
PDATA_23  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
TSTPT_0  
VSYNC_WE  
PDATA_8  
PDATA_10  
Figure 1. 13- × 13-mm Package – VF Ball Grid Array  
Copyright © 2015–2019, Texas Instruments Incorporated  
11  
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
DLPC150 Mechanical Data (continued)  
Table 1. I/O Type Subscript Definition  
I/O TYPE  
SUPPLY REFERENCE  
ESD STRUCTURE  
SUBSCRIPT  
DESCRIPTION  
1
2
1.8 LVCMOS I/O buffer with 8-mA drive  
1.8 LVCMOS I/O buffer with 4-mA drive  
1.8 LVCMOS I/O buffer with 24-mA drive  
1.8 sub-LVDS output with 4-mA drive  
1.8, 2.5, 3.3 LVCMOS with 4-mA drive  
1.8 LVCMOS input  
Vcc18  
Vcc18  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
3
Vcc18  
4
Vcc18  
5
Vcc_INTF  
Vcc18  
Vcc_INTF  
Vcc18  
6
7
1.8-, 2.5-, 3.3-V I2C with 3-mA drive  
1.8-V I2C with 3-mA drive  
8
9
1.8-, 2.5-, 3.3-V LVCMOS with 8-mA drive  
1.8, 2.5, 3.3 LVCMOS input  
Vcc_INTF  
Vcc_INTF  
Vcc_FLSH  
Vcc_FLSH  
11  
12  
13  
1.8-, 2.5-, 3.3-V LVCMOS input  
1.8-, 2.5-, 3.3-V LVCMOS with 8-mA drive  
12  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
Table 2. Internal Pullup and Pulldown Characteristics(1)(2)  
INTERNAL PULLUP AND PULLDOWN  
RESISTOR CHARACTERISTICS  
VCCIO  
MIN  
MAX  
UNIT  
3.3 V  
2.5 V  
1.8 V  
3.3 V  
2.5 V  
1.8 V  
29  
38  
56  
30  
36  
52  
63  
90  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
Weak pullup resistance  
148  
72  
Weak pulldown resistance  
101  
167  
(1) The resistance is dependent on the supply voltage level applied to the I/O.  
(2) An external 8-kΩ pullup or pulldown (if needed) would work for any voltage condition to correctly pull enough to override any associated  
internal pullups or pulldowns.  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted) (see  
(1)  
)
MIN  
MAX  
UNIT  
SUPPLY VOLTAGE(2)(3)  
V(VDD) (core)  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
1.21  
1.32  
1.96  
3.60  
1.99  
2.75  
3.60  
3.60  
1.96  
2.72  
3.58  
1.21  
1.21  
V
V
V
V(VDDLP12) (core)  
Power + sub-LVDS  
Host I/O power  
If 1.8-V power used  
V(VCC_INTF)  
V
V
If 2.5-V power used  
If 3.3-V power used  
Flash I/O power  
If 1.8-V power used  
V(VCC_FLSH)  
If 2.5-V power used  
If 3.3-V power used  
V(VDD_PLLM) (MCG PLL)  
V(VDD_PLLD) (DCG PLL)  
GENERAL  
V
V
TJ  
Operating junction temperature  
Storage temperature  
–30  
–40  
125  
125  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to GND.  
(3) Overlap currents, if allowed to continue flowing unchecked, not only increase total power dissipation in a circuit, but degrade the circuit  
reliability, thus shortening its usual operating life.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(1)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2015–2019, Texas Instruments Incorporated  
13  
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.045  
1.02  
NOM  
1.1  
MAX  
UNIT  
V(VDD)  
Core power 1.1 V (main 1.1 V)  
Core power 1.1 V  
±5% tolerance  
±5% tolerance  
1.155  
1.18  
1.28  
V
1.1  
V(VDDLP12)  
V
V
(1)  
See  
1.12  
1.2  
All 1.8-V I/O power:  
(1.8-V power supply for all I/O other than the  
host or parallel interface and the SPI flash  
interface. This includes RESETZ, PARKZ,  
LED_SEL, CMP, GPIO, TSTPT, and Reserved  
pins.)  
V(VCC18)  
±8.5% tolerance  
1.64  
1.8  
1.96  
1.64  
2.28  
3.02  
1.64  
2.28  
3.02  
1.8  
2.5  
3.3  
1.8  
2.5  
3.3  
1.96  
2.72  
3.58  
1.96  
2.72  
3.58  
Host or parallel interface I/O power: 1.8 to 3.3 V  
(includes IIC0, PDATA, video syncs, and  
HOST_IRQ pins)  
±8.5% tolerance  
See  
V(VCC_INTF)  
V
(1)  
±8.5% tolerance  
V(VCC_FLSH)  
Flash interface I/O power:1.8 to 3.3 V  
MCG PLL 1.1-V power  
V
V
(1)  
See  
±9.1% tolerance  
V(VDD_PLLM)  
V(VDD_PLLD)  
TA  
1.025  
1.1  
1.1  
1.155  
(2)  
See  
±9.1% tolerance  
DCG PLL 1.1-V power  
1.025  
–30  
1.155  
85  
V
(2)  
See  
Operating ambient temperature range(3)  
°C  
(1) These supplies have multiple valid ranges.  
(2) These I/O supply ranges are wider to facilitate additional filtering.  
(3) The operating ambient temperature range assumes 0 forced air flow, a JEDEC JESD51 junction-to-ambient thermal resistance value at  
0 forced air flow (RθJA at 0 m/s), a JEDEC JESD51 standard test card and environment, along with min and max estimated power  
dissipation across process, voltage, and temperature. Thermal conditions vary by application, which will impact RθJA. Thus, maximum  
operating ambient temperature varies by application.  
(a) Ta_min = Tj_min – (Pd_min × RθJA) = –30°C – (0.0W × 30.3°C/W) = –30°C  
(b) Ta_max = Tj_max – (Pd_max × RθJA) = +105°C – (0.348W × 30.3°C/W) = +94.4°C  
6.4 Thermal Information  
DLPC150  
THERMAL METRIC(1)  
ZEZ (VFBGA)  
UNIT  
°C/W  
°C/W  
176 PINS  
201 PINS  
10.1  
RθJC  
Junction-to-case thermal resistance  
11.2  
30.3  
27.4  
26.6  
at 0 m/s of forced airflow(2)  
at 1 m/s of forced airflow(2)  
at 2 m/s of forced airflow(2)  
28.8  
RθJA  
Junction-to-air thermal resistance  
25.3  
24.4  
Temperature variance from junction to package top center temperature, per unit power  
dissipation  
(3)  
ψJT  
.27  
.23  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
(2) Thermal coefficients abide by JEDEC Standard 51. RθJA is the thermal resistance of the package as measured using a JEDEC defined  
standard test PCB. This JEDEC test PCB is not necessarily representative of the DLPC150 PCB and thus the reported thermal  
resistance may not be accurate in the actual product application. Although the actual thermal resistance may be different , it is the best  
information available during the design phase to estimate thermal performance.  
(3) Example: (0.5 W) × (0.2 C/W) 1.00°C temperature rise.  
14  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
6.5 Electrical Characteristics Over Recommended Operating Conditions  
(1)(2)(3)(4)(5)(6)  
(see  
)
PARAMETER  
TEST CONDITIONS(7)  
IDLE disabled, WVGA, 60 Hz  
IDLE enabled, WVGA, 60 Hz  
IDLE disabled, WVGA, 60 Hz  
IDLE enabled, WVGA, 60 Hz  
IDLE disabled, WVGA, 60 Hz  
IDLE enabled, WVGA, 60 Hz  
IDLE disabled, WVGA, 60 Hz  
MIN TYP(8) MAX(9) UNIT  
112  
85  
232.2  
ICC11  
Supply voltage, 1.1-V Main core power  
Supply voltage, 1.1-V MCG PLL power  
Supply voltage, 1.1-V DCG PLL power  
mA  
mA  
mA  
112  
85  
ICC_PLLM  
112  
85  
ICC_PLLD  
Supply voltage, 1.8-V I/O power:  
13  
(1.8-V power supply for all I/O other than the  
host or parallel interface and the SPI flash  
interface. This includes sub-LVDS DMD I/O,  
RESETZ, PARKZ LED_SEL, CMP, GPIO,  
IIC1, TSTPT, and JTAG pins)  
ICC18  
mA  
IDLE enabled, WVGA, 60 Hz  
13  
Supply voltage, 1.8-V Host or parallel  
interface I/O power: (includes IIC0, PDATA,  
video syncs, and HOST_IRQ pins)  
IDLE disabled, WVGA, 60 Hz,  
VVCC_INTF = 1.8V  
ICC_INTF  
1.5  
mA  
mA  
Supply voltage, 1.8-V Flash interface I/O  
power  
IDLE disabled, WVGA, 60 Hz,  
VVCC_FLSH = 1.8V  
ICC_FLSH  
1.01  
(1) Assumes 12.5% activity factor, 30% clock gating on appropriate domains, and mixed SVT or HVT cells.  
(2) Programmable host and flash I/O are at minimum voltage (that is 1.8 V) for this typical scenario.  
(3) Max currents column use typical motion video as the input. The typical currents column uses SMPTE color bars as the input.  
(4) Some applications (that is, high-resolution 3D) may be forced to use 1-oz copper to manage DLPC150 controller package heat.  
(5) For the typical cases, all pins using 1.8 V are tied together as are 1.1-V pins, and the current specified is for the collective 1.8-V and 1.1-  
V current.  
(6) Input image is 854 × 480 (WVGA) 24-bits on the parallel interface at the frame rate shown with DLP2010 or DLP2010NIR.  
(7) In normal mode.  
(8) Assumes typical case power PVT condition = nominal process, typical voltage, typical temperature (55°C junction). WVGA resolution.  
(9) Assumes worse case power PVT condition = corner process, high voltage, high temperature (105°C junction), WVGA resolution .  
Copyright © 2015–2019, Texas Instruments Incorporated  
15  
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
6.6 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted) (see  
(1)(2)  
)
PARAMETER(3)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
(1)  
I2C buffer (I/O type 7)  
0.7 × VCC_INTF  
1.8-V LVTTL (I/O type 1, 2, 3, 5,  
6, 8, 9, 11, 12, 13)  
1.17  
3.6  
1.8-V LVTTL (I/O type 1, 6)  
identified below: (2)  
CMP_OUT; PARKZ; RESETZ;  
GPIO[19:05]; TRIG_OUT_1;  
TRIG_OUT_2  
High-level  
input  
threshold  
voltage  
1.3  
1.7  
3.6  
V
VIH  
2.5-V LVTTL (I/O type 5, 9, 11,  
12, 13)  
3.6  
3.6  
3.3-V LVTTL (I/O type 5, 9, 11,  
12, 13)  
I2C buffer (I/O type 7)  
2
–0.5  
–0.3  
0.3 × VCC_INTF  
1.8-V LVTTL (I/O type 1, 2, 3, 5,  
6, 8, 9, 11, 12, 13)  
0.63  
0.5  
1.8-V LVTTL (I/O type 1, 6)  
identified below: (2)  
CMP_OUT; PARKZ; RESETZ;  
GPIO[19:05]; TRIG_OUT_1;  
TRIG_OUT_2  
Low-level  
input  
threshold  
voltage  
–0.3  
VIL  
V
2.5-V LVTTL (I/O type 5, 9, 11,  
12, 13)  
–0.3  
–0.3  
0.7  
0.8  
3.3-V LVTTL (I/O type 5, 9, 11,  
12, 13)  
Steady-state  
common  
mode voltage  
1.8 sub-LVDS (DMD high speed)  
(I/O type 4)  
VCM  
800  
900  
200  
1000  
mV  
mV  
Differential  
ǀVODǀ output  
magnitude  
1.8 sub-LVDS (DMD high speed)  
(I/O type 4)  
1.8-V LVTTL (I/O type 1, 2, 3, 5,  
6, 8, 9, 11, 12, 13)  
1.35  
1.7  
2.5-V LVTTL (I/O type 5, 9, 11,  
12, 13)  
High-level  
output  
voltage  
VOH  
V
3.3-V LVTTL (I/O type 5, 9, 11,  
12, 13)  
2.4  
1.8 sub-LVDS – DMD high  
speed (I/O type 4)  
1
I2C buffer (I/O type 7)  
I2C buffer (I/O type 7)  
VCC_INTF > 2 V  
VCC_INTF < 2 V  
0.4  
0.2 × VCC_INTF  
1.8-V LVTTL (I/O type 1, 2, 3, 5,  
6, 8, 9, 11, 12, 13)  
0.45  
0.7  
Low-level  
output  
voltage  
2.5 V LVTTL (I/O type 5, 9, 11,  
12, 13)  
VOL  
V
3.3 V LVTTL (I/O type 5, 9, 11,  
12, 13)  
0.4  
1.8 sub-LVDS – DMD high  
speed (I/O type 4)  
0.8  
(1) I/O is high voltage tolerant; that is, if VCC = 1.8 V, the input is 3.3-V tolerant, and if VCC = 3.3 V, the input is 5-V tolerant.  
(2) DLPC150 controller pins: CMP_OUT; PARKZ; RESETZ; GPIO[19:05]; TRIG_OUT_1; TRIG_OUT_2 have slightly varied VIH and VIL  
range from other 1.8-V I/O.  
(3) The number inside each parenthesis for the I/O refers to the type defined in Table 1.  
16  
Copyright © 2015–2019, Texas Instruments Incorporated  
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted) (see (1)(2)  
)
PARAMETER(3)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
1.8-V LVTTL (I/O type 1, 2, 3, 5,  
6, 8, 9, 11, 12, 13)  
4 mA  
2
1.8-V LVTTL (I/O type 1, 2, 3, 5,  
6, 8, 9, 11, 12, 13)  
8 mA  
3.5  
1.8-V LVTTL (I/O type 1, 2, 3, 5,  
6, 8, 9, 11, 12, 13)  
24 mA  
10.6  
High-level  
output  
current  
IOH  
mA  
2.5-V LVTTL (I/O type 5)  
4 mA  
8 mA  
5.4  
2.5-V LVTTL (I/O type 9, 13)  
10.8  
2.5-V LVTTL (I/O type 5, 9, 11,  
12, 13)  
24 mA  
28.7  
3.3-V LVTTL (I/O type 5 )  
3.3-V LVTTL (I/O type 9, 13)  
I2C buffer (I/O type 7)  
4 mA  
8 mA  
7.8  
15  
3
1.8-V LVTTL (I/O type 1, 2, 3, 5,  
6, 8, 9, 11, 12, 13)  
4 mA  
8 mA  
24 mA  
2.3  
4.6  
1.8-V LVTTL (I/O type 1, 2, 3, 5,  
6, 8, 9, 11, 12, 13)  
1.8-V LVTTL (I/O type 1, 2, 3, 5,  
6, 8, 9, 11, 12, 13)  
Low-level  
output  
13.9  
IOL  
mA  
current  
2.5-V LVTTL (I/O type 5)  
4 mA  
8 mA  
5.2  
2.5-V LVTTL (I/O type 9, 13)  
10.4  
2.5-V LVTTL (I/O type 5, 9, 11,  
12, 13)  
24 mA  
31.1  
3.3-V LVTTL (I/O type 5 )  
4 mA  
8 mA  
4.4  
8.9  
3.3-V LVTTL (I/O type 9, 13)  
0.1 × VCC_INTF < VI  
< 0.9 × VCC_INTF  
I2C buffer (I/O type 7)  
–10  
–10  
–10  
–10  
10  
1.8-V LVTTL (I/O type 1, 2, 3, 5,  
6, 8, 9, 11, 12, 13)  
High-  
10  
µA  
10  
impedance  
leakage  
current  
IOZ  
2.5-V LVTTL (I/O type 5, 9, 11,  
12, 13)  
3.3-V LVTTL (I/O type 5, 9, 11,  
12, 13)  
I2C buffer (I/O type 7)  
10  
5
1.8-V LVTTL (I/O type 1, 2, 3, 5,  
6, 8, 9, 11, 12, 13)  
2.6  
2.6  
2.6  
3.5  
Input  
2.5-V LVTTL (I/O type 5, 9, 11,  
12, 13)  
capacitance  
(including  
package)  
3.5  
pF  
CI  
3.3-V LVTTL (I/O type 5, 9, 11,  
12, 13)  
3.5  
3
1.8 sub-LVDS – DMD high  
speed (I/O type 4)  
Copyright © 2015–2019, Texas Instruments Incorporated  
17  
 
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
6.7 High-Speed Sub-LVDS Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX  
1
UNIT  
V
VCM  
VCM (Δpp)(1)  
VCM (Δss)(1)  
Steady-state common mode voltage  
VCM change peak-to-peak (during switching)  
VCM change steady state  
0.8  
0.9  
75  
mV  
mV  
mV  
mV  
V
–10  
–10  
10  
(2)  
|VOD  
|
Differential output voltage magnitude  
VOD change (between logic states)  
Single-ended output voltage high  
Single-ended output voltage low  
Differential output rise time  
200  
VOD (Δ)  
VOH  
10  
1
VOL  
0.8  
V
(2)  
tR  
250  
250  
ps  
(2)  
tF  
Differential output fall time  
ps  
tMAX  
Max switching rate  
1064  
55%  
120  
Mbps  
DCout  
Output duty cycle  
45%  
80  
50%  
100  
(1)  
Txterm  
Internal differential termination  
Ω
100-Ω differential PCB trace  
(50-Ω transmission lines)  
Txload  
0.5  
6
inches  
(1) Definition of VCM changes:  
Vcm  
Vcm(ûss)  
Vcm(ûpp)  
(2) Note that VOD is the differential voltage swing measured across a 100-Ω termination resistance connected directly between the  
transmitter differential pins. |VOD| is the magnitude of this voltage swing relative to 0. Rise and fall times are defined for the differential  
VOD signal as follows:  
+ Vod  
tF  
tR  
80%  
20%  
|Vod|  
|Vod|  
0V  
Vod  
- Vod  
Differential Output Signal  
(Note Vcm is removed when the signals are viewed differentially)  
18  
Copyright © 2015–2019, Texas Instruments Incorporated  
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
6.8 Low-Speed SDR Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
ID  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Operating voltage  
VCC18 (all signal groups)  
1.64  
1.96  
V
VIHD(DC)  
Signal group 1  
DC input high voltage  
DC input low voltage(1)  
AC input high voltage(2)  
AC input low voltage  
All  
0.7 × VCC18  
–0.5  
VCC18 + 0.5  
0.3 × VCC18  
VCC18 + 0.5  
V
V
V
V
VILD(DC)  
Signal group 1  
All  
All  
All  
VIHD(AC)  
Signal group 1  
0.8 × VCC18  
–0.5  
VILD(AC)  
Signal group 1  
0.2 × VCC18  
3
Signal group 1  
Signal group 2  
Signal group 3  
1
0.25  
0.5  
(3)(4)(5)(6)  
Slew rate  
V/ns  
(1) VILD(AC) min applies to undershoot.  
(2) VIHD(AC) max applies to overshoot.  
(3) Signal group 1 output slew rate for rising edge is measured between VILD(DC) to VIHD(AC).  
(4) Signal group 1 output slew rate for falling edge is measured between VIHD(DC) to VILD(AC).  
(5) Signal group 1: See Figure 2.  
(6) Signal groups 2 and 3 output slew rate for rising edge is measured between VILD(AC) to VIHD(AC).  
Figure 2. Low Speed (Ls) I/O Input Thresholds  
Copyright © 2015–2019, Texas Instruments Incorporated  
19  
 
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
6.9 System Oscillators Timing Requirements(1)  
NUMBER  
MIN  
23.998  
41.67  
MAX  
UNIT  
MHz  
ns  
1a  
1a  
1b  
1b  
2
ƒclock Clock frequency, MOSC(2)  
tc  
Cycle time, MOSC(2)  
ƒclock Clock frequency, MOSC(2)  
tc  
Cycle time, MOSC(2)  
tw(H) Pulse duration(3), MOSC, high  
tw(L) Pulse duration(3), MOSC, low  
Option 1: 24-MHz oscillator  
24.002  
41.663  
16.002  
62.492  
40 tc%  
40 tc%  
10  
Option 1: 24-MHz oscillator  
Option 2: 16-MHz oscillator  
15.998  
62.508  
MHz  
ns  
Option 2: 16-MHz oscillator  
50% to 50% reference points (signal)  
50% to 50% reference points (signal)  
20% to 80% reference points (signal)  
3
4
tt  
Transition time(3), MOSC, tt = tf / tr  
ns  
5
tjp  
Long-term, peak-to-peak, period jitter(3)  
MOSC  
,
2%  
(that is the deviation in period from ideal  
period due solely to high frequency jitter)  
(1) The I/O pin TSTPT_6 enables the DLPC150 controller to use two different oscillator frequencies through a pullup control at initial  
DLPC150 controller power-up. If a pullup is applied to this pin then a 16.0-MHz oscillator option must be used instead of the 24-MHz  
option shown.  
(2) The frequency accuracy for MOSC is ±200 PPM. (This includes impact to accuracy due to aging, temperature, and trim sensitivity.) The  
MOSC input cannot support spread spectrum clock spreading.  
(3) Applies only when driven through an external digital oscillator.  
tt  
tt  
tc  
tw(H)  
tw(L)  
80%  
20%  
80%  
20%  
50%  
50%  
MOSC  
50%  
Figure 3. System Oscillators  
6.10 Power-Up and Reset Timing Requirements  
NUMBER  
MIN  
1.25  
MAX  
UNIT  
1
2
tw(L)  
tt  
Pulse duration, inactive low, RESETZ 50% to 50% reference points  
(signal)  
Transition time, RESETZ(1), tt = tf / tr 20% to 80% reference points  
(signal)  
µs  
0.5  
µs  
(1) For more information on RESETZ, see Pin Configuration and Functions.  
DC Power  
Supplies  
tt  
tt  
80%  
50%  
20%  
80%  
50%  
20%  
80%  
50%  
20%  
80%  
50%  
20%  
RESETZ  
tw(L)  
tw(L)  
tw(L)  
Figure 4. Power-Up and Power-Down RESETZ Timing  
20  
Copyright © 2015–2019, Texas Instruments Incorporated  
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
6.11 Parallel Interface Frame Timing Requirements  
MIN  
MAX  
UNIT  
tp_vsw  
tp_vbp  
Pulse duration – VSYNC_WE high  
50% reference  
points  
1
lines  
Vertical back porch (VBP) – time from the leading  
edge of VSYNC_WE to the leading edge  
HSYNC_CS for the first active line (see  
50% reference  
points  
2
1
lines  
lines  
(1)  
)
tp_vfp  
Vertical front porch (VFP) – time from the leading  
50% reference  
edge of the HSYNC_CS following the last active line points  
in a frame to the leading edge of VSYNC_WE (see  
(1)  
)
(1)  
tp_tvb  
Total vertical blanking – time from the leading edge  
of HSYNC_CS following the last active line of one  
frame to the leading edge of HSYNC_CS for the first  
active line in the next frame. (This is equal to the  
sum of VBP (tp_vbp) + VFP (tp_vfp).)  
50% reference  
points  
See  
lines  
tp_hsw  
tp_hbp  
tp_hfp  
tp_thb  
Pulse duration – HSYNC_CS high  
50% reference  
points  
4
4
128  
PCLKs  
PCLKs  
PCLKs  
PCLKs  
Horizontal back porch – time from rising edge of  
HSYNC_CS to rising edge of DATAEN_CMD  
50% reference  
points  
Horizontal front porch – time from falling edge of  
DATAEN_CMD to rising edge of HSYNC_CS  
50% reference  
points  
8
(2)  
Total horizontal blanking – sum of horizontal front  
and back porches  
50% reference  
points  
See  
(1) The minimum total vertical blanking is defined by the following equation: tp_tvb(min) = 6 + [6 × Max(1, Source_ALPF/ DMD_ALPF)] lines  
where:  
(a) SOURCE_ALPF = Input source active lines per frame  
(b) DMD_ALPF = Actual DMD used lines per frame supported  
(2) Total horizontal blanking is driven by the max line rate for a given source which will be a function of resolution and orientation. The  
following equation can be applied for this: tp_thb = Roundup[(1000 × ƒclock)/ LR] – APPL  
where:  
(a) ƒclock = Pixel clock rate in MHz  
(b) LR = Line rate in kHz  
(c) APPL is the number of active pixels per (horizontal) line.  
(d) If tp_thb is calculated to be less than tp_hbp + tp_hfp then the pixel clock rate is too low or the line rate is too high, and one or both  
must be adjusted.  
Copyright © 2015–2019, Texas Instruments Incorporated  
21  
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
1 Frame  
tp_vsw  
VSYNC_WE  
(This diagram assumes the VSYNC  
active edge is the rising edge)  
tp_vbp  
tp_vfp  
HSYNC_CS  
DATAEN_CMD  
1 Line  
tp_hsw  
HSYNC_CS  
(This diagram assumes the HSYNC  
active edge is the rising edge)  
tp_hbp  
tp_hfp  
DATAEN_CMD  
P
n-2  
P
n-1  
PDATA(23/15:0)  
PCLK  
P0  
P1  
P2  
P3  
Pn  
Figure 5. Parallel Interface Frame Timing  
22  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
6.12 Parallel Interface General Timing Requirements(1)  
MIN  
MAX  
UNIT  
MHz  
ns  
ƒclock  
tp_clkper  
tp_clkjit  
tp_wh  
Clock frequency, PCLK  
Clock period, PCLK  
1
75  
50% reference points  
Max ƒclock  
6.66  
1000  
(2)  
(2)  
Clock jitter, PCLK  
see  
see  
Pulse duration low, PCLK  
Pulse duration high, PCLK  
50% reference points  
50% reference points  
50% reference points  
2.43  
2.43  
0.9  
ns  
ns  
ns  
tp_wl  
tp_su  
Setup time – HSYNC_CS, DATEN_CMD,  
PDATA(23:0) valid before the active edge of PCLK  
tp_h  
tt  
Hold time – HSYNC_CS, DATEN_CMD,  
PDATA(23:0) valid after the active edge of PCLK  
50% reference points  
0.9  
0.2  
ns  
ns  
Transition time – all signals  
20% to 80% reference  
points  
2
(1) The active (capture) edge of PCLK for HSYNC_CS, DATEN_CMD and PDATA(23:0) is software programmable, but defaults to the  
rising edge.  
(2) Clock jitter (in ns) should be calculated using this formula: Jitter = [1 / ƒclock – 5.76 ns]. Setup and hold times must be met during clock  
jitter.  
tp_clkper  
tp_wh  
tp_wl  
PCLK  
tp_h  
tp_su  
Figure 6. Parallel Interface General Timing  
Copyright © 2015–2019, Texas Instruments Incorporated  
23  
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
6.13 Flash Interface Timing Requirements  
The DLPC150 controller flash memory interface consists of a SPI flash serial interface with a programmable clock rate. The  
(1)(2)  
DLPC150 controller can support 1- to 16-Mb flash memories. (see  
)
MIN  
1.42  
704  
352  
352  
0.2  
MAX  
36  
UNIT  
MHz  
ns  
(3)  
ƒclock  
tp_clkper  
tp_wh  
tp_wl  
tt  
Clock frequency, SPI_CLK  
Clock period, SPI_CLK  
See  
50% reference points  
50% reference points  
50% reference points  
27.7  
Pulse duration low, SPI_CLK  
Pulse duration high, SPI_CLK  
Transition time – all signals  
ns  
ns  
20% to 80% reference  
points  
3
ns  
tp_su  
Setup time – SPI_DIN valid before SPI_CLK falling  
edge  
50% reference points  
10  
0
ns  
tp_h  
Hold time – SPI_DIN valid after SPI_CLK falling edge  
50% reference points  
50% reference points  
ns  
ns  
tp_clqv  
SPI_CLK clock falling edge to output valid time –  
SPI_DOUT and SPI_CSZ  
1
3
tp_clqx  
SPI_CLK clock falling edge output hold time –  
SPI_DOUT and SPI_CSZ  
50% reference points  
–3  
ns  
(1) Standard SPI protocol is to transmit data on the falling edge of SPI_CLK and capture data on the rising edge. The DLPC150 controller  
does transmit data on the falling edge, but it also captures data on the falling edge rather than the rising edge. This provides support for  
SPI devices with long clock-to-Q timing. DLPC150 controller hold capture timing has been set to facilitate reliable operation with  
standard external SPI protocol devices.  
(2) With the above output timing, the DLPC150 controller provides the external SPI device 8.2-ns input set-up and 8.2-ns input hold, relative  
to the rising edge of SPI_CLK.  
(3) This range include the 200 ppm of the external oscillator (but no jitter).  
tclkper  
SPI_CLK  
twh  
twl  
(ASIC Output)  
tp_su  
tp_h  
SPI_DIN  
(ASIC Inputs)  
tp_clqv  
SPI_DOUT, SPI_CS(1:0)  
(ASIC Outputs)  
tp_clqx  
Figure 7. Flash Interface Timing  
24  
Copyright © 2015–2019, Texas Instruments Incorporated  
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
7 Parameter Measurement Information  
7.1 Host_irq Usage Model  
While reset is applied, HOST_IRQ will reset to tri-state (an external pullup pulls the line high).  
HOST_IRQ will remain tri-state (pulled high externally) until the microprocessor boot completes. While the  
signal is pulled high, this indicates that the DLPC150 controller is performing boot-up and auto-initialization.  
As soon as possible after boot-up, the microprocessor will drive HOST_IRQ to a logic high state to indicate  
that the DLPC150 controller is continuing to perform auto-initialization (no real state change occurs on the  
external signal).  
Upon completion of auto-initialization, software will set HOST_IRQ to a logic low state to indicate the  
completion of auto-initialization. At the falling edge, the system is said to enter the INIT_DONE state.  
After auto-initialization completes, HOST_IRQ is used to generate a logic high interrupt pulse to the host  
through software control. This interrupt indicates that the DLPC150 controller has detected an error condition  
or otherwise requires service.  
The first falling edge of HOST_IRQ  
indicates auto-initialization done.  
(ERR IRQ)  
(INIT_BUSY)  
3 µs min  
An active high pulse on HOST_IRQ following the  
initialization period indicates an error condition  
was detected. The source of the error is reported  
in the system status.  
I2C access to DLPC150 should not start until HOST_IRQ  
goes low (this should occur within 500 ms from the  
release of RESETZ.  
Figure 8. Host Irq Timing  
Copyright © 2015–2019, Texas Instruments Incorporated  
25  
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
7.2 Input Source  
Table 3. Supported Input Source Ranges(1)(2)(3)(4)  
SOURCE RESOLUTION RANGE  
HORIZONTAL VERTICAL  
(5)  
INTERFACE  
BITS / PIXEL  
FRAME RATE RANGE  
Parallel  
16 or 24-bit  
16-bit  
320 to 1280  
320 to 1280  
200 to 800  
200 to 800  
47 to 63 Hz  
60 Hz  
SPI Flash  
(1) The user must stay within specifications for all source interface parameters such as max clock rate and max line rate.  
(2) The max DMD size for all rows in the table is 854 × 480.  
(3) To achieve the ranges stated, the composer-created firmware used must be defined to support the source parameters used.  
(4) These interfaces are supported with the DMD sequencer sync mode command (3Bh) set to auto.  
(5) Bits / Pixel does not necessarily equal the number of data pins used on the DLPC150 controller. Fewer pins are used if multiple clocks  
are used per pixel transfer.  
7.2.1 Parallel Interface Supports Two Data Transfer Formats  
24-bit RGB888 on a 24 data wire interface  
16-bit RGB565 on a 16 data wire interface  
Pdata Bus – Parallel Interface Bit Mapping Modes shows the required PDATA(23:0) bus mapping for these two  
data transfer formats.  
7.2.1.1 Pdata Bus – Parallel Interface Bit Mapping Modes  
23  
0
Red / Cr  
Green / Y  
Blue / Cb  
ASIC Input  
Mapping  
7
6
6
5
4
3
2
2
1
1
0
0
7
7
6
6
5
4
3
2
2
1
1
0
0
7
7
6
6
5
5
4
3
2
1
1
0
ASIC Internal Re-  
Mapping  
7
5
4
3
5
4
3
4
3
2
0
Red / Cr  
Green / Y  
Blue / Cb  
Figure 9. 24-Bit Rgb-888 I/O Mapping  
23  
7
0
Input  
Input  
3
Input  
ASIC Input  
Mapping  
6
5
5
4
4
3
2
1
1
0
0
7
7
6
6
5
5
4
4
2
2
1
1
0
0
7
7
6
6
5
5
4
3
2
2
1
1
0
ASIC Internal Re-  
Mapping  
7
6
3
2
3
4
3
0
Red / Cr  
Green / Y  
Blue / Cb  
Figure 10. 16-Bit Rgb-565 I/O Mapping  
26  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
8 Detailed Description  
8.1 Overview  
In DLP-based solutions, image data is 100% digital from the DLPC150 controller input port to the image on the  
DMD. The image stays in digital form and is not converted into an analog signal. The DLPC150 controller  
processes the digital input image and converts the data into a format needed by the DMD. The DMD steers light  
by using binary pulse-duration modulation (PWM) for each micromirror. For further details, refer to DMD data  
sheet (DLPS046 for the DLP2010 and DLPS059 for the DLP2010NIR).  
As shown in Functional Block Diagram, the DLPC150 controller takes input data from the Parallel or SPI  
interface, optionally performs image processing, and formats the data for the DMD. The DLPC150 controller  
offers a Pattern Generation Mode of operation. In Pattern Generation Mode, the DLPC150 bypasses the video  
processing functions for accurate pattern display with one-to-one association with the corresponding micromirror  
on the DMD. The pattern generation mode supports inputs and speeds shown in Table 4. This high speed  
pattern display is well-suited for wavelength selection and control techniques used in spectroscopy, compressive  
sensing, machine vision, or laser marking.  
Table 4. Pattern Generation Mode Supported Inputs And Speeds  
INPUT  
FORMAT  
MAXIMUM PATTERN RATE  
SPI Flash memory  
Binary pattern sequence encoded as a  
16-bit RGB565 image  
960 Hz  
24-bit parallel input  
Binary pattern sequence encoded as a  
16-bit RGB565 image  
1008 Hz  
2880 Hz  
Binary pattern sequence encoded as a  
24-bit RGB888 image  
8.2 Functional Block Diagram  
PDATA[23:0]  
PCLK  
Parallel  
HSYNC  
VSYNC  
DATAEN  
Interface  
DMD  
Formatter  
DMD  
Interface  
Sub-LVDS DATA  
LPSDR CTRL  
Image Processing  
- Image Resizing  
- Degamma  
- Color Coordinate Adjustment  
SPI0_CLK  
SPI  
Interface  
SPI0_CSZ  
SPI0_DIN  
SPIO_DOUT  
embedded  
DRAM  
RESETZ  
PARKZ  
PROJ_ON  
Control  
HOST_IRQ  
Trigger  
Control  
PMIC  
Interface  
GPIO  
Clocks  
IIC0  
8.3 Feature Description  
8.3.1 Interface Timing Requirements  
This section defines the timing requirements for the external interfaces for the DLPC150 controller.  
8.3.1.1 Parallel Interface  
The parallel interface complies with standard graphics interface protocol, which includes a vertical sync signal  
(VSYNC_WE), horizontal sync signal (HSYNC_CS), optional data valid signal (DATAEN_CMD), a 24-bit data  
bus (PDATA), and a pixel clock (PCLK). The polarity of both syncs and the active edge of the clock are  
programmable. Figure 5 shows the relationship of these signals. The data valid signal (DATAEN_CMD) is  
optional in that the DLPC150 provides auto-framing parameters that can be programmed to define the data valid  
window based on pixel and line counting relative to the horizontal and vertical syncs.  
Copyright © 2015–2019, Texas Instruments Incorporated  
27  
 
 
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
Feature Description (continued)  
In addition to these standard signals, an optional side-band signal (PDM_CVS_TE) is available, which allows  
periodic frame updates to be stopped without losing the displayed image. When PDM_CVS_TE is active, it acts  
as a data mask and does not allow the source image to be propagated to the display. A programmable PDM  
polarity parameter determines if it is active high or active low. This parameter defaults to make PDM_CVS_TE  
active high; if this function is not desired, then it should be tied to a logic low on the PCB. PDM_CVS_TE is  
restricted to change only during vertical blanking.  
NOTE  
VSYNC_WE must remain active at all times (in lock-to-VSYNC mode) or the display  
sequencer will stop and cause the LEDs to be turned off.  
8.3.2 Serial Flash Interface  
DLPC150 uses an external SPI serial flash memory device for configuration support. The minimum required size  
is dependent on the desired minimum number of sequences, CMT tables, and splash options while the maximum  
supported is 16 Mb.  
For access to flash, the DLPC150 uses a single SPI interface operating at a programmable frequency complying  
to industry standard SPI flash protocol. The programmable SPI frequency is defined to be equal to 180 MHz/N,  
where N is a programmable value between 5 to 127 providing a range from 36.0 to 1.41732 MHz. Note that this  
results in a relatively large frequency step size in the upper range (for example, 36 MHz, 30 MHz, 25.7 MHz,  
22.5 MHz, and so forth) and thus this must be taken into account when choosing a flash device.  
The DLPC150 supports two independent SPI chip selects; however, the flash must be connected to SPI chip  
select zero (SPI0_CSZ0) because the boot routine is only executed from the device connected to chip select  
zero (SPI0_CSZ0). The boot routine uploads program code from flash to program memory, then transfers control  
to an auto-initialization routine within program memory. The DLPC150 asserts the HOST_IRQ output signal high  
while auto-initialization is in progress, then drives it low to signal its completion to the host processor. Only after  
auto-initialization is complete will the DLPC150 be ready to receive commands through I2C.  
The DLPC150 should support any flash device that is compatible with the modes of operation, features, and  
performance as defined in Table 5 and Table 6.  
Table 5. SPI Flash Required Features or Modes of Operation  
FEATURE  
SPI interface width  
SPI protocol  
DLPC150 REQUIREMENT  
Single  
SPI mode 0  
Auto-incrementing  
Page mode  
256 B  
Fast READ addressing  
Programming mode  
Page size  
Sector size  
4 KB sector  
any  
Block size  
Block protection bits  
Status register bit(0)  
Status register bit(1)  
Status register bits(6:2)  
Status register bit(7)  
0 = Disabled  
Write in progress (WIP) {also called flash busy}  
Write enable latch (WEN)  
A value of 0 disables programming protection  
Status register write protect (SRWP)  
The DLPC150 only supports single-byte status register R/W command execution, and thus may not be  
compatible with flash devices that contain an expansion status byte. However, as long as expansion status  
Status register bits(15:8)  
(that is expansion status byte) byte is considered optional in the byte 3 position and any write protection control in this expansion status  
byte defaults to unprotected, then the device should be compatible with DLPC150.  
28  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
To support flash devices with program protection defaults of either enabled or disabled, the DLPC150 always  
assumes the device default is enabled and goes through the process of disabling protection as part of the boot-  
up process. This process consists of:  
A write enable (WREN) instruction executed to request write enable, followed by  
A read status register (RDSR) instruction is then executed (repeatedly as needed) to poll the write enable  
latch (WEL) bit  
After the write enable latch (WEL) bit is set, a write status register (WRSR) instruction is executed that writes  
0 to all 8-bits (this disables all programming protection)  
Prior to each program or erase instruction, the DLPC150 issues:  
A write enable (WREN) instruction to request write enable, followed by  
A read status register (RDSR) instruction (repeated as needed) to poll the write enable latch (WEL) bit  
After the write enable latch (WEL) bit is set, the program or erase instruction is executed  
Note the flash automatically clears the write enable status after each program and erase instruction  
The specific instruction OpCode and timing compatibility requirements are listed in Table 8 and Table 7. Note  
however that DLPC150 does not read the flash’s electronic signature ID and thus cannot automatically adapt  
protocol and clock rate based on the ID.  
Table 6. SPI Flash Instruction Opcode and Access Profile Compatibility Requirements  
FIRST BYTE  
(OPCODE)  
SECOND  
BYTE  
SPI FLASH COMMAND  
THIRD BYTE FOURTH BYTE FIFTH BYTE  
SIXTH BYTE  
Fast READ (1 Output)  
Read status  
0x0B  
0x05  
0x01  
0x06  
0x02  
0x20  
0xC7  
ADDRS(0)  
n/a  
ADDRS(1)  
ADDRS(2)  
STATUS(0)  
dummy  
DATA(0)(1)  
n/a  
(2)  
Write status  
STATUS(0)  
Write enable  
Page program  
Sector erase (4KB)  
Chip erase  
ADDRS(0)  
ADDRS(0)  
ADDRS(1)  
ADDRS(1)  
ADDRS(2)  
ADDRS(2)  
DATA(0)(1)  
(1) Only the first data byte is show, data continues for the duration of the read.  
(2) DLPC150 does not support access to a second/ expansion Write Status byte.  
The specific and timing compatibility requirements for a DLPC150 compatible flash are listed in Table 7 and  
Table 8.  
Table 7. SPI Flash Key Timing Parameter Compatibility Requirements(1)(2)  
SPI FLASH TIMING PARAMETER  
SYMBOL  
ALTERNATE  
SYMBOL  
MIN  
MAX  
UNIT  
Access frequency  
(all commands)  
FR  
fC  
1.42  
MHz  
ns  
Chip select high time (also called chip select deselect  
time)  
tSHSL  
tCSH  
200  
0  
Output hold time  
tCLQX  
tCLQV  
tDVCH  
tCHDX  
tHO  
tV  
tDSU  
tDH  
ns  
ns  
ns  
ns  
Clock low to output valid time  
Data in set-up time  
Data in hold time  
11  
5  
5  
(1) The timing values are related to the specification of the flash device itself, not the DLPC150.  
(2) The DLPC150 does not drive the HOLD or WP (active low write protect) pins on the flash device, and thus these pins should be tied to a  
logic high on the PCB through an external pullup.  
Copyright © 2015–2019, Texas Instruments Incorporated  
29  
 
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
The DLPC150 supports 1.8-, 2.5-, or 3.3-V serial flash devices. To do so, VCC_FLSH must be supplied with the  
corresponding voltage. Table 8 contains a list of 1.8-, 2.5-, and 3.3-V compatible SPI serial flash devices  
supported by DLPC150.  
Table 8. DLPC150 Verified Compatible SPI Flash Device Options(1) (2)  
DENSITY (M-BITS)  
VENDOR  
PART NUMBER  
PACKAGE SIZE  
1.8-V Compatible Devices  
4 Mb  
Winbond  
Macronix  
Macronix  
W25Q40BWUXIG  
MX25U4033EBAI-12G  
MX25U4033EBAI-12G  
2 × 3 mm USON  
4 Mb  
1.43 × 1.94 mm WLCSP  
1.68 × 1.99 mm WLCSP  
4 Mb  
2.5- or 3.3-V Compatible Devices  
16 Mb  
64 Mb  
Winbond  
Winbond  
W25Q16CLZPIG  
W25Q64FVZPIG  
5 × 6 mm WSON  
5 × 6 mm WSON  
8.3.3 Serial Flash Programming  
Note that the flash can be programmed through the DLPC150 over I2C or by driving the SPI pins of the flash  
directly while the DLPC150 I/O are tri-stated. SPI0_CLK, SPI0_DOUT, and SPI0_CSZ0 I/O can be tri-stated by  
holding RESETZ in a logic low state while power is applied to the DLPC150. Note that SPI0_CSZ1 is not tri-  
stated by this same action.  
8.3.4 I2C Control Interface  
DLPC150 supports I2C commands through the control interface. The control interface allows another master  
processor to send commands to the DLPC150 chipset to query system status or perform realtime operations.  
The DLPC150 I2C interface ports support 100-kHz baud rate at the 7-bit address 0x1B. By definition, I2C  
transactions operate at the speed of the slowest device on the bus, thus there is no requirement to match the  
speed grade of all devices in the system.  
8.3.5 DMD (Sub-LVDS) Interface  
The DLPC150 controller DMD interface consists of a high speed 1.8-V sub-LVDS output only interface with a  
maximum clock speed of 532-MHz DDR and a low speed SDR (1.8-V LVCMOS) interface with a fixed clock  
speed of 120 MHz. The DLPC150 sub-LVDS interface supports a number of DMD display sizes, and as a  
function of resolution, not all output data lanes are needed as DMD display resolutions decrease in size. With  
internal software selection, the DLPC150 also supports a limited number of DMD interface swap configurations  
that can help board layout by remapping specific combinations of DMD interface lines to other DMD interface  
lines as needed. Table 9 shows the four options available for the DLP2010 or DLP2010NIR (0.2-inch WVGA)  
DMD. Any unused DMD signal pairs should be left unconnected on the final board design.  
Table 9. DLP2010 or DLP2010NIR (0.2-Inch WVGA) DMD – Controller to 4-Lane DMD Pin Mapping  
Options  
DLPC150 CONTROLLER 4 LANE DMD ROUTING OPTIONS  
DMD PINS  
OPTION 1  
OPTION 2  
OPTION 3  
OPTION 4  
SWAP CONTROL = x0  
SWAP CONTROl = x2  
SWAP CONTROL = x1  
SWAP CONTROL = x3  
HS_WDATA_D_P  
HS_WDATA_D_N  
HS_WDATA_E_P  
HS_WDATA_E_N  
HS_WDATA_H_P  
HS_WDATA_H_N  
HS_WDATA_A_P  
HS_WDATA_A_N  
Input DATA_p_0  
Input DATA_n_0  
HS_WDATA_C_P  
HS_WDATA_C_N  
HS_WDATA_F_P  
HS_WDATA_F_N  
HS_WDATA_G_P  
HS_WDATA_G_N  
HS_WDATA_B_P  
HS_WDATA_B_N  
Input DATA_p_1  
Input DATA_n_1  
HS_WDATA_F_P  
HS_WDATA_F_N  
HS_WDATA_C_P  
HS_WDATA_C_N  
HS_WDATA_B_P  
HS_WDATA_B_N  
HS_WDATA_G_P  
HS_WDATA_G_N  
Input DATA_p_2  
Input DATA_n_2  
HS_WDATA_E_P  
HS_WDATA_E_N  
HS_WDATA_D_P  
HS_WDATA_D_N  
HS_WDATA_A_P  
HS_WDATA_A_N  
HS_WDATA_H_P  
HS_WDATA_H_N  
Input DATA_p_3  
Input DATA_n_3  
(1) The flash supply voltage must match VCC_FLSH on the DLPC150. Special attention needs to be paid when ordering devices to be sure  
the desired supply voltage is attained as multiple voltage options are often available under the same base part number.  
(2) Beware when considering Numonyx (Micron) serial flash devices as they typically do not have the 4KB sector size needed to be  
DLPC150 compatible.  
30  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
 
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
532-MHz sub-LVDS DDR (High Speed)  
DMD_HS_WDATA_A_N  
DMD_HS_WDATA_A_P  
Leave Open for .2  
WVGA DMD  
DMD_HS_WDATA_B_N  
DMD_HS_WDATA_B_P  
Leave Open for .2  
WVGA DMD  
Sub-LVDS-DMD  
DMD_HS_WDATA_C_N  
DMD_HS_WDATA_C_P  
DLP2010NIR  
or  
DLP2010  
0.2 WVGA  
854 x 480 display  
DMD_HS_WDATA_D_N  
DMD_HS_WDATA_D_P  
DMD_HS_CLK_N  
DMD_HS_CLK_P  
DLPC150  
Controller  
DMD_HS_WDATA_E_N  
DMD_HS_WDATA_E_P  
DMD_HS_WDATA_F_N  
DMD_HS_WDATA_F_P  
DMD_HS_WDATA_G_N  
DMD_HS_WDATA_G_P  
Leave Open for .2  
WVGA DMD  
DMD_HS_WDATA_H_N  
DMD_HS_WDATA_H_P  
Leave Open for .2  
WVGA DMD  
DMD_LS_CLK  
DMD_LS_WDATA  
DMD_DEN_ARSTZ  
DMD_LS_RDATA  
120-MHz SDR (Low Speed)  
Figure 11. DLP2010 Or DLP2010NIR (0.2-Inch WVGA) DMD Interface Example (Mapping Option 1 Shown)  
Copyright © 2015–2019, Texas Instruments Incorporated  
31  
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
8.3.6 Calibration And Debug Support  
The DLPC150 contains a test point output port, TSTPT_(7:0), which provides selected system calibration support  
as well as controller debug support. These test points are inputs while reset is applied and switch to outputs  
when reset is released. The state of these signals is sampled upon the release of system reset and the captured  
value configures the test mode until the next time reset is applied. Each test point includes an internal pulldown  
resistor, thus external pullups must be used to modify the default test configuration. The default configuration  
(x000) corresponds to the TSTPT_(7:0) outputs remaining tri-stated to reduce switching activity during normal  
operation. For maximum flexibility, an option to jumper to an external pullup is recommended for TSTPT_(2:0).  
Pullups on TSTPT_(6:3) are used to configure the controller for a specific mode or option. TI does not  
recommend adding pullups to TSTPT_(7:3) because this has adverse affects for normal operation. This external  
pullup is only sampled upon a 0-to-1 transition on the RESETZ input, thus changing their configuration after reset  
is released will not have any effect until the next time reset is asserted and released. Table 10 defines the test  
mode selection for one programmable scenario defined by TSTPT(2:0).  
Table 10. Test Mode Selection Scenario Defined By Tstpt(2:0)(1)  
NO SWITCHING ACTIVITY  
CLOCK DEBUG OUTPUT  
TSTPT(2:0) CAPTURE VALUE  
x000  
HI-Z  
HI-Z  
HI-Z  
HI-Z  
HI-Z  
HI-Z  
HI-Z  
HI-Z  
x010  
60 MHz  
30 MHz  
0.7 to 22.5MHz  
HIGH  
TSTPT(0)  
TSTPT(1)  
TSTPT(2)  
TSTPT(3)  
TSTPT(4)  
TSTPT(5)  
TSTPT(6)  
TSTPT(7)  
LOW  
HIGH  
HIGH  
7.5 MHz  
(1) These are only the default output selections. Software can reprogram the selection at any time.  
8.3.7 DMD Interface Considerations  
The sub-LVDS HS interface waveform quality and timing on the DLPC150 controller is dependent on the total  
length of the interconnect system, the spacing between traces, the characteristic impedance, etch losses, and  
how well matched the lengths are across the interface. Thus, ensuring positive timing margin requires attention  
to many factors.  
As an example, DMD interface system timing margin can be calculated as follows:  
Setup Margin = (DLPC150 output setup) – (DMD input setup) – (PCB routing mismatch) – (PCB SI degradation)  
Hold-time Margin = (DLPC150 output hold) – (DMD input hold) – (PCB routing mismatch) – (PCB SI degradation)  
(1)  
where PCB SI degradation is signal integrity degradation due to PCB affects which includes such things as  
Simultaneously Switching Output (SSO) noise, cross-talk and Inter-symbol Interference (ISI) noise. (2)  
DLPC150 I/O timing parameters as well as DMD I/O timing parameters can be found in their corresponding data  
sheets. Similarly, PCB routing mismatch can be budgeted and met through controlled PCB routing. However,  
PCB SI degradation is a more complicated adjustment.  
In an attempt to minimize the signal integrity analysis that would otherwise be required, the following PCB design  
guidelines are provided as a reference of an interconnect system that will satisfy both waveform quality and  
timing requirements (accounting for both PCB routing mismatch and PCB SI degradation). Variation from these  
recommendations may also work, but should be confirmed with PCB signal integrity analysis or lab  
measurements.  
32  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
DMD_HS Differential Signals  
DMD_LS Signals  
Figure 12. DMD Interface Board Stack-Up Details  
8.4 Device Functional Modes  
DLPC150 has two functional modes (ON/OFF) controlled by a single pin PROJ_ON:  
When pin PROJ_ON is set high, the DLPA2000 or DLPA2005 applies power to the DMD and the DLPC150.  
When pin PROJ_ON is set low, the DLPA2000 or DLPA2005 powers down and only microwatts of power are  
consumed.  
Copyright © 2015–2019, Texas Instruments Incorporated  
33  
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DLPC150 controller couples with DLP2010 or DLP2010NIR DMD to provide a reliable solution for many data  
and video display applications. The DMDs are spatial light modulators which reflect incoming light from an  
illumination source to one of two positions, with the primary position being into a projection or collection optic.  
Each specific application typically requires a system-level optical architecture that integrates the DMD, as well  
as, a particular data format to the DLPC150. For example, in a spectroscopy application, the DLP2010NIR DMD  
is often combined with a single element detector to replace expensive InGaAs array-based detector designs. In  
this application, the DMD acts as a wavelength selector diverting specific wavelengths of light through the  
collection optics into the single point detector by setting specific columns of pixel in the "on" position. All other  
DMD columns that are "off" divert the unselected wavelengths away from the detector's optical path so as to not  
interfere with the selected wavelength measurement. The DLPC150 controls the set of patterns that sequentially  
turns columns of pixels "on" or "off" to scan the desired wavelenght spectrum.  
Other applications of interest include machine vision systems, spectrometers, skin analysis, medical systems,  
material identification, chemical sensing, infrared projection, and compressive sensing.  
9.1.1 DLPC150 System Design Consideration – Application Notes  
System power regulation: It is acceptable for VDD_PLLD and VDD_PLLM to be derived from the same regulator  
as the core VDD, but to minimize the AC noise component they should be filtered as recommended in the PCB  
Layout Guidelines For Internal Controller PLL Power.  
34  
Copyright © 2015–2019, Texas Instruments Incorporated  
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
9.2 Typical Application  
A typical embedded system application using the DLPC150 controller and the DLPC2010NIR is shown in  
Figure 13. In this configuration, the DLPC150 controller supports a 24-bit parallel RGB input, typical of LCD  
interfaces, from an external source or processor. The DLPC150 controller processes the digital input image and  
converts the data into the format needed by the DLP2010NIR. The DLP2010NIR steers light by setting specific  
micromirrors to the "on" position, directing light to the detector, while unwanted micromirrors are set to "off"  
position, directing light away from the detector. The microprocessor sends binary images to the DLP2010NIR to  
steer specific wavelengths of light into the detector. The microprocessor uses an analog-to-digital converter to  
sample the signal received by the detector into a digital value. By sequentially selecting different wavelengths of  
light and capturing the values at the detector, the microprocessor can then plot a spectral response to the light.  
DC_IN  
BAT  
Charger  
2.3 to 5.5 V  
Power  
Management  
1.8 V  
1.1 V  
Other  
Supplies  
1.1-V  
Reg  
VIN  
SYSPWR  
PROJ_ON  
On/Off  
VDD  
1.8 V  
1.8S V  
LS_IN  
VLED  
PROJ_ON  
USB  
DLPA2000  
or  
DLPA2005  
PROJ_ON  
SPI_0  
RED  
Detector  
ADC  
4
FLASH  
Current  
Sense  
SPI_1  
4
RESETZ  
INTZ  
FLASH,  
SDRAM  
Microprocessor  
PARKZ  
HOST_IRQ  
TRIG_IN  
Illumination  
Optics  
BIAS, RST, OFS  
3
LED_SEL(2)  
CMP_PWM  
DLPC150  
TRIG_OUT (2)  
Keypad  
CMP_OUT  
Parallel RGB I/F (28)  
SD  
Card  
DLP2010NIR  
(WVGA  
DMD)  
Thermistor  
I2C  
Sub-LVDS DATA  
LPSDR CTRL  
1.8S V  
1.1 V  
VIO  
Bluetooth  
VCC_INTF  
VCC_FLSH  
VCORE  
Projection  
Optics  
NIR  
Detector  
ADC + Amplifier  
DLP® Chip Set  
Figure 13. Typical Application Diagram  
9.2.1 Design Requirements  
All applications using the DLP 0.2-inch WVGA chipset require the:  
DLPC150 controller, and  
DLPA2000 or DLPA2005 PMIC, and  
DLP2010 or DLP2010NIR DMD  
components for operation. The system also requires an external parallel flash memory device loaded with the  
DLPC150 configuration and support firmware. DLPC150 does the digital image processing and formats the data  
for the DMD. DLPA2000 or DLPA2005 PMIC provides the needed analog functions for the DLPC150 and  
DLP2010 or DLP2010NIR. The chipset has several system interfaces and requires some support circuitry. The  
following interfaces and support circuitry are required:  
DLPC150 system interfaces:  
Control interface  
Trigger interface  
Input data interface  
Illumination interface  
Copyright © 2015–2019, Texas Instruments Incorporated  
35  
 
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
Typical Application (continued)  
DLPC150 support circuitry and interfaces:  
Reference clock  
PLL  
Program memory flash interface  
DMD interfaces:  
DLPC150 to DMD digital data  
DLPC150 to DMD control interface  
DLPC150 to DMD micromirror reset control interface  
9.2.2 Detailed Design Procedure  
9.2.2.1 DLPC150 System Interfaces  
The 0.2-inch WVGA chipset supports a16-bit or 24-bit parallel RGB interface for image data transfers from  
another device. There are two primary output interfaces: illumination driver control interface and sync outputs.  
9.2.2.1.1 Control Interface  
The 0.2-inch WVGA chipset supports I2C commands through the control interface. The control interface allows  
another master processor to send commands to the DLPC150 controller to query system status or perform  
realtime operations such as LED driver current settings.  
9.2.3 Application Curve  
In a reflective spectroscopy application, a broadband light source illuminates a sample and the reflected light  
spectrum is dispersed onto the DLP2010NIR. A microprocessor in conjunction with the DLPC150 controls  
individual DLP2010NIR micromirrors to reflect specific wavelengths of light to a single point detector. The  
microprocessor uses an analog-to-digital converter to sample the signal received by the detector into a digital  
value. By sequentially selecting different wavelengths of light and capturing the values at the detector, the  
microprocessor can then plot a spectral response to the light. This systems allows the measurement of the  
collected light and derive the wavelengths absorbed by the sample. This process leads to the absorption  
spectrum shown in Figure 14.  
Figure 14. Sample DLPC150-Based Spectrometer Output  
36  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
10 Power Supply Recommendations  
10.1 System Power-Up and Power-Down Sequence  
Although the DLPC150 requires an array of power supply voltages, (for example, VDD, VDDLP12,  
VDD_PLLM/D, VCC18, VCC_FLSH, VCC_INTF), if VDDLP12 is tied to the 1.1-V VDD supply (which is assumed  
to be the typical configuration), then there are no restrictions regarding the relative order of power supply  
sequencing to avoid damaging the DLPC150. This is true for both power-up and power-down scenarios.  
Similarly, there is no minimum time between powering-up or powering-down the different supplies if VDDLP12 is  
tied to the 1.1-V VDD supply.  
If however VDDLP12 is not tied to the VDD supply, then VDDLP12 must be powered-on after the VDD supply is  
powered-on, and powered-off before the VDD supply is powered-off. In addition, if VDDLP12 is not tied to VDD,  
then VDDLP12 and VDD supplies must be powered on or powered off within 100 ms of each other.  
Although there is no risk of damaging the DLPC150 if the above power sequencing rules are followed, the  
following additional power sequencing recommendations must be considered to ensure proper system operation.  
To ensure that DLPC150 output signal states behave as expected, all DLPC150 I/O supplies must remain  
applied while VDD core power is applied. If VDD core power is removed while the I/O supply (VCC_INTF) is  
applied, then the output signal state associated with the inactive I/O supply will go to a high impedance state.  
Additional power sequencing rules may exist for devices that share the supplies with the DLPC150, and thus  
these devices may force additional system power sequencing requirements.  
Note that when VDD core power is applied, but I/O power is not applied, additional leakage current may be  
drawn. This added leakage does not affect normal DLPC150 operation or reliability.  
Figure 15 and Figure 16 show the DLPC150 power-up and power-down sequence for both the normal PARK and  
fast PARK operations of the DLPC150 controller.  
Copyright © 2015–2019, Texas Instruments Incorporated  
37  
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
System Power-Up and Power-Down Sequence (continued)  
Figure 15. DLPC150 Power-Up / Proj_on = 0 Initiated Normal Park and Power-Down  
38  
Copyright © 2015–2019, Texas Instruments Incorporated  
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
System Power-Up and Power-Down Sequence (continued)  
Normal  
Power-down  
Operation  
Point at which all supplies reach 95% of  
their specified nominal values.  
PARKZ must be set high a minimum  
of 0 µs before RESETZ is released to  
support auto-initialization.  
VCC18 must remain ON long  
enough to satisfy DMD power  
sequencing requirements defined  
in the DLPA200x specification.  
PARKZ must be set low a  
minimum of 32 µs before any  
power is removed (except  
PLL_REFCLK may be active  
before power is applied.  
VDDLP12), before PLL_REFCLK  
is stopped and before RESETZ is  
asserted low to allow time for the  
DMD mirrors to be parked.  
I2C activity should cease  
immediately upon active low  
assertion of PARKZ.  
PLL_REFCLK must become stable within  
5 ms of all power being applied (for  
external oscillator application this is  
oscillator dependent and for crystal  
applications this is crystal and DLPC150  
oscillator cell dependent).  
HOST_IRQ is driven high when  
power and RESETZ are applied to  
indicate the DLPC150 is not ready for  
operation, and then is driven low after  
initialization is complete.  
I2C access can start immediately  
after HOST_IRQ goes low (this  
should occur within 500 ms from the  
release of RESETZ)  
HOST_IRQ is pulled high  
immediately after RESETZ is  
asserted low.  
Figure 16. DLPC150 Power-Up / PARKZ = 0 Initiated Fast Park and Power-Down  
10.2 DLPC150 Power-Up Initialization Sequence  
It is assumed that an external power monitor will hold the DLPC150 in system reset during power-up. It must do  
this by driving RESETZ to a logic low state. It should continue to assert system reset until all controller voltages  
have reached minimum specified voltage levels, PARKZ is asserted high, and input clocks are stable. During this  
time, most controller outputs will be driven to an inactive state and all bidirectional signals will be configured as  
inputs to avoid contention. controller outputs that are not driven to an inactive state are tri-stated. These include  
LED_SEL_0, LED_SEL_1, SPICLK, SPIDOUT, and SPICSZ0 (see RESETZ pin description for full signal  
descriptions in Pin Configuration and Functions). After power is stable and the PLL_REFCLK_I clock input to the  
DLPC150 is stable, then RESETZ should be deactivated (set to a logic high). The DLPC150 then performs a  
Copyright © 2015–2019, Texas Instruments Incorporated  
39  
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
DLPC150 Power-Up Initialization Sequence (continued)  
power-up initialization routine that first locks its PLL followed by loading self configuration data from the external  
flash. Upon release of RESETZ all DLPC150 I/Os will become active. Immediately following the release of  
RESETZ, the HOST_IRQ signal will be driven high to indicate that the auto initialization routine is in progress.  
However, since a pullup resistor is connected to signal HOST_IRQ, this signal will have already gone high before  
the DLPC150 actively drives it high. Upon completion of the auto-initialization routine, the DLPC150 will drive  
HOST_IRQ low to indicate the initialization done state of the DLPC150 has been reached.  
Note that the host processor can start sending I2C commands after HOST_IRQ goes low.  
10.3 DMD Fast Park Control (PARKZ)  
The PARKZ signal is defined to be an early warning signal that should alert the controller 40 µs before DC  
supply voltages have dropped below specifications in fast PARK operation. This allows the controller time to park  
the DMD, ensuring the integrity of future operation. Note that the reference clock should continue to run and  
RESETZ should remain deactivated for at least 40 µs after PARKZ has been deactivated (set to a logic low) to  
allow the park operation to complete.  
10.4 Hot Plug Usage  
The DLPC150 provides fail-safe I/O on all host interface signals (signals powered by VCC_INTF). This allows  
these inputs to be driven high even when no I/O power is applied. Under this condition, the DLPC150 will not  
load the input signal nor draw excessive current that could degrade controller reliability. For example, the I2C bus  
from the host to other components would not be affected by powering off VCC_INTF to the DLPC150. TI  
recommends weak pullups or pulldowns on signals feeding back to the host to avoid floating inputs.  
If the I/O supply (VCC_INTF) is powered off, but the core supply (VDD) is powered on, then the corresponding  
input buffer may experience added leakage current, but this does not damage the DLPC150.  
10.5 Maximum Signal Transition Time  
Unless otherwise noted, 10 ns is the maximum recommended 20 to 80% rise or fall time to avoid input buffer  
oscillation. This applies to all DLPC150 input signals. However, the PARKZ input signal includes an additional  
small digital filter that ignores any input buffer transitions caused by a slower rise or fall time for up to 150 ns.  
40  
Copyright © 2015–2019, Texas Instruments Incorporated  
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
11 Layout  
11.1 Layout Guidelines  
11.1.1 PCB Layout Guidelines For Internal Controller PLL Power  
The following guidelines are recommended to achieve desired controller performance relative to the internal PLL.  
The DLPC150 contains 2 internal PLLs which have dedicated analog supplies (VDD_PLLM , VSS_PLLM,  
VDD_PLLD, VSS_PLLD). As a minimum, VDD_PLLx power and VSS_PLLx ground pins should be isolated using  
a simple passive filter consisting of two series Ferrites and two shunt capacitors (to widen the spectrum of noise  
absorption). It’s recommended that one capacitor be a 0.1µF capacitor and the other be a 0.01µF capacitor. All  
four components should be placed as close to the controller as possible but it’s especially important to keep the  
leads of the high frequency capacitors as short as possible. Note that both capacitors should be connected  
across VDD_PLLM and VSS_PLLM / VDD_PLLD and VSS_PLLD respectfully on the controller side of the  
Ferrites.  
For the ferrite beads used, their respective characteristics should be as follows:  
DC resistance less than 0.40 Ω  
Impedance at 10 MHz equal to or greater than 180 Ω  
Impedance at 100 MHz equal to or greater than 600 Ω  
The PCB layout is critical to PLL performance. It is vital that the quiet ground and power are treated like analog  
signals. Therefore, VDD_PLLM and VDD_PLLD must be a single trace from the DLPC150 to both capacitors and  
then through the series ferrites to the power source. The power and ground traces should be as short as  
possible, parallel to each other, and as close as possible to each other.  
Signal VIA  
PCB Pad  
VIA to Common Analog  
Digital Board Power Plane  
ASIC Pad  
VIA to Common Analog  
Digital Board Ground Plane  
1
2
3
4
5
A
Signal  
Signal  
Signal  
VSS  
Signal  
Signal  
F
Local  
VSS_  
PLLM  
G
VSS  
VSS  
Decoupling  
for the PLL  
Digital Supply  
GND  
FB  
FB  
PLL_  
REF  
CLK_I  
VDD_  
PLLM  
VSS_  
PLLD  
H
J
1.1 V  
PWR  
PLL_  
REF  
CLK_O  
VDD_  
PLLD  
Crystal Circuit  
VSS  
VDD  
Figure 17. PLL Filter Layout  
Copyright © 2015–2019, Texas Instruments Incorporated  
41  
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
Layout Guidelines (continued)  
11.1.2 DLPC150 Reference Clock  
The DLPC150 requires an external reference clock to feed its internal PLL. A crystal or oscillator can supply this  
reference. For flexibility, the DLPC150 accepts either of two reference clock frequencies (see Table 12), but both  
must have a maximum frequency variation of ±200 ppm (including aging, temperature, and trim component  
variation). When a crystal is used, several discrete components are also required as shown in Figure 18.  
PLL_REFCLK_I  
PLL_REFCLK_O  
R
FB  
R
S
Crystal  
C
C
L2  
L1  
A. CL = Crystal load capacitance (farads)  
B. CL1 = 2 × (CL – Cstray_pll_refclk_i)  
C. CL2 = 2 × (CL – Cstray_pll_refclk_o)  
D. Where: Cstray_pll_refclk_i = Sum of package and PCB stray capacitance at the crystal pin associated with the  
controller pin pll_refclk_i. Cstray_pll_refclk_o = Sum of package and PCB stray capacitance at the crystal pin  
associated with the controller pin pll_refclk_o.  
Figure 18. Recommended Crystal Oscillator Configuration  
11.1.2.1 Recommended Crystal Oscillator Configuration  
Table 11. Crystal Port Characteristics  
PARAMETER  
NOMINAL  
1.5  
UNIT  
pF  
PLL_REFCLK_I TO GND capacitance  
PLL_REFCLK_O TO GND capacitance  
1.5  
pF  
Table 12. Recommended Crystal Configuration(1)(2)  
PARAMETER  
RECOMMENDED  
Parallel resonant  
UNIT  
Crystal circuit configuration  
Crystal type  
Fundamental (first harmonic)  
24 or 16  
Crystal nominal frequency  
MHz  
PPM  
ms  
Ω
Crystal frequency tolerance (including accuracy, temperature, aging and trim sensitivity) ±200  
Maximum startup time  
1.0  
Crystal equivalent series resistance (ESR)  
Crystal load  
120 max  
6
pF  
Ω
RS drive resistor (nominal)  
RFB feedback resistor (nominal)  
CL1 external crystal load capacitor  
CL2 external crystal load capacitor  
100  
1Meg  
Ω
See equation in Figure 18 notes  
See equation in Figure 18 notes  
pF  
pF  
A ground isolation ring around the  
crystal is recommended  
PCB layout  
(1) Temperature range of –30°C to +85°C.  
(2) The crystal bias is determined by the controller's VCC_INTF voltage rail, which is variable (not the VCC18 rail).  
42  
Copyright © 2015–2019, Texas Instruments Incorporated  
 
 
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
If an external oscillator is used, then the oscillator output must drive the PLL_REFCLK_I pin on the DLPC150  
DLPC150 controller and the PLL_REFCLK_O pins should be left unconnected.  
Table 13. DLPC150 Recommended Crystal Parts(1)(2)  
MANUFACTURE  
R
PART NUMBER  
SPEED  
TEMPERATURE  
AND AGING  
ESR  
LOAD CAPACITANCE  
KDS  
DSX211G-24.000M-8pF-50-50  
24 MHz  
±50 ppm  
120-Ω max  
8 pF  
(1) Crystal package sizes: 2.0 × 1.6 mm for both crystals.  
(2) Operating temperature range: –30°C to +85°C for all crystals.  
11.1.3 General PCB Recommendations  
TI recommends 1-oz. copper planes in the PCB design to achieve needed thermal connectivity.  
11.1.4 General Handling Guidelines for Unused CMOS-Type Pins  
To avoid potentially damaging current caused by floating CMOS input-only pins, TI recommends that unused  
DLPC150 controller input pins be tied through a pullup resistor to its associated power supply or a pulldown to  
ground. For DLPC150 controller inputs with an internal pullup or pulldown resistors, it is unnecessary to add an  
external pullup or pulldown unless specifically recommended. Note that internal pullup and pulldown resistors are  
weak and should not be expected to drive the external line. The DLPC150 implements very few internal resistors  
and these are noted in the pin list. When external pullup or pulldown resistors are needed for pins that have built-  
in weak pullups or pulldowns, use the value 8 kΩ (max).  
Unused output-only pins should never be tied directly to power or ground, but can be left open.  
When possible, TI recommends that unused bidirectional I/O pins be configured to their output state such that  
the pin can be left open. If this control is not available and the pins may become an input, then they should be  
pulled-up (or pulled-down) using an appropriate, dedicated resistor.  
Copyright © 2015–2019, Texas Instruments Incorporated  
43  
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
11.1.5 Maximum Pin-to-Pin, PCB Interconnects Etch Lengths  
Table 14. Max Pin-to-Pin PCB Interconnect Recommendations(1)(2)  
SIGNAL INTERCONNECT TOPOLOGY  
DMD BUS SIGNAL  
DMD_HS_CLK_P  
UNIT  
SINGLE BOARD SIGNAL ROUTING  
MULTI-BOARD SIGNAL ROUTING  
LENGTH  
LENGTH  
6.0  
152.4  
inch  
(mm)  
(3)  
See  
DMD_HS_CLK_N  
DMD_HS_WDATA_A_P  
DMD_HS_WDATA_A_N  
DMD_HS_WDATA_B_P  
DMD_HS_WDATA_B_N  
DMD_HS_WDATA_C_P  
DMD_HS_WDATA_C_N  
DMD_HS_WDATA_D_P  
DMD_HS_WDATA_D_N  
6.0  
152.4  
inch  
(mm)  
(3)  
See  
DMD_HS_WDATA_E_P  
DMD_HS_WDATA_E_N  
DMD_HS_WDATA_F_P  
DMD_HS_WDATA_F_N  
DMD_HS_WDATA_G_P  
DMD_HS_WDATA_G_N  
DMD_HS_WDATA_H_P  
DMD_HS_WDATA_H_N  
6.5  
165.1  
inch  
(mm)  
(3)  
DMD_LS_CLK  
See  
6.5  
165.1  
inch  
(mm)  
(3)  
DMD_LS_WDATA  
DMD_LS_RDATA  
DMD_DEN_ARSTZ  
See  
6.5  
165.1  
inch  
(mm)  
(3)  
See  
7.0  
177.8  
inch  
(mm)  
(3)  
See  
(1) Max signal routing length includes escape routing.  
(2) Multi-board DMD routing length is more restricted due to the impact of the connector.  
(3) Due to board variations, these are impossible to define. Any board designs should SPICE simulate with the DLPC150 controller IBIS  
models to ensure single routing lengths do not exceed requirements.  
44  
Copyright © 2015–2019, Texas Instruments Incorporated  
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
Table 15. High Speed PCB Signal Routing Matching Requirements(1)(2)(3)(4)  
SIGNAL GROUP LENGTH MATCHING  
REFERENCE SIGNAL  
INTERFACE  
SIGNAL GROUP  
MAX MISMATCH(5)  
UNIT  
DMD_HS_WDATA_A_P  
DMD_HS_WDATA_A_N  
DMD_HS_WDATA_B_P  
DMD_HS_WDATA_B_N  
DMD_HS_WDATA_C_P  
DMD_HS_WDATA_C_N  
DMD_HS_WDATA_D_P  
DMD_HS_WDATA_D_N  
DMD_HS_CLK_P  
DMD_HS_CLK_N  
±0.1  
(±25.4)  
inch  
(mm)  
DMD  
DMD_HS_WDATA_E_P  
DMD_HS_WDATA_E_N  
DMD_HS_WDATA_F_P  
DMD_HS_WDATA_F_N  
DMD_HS_WDATA_G_P  
DMD_HS_WDATA_G_N  
DMD_HS_WDATA_H_P  
DMD_HS_WDATA_H_N  
DMD_LS_WDATA  
DMD_LS_RDATA  
±0.2  
(±5.08)  
inch  
(mm)  
DMD  
DMD  
DMD_LS_CLK  
N/A  
inch  
(mm)  
DMD_DEN_ARSTZ  
N/A  
(1) These values apply to PCB routing only. They do not include any internal package routing mismatch associated with the DLPC150, the  
DMD.  
(2) DMD HS data lines are differential, thus these specifications are pair-to-pair.  
(3) Training is applied to DMD HS data lines, so defined matching requirements are slightly relaxed.  
(4) DMD LS signals are single ended.  
(5) Mismatch variance applies to high-speed data pairs. For all high-speed data pairs, the maximum mismatch between pairs should be 1  
mm or less.  
11.1.6 Number of Layer Changes  
Single-ended signals: Minimize the number of layer changes.  
Differential signals: Individual differential pairs can be routed on different layers, but the signals of a given pair  
should not change layers.  
11.1.7 Stubs  
Stubs should be avoided.  
11.1.8 Terminations  
No external termination resistors are required on DMD_HS differential signals.  
The DMD_LS_CLK and DMD_LS_WDATA signal paths should include a 43-Ω series termination resistor  
located as close as possible to the corresponding DLPC150 controller pins.  
The DMD_LS_RDATA signal path should include a 43-Ω series termination resistor located as close as  
possible to the corresponding DMD pin.  
DMD_DEN_ARSTZ does not require a series resistor.  
11.1.9 Routing Vias  
The number of vias on DMD_HS signals should be minimized and should not exceed two.  
Any and all vias on DMD_HS signals should be located as close to the DLPC150 controller as possible.  
The number of vias on the DMD_LS_CLK and DMD_LS_WDATA signals should be minimized and not  
exceed two.  
Any and all vias on the DMD_LS_CLK and DMD_LS_WDATA signals should be located as close to the  
DLPC150 controller as possible.  
Copyright © 2015–2019, Texas Instruments Incorporated  
45  
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
11.2 Layout Example  
Figure 19. Board Layout Example  
11.3 Thermal Considerations  
The underlying thermal limitation for the DLPC150 is that the maximum operating junction temperature (TJ) not  
be exceeded (this is defined in the Recommended Operating Conditions). This temperature is dependent on  
operating ambient temperature, airflow, PCB design (including the component layout density and the amount of  
copper used), power dissipation of the DLPC150, and power dissipation of surrounding components. The  
DLPC150’s package is designed primarily to extract heat through the power and ground planes of the PCB.  
Thus, copper content and airflow over the PCB are important factors.  
The recommended maximum operating ambient temperature (TA) is provided primarily as a design target and is  
based on maximum DLPC150 power dissipation and RθJA at 0 m/s of forced airflow, where RθJA is the thermal  
resistance of the package as measured using a glater test PCB with two, 1-oz power planes. This JEDEC test  
PCB is not necessarily representative of the DLPC150 PCB; the reported thermal resistance may not be  
accurate in the actual product application. Although the actual thermal resistance may be different, it is the best  
information available during the design phase to estimate thermal performance. However, after the PCB is  
designed and the product is built, TI highly recommends that thermal performance be measured and validated.  
To do this, measure the top center case temperature under the worse case product scenario (max power  
dissipation, max voltage, max ambient temperature) and validated not to exceed the maximum recommended  
case temperature (TC). This specification is based on the measured φJT for the DLPC150 package and provides  
a relatively accurate correlation to junction temperature. Take care when measuring this case temperature to  
prevent accidental cooling of the package surface. TI recommends a small (approximately 40 gauge)  
thermocouple. The bead and thermocouple wire should contact the top of the package and be covered with a  
minimal amount of thermally conductive epoxy. The wires should be routed closely along the package and the  
board surface to avoid cooling the bead through the wires.  
46  
版权 © 2015–2019, Texas Instruments Incorporated  
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
12 器件和文档支持  
12.1 器件支持  
12.1.1 器件命名规则  
12.1.1.1 器件标记  
DLPC150  
DLPC150ZEZ  
标记定义:  
1 行:  
DLP 器件名称:DLPC150  
SC:焊锡球成分  
e1:表示含 SnAgCu 的无铅焊锡球  
G8:表示含 SnAgCu 的无铅焊锡球,其中银含量  
小于等于 1.5%,模压混合物满足德州仪器 (TI) 的绿色定义。  
2 行:  
3 行:  
4 行:  
5 行:  
TI 部件号  
XXXXXXXX-TT 制造商部件号  
LLLLLLLL.ZZ 半导体晶圆的铸造批次代码以及无铅焊锡球标记  
PH YYWW:封装组件信息  
版权 © 2015–2019, Texas Instruments Incorporated  
47  
DLPC150  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
www.ti.com.cn  
12.2 相关链接  
下面的表格中列出了快速访问链接。类别包括技术文档、支持与社区资源、工具与软件,以及申请样片或购买产品  
的快速链接。  
16. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
单击此处  
样片和购买  
请单击此处  
请单击此处  
单击此处  
技术文档  
请单击此处  
请单击此处  
单击此处  
工具与软件  
请单击此处  
请单击此处  
单击此处  
支持和社区  
请单击此处  
请单击此处  
单击此处  
DLP2010NIR  
DLP2010  
DLPA2000  
DLPA2005  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
DLP is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 "机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
48  
版权 © 2015–2019, Texas Instruments Incorporated  
DLPC150  
www.ti.com.cn  
ZHCSDJ3C MARCH 2015REVISED JUNE 2019  
13.1 Package Option Addendum  
13.1.1 Packaging Information  
Package  
Type  
Package  
Drawing  
Package  
Qty  
(1)  
(2)  
(3)  
Orderable Device  
Status  
Pins  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking(4)(5)  
DLPC150ZEZ  
DLPC150ZEZ  
NFBGA  
ZEZ  
201  
1
TBD  
Call TI  
Level-3-260C-168 HRS  
–30 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by  
weight in homogeneous material)  
space  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(5) Multiple Device markings will be inside parentheses. Only on Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief  
on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third  
parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for  
release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
版权 © 2015–2019, Texas Instruments Incorporated  
49  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  
PACKAGE OUTLINE  
ZEZ0201A  
NFBGA - 1 mm max height  
SCALE 1.000  
PLASTIC BALL GRID ARRAY  
13.1  
12.9  
A
B
BALL A1 CORNER  
13.1  
12.9  
1 MAX  
C
SEATING PLANE  
0.1 C  
0.31  
0.21  
BALL TYP  
TYP  
11.2 TYP  
SYMM  
(0.9) TYP  
R
P
N
M
L
K
J
(0.9) TYP  
SYMM  
11.2  
TYP  
H
G
F
0.4  
201X  
E
D
C
0.3  
0.15  
0.08  
C A  
C
B
B
A
1
2
5 6  
3 7 9 10 11 12 13 14 15  
4
8
0.8 TYP  
0.8 TYP  
BALL A1 CORNER  
4221521/A 03/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZEZ0201A  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
201X ( 0.4)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
A
B
C
(0.8) TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
SYMM  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.4)  
METAL  
(
0.4)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221521/A 03/2015  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZEZ0201A  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
(
0.4) TYP  
(0.8) TYP  
1
2
3
4
5
6
8
9
13 14 15  
7
10 11 12  
A
B
C
(0.8) TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE:8X  
4221521/A 03/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  

相关型号:

DLPC150ZEZ

适用于 DLP2010NIR DMD 的 数字控制器 | ZEZ | 201 | -30 to 85
TI

DLPC200

DLP® Digital Controller for the DLP5500 DMD
TI

DLPC200ZEW

DLP® Digital Controller for the DLP5500 DMD
TI

DLPC200ZEWCM

暂无描述
TI

DLPC200ZEWT

DLP® Digital Controller for the DLP5500 DMD
TI

DLPC200_1

DLP® Digital Controller for the DLP5500 DMD
TI

DLPC200_17

DLP Digital Controller for the DLP5500 DMD
TI

DLPC230-Q1

适用于 DLP553x-Q1 芯片组的 DLP® 汽车数字微镜器件 (DMD) 控制器
TI

DLPC230S-Q1

适用于 DLP553x-Q1 芯片组的 DLP® 符合汽车功能安全标准的 DMD 控制器
TI

DLPC230STZDQQ1

适用于 DLP553x-Q1 芯片组的 DLP® 符合汽车功能安全标准的 DMD 控制器

| ZDQ | 324 | -40 to 105
TI

DLPC230TZDQQ1

适用于 DLP553x-Q1 芯片组的 DLP® 汽车数字微镜器件 (DMD) 控制器 | ZDQ | 324 | -40 to 105
TI

DLPC230TZDQRQ1

适用于 DLP553x-Q1 芯片组的 DLP® 汽车数字微镜器件 (DMD) 控制器 | ZDQ | 324 | -40 to 105
TI