DLPC3478CZEZ [TI]

适用于 DLP3010 (0.3 720p) DMD 的 DLP® 显示和光控制器 | ZEZ | 201 | -30 to 85;
DLPC3478CZEZ
型号: DLPC3478CZEZ
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 DLP3010 (0.3 720p) DMD 的 DLP® 显示和光控制器 | ZEZ | 201 | -30 to 85

控制器 商用集成电路
文件: 总78页 (文件大小:3315K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLPC3478  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
DLPC3478 显示和光控制器  
1 特性  
2 应用  
• 适用DLP3010LC (0.3 720p) DMD 的显示和光控  
制器  
• 光控制特性  
– 针对机器视觉和数码曝光进行了优化的图形显示  
移动投影仪  
智能显示  
智能手机  
增强现实眼镜  
智能家居显示  
Pico 投影仪  
3D 机器视觉  
– 灵活的内(1D) 和外(2D) 图形流模式  
• 可编程曝光时间  
• 高2500Hz1 360 Hz8 的  
高速图形速率  
3 说明  
– 可编2D 静态图形  
DLPC3478 显示和光控制器为 DLP3010LC 数字微镜  
器件 (DMD) 的可靠运行提供支持适用于视频显示和  
光控制应用。DLPC3478 控制器提供了连接用户电子  
产品和 DMD 的便捷接口以高速、精确且高效地显示  
视频和控制光图形。  
– 内部图形流模式支持简化的系统设计  
• 不再需要视频接口  
• 通过闪存存储超1000 个图形  
– 用于实现摄像头或传感器同步的灵活触发器信号  
• 一个可配置输入触发器  
访问 TI DLP ® Pico 显示技术入门页面并查看编程  
人员指南了解详情。  
• 两个可配置输入触发器  
• 显示特性  
– 最高支720p 的输入图像大小  
– 输入帧速率高120Hz  
24 输入像素接口支持:  
该芯片组提供现成的资源可帮助用户加快设计周期。  
这些资源包括量产就绪型光学模块、光学模块制造商和  
设计公司。  
• 并行BT656接口协议  
• 像素时钟高155 MHz  
– 图像处- IntelliBright算法、图像大小调整、  
1D 梯形校正、可编程去伽马校正  
• 系统特性:  
器件信息(1)  
封装尺寸标称值)  
器件型号  
DLPC3478  
封装  
NFBGA (201)  
13.00mm x 13.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 器件配置I2C 控制  
– 可编Splash 屏幕  
– 可编LED 电流控制  
– 断电时自动实DMD 停放  
SYSPWR  
V
LED  
1.8 V external  
1.8 V  
PROJ_ON  
GPIO_8  
SPI1  
RESETZ  
PARKZ  
DLPA200x  
2
I C  
R
LIM  
HOST_IRQ  
TRIG_IN  
3DR  
VDDLP12  
VDD  
Illumination  
optics  
Parallel  
(28)  
DLPC347x  
V
,
OFFSET  
TSTPT  
TRIG_OUT_1  
SPI (4)  
1.8 V  
SPI0  
V
,
BIAS  
RESET  
GPIO  
GPIO  
TRIG_OUT_2  
PAT_READY  
V
VCC_18  
DMD  
VCC_INTF  
VCC_FLSH  
CTRL  
Sub-LVDS  
1.8 V  
典型的独立系统  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: DLPS111  
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
Table of Contents  
7 Detailed Description......................................................27  
7.1 Overview...................................................................27  
7.2 Functional Block Diagram.........................................27  
7.3 Feature Description...................................................28  
7.4 Device Functional Modes..........................................50  
7.5 Programming............................................................ 50  
8 Application and Implementation..................................51  
8.1 Application Information............................................. 51  
8.2 Typical Application.................................................... 51  
9 Power Supply Recommendations................................55  
9.1 PLL Design Considerations...................................... 55  
9.2 System Power-Up and Power-Down Sequence....... 55  
9.3 Power-Up Initialization Sequence.............................59  
9.4 DMD Fast Park Control (PARKZ)..............................59  
9.5 Hot Plug I/O Usage...................................................60  
10 Layout...........................................................................61  
10.1 Layout Guidelines................................................... 61  
10.2 Layout Example...................................................... 69  
11 Device and Documentation Support..........................70  
11.1 Device Support........................................................70  
11.2 Documentation Support.......................................... 72  
11.3 接收文档更新通知................................................... 72  
11.4 支持资源..................................................................72  
11.5 Trademarks............................................................. 72  
11.6 静电放电警告...........................................................72  
11.7 术语表..................................................................... 72  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications................................................................ 13  
6.1 Absolute Maximum Ratings...................................... 13  
6.2 ESD Ratings............................................................. 13  
6.3 Recommended Operating Conditions.......................14  
6.4 Thermal Information..................................................14  
6.5 Power Electrical Characteristics............................... 15  
6.6 Pin Electrical Characteristics.................................... 16  
6.7 Internal Pullup and Pulldown Electrical  
Characteristics.............................................................18  
6.8 DMD Sub-LVDS Interface Electrical  
Characteristics.............................................................19  
6.9 DMD Low-Speed Interface Electrical  
Characteristics.............................................................20  
6.10 System Oscillator Timing Requirements.................21  
6.11 Power Supply and Reset Timing Requirements......21  
6.12 Parallel Interface Frame Timing Requirements.......22  
6.13 Parallel Interface General Timing Requirements.... 23  
6.14 BT656 Interface General Timing Requirements......24  
6.15 Flash Interface Timing Requirements..................... 25  
6.16 Other Timing Requirements....................................25  
6.17 DMD Sub-LVDS Interface Switching  
Characteristics.............................................................26  
6.18 DMD Parking Switching Characteristics................. 26  
6.19 Chipset Component Usage Specification............... 26  
Information.................................................................... 72  
4 Revision History  
Changes from Revision B (June 2019) to Revision C (December 2020)  
Page  
• 将像素时钟更改155MHz.................................................................................................................................1  
• 更新了支持DMD.............................................................................................................................................1  
Reorganized Pin Function description................................................................................................................4  
Updated Absolute Maximum Rating ................................................................................................................ 13  
Updated Recommended Operating Conditions................................................................................................14  
Updated Power Electrical Characteristics ........................................................................................................15  
Updated Pin Electrical Characteristics..............................................................................................................16  
Updated DMD Sub-LVDS Interface Electrical Characteristics .........................................................................19  
Updated DMD Low-Speed Interface Electrical Characteristics........................................................................ 20  
Updated System Oscillator Timing Requirements............................................................................................ 21  
Updated Power Supply and Reset Timing Requirements ................................................................................21  
Added BT.656 Interface Mode Bit Mapping ..................................................................................................... 24  
Added Flash Interface Timing diagram.............................................................................................................25  
Updated maximum SPI flash size to 128Mb.....................................................................................................25  
Added DMD Sub-LVDS Interface Switching Characteristics............................................................................ 26  
Added DMD Parking Switching Characteristics................................................................................................26  
Added Chipset Component Usage Specification .............................................................................................26  
Updated external pattern streaming system block diagram..............................................................................51  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
Updated internal pattern streaming system block diagram...............................................................................51  
Changes from Revision A (July 2018) to Revision B (June 2019)  
Page  
• 版C 更改替代了版B 更改........................................................................................................................... 1  
Changes from Revision * (April 2018) to Revision A (July 2018)  
Page  
• 首次公开发布完整数据表.................................................................................................................................... 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DLPC3478  
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
5 Pin Configuration and Functions  
5-1. ZEZ Package 201-Pin NFBGA Bottom View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
DMD_LS_C DMD_LS_W DMD_HS_W DMD_HS_W DMD_HS_W DMD_HS_W DMD_HS_CLK_ DMD_HS_W DMD_HS_W DMD_HS_W DMD_HS_W  
P
CMP_OUT SPI0_CLK SPI0_CSZ0 CMP_PWM  
SPI0_DIN SPI0_DOUT LED_SEL_1 LED_SEL_0  
A
B
C
D
E
F
LK  
DATA  
DATAH_P DATAG_P  
DATAF_P  
DATAE_P  
DATAD_P  
DATAC_P  
DATAB_P  
DATAA_P  
DMD_DEN_ DMD_LS_R DMD_HS_W DMD_HS_W DMD_HS_W DMD_HS_W DMD_HS_CLK_ DMD_HS_W DMD_HS_W DMD_HS_W DMD_HS_W  
N
ARSTZ  
DATA  
DATAH_N DATAG_N  
DATAF_N  
DATAE_N  
DATAD_N  
DATAC_N  
DATAB_N  
DATAA_N  
HWTEST_E  
N
DD3P  
DD3N  
VDDLP12  
VDD  
VSS  
VCC  
VSS  
VSS  
VSS  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VCC  
VDD  
VSS  
VCC  
RESETZ SPI0_CSZ1  
PARKZ  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VCC  
VDD  
GPIO_00  
GPIO_02  
GPIO_04  
GPIO_06  
GPIO_08  
GPIO_10  
GPIO_12  
GPIO_14  
GPIO_16  
GPIO_01  
GPIO_03  
GPIO_05  
GPIO_07  
GPIO_09  
GPIO_11  
GPIO_13  
GPIO_15  
GPIO_17  
GPIO_19  
TSTPT_7  
TSTPT_5  
TSTPT_3  
DD2P  
DCLKP  
DD1P  
DD2N  
DCLKN  
DD1N  
VDD  
VSS  
VSS  
VDD  
VSS  
VCC_FLSH  
VDD  
VCC  
VCC  
VSS  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
RREF  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DD0P  
DD0N  
VSS_PLLM  
G
H
J
PLL_REFCL  
K_I  
VDD_PLLM VSS_PLLD  
PLL_REFCL  
K_O  
VDD_PLLD  
PDATA_0  
PDATA_2  
PDATA_4  
PDATA_6  
VSS  
VDD  
PDATA_1  
PDATA_3  
PDATA_5  
PDATA_7  
VSYNC_WE  
PDATA_8  
K
L
VSS  
VCC_INTF  
VCC_INTF  
PCLK  
VSS  
VDD  
3DR  
VCC_INTF  
VSS  
VDD  
VDD  
VCC  
JTAGTMS1 GPIO_18  
M
N
P
R
PDM_CVS_  
TE  
HSYNC_CS  
VCC_INTF HOST_IRQ IIC0_SDA  
IIC0_SCL JTAGTMS2 JTAGTDO2 JTAGTDO1  
TSTPT_6  
TSTPT_4  
TSTPT_2  
DATEN_CM  
D
PDATA_11 PDATA_13 PDATA_15 PDATA_17 PDATA_19 PDATA_21 PDATA_23 JTAGTRSTZ JTAGTCK  
JTAGTDI  
TSTPT_1  
PDATA_9 PDATA_10 PDATA_12 PDATA_14 PDATA_16 PDATA_18 PDATA_20 PDATA_22  
IIC1_SDA  
IIC1_SCL  
TSTPT_0  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
5-1. Test Pins and General Control  
PIN  
I/O  
TYPE(4)  
DESCRIPTION  
NAME  
NO.  
Manufacturing test enable signal. Connect this signal directly to ground on the  
PCB for normal operation.  
HWTEST_EN  
C10  
I
6
DMD fast park control (active low Input with a hysteresis buffer). This signal is  
used to quickly park the DMD when loss of power is imminent. The longest  
lifetime of the DMD may not be achieved with the fast park operation;  
therefore, this signal is intended to only be asserted when a normal park  
operation is unable to be completed. The PARKZ signal is typically provided  
from the DLPAxxxx interrupt output signal.  
PARKZ  
C13  
I
6
JTAGTCK  
JTAGTDI  
P12  
P13  
I
I
6
6
1
1
6
6
TI internal use. Leave this pin unconnected.  
TI internal use. Leave this pin unconnected.  
TI internal use. Leave this pin unconnected.  
TI internal use. Leave this pin unconnected.  
TI internal use. Leave this pin unconnected.  
TI internal use. Leave this pin unconnected.  
JTAGTDO1  
JTAGTDO2  
JTAGTMS1  
JTAGTMS2  
N13(1)  
N12(1)  
M13  
O
O
I
N11  
I
TI internal use.  
This pin must be tied to ground, through an external resistor for normal  
operation. Failure to tie this pin low during normal operation can cause start  
up and initialization problems.(2)  
JTAGTRSTZ  
P11  
C11  
I
I
6
Power-on reset (active low input with a hysteresis buffer). Self-configuration  
starts when a low-to-high transition is detected on RESETZ. All controller  
power and clocks must be stable before this reset is de-asserted. No signals  
are in their active state while RESETZ is asserted. This pin is typically  
connected to the RESETZ pin of the DLPA200x or RESET_Z of the  
DLPA300X.  
RESETZ  
6
TSTPT_0  
TSTPT_1  
TSTPT_2  
R12  
R13  
R14  
I/O  
I/O  
I/O  
1
1
1
Test pins (includes weak internal pulldown). Pins are tri-stated while RESETZ  
is asserted low. Sampled as an input test mode selection control  
approximately 1.5 µs after de-assertion of RESETZ, and then driven as  
outputs.(2) (3)  
Normal use: reserved for test output. Leave open for normal use.  
Note: An external pullup may put the DLPC34xx in a test mode. See 7.3.9  
for more information.  
TSTPT_3  
R15  
I/O  
1
Test pin 4 (Includes weak internal pulldown) tri-stated while RESETZ is  
asserted low. Sampled as an input test mode selection control approximately  
1.5 μs after de-assertion of RESETZ and then driven as an output. Reserved  
for TRIG_OUT_1 signal (Output).  
TSTPT_4  
P14  
I/O  
1
TSTPT_5  
TSTPT_6  
P15  
N14  
I/O  
I/O  
1
1
Test pins (includes weak internal pulldown). Pins are tri-stated while RESETZ  
is asserted low. Sampled as an input test mode selection control  
approximately 1.5 µs after de-assertion of RESETZ, and then driven as  
outputs.(2) (3)  
Normal use: reserved for test output. Leave open for normal use.  
Note: An external pullup may put the DLPC34xx in a test mode. See 7.3.9  
for more information.  
TSTPT_7  
N15  
I/O  
1
(1) If the application design does not require an external pullup, and there is no external logic that can overcome the weak internal  
pulldown resistor, then this I/O pin can be left open or unconnected for normal operation. If the application design does not require an  
external pullup, but there is external logic that might overcome the weak internal pulldown resistor, then an external pulldown is  
recommended to ensure a logic low.  
(2) External resistor must have a value of 8 kΩor less to compensate for pins that provide internal pullup or pulldown resistors.  
(3) If the application design does not require an external pullup and there is no external logic that can overcome the weak internal  
pulldown, then the TSTPT I/O can be left open (unconnected) for normal operation. If operation does not call for an external pullup, but  
there is external logic that might overcome the weak internal pulldown resistor, then an external pulldown resistor is recommended to  
ensure a logic low.  
(4) See 5-10 for type definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DLPC3478  
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
5-2. Parallel Port Input  
PIN(1) (2)  
NAME  
DESCRIPTION  
PARALLEL RGB MODE BT656 INTERFACE MODE  
Pixel clock Pixel clock  
I/O  
Type(4)  
NO.  
PCLK  
P3  
I
11  
5
Parallel data mask. Programable  
polarity with default of active high.  
Optional signal.  
PDM_CVS_TE  
N4  
I/O  
Unused  
VSYNC_WE  
HSYNC_CS  
DATAEN_CMD  
P1  
N5  
P2  
I
I
I
11  
11  
11  
Vsync(3)  
Unused  
Unused  
Unused  
Hsync(3)  
Data valid  
(TYPICAL RGB 888)  
PDATA_0  
PDATA_1  
PDATA_2  
PDATA_3  
PDATA_4  
PDATA_5  
PDATA_6  
PDATA_7  
K2  
K1  
L2  
Blue (bit weight 1)  
Blue (bit weight 2)  
Blue (bit weight 4)  
Blue (bit weight 8)  
Blue (bit weight 16)  
Blue (bit weight 32)  
Blue (bit weight 64)  
Blue (bit weight 128)  
BT656_Data (0)  
BT656_Data (1)  
BT656_Data (2)  
BT656_Data (3)  
BT656_Data (4)  
BT656_Data (5)  
BT656_Data (6)  
BT656_Data (7)  
L1  
I
I
I
11  
11  
11  
M2  
M1  
N2  
N1  
(TYPICAL RGB 888)  
PDATA_8  
PDATA_9  
PDATA_10  
PDATA_11  
PDATA_12  
PDATA_13  
PDATA_14  
PDATA_15  
R1  
R2  
R3  
P4  
R4  
P5  
R5  
P6  
Green (bit weight 1)  
Green (bit weight 2)  
Green (bit weight 4)  
Green (bit weight 8)  
Green (bit weight 16)  
Green (bit weight 32)  
Green (bit weight 64)  
Green (bit weight 128)  
Unused  
(TYPICAL RGB 888)  
PDATA_16  
PDATA_17  
PDATA_18  
PDATA_19  
PDATA_20  
PDATA_21  
PDATA_22  
PDATA_23  
R6  
P7  
R7  
P8  
R8  
P9  
R9  
P10  
Red (bit weight 1)  
Red (bit weight 2)  
Red (bit weight 4)  
Red (bit weight 8)  
Red (bit weight 16)  
Red (bit weight 32)  
Red (bit weight 64)  
Red (bit weight 128)  
Unused  
Light Control  
External input trigger signal for Internal Pattern mode (input)  
3D reference  
For 3D applications: left or right 3D reference (left = 1, right = 0). To be  
provided by the host. Must transition in the middle of each frame (no  
closer than 1 ms to the active edge of VSYNC)  
3DR  
N6  
I
11  
If a 3D application is not used, pull this input low through an external  
resistor.  
(1) PDATA(23:0) bus mapping depends on pixel format and source mode. See later sections for details.  
(2) Connect unused inputs to ground or pulldown to ground through an external resistor (8 kΩor less).  
(3) VSYNC and HSYNC polarity can be adjusted by software.  
(4) See 5-10 for type definitions.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
5-3. DSI Input Data and Clock  
PIN  
I/O  
Type(1)  
DESCRIPTION  
NAME  
NO.  
DCLKN  
DCLKP  
E2  
E1  
---  
---  
unused; Leave unconnected and floating.  
DD0N  
DD0P  
DD1N  
DD1P  
DD2N  
DD2P  
DD3N  
DD3P  
G2  
G1  
F2  
F1  
D2  
D1  
C2  
C1  
---  
---  
---  
unused; Leave unconnected and floating.  
Leave this pin unconnected and floating.  
RREF  
F3  
(1) See 5-10 for type definitions.  
5-4. DMD Reset and Bias Control  
PIN  
I/O  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
DMD driver enable (active high). DMD reset (active low). When  
corresponding I/O power is supplied, the controller drives this signal low  
after the DMD is parked and before power is removed from the DMD. If the  
1.8-V power to the DLPC34xx is independent of the 1.8-V power to the  
DMD, then TI recommends including a weak, external pulldown resistor to  
hold the signal low in case DLPC34xx power is inactive while DMD power  
is applied.  
DMD_DEN_ARSTZ  
B1  
O
2
DMD_LS_CLK  
A1  
A2  
B2  
O
O
I
3
3
6
DMD, low speed (LS) interface clock  
DMD, low speed (LS) serial write data  
DMD, low speed (LS) serial read data  
DMD_LS_WDATA  
DMD_LS_RDATA  
(1) See 5-10 for type definitions.  
5-5. DMD Sub-LVDS Interface  
PIN  
I/O  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
DMD_HS_CLK_P  
DMD_HS_CLK_N  
A7  
B7  
O
4
DMD high speed (HS) interface clock  
DMD_HS_WDATA_H_P  
DMD_HS_WDATA_H_N  
DMD_HS_WDATA_G_P  
DMD_HS_WDATA_G_N  
DMD_HS_WDATA_F_P  
DMD_HS_WDATA_F_N  
DMD_HS_WDATA_E_P  
DMD_HS_WDATA_E_N  
DMD_HS_WDATA_D_P  
DMD_HS_WDATA_D_N  
DMD_HS_WDATA_C_P  
DMD_HS_WDATA_C_N  
DMD_HS_WDATA_B_P  
DMD_HS_WDATA_B_N  
DMD_HS_WDATA_A_P  
DMD_HS_WDATA_A_N  
A3  
B3  
A4  
B4  
A5  
B5  
A6  
B6  
A8  
B8  
A9  
B9  
A10  
B10  
A11  
B11  
DMD sub-LVDS high speed (HS) interface write data lanes. The true  
numbering and application of the DMD_HS_WDATA pins depend on the  
software configuration. See 7-10.  
O
4
(1) See 5-10 for type definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DLPC3478  
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
5-6. Peripheral Interface(1)  
PIN(1)  
I/O  
TYPE(3)  
DESCRIPTION  
NAME  
NO.  
Successive approximation ADC (analog-to-digital converter) comparator output  
(DLPC34xx Input). To implement, use a successive approximation ADC with a  
thermistor feeding one input of the external comparator and the DLPC34xx  
controller GPIO_10 (RC_CHARGE) pin driving the other side of the comparator.  
It is recommended to use the DLPAxxxx to achieve this function. CMP_OUT  
must be pulled-down to ground if this function is not used. (hysteresis buffer)  
CMP_OUT  
A12  
I
6
CMP_PWM  
A15  
N8  
O
O
1
9
TI internal use. Leave this pin unconnected.  
Host interrupt (output)  
HOST_IRQ indicates when the DLPC34xx auto-initialization is in progress and  
most importantly when it completes.  
HOST_IRQ(2)  
This pin is tri-stated during reset. An external pullup must be included on this  
signal.  
I2C slave (port 0) SCL (bidirectional, open-drain signal with input hysteresis):  
This pin requires an external pullup resistor. The slave I2C I/Os are 3.6-V tolerant  
(high-voltage-input tolerant) and are powered by VCC_INTF (which can be 1.8,  
2.5, or 3.3 V). External I2C pullups must be connected to a host supply with an  
equal or higher supply voltage, up to a maximum of 3.6 V (a lower pullup supply  
voltage does not typically satisfy the VIH specification of the slave I2C input  
buffers).  
IIC0_SCL(4)  
IIC1_SCL  
N10  
R11  
N9  
I/O  
I/O  
I/O  
I/O  
7
8
7
8
TI internal use. TI recommends an external pullup resistor.  
I2C slave (port 0) SDA. (bidirectional, open-drain signal with input hysteresis):  
This pin requires an external pullup resistor. The slave I2C port is the control port  
of controller. The slave I2C I/O pins are 3.6-V tolerant (high-volt-input tolerant)  
and are powered by VCC_INTF (which can be 1.8, 2.5, or 3.3 V). External I2C  
pullups must be connected to a host supply with an equal or higher supply  
voltage, up to a maximum of 3.6 V (a lower pullup supply voltage does not  
typically satisfy the VIH specification of the slave I2C input buffers).  
IIC0_SDA(4)  
IIC1_SDA  
R10  
TI internal use. TI recommends an external pullup resistor.  
LED enable select. Automatically controlled by the DLPC34xx programmable  
DMD sequence  
LED_SEL(1:0)  
Enabled LED  
None  
Red  
Green  
Blue  
LED_SEL_0  
LED_SEL_1  
B15  
B14  
O
O
1
1
00  
01  
10  
11  
The controller drives these signals low when RESETZ is asserted and the  
corresponding I/O power is supplied. The controller continues to drive these  
signals low throughout the auto-initialization process. A weak, external pulldown  
resistor is recommended to ensure that the LEDs are disabled when I/O power is  
not applied.  
SPI (Serial Peripheral Interface) port 0, clock. This pin is typically connected to  
the flash memory clock.  
SPI0_CLK  
A13  
A14  
O
O
13  
13  
SPI port 0, chip select 0 (active low output). This pin is typically connected to the  
flash memory chip select.  
TI recommends an external pullup resistor to avoid floating inputs to the external  
SPI device during controller reset assertion.  
SPI0_CSZ0  
SPI port 0, chip select 1 (active low output). This pin typically remains unused.  
TI recommends an external pullup resistor to avoid floating inputs to the external  
SPI device during controller reset assertion.  
SPI0_CSZ1  
C12  
O
13  
Synchronous serial port 0, receive data in. This pin is typically connected to the  
flash memory data out.  
SPI0_DIN  
B12  
B13  
I
12  
13  
Synchronous serial port 0, transmit data out. This pin is typically connected to  
the flash memory data in.  
SPI0_DOUT  
O
(1) External pullup resistor must be 8 kΩor less.  
(2) For more information about usage, see 7.3.3.  
(3) See 5-10 for type definitions.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
(4) When VCC_INTF is powered and VDD is not powered, the controller may drive the IIC0_xxx pins low which prevents communication  
on this I2C bus. Do not power up the VCC_INTF pin before powering up the VDD pin for any system that has additional slave devices  
on this bus.  
5-7. GPIO Peripheral Interface(1)  
PIN(1)  
I/O TYPE(3)  
DESCRIPTION(2)  
NAME  
NO.  
General purpose I/O 19 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be  
configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external  
pullup or pulldown to avoid a floating GPIO input.  
GPIO_19  
M15  
I/O  
1
General purpose I/O 18 (hysteresis buffer). Options:  
1. Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and  
left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating  
GPIO input.  
GPIO_18  
M14  
I/O  
1
2. MTR_SENSE, Motor Sense (Input): For focus motor control applications, this GPIO must be  
configured as an input to the DLPC34xx and supplied from the focus motor position sensor.  
General purpose I/O 17 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be  
configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external  
pullup or pulldown to avoid a floating GPIO input.  
GPIO_17  
GPIO_16  
GPIO_15  
GPIO_14  
GPIO_13  
GPIO_12  
L15  
L14  
K15  
K14  
J15  
J14  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
1
1
1
1
1
1
General purpose I/O 16 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be  
configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external  
pullup or pulldown to avoid a floating GPIO input.  
General purpose I/O 15 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be  
configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external  
pullup or pulldown to avoid a floating GPIO input.  
General purpose I/O 14 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be  
configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external  
pullup or pulldown to avoid a floating GPIO input.  
General purpose I/O 13 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be  
configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external  
pullup or pulldown to avoid a floating GPIO input.  
General purpose I/O 12 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be  
configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external  
pullup or pulldown to avoid a floating GPIO input.  
General purpose I/O 11 (hysteresis buffer). Options:  
1. Thermistor power enable (output). Turns on the power to the thermistor when it is used and  
enabled.  
GPIO_11  
GPIO_10  
H15  
H14  
I/O  
I/O  
1
1
2. Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and  
left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating  
GPIO input.  
General Purpose I/O 10 (hysteresis buffer). Options:  
1. RC_CHARGE (output): Intended to feed the RC charge circuit of the thermistor interface.  
2. Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and  
left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating  
GPIO input.  
General purpose I/O 09 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be  
configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external  
pullup or pulldown to avoid a floating GPIO input.  
GPIO_09  
GPIO_08  
G15  
G14  
I/O  
I/O  
1
1
General purpose I/O 08 (hysteresis buffer). Normal mirror parking request (active low): To be driven  
by the PROJ_ON output of the host. A logic low on this signal causes the DLPC34xx to PARK the  
DMD, but it does not power down the DMD (the DLPAxxxx does that instead). The minimum high  
time is 200 ms. The minimum low time is 200 ms.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
5-7. GPIO Peripheral Interface(1) (continued)  
PIN(1)  
NAME  
I/O TYPE(3)  
DESCRIPTION(2)  
NO.  
General purpose I/O 07 (hysteresis buffer). Options:  
1. Light Control: Reserved for TRIG_OUT_2 signal (Output).  
GPIO_07  
F15  
I/O  
1
2. Optional GPIO. Should be configured as a logic zero GPIO output and left unconnected if not  
used (otherwise it will require an external pullup or pulldown to avoid a floating GPIO input).  
General purpose I/O 06 (hysteresis buffer). Option:  
1. Light Control: Reserved for pattern ready signal (Output). Applicable in Internal Pattern  
Streaming Mode only.  
GPIO_06  
GPIO_05  
F14  
E15  
I/O  
I/O  
1
1
2. Optional GPIO. Should be configured as a logic zero GPIO output and left unconnected if not  
used (otherwise it will require an external pullup or pulldown to avoid a floating GPIO input).  
General purpose I/O 05 (hysteresis buffer). Optional GPIO. If unused TI recommends this pin be  
configured as a logic zero GPIO output and left unconnected. Otherwise this pin requires an external  
pullup or pulldown to avoid a floating GPIO input.  
General purpose I/O 04 (hysteresis buffer). Options:  
1. 3D glasses control (output): Controls the shutters on 3D glasses (Left = 1, Right = 0).  
2. SPI1_CSZ1 (active-low output): Optional SPI1 chip select 1 signal. Requires an external pullup  
resistor to deactivate this signal during reset and auto-initialization processes.  
3. Optional GPIO. If unused TI recommends this pin be configured as a logic zero GPIO output and  
left unconnected. Otherwise this pin requires an external pullup or pulldown to avoid a floating  
GPIO input.  
GPIO_04  
GPIO_03  
E14  
D15  
I/O  
I/O  
1
1
General purpose I/O 03 (hysteresis buffer). SPI1_CSZ0 (active low output): SPI1 chip select 0 signal.  
This pin is typically connected to the DLPAxxxx SPI_CSZ pin. Requires an external pullup resistor to  
deactivate this signal during reset and auto-initialization processes.  
General purpose I/O 02 (hysteresis buffer). SPI1_DOUT (output): SPI1 data output signal. This pin is  
typicallyconnected to the DLPAxxxx SPI_DIN pin.  
GPIO_02  
GPIO_01  
GPIO_00  
D14  
C15  
C14  
I/O  
I/O  
I/O  
1
1
1
General purpose I/O 01 (hysteresis buffer). SPI1_CLK (output): SPI1 clock signal. This pin is typically  
connected to the DLPAxxxx SPI_CLK pin.  
General purpose I/O 00 (hysteresis buffer). SPI1_DIN (input): SPI1 data input signal. This pin is  
typically connected to the DLPAxxxx SPI_DOUT pin.  
(1) GPIO pins must be configured through software for input, output, bidirectional, or open-drain operation. Some GPIO pins have one or  
more alternative use modes, which are also software configurable. An external pullup resistor is required for each signal configured as  
open-drain.  
(2) General purpose I/O for the DLPC3478 controller. These GPIO pins are software configurable.  
(3) See 5-10 for type definitions.  
5-8. Clock and PLL Support  
PIN  
I/O  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Reference clock crystal input. If an external oscillator is used instead of a crystal, use  
this pin as the oscillator input.  
PLL_REFCLK_I  
H1  
I
11  
5
Reference clock crystal return. If an external oscillator is used instead of a crystal,  
leave this pin unconnected (floating with no added capacitive load).  
PLL_REFCLK_O  
J1  
O
(1) See 5-10 for type definitions.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
5-9. Power and Ground  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
C5, D5, D7,  
D12, J4,  
J12, K3, L4,  
L12, M6,  
M9, D9,  
D13, F13,  
H13, L13,  
M10, D3, E3  
VDD  
PWR  
---  
Core 1.1-V power (main 1.1 V)  
VDDLP12  
C3  
Unused. It is recommended to externally tie this pin to VDD.  
C4, D6, D8,  
D10, E4,  
E13, F4, G4,  
G12, H4,  
H12, J3,  
J13, K4,  
K12, L3, M4,  
M5, M8,  
M12, G13,  
C6, C8, F6,  
F7, F8, F9,  
F10, G6,  
VSS  
GND  
Core ground (eDRAM, DSI, I/O ground, thermal ground)  
G7, G8, G9,  
G10, H6,  
H7, H8, H9,  
H10, J6, J7,  
J8, J9, J10,  
K6, K7, K8,  
K9, K10  
All 1.8-V I/O power:  
C7, C9, D4,  
E12, F12,  
K13, M11  
(1.8-V power supply for all I/O pins except the host or parallel interface  
and the SPI flash interface. This includes RESETZ, PARKZ, LED_SEL,  
CMP_OUT, GPIO, IIC1, TSTPT, and JTAG pins)  
VCC18  
PWR  
M3, M7, N3,  
N7  
Host or parallel interface I/O power: 1.8 V to 3.3 V (Includes IIC0, PDATA,  
video syncs, and HOST_IRQ pins)  
VCC_INTF  
VCC_FLSH  
PWR  
PWR  
Flash interface I/O power: 1.8 V to 3.3 V  
(Dedicated SPI0 power pin)  
D11  
VDD_PLLM  
VSS_PLLM  
VDD_PLLD  
VSS_PLLD  
H2  
G3  
J2  
PWR  
RTN  
PWR  
RTN  
MCG PLL (master clock generator phase lock loop) 1.1-V power  
MCG PLL return  
DCG PLL (DMD clock generator phase lock loop) 1.1-V power  
DCG PLL return  
H3  
5-10. I/O Type Subscript Definition  
I/O  
SUPPLY REFERENCE  
ESD STRUCTURE  
SUBSCRIPT  
DESCRIPTION  
1
2
1.8-V LVCMOS I/O buffer with 8-mA drive  
1.8-V LVCMOS I/O buffer with 4-mA drive  
1.8-V LVCMOS I/O buffer with 24-mA drive  
1.8-V sub-LVDS output with 4-mA drive  
1.8-V, 2.5-V, 3.3-V LVCMOS with 4-mA drive  
1.8-V LVCMOS input  
Vcc18  
Vcc18  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
3
Vcc18  
4
Vcc18  
5
Vcc_INTF  
Vcc18  
Vcc_INTF  
Vcc18  
6
7
1.8-V, 2.5-V, 3.3-V I2C with 3-mA drive  
1.8-V I2C with 3-mA drive  
8
9
1.8-V, 2.5-V, 3.3-V LVCMOS with 8-mA drive  
Reserved  
Vcc_INTF  
10  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
5-10. I/O Type Subscript Definition (continued)  
I/O  
SUPPLY REFERENCE  
ESD STRUCTURE  
SUBSCRIPT  
DESCRIPTION  
11  
12  
13  
1.8-V, 2.5-V, 3.3-V LVCMOS input  
Vcc_INTF  
Vcc_FLSH  
Vcc_FLSH  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
ESD diode to GND and supply rail  
1.8-V, 2.5-V, 3.3-V LVCMOS input  
1.8-V, 2.5-V, 3.3-V LVCMOS with 8-mA drive  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DLPC3478  
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted) (1)  
MIN  
MAX  
UNIT  
SUPPLY VOLTAGE (2)  
V(VDD)  
1.21  
1.32  
1.96  
1.96  
3.60  
3.60  
1.21  
1.21  
See (3)  
V
V
V
V
V
V
V
V
V
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
V(VDDLP12)  
V(VCC18)  
DMD Sub-LVDS Interface (DMD_HS_CLK_x and DMD_HS_WDATA_x_y)  
V(VCC_INTF)  
V(VCC_FLSH)  
V(VDD_PLLM) (MCG PLL)  
V(VDD_PLLD) (DCG PLL)  
VI2C buffer (I/O type 7)  
GENERAL  
TJ  
Operating junction temperature  
Storage temperature  
125  
125  
°C  
°C  
30  
40  
Tstg  
(1) Stresses beyond those listed under 6.1 may cause permanent damage to the device. These are stress ratings only, which do not  
imply functional operation of the device at these or any other conditions beyond those indicated under 6.3. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS (GND).  
(3) I/O is high voltage tolerant; that is, if VCC_INTF = 1.8 V, the input is 3.3-V tolerant, and if VCC_INTF = 3.3 V, the input is 5-V tolerant.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DLPC3478  
 
 
 
 
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.045  
1.045  
NOM  
1.10  
1.10  
MAX  
UNIT  
V
V(VDD)  
Core power 1.1 V (main 1.1 V)  
Unused  
1.155  
1.155  
V(VDDLP12)  
V
All 1.8-V I/O power:  
(1.8-V power supply for all I/O pins except the host or  
parallel interface and the SPI flash interface. This includes  
RESETZ, PARKZ LED_SEL, CMP_OUT, GPIO, IIC1,  
TSTPT, and JTAG pins.)  
V(VCC18)  
1.64  
1.80  
1.96  
V
1.64  
2.28  
1.80  
2.50  
1.96  
2.72  
3.58  
1.96  
2.72  
3.58  
1.155  
1.155  
85  
Host or parallel interface I/O power: 1.8 to 3.3 V (includes  
IIC0, PDATA, video syncs, and HOST_IRQ pins)  
V(VCC_INTF)  
See (1)  
See (1)  
V
V
3.02  
3.30  
1.64  
1.80  
V(VCC_FLSH)  
Flash interface I/O power: 1.8 V to 3.3 V  
2.28  
2.50  
3.02  
3.30  
V(VDD_PLLM)  
MCG PLL 1.1-V power  
See (2)  
See (2)  
1.025  
1.025  
30  
30  
1.100  
1.100  
V
V
V(VDD_PLLD)  
DCG PLL 1.1-V power  
TA  
TJ  
Operating ambient temperature(3)  
°C  
°C  
Operating junction temperature  
105  
(1) These supplies have multiple valid ranges.  
(2) The minimum voltage is lower than other 1.1-V supply minimum to enable additional filtering. This filtering may result in an IR drop  
across the filter.  
(3) The operating ambient temperature range assumes 0 forced air flow, a JEDEC JESD51 junction-to-ambient thermal resistance value  
at 0 forced air flow (RθJA at 0 m/s), a JEDEC JESD51 standard test card and environment, along with minimum and maximum  
estimated power dissipation across process, voltage, and temperature. Thermal conditions vary by application, and this affects RθJA  
Thus, maximum operating ambient temperature varies by application.  
.
Ta_min = Tj_min (Pd_min × RθJA) = 30°C (0.0 W × 28.8°C/W) = 30°C  
Ta_max = Tj_max (Pd_max × RθJA) = +105°C (0.348 W × 28.8°C/W) = +95.0°C  
6.4 Thermal Information  
DLPC3478 controller  
THERMAL METRIC(1)  
ZEZ (NFBGA)  
201 PINS  
10.1  
UNIT  
°C/W  
°C/W  
RθJC  
Junction-to-case thermal resistance  
at 0 m/s of forced airflow(2)  
28.8  
Junction-to-air thermal  
RθJA  
at 1 m/s of forced airflow(2)  
at 2 m/s of forced airflow(2)  
25.3  
resistance  
24.4  
Temperature variance from junction to package top center temperature, per  
unit power dissipation(3)  
0.23  
°C/W  
ψJT  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) Thermal coefficients abide by JEDEC Standard 51. RθJA is the thermal resistance of the package as measured using a JEDEC  
defined standard test PCB. This JEDEC test PCB is not necessarily representative of the DLPC34xx controller PCB and thus the  
reported thermal resistance may not be accurate in the actual product application. Although the actual thermal resistance may be  
different , it is the best information available during the design phase to estimate thermal performance.  
(3) Example: (0.5 W) × (0.2 °C/W) 0.1°C temperature rise.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
 
 
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
6.5 Power Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER(3) (4) (5)  
TEST CONDITIONS  
MIN  
TYP (1)  
MAX (2) UNIT  
I(VDD)  
I(VDD_PLLM)  
I(VDD_PLLD)  
+
Frame rate = 60 Hz  
Frame rate = 120 Hz  
168  
278  
+
1.1-V rails  
mA  
211  
362  
Frame rate = 60 Hz  
Frame rate = 120 Hz  
Frame rate = 60 Hz  
Frame rate = 120 Hz  
6
6
I(VDD_PLLM)  
MCG PLL 1.1V (6)  
DCG PLL 1.1V (6)  
mA  
6
I(VDD_PLLD)  
mA  
6
All 1.8-V I/O current: (1.8-V power supply Frame rate = 60 Hz  
for all I/O other than the host or parallel  
interface and the SPI flash interface)  
35  
48  
I(VCC18)  
mA  
Frame rate = 120 Hz  
35  
2
48  
Host or parallel interface I/O current: 1.8 to Frame rate = 60 Hz  
3.3 V (includes IIC0, PDATA, video syncs,  
I(VCC_INTF)  
mA  
mA  
and HOST_IRQ pins) (6)  
Frame rate = 120 Hz  
2
Frame rate = 60 Hz  
Frame rate = 120 Hz  
1
1
I(VCC_FLSH)  
Flash interface I/O current: 1.8 to 3.3 V (6)  
(1) Assumes nominal process, voltage, and temperature (25°C nominal ambient) with nominal input images.  
(2) Assumes worst case process, maximum voltage, and high nominal ambient temperature of 65°C with worst case input image.  
(3) Values assume all pins using 1.1 V are tied together (including VDDLP12), and programmable host and flash I/O are at the minimum  
nominal voltage (that is 1.8 V).  
(4) Input image is 1280 × 720 (HD) 24 bits using VESA reduced blanking v2 timings on the parallel interface at the frame rate shown with  
the 0.3-in 720p (DLP3010LC) DMD. The controller has the CAIC and LABB algorithms turned off.  
(5) The values do not take into account software updates or customer changes that may affect power performance.  
(6) This rail was not measured due to board limitations. Simulation values are used instead. Simulations assume 12.5% activity factor,  
30% clock gating on appropriate domains, and mixed SVT (standard threshold voltage) or HVT (high threshold voltage) cells.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DLPC3478  
 
 
 
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
6.6 Pin Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
TEST  
PARAMETER(3)  
MIN  
TYP  
MAX UNIT  
CONDITIONS(4)  
0.7 ×  
VCC_INTF  
I2C buffer (I/O type 7)  
See  
(1)  
I/O type 1, 2, 3, 6, 8 except pins  
noted in (2)  
VCC18 = 1.8 V  
1.17  
3.6  
I/O type 1, 6 for pins noted in (2)  
VCC18 = 1.8 V  
1.3  
1.17  
1.17  
1.7  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
High-level input  
threshold voltage  
I/O type 5, 9, 11  
VCC_INTF = 1.8 V  
VCC_FLSH = 1.8 V  
VCC_INTF = 2.5 V  
VCC_FLSH = 2.5 V  
VCC_INTF = 3.3 V  
VCC_FLSH = 3.3 V  
VIH  
V
I/O type 12, 13  
I/O type 5, 9, 11  
I/O type 12, 13  
1.7  
I/O type 5, 9, 11  
2.0  
I/O type 12, 13  
2.0  
0.3 ×  
VCC_INTF  
I2C buffer (I/O type 7)  
0.5  
0.3  
I/O type 1, 2, 3, 6, 8 except pins  
noted in (2)  
VCC18 = 1.8 V  
0.63  
I/O type 1, 6 for pins noted in (2)  
I/O type 5, 9, 11  
I/O type 12, 13  
VCC18 = 1.8 V  
0.5  
0.63  
0.63  
0.7  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
1.35  
1.35  
1.35  
1.7  
VCC_INTF = 1.8 V  
VCC_FLSH = 1.8 V  
VCC_INTF = 2.5 V  
VCC_FLSH = 2.5 V  
VCC_INTF = 3.3 V  
VCC_FLSH = 3.3 V  
VCC18 = 1.8 V  
Low-level input  
threshold voltage  
VIL  
V
I/O type 5, 9, 11  
I/O type 12, 13  
0.7  
I/O type 5, 9, 11  
I/O type 12, 13  
0.8  
0.8  
I/O type 1, 2, 3, 6, 8  
I/O type 5, 9, 11  
I/O type 12, 13  
VCC_INTF = 1.8 V  
VCC_FLSH = 1.8 V  
VCC_INTF = 2.5 V  
VCC_FLSH = 2.5 V  
VCC_INTF = 3.3 V  
VCC_FLSH = 3.3 V  
VCC_INTF > 2 V  
High-level output  
voltage  
VOH  
I/O type 5, 9, 11  
I/O type 12, 13  
V
1.7  
I/O type 5, 9, 11  
2.4  
I/O type 12, 13  
2.4  
I2C buffer (I/O type 7)  
0.4  
0.2 ×  
VCC_INTF  
I2C buffer (I/O type 7)  
VCC_INTF < 2 V  
I/O type 1, 2, 3, 6, 8  
I/O Type 5, 9, 11  
I/O Type 12, 13  
I/O Type 5, 9, 11  
I/O Type 12, 13  
I/O Type 5, 9, 11  
I/O Type 12, 13  
VCC18 = 1.8 V  
0.45  
0.45  
0.45  
0.7  
VCC_INTF = 1.8 V  
VCC_FLSH = 1.8 V  
VCC_INTF = 2.5 V  
VCC_FLSH = 2.5 V  
VCC_INTF = 3.3 V  
VCC_FLSH = 3.3 V  
Low-level output  
voltage  
VOL  
V
0.7  
0.4  
0.4  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
6.6 Pin Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
TEST  
PARAMETER(3)  
MIN  
TYP  
MAX UNIT  
CONDITIONS(4)  
I/O type 2, 4  
I/O type 5  
VCC18 = 1.8 V  
2
2
VCC_INTF = 1.8 V  
VCC18 = 1.8 V  
I/O type 1  
3.5  
3.5  
3.5  
10.6  
5.4  
10.8  
10.8  
7.8  
15  
I/O type 9  
VCC_INTF = 1.8 V  
VCC_FLSH = 1.8 V  
VCC18 = 1.8 V  
I/O type 13  
I/O type 3  
High-level output  
current(5)  
IOH  
mA  
I/O type 5  
VCC_INTF = 2.5 V  
VCC_INTF = 2.5V  
VCC_FLSH = 2.5 V  
VCC_INTF = 3.3 V  
VCC_INTF = 3.3 V  
VCC_FLSH = 3.3 V  
I/O type 9, 13  
I/O type 13  
I/O type 5  
I/O type 9  
I/O type 13  
I2C buffer (I/O type 7)  
I/O type 2, 4  
I/O type 5  
15  
3
VCC18 = 1.8 V  
2.3  
2.3  
4.6  
4.6  
4.6  
13.9  
5.2  
10.4  
10.4  
4.4  
8.9  
8.9  
VCC_INTF = 1.8 V  
VCC18 = 1.8 V  
I/O type 1  
I/O type 9  
VCC_INTF = 1.8 V  
VCC_FLSH = 1.8 V  
VCC18 = 1.8 V  
I/O type 13  
I/O type 3  
Low-level output  
current(6)  
IOL  
mA  
I/O type 5  
VCC_INTF = 2.5 V  
VCC_INTF = 2.5 V  
VCC_FLSH = 2.5 V  
VCC_INTF = 3.3 V  
VCC_INTF = 3.3 V  
VCC_FLSH = 3.3 V  
I/O type 9  
I/O type 13  
I/O type 5  
I/O type 9  
I/O type 13  
VI2C buffer < 0.1 ×  
VCC_INTF or  
VI2C buffer > 0.9 ×  
VCC_INTF  
I2C buffer (I/O type 7)  
10  
10  
I/O type 1, 2, 3, 6, 8,  
I/O Type 5, 9, 11  
I/O Type 12, 13  
I/O type 5, 9, 11  
I/O Type 12, 13  
I/O Type 5, 9, 11  
I/O type 12, 13  
VCC18 = 1.8 V  
10  
10  
10  
10  
10  
10  
10  
10  
10  
VCC_INTF = 1.8 V  
VCC_FLSH = 1.8 V  
VCC_INTF = 2.5 V  
VCC_FLSH = 2.5 V  
VCC_INTF = 3.3 V  
VCC_FLSH = 3.3 V  
High-impedance  
leakage current  
IOZ  
µA  
10  
10  
10  
10  
10  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DLPC3478  
DLPC3478  
www.ti.com.cn  
MAX UNIT  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
6.6 Pin Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
TEST  
PARAMETER(3)  
MIN  
TYP  
CONDITIONS(4)  
I2C buffer (I/O type 7)  
I/O type 1, 2, 3, 6, 8  
I/O Type 5, 9, 11  
I/O Type 12, 13  
I/O type 5, 9, 11  
I/O type 12, 13  
5
3.5  
3.5  
3.5  
VCC18 = 1.8 V  
2.6  
2.6  
2.6  
2.6  
2.6  
2.6  
2.6  
VCC_INTF = 1.8 V  
VCC_FLSH = 1.8 V  
VCC_INTF = 2.5 V  
VCC_FLSH = 2.5 V  
VCC_INTF = 3.3 V  
VCC_FLSH = 3.3 V  
3.5  
pF  
Input capacitance  
(including package)  
CI  
3.5  
3.5  
3.5  
I/O type 5, 9, 11  
I/O type 12, 13  
sub-LVDS DMD high speed  
(I/O type 4)  
VCC18 = 1.8 V  
3
(1) I/O is high voltage tolerant; that is, if VCC_INTF = 1.8 V, the input is 3.3-V tolerant, and if VCC_INTF = 3.3 V, the input is 5-V tolerant.  
(2) Controller pins CMP_OUT, PARKZ, RESETZ, and GPIO_00 through GPIO_19 have slightly varied VIH and VIL range from other 1.8-V  
I/O.  
(3) The I/O type refers to the type defined in 5-10.  
(4) Test conditions that define a value for VCC18, VCC_INTF, or VCC_FLSH show the nominal voltage that the specified I/O's supply  
reference is set to.  
(5) At a high level output signal, the given I/O will be able to output at least the minimum current specified.  
(6) At a low level output signal, the given I/O will be able to sink at least the minimum current specified.  
6.7 Internal Pullup and Pulldown Electrical Characteristics  
over operating free-air temperature (unless otherwise noted) (2)  
TEST  
INTERNAL PULLUP AND PULLDOWN RESISTOR CHARACTERISTICS  
MIN  
MAX  
UNIT  
CONDITIONS(1)  
VCCIO = 3.3 V  
VCCIO = 2.5 V  
VCCIO = 1.8 V  
VCCIO = 3.3 V  
VCCIO = 2.5 V  
VCCIO = 1.8 V  
29  
38  
56  
30  
36  
52  
63  
90  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
Weak pullup resistance  
148  
72  
101  
167  
Weak pulldown resistance  
(1) The resistance is dependent on VCCIO, the pin's supply reference (see a given pins supply reference in 5-10).  
(2) An external 8-kΩpullup or pulldown (if needed) would work for any voltage condition to correctly pull enough to override any  
associated internal pullups or pulldowns.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
 
 
 
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
6.8 DMD Sub-LVDS Interface Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.0  
UNIT  
V
VCM  
Common mode voltage  
0.8  
0.9  
VCM (Δpp)(1)  
VCM change peak-to-peak (during switching)  
VCM change steady state  
75  
mV  
mV  
mV  
mV  
V
VCM (Δss)(1)  
10  
170  
10  
(2)  
|VOD  
|
Differential output voltage magnitude  
VOD change (between logic states)  
Single-ended output voltage high  
Single-ended output voltage low  
Internal differential termination  
250  
350  
10  
VOD (Δ)  
VOH  
10  
0.825  
0.625  
80  
1.025  
0.775  
100  
1.175  
0.975  
120  
VOL  
V
Txterm  
Ω
100-Ωdifferential PCB trace  
(50-Ωtransmission lines)  
Txload  
0.5  
6
inches  
(1) See 6-1  
(2) VOD is the differential voltage measured across a 100-Ωtermination resistance connected directly between the transmitter differential  
pins. VOD = VP - VN, where P and N are the differential output pins. |VOD| is the magnitude of the peak-to-peak voltage swing across  
the P and N output pins (see 6-2). VCM cancels out between signals when measured differentially, thus the reason VOD swings  
relative to zero.  
+V  
OD  
100  
90  
80  
|VOD|  
70  
60  
V
(û  
CM SS  
)
V
(û )  
CM P-P  
V
CM  
(0 V) 50  
40  
30  
|VOD|  
20  
10  
0
œV  
OD  
tFALL  
tRISE  
6-1. Common Mode Voltage  
VCM is removed when the signals are viewed differentially  
6-2. Differential Output Signal  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DLPC3478  
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
6.9 DMD Low-Speed Interface Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER(3)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC output high voltage for DMD_LS_WDATA  
and DMD_LS_CLK  
0.7 ×  
VCC18  
VOH(DC)  
VOL(DC)  
VOH(AC)  
VOL(AC)  
V
DC output low voltage for DMD_LS_WDATA  
and DMD_LS_CLK  
0.3 ×  
VCC18  
V
V
V
AC output high voltage for DMD_LS_WDATA  
and DMD_LS_CLK  
0.8 ×  
VCC18  
VCC18 +  
0.5  
(1)  
(2)  
AC output low voltage for DMD_LS_WDATA  
and DMD_LS_CLK  
0.2 ×  
VCC18  
-0.5  
1.0  
VOL(DC) to VOH(AC) for rising edge  
and VOH(DC) to VOL(AC) for rising  
edge  
DMD_LS_WDATA and DMD_LS_CLK  
3.0  
Slew rate  
V/ns  
DMD_DEN_ARSTZ  
DMD_LS_RDATA  
VOL(AC) to VOH(AC) for rising edge  
0.25  
0.5  
(1) VOH(AC) maximum applies to overshoot. When the DMD_LS_WDATA and DMD_LS_CLK lines include a proper 43-Ωseries  
termination resistor, the DMD operates within the LPSDR input AC specifications.  
(2) VOL(AC) minimum applies to undershoot. When the DMD_LS_WDATA and DMD_LS_CLK lines include a proper 43-Ωseries  
termination resistor, the DMD operates within the LPSDR input AC specifications.  
(3) See 6-3 for DMD_LS_CLK, and DMD_LS_WDATA rise and fall times. See 6-4 for DMD_DEN_ARSTZ rise and fall times.  
DMD_DEN_ARSTZ  
LS_CLK, LS_WDATA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
V
V
V
OH(AC)  
OH(AC)  
OH(DC)  
V
OL(DC)  
V
V
OL(AC)  
OL(AC)  
10  
0
10  
0
tRISE  
tFALL  
tRISE  
tFALL  
6-3. LS_CLK and LS_WDATA Slew Rate  
6-4. DMD_DEN_ARSTZ Slew Rate  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
6.10 System Oscillator Timing Requirements  
MIN  
23.998  
41.663  
40%  
NOM  
24.000  
41.667  
50%  
MAX  
24.002  
41.670  
UNIT  
MHz  
ns  
fclk  
tc  
Clock frequency, MOSC (master oscillator clock)(1)  
Cycle time, MOSC (clock period)(1)  
See 6-5  
tw(H)  
Pulse duration as percent of tc (2), MOSC, high  
50% to 50% reference  
points (signal)  
tw(L)  
tt  
Pulse duration as percent of tc (2), MOSC, low  
Transition time(2), MOSC  
50% to 50% reference  
points (signal)  
40%  
50%  
20% to 80% reference  
points (rising signal)  
80% to 20% reference  
points (falling signal)  
10  
ns  
tjp  
Long-term, peak-to-peak, period jitter(2), MOSC  
(that is the deviation in period from ideal period due  
solely to high frequency jitter)  
2%  
(1) The frequency accuracy for MOSC is ±200 PPM. (This includes impact to accuracy due to aging, temperature, and trim sensitivity.)  
The MOSC input does not support spread spectrum clock spreading.  
(2) Applies only when driven by an external digital oscillator.  
t
C
t
T
t
T
t
t
W(L)  
W(H)  
80%  
20%  
50%  
MOSC  
6-5. System Oscillators  
6.11 Power Supply and Reset Timing Requirements  
MIN  
MAX  
UNIT  
µs  
tw(L)  
tr  
Pulse duration, active low, RESETZ  
Rise time, RESETZ(1)  
50% to 50% reference points (signal)  
20% to 80% reference points (signal)  
80% to 20% reference points (signal)  
0.3 V to 1.045 V (VDD)  
1.25  
0.5  
0.5  
1
µs  
tf  
Fall time, RESETZ(1)  
µs  
trise  
Rise time, VDD (during VDD ramp up at  
turn-on)  
ms  
(1) For more information on RESETZ, see 5.  
DC Power Supplies  
tf  
tr  
80%  
50%  
20%  
80%  
50%  
20%  
RESETZ  
tw(L)  
tw(L)  
tw(L)  
Time  
6-6. Power-Up and Power-Down RESETZ Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DLPC3478  
 
 
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
6.12 Parallel Interface Frame Timing Requirements  
See for additional information  
MIN  
MAX  
UNIT  
tp_vsw  
tp_vbp  
50% reference points  
50% reference points  
1
lines  
Pulse duration default VSYNC_WE high  
Vertical back porch (VBP) time from the active edge of  
VSYNC_WE to the active edge of HSYNC_CS for the first  
active line(1)  
2
1
lines  
lines  
Vertical front porch (VFP) time from the active edge of the  
HSYNC_CS following the last active line in a frame to the active  
edge of VSYNC_WE(1)  
tp_vfp  
50% reference points  
Total vertical blanking the sum of VBP and VFP (tp_vbp  
tp_vfp  
+
tp_tvb  
tp_hsw  
tp_hbp  
50% reference points  
50% reference points  
50% reference points  
See (1)  
lines  
)
4
4
128  
PCLKs  
PCLKs  
Pulse duration default HSYNC_CS high  
Horizontal back porch (HBP) time from the active edge of  
HSYNC_CS to the rising edge of DATAEN_CMD  
Horizontal front porch (HFP) time from the falling edge of  
DATAEN_CMD to the active edge of HSYNC_CS  
tp_hfp  
50% reference points  
8
PCLKs  
(1) The minimum total vertical blanking is defined by the following equation: tp_tvb(min) = 6 + [8 × Max(1, Source_ALPF/ DMD_ALPF)] lines  
where:  
SOURCE_ALPF = Input source active lines per frame  
DMD_ALPF = Actual DMD used lines per frame supported  
1 Frame  
tp_vsw  
VSYNC_WE  
(This diagram assumes the VSYNC  
active edge is the rising edge)  
tp_vbp  
tp_vfp  
HSYNC_CS  
DATAEN_CMD  
1 Line  
tp_hsw  
HSYNC_CS  
(This diagram assumes the HSYNC  
active edge is the rising edge)  
tp_hbp  
tp_hfp  
DATAEN_CMD  
PDATA(23/15:0)  
PCLK  
P
n-2  
P
n-1  
P0  
P1  
P2  
P3  
Pn  
6-7. Parallel Interface Frame Timing  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
6.13 Parallel Interface General Timing Requirements  
MIN  
1.0  
MAX  
155.0  
1000  
UNIT  
MHz  
ns  
PCLK frequency  
PCLK period  
ƒclock  
tp_clkper  
tp_clkjit  
tp_wh  
50% reference points  
Max ƒclock  
6.45  
PCLK jitter  
see (1)  
PCLK pulse duration high  
PCLK pulse duration low  
50% reference points  
50% reference points  
2.43  
2.43  
ns  
ns  
tp_wl  
Setup time HSYNC_CS, DATAEN_CMD,  
PDATA(23:0) valid before the active edge of PCLK  
tp_su  
tp_h  
50% reference points  
50% reference points  
0.9  
0.9  
ns  
ns  
Hold time HSYNC_CS, DATAEN_CMD,  
PDATA(23:0) valid after the active edge of PCLK  
20% to 80% reference  
points (rising signal)  
80% to 20% reference  
points (falling signal)  
tt  
0.2  
2.0  
ns  
Transition time all signals  
tsetup, 3DR  
thold, 3DR  
This is the setup time with respect to VSYNC(2)  
This is the hold time with respect VSYNC(3)  
50% reference points  
50% reference points  
1.0  
1.0  
ms  
ms  
(1) Calculate clock jitter (in ns) using this formula: Jitter = [1 / ƒclock 5.76 ns]. Setup and hold times must be met even with clock jitter.  
(2) In other words, the 3DR signal must change at least 1.0 ms before VSYNC changes  
(3) In other words, the 3DR signal must not change for at least 1.0 ms after VSYNC changes  
tp_clkper  
tp_wh  
tp_wl  
PCLK  
tp_h  
tp_su  
6-8. Parallel Interface Pixel Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DLPC3478  
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
6.14 BT656 Interface General Timing Requirements  
The DLPC34xx controller input interface supports the industry standard BT.656 parallel video interface. See the appropriate  
ITU-R BT.656 specification for detailed interface timing requirements. (2)  
MIN  
MAX  
UNIT  
MHz  
ns  
PCLK frequency  
PCLK period  
1.0  
33.5  
ƒcll  
tp_clkper  
tp_clkjit  
tp_wh  
tp_wl  
50% reference points  
Max fclock  
29.85  
1000  
PCLK jitter  
See (1)  
PCLK pulse duration high  
PCLK pulse duration low  
50% reference points  
50% reference points  
10.0  
10.0  
ns  
ns  
Setup time PDATA(7:0) before the active edge of  
PCLK  
tp_su  
tp_h  
50% reference points  
50% reference points  
3.0  
0.9  
ns  
ns  
Hold time PDATA(7:0) after the active edge of  
PCLK  
20% to 80% reference points  
(rising signal)  
80% to 20% reference points  
(falling signal)  
tt  
0.2  
3.0  
ns  
Transition time all signals  
(1) Calculate clock jitter (in ns) using this formula: Jitter = [1 / ƒclock 5.76 ns]. Clock jitter must maintain setup and hold times. BT.656  
data bits must be mapped to the DLPC34xx PDATA bus as shown in 6-9 shows BT.656 bus mode YCbCr 4:2:2 source PDATA  
(23:0) mapping.  
(2) The BT.656 interface accepts 8-bits per color, 4:2:2 YCbCr data encoded per the industry standard through PDATA(7:0) on the active  
edge of PCLK. See 6-9.  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
PDATA(7:0) of the input pixel data bus  
Bus assignment mapping  
Y
7
Y
6
Y
5
Y
4
Y
3
Y
2
Y
1
Y
0
Data bit mapping on controller pin  
n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a  
6-9. BT.656 Interface Mode Bit Mapping  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
6.15 Flash Interface Timing Requirements  
The DLPC3478 flash memory interface consists of a SPI flash serial interface. The DLPC3478 can support 1- to 128-Mb  
flash memories.(2) (3) (4)  
MIN  
MAX  
36.0  
704  
UNIT  
MHz  
ns  
fclock  
SPI_CLK frequency  
See (1)  
1.4  
tp_clkper  
tp_wh  
tp_wl  
SPI_CLK period  
50% reference points  
50% reference points  
50% reference points  
27.8  
352  
352  
SPI_CLK pulse duration high  
SPI_CLK pulse duration low  
ns  
ns  
20% to 80% reference  
points (rising signal)  
80% to 20% reference  
points (falling signal)  
tt  
0.2  
3.0  
ns  
Transition time all signals  
Setup time SPI_DIN valid before SPI_CLK falling  
edge  
tp_su  
tp_h  
50% reference points  
50% reference points  
50% reference points  
10.0  
0.0  
ns  
ns  
ns  
Hold time SPI_DIN valid after SPI_CLK falling edge  
SPI_CLK clock falling edge to output valid time –  
SPI_DOUT and SPI_CSZ  
tp_clqv  
1.0  
3.0  
SPI_CLK clock falling edge output hold time –  
SPI_DOUT and SPI_CSZ  
tp_clqx  
50% reference points  
ns  
3.0  
(1) This range include the ±200 ppm of the external oscillator (but no jitter).  
(2) Standard SPI protocol is to transmit data on the falling edge of SPI_CLK and capture data on the rising edge. The DLPC3478 does  
transmit data on the falling edge, but it also captures data on the falling edge rather than the rising edge. This provides support for SPI  
devices with long clock-to-Q timing. DLPC3478 hold capture timing has been set to facilitate reliable operation with standard external  
SPI protocol devices.  
(3) With the above output timing, DLPC3478 provides the external SPI device 8.2-ns input set-up and 8.2-ns input hold, relative to the  
rising edge of SPI_CLK.  
(4) For additional requirements of the external flash device view the 7.3.4 section.  
tCLKPER  
SPI_CLK  
(Controller output)  
tWL  
tWH  
tP_SU  
tP_H  
SPI_DIN  
(Controller input)  
tP_CLQV  
SPI_DOUT, SPI_CS(1:0)  
(Controller output)  
tP_CLQX  
6-10. Flash Interface Timing  
6.16 Other Timing Requirements  
MIN  
MAX  
10  
UNIT  
ns  
trise, all(1) (2)  
20% to 80% reference points  
80% to 20% reference points  
20% to 80% reference points  
80% to 20% reference points  
tfall, all(1) (2)  
10  
ns  
trise, PARKZ(2)  
150  
150  
ns  
tfall, PARKZ(2)  
ns  
tw, GPIO_08 (normal park) pulse width(3)  
I2C baud rate  
200  
ms  
kHz  
100  
(1) Unless noted elsewhere, the following signal transition times are for all DLPC34xx signals.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DLPC3478  
 
 
 
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
(2) This is the recommended signal transition time to avoid input buffer oscillations.  
(3) The pulse width encompasses the minimum high time and the minimum low time for this signal.  
6.17 DMD Sub-LVDS Interface Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
45%  
MIN  
TYP  
MAX  
UNIT  
(1)  
(1)  
tR  
tF  
Differential output rise time  
Differential output fall time  
DMD HS Clock switching rate  
DMD HS Clock frequency  
DMD HS Clock output duty cycle  
250  
250  
ps  
tswitch  
fclock  
1200  
600  
Mbps  
MHz  
DCout  
50%  
55%  
(1) Rise and fall times are defined for the differential VOD signal as shown in 6-2.  
6.18 DMD Parking Switching Characteristics  
See (2)  
PARAMETER  
Normal Park time(1)  
Fast park time(3)  
TEST CONDITIONS  
TYP  
MAX  
20  
UNIT  
ms  
tpark  
tfast park  
32  
µs  
(1) Normal park time is defined as how long it takes the DLPC34xx controller to complete the parking of the DMD after it receives the  
normal park request (GPIO_08 goes low).  
(2) The oscillator and power supplies must remain active for at least the duration of the park time. The power supplies must additionally be  
held on for a time after parking is completed to satisfy DMD requirements. See 9.2 and the appropriate DMD or PMIC datasheet for  
more information.  
(3) Fast park time is defined as how long it takes the DLPC34xx controller to complete the parking of the DMD after it receives the fast  
park request (PARKZ goes low).  
6.19 Chipset Component Usage Specification  
The DLPC3478 is a component of a DLP chipset. Reliable function and operation of the DLP chipset requires  
that it be used with all components (DMD, PMIC, and controller) of the applicable DLP chipset.  
6-1. DLPC3478 Supported DMDs and PMICs  
DLPC3478 DLP Chipset  
DMD  
PMIC  
DLP3010LC  
DLPA2000  
DLPA2005  
DLPA3000  
DLPA3005  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
 
 
 
 
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
7 Detailed Description  
7.1 Overview  
The DLPC3478 controller is part of the chipset that includes the DLP3010LC (0.3 inch 720p) DMD, and the  
DLPA200x or DLPA300x PMIC/LED driver. To ensure reliable operation of the DLP chipset, the DLPC3478 must  
always be used with the supported devices shown in 6-1.  
7.2 Functional Block Diagram  
Test  
Pattern  
Generator  
Video Processing  
/5  
Parallel Video  
or BT656 Port  
ñ
ñ
ñ
ñ
ñ
Brightness Enhancement  
Chroma Interpolation  
Color Space Conversion  
Color Correction  
ñ
ñ
ñ
ñ
ñ
Contrast Adjustment  
Dynamic Scaling  
Gamma Correction  
/24  
Input  
Control  
Processing  
Image Format Processing  
Power Saving Operations  
Splash  
Screen  
CAIC Processing  
DLP Subsystem  
Display Formatting  
eDRAM (Frame Memory)  
Arm® Cortex®-M3  
Processor  
128 KB I/D Memory  
JTAG  
I2C_0  
/
/
/
Real Time  
Control System  
SPI_0  
DMD_HS_CLK  
(sub-LVDS)  
DMD_HS_DATA(A:H)  
/
(sub-LVDS)  
DMD Interface  
DMD_LS_CLK  
SPI_1  
I2C_1  
LED Control  
Other options  
Clocks and Reset  
Generation  
DMD_LS_WDATA  
DMD_LS_RDATA  
/20  
GPIO  
DMD_DEN_ARSTZ  
Clock (Crystal)  
Reset Control  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DLPC3478  
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
7.3 Feature Description  
7.3.1 Input Source  
7.3.1.1 Supported Resolution and Frame Rates  
7-1. Supported Input Source Ranges(2) (3) (4)  
SOURCE RESOLUTION RANGE(7)  
HORIZONTAL VERTICAL  
Landscape Portrait Landscape Portrait  
200 to 800 320 to 1280  
FRAME RATE  
RANGE  
INTERFACE  
Bits / Pixel (5)  
IMAGE TYPE  
Parallel  
Parallel  
24 max  
24 max  
2D only  
3D only  
320 to 1280  
320 to 1280  
200 to 800  
200 to 720  
10 to 122 Hz  
200 to 720  
320 to 1280  
100 ±2 Hz  
120 ±2 Hz  
BT.656-NTSC  
See (6)  
See (6)  
2D only  
2D only  
720  
720  
n/a  
240  
288  
n/a  
n/a  
60 ±2 Hz  
(1)  
BT.656-PAL (1)  
n/a  
50 ±2 Hz  
(1) All parameters in this row follow the BT.656 standard. The image format is always landscape.  
(2) The application must remain within specifications for all source interface parameters such as maximum clock rate and maximum line  
rate.  
(3) The maximum DMD size for all rows in the table is 1280 × 720.  
(4) To achieve the ranges stated, the firmware must support the source parameters. Review the firmware release notes or contact TI to  
determine the latest available frame rate and input resolution support for a given firmware image.  
(5) Bits per pixel does not necessarily equal the number of data pins used on the DLPC3478 controller.  
(6) BT.656 uses 16-bit 4:2:2 YCr/Cb.  
(7) By using an I2C command, portrait image inputs can be rotated on the DMD by minus 90 degrees so that the image is displayed in  
landscape format.  
7.3.1.2 3D Display  
For 3D sources on the video input interface, images must be frame sequential (L, R, L, ...) when input to the  
DLPC34xx controller. Any processing required to unpack 3D images and to convert them to frame sequential  
input must be done by external electronics prior to inputting the images to the controller. Each 3D source frame  
input must contain a single eye frame of data, separated by a VSYNC, where an eye frame contains image data  
for a single left or right eye. The signal 3DR input to the controller indicates whether the input frame is for the left  
eye or right eye.  
Each DMD frame is displayed at the same rate as the input interface frame rate. 7-1 below shows the typical  
timing for a 50-Hz or 60-Hz 3D HDMI source frame, the input interface of the DLPC34xx controller, and the  
DMD. In general, video frames sent over the HDMI interface pack both the left and right content into the same  
video frame. GPIO_04 is optionally sent to a transmitter on the system PCB for wirelessly transmitting a  
synchronization signal to 3D glasses (usually an IR sync signal). The glasses are then in phase with the DMD  
images displayed. Alternately, the 3D Glasses Operation section shows how DLP link pulses can be used  
instead.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
 
 
 
 
 
 
DLPC3478  
www.ti.com.cn  
50 Hz or 60 Hz  
(HDMI)  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
L
L
R
L
L
R
L
L
R
L
L
R
L
L
R
L
L
R
100 Hz or 120 Hz  
(34xx Input)  
R
R
R
R
R
R
3DR (2)  
(3D L/R input)  
100 Hz or 120 Hz  
(on DMD)  
R
L
R
L
R
L
R
L
R
L
R
L
GPIO_04 (1)  
(3D L/R output)  
(1) Left = 1, Right = 0  
(2) 3DR must toggle at least 1 ms before VSYNC  
7-1. 3D Display Left and Right Frame Timing  
7.3.1.3 Parallel Interface  
The parallel interface complies with standard graphics interface protocol, which includes the signals listed in 表  
7-2.  
7-2. Parallel Interface Signals  
SIGNAL  
DESCRIPTION  
VSYNC_WE  
HSYNC_CS  
vertical sync  
horizontal sync  
data valid  
DATAEN_CMD  
PDATA  
24-bit data bus  
pixel clock  
PCLK  
PDM_CVS_TE  
parallel data mask (optional)  
Note  
VSYNC_WE must remain active at all times when using parallel RGB mode. When this signal is no  
longer active, the display sequencer stops and causes the LEDs to turn off.  
The active edge of both sync signals are variable. The Parallel Interface Frame Timing Requirements section  
shows the relationship of these signals.  
An optional parallel data mask signal (PDM_CVS_TE) allows periodic frame updates to be stopped without  
losing the displayed image. When active, PDM_CVS_TE acts as a data mask and does not allow the source  
image to be propagated to the display. A programmable PDM polarity parameter determines if it is active high or  
active low. PDM_CVS_TE defaults to active high. To disable the data mask function, tie PDM_CVS_TE to a logic  
low signal. PDM_CVS_TE must only change during vertical blanking.  
The parallel interface supports six data transfer formats. They are as follows:  
24-bit RGB888 or 24-bit YCbCr888 on a 24 data wire interface  
18-bit RGB666 or 18-bit YCbCr666 on an 18 data wire interface  
16-bit RGB565 or 16-bit YCbCr565 on a 16 data wire interface  
16-bit YCbCr 4:2:2 (standard sampling assumed to be Y0Cb0, Y1Cr0, Y2Cb2, Y3Cr2, Y4Cb4, Y5Cr4, ...)  
8-bit RGB888 or 8-bit YCbCr888 serial (1 color per clock input; 3 clocks per displayed pixel) on an 8 data wire  
interface  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DLPC3478  
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
8-bit YCbCr 4:2:2 serial (1 color per clock input; 2 clocks per displayed pixel) on an 8 data wire interface  
The 7.3.1.3.1 section shows the required PDATA(23:0) bus mapping for these six data transfer formats.  
7.3.1.3.1 PDATA Bus Parallel Interface Bit Mapping Modes  
23  
0
Red / Cr  
Green / Y  
Blue / Cb  
Controller input mapping  
7
6
6
5
4
3
2
2
1
1
0
0
7
7
6
6
5
4
3
2
2
1
1
0
0
7
7
6
6
5
5
4
3
2
1
1
0
Controller internal re-mapping  
7
5
4
3
5
4
3
4
3
2
0
Red / Cr  
Green / Y  
Blue / Cb  
7-2. RGB-888 and YCbCr-888 I/O Mapping  
23  
0
Input  
3
Input  
3
Input  
7
7
6
6
5
4
2
2
1
1
0
0
7
7
6
6
5
4
2
2
1
1
0
0
7
6
5
4
3
2
1
0
Controller input mapping  
Controller internal re-mapping  
5
4
3
5
4
3
7
6
5
4
3
2
1
0
Red / Cr  
Green / Y  
Blue / Cb  
7-3. RGB-666 and YCbCr-666 I/O Mapping  
23  
0
Input  
Input  
Input  
Controller input mapping  
7
7
6
6
5
5
4
3
2
2
1
1
0
0
7
7
6
6
5
5
4
3
2
2
1
1
0
0
7
6
5
4
3
2
1
0
Controller internal re-mapping  
4
3
4
3
7
6
5
4
3
2
1
0
Red / Cr  
Green / Y  
Blue / Cb  
7-4. RGB-565 and YCbCr-565 I/O Mapping  
23  
0
Cr / Cb  
Y
N/A  
Controller input mapping  
7
7
6
6
5
5
4
3
2
2
1
1
0
0
7
7
6
6
5
5
4
3
3
2
2
1
1
0
0
7
7
6
6
5
5
4
4
3
2
2
1
1
0
0
Controller internal re-mapping  
4
3
4
3
Cr / Cb  
Y
N/A  
7-5. 16-Bit YCbCr-880 I/O Mapping  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
23  
6
Input 1 single color pixel per clock, contiguous  
Green / Y  
0
Red / Cr  
Blue / Cb  
Controller input mapping  
7
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Input order must be RGB  
First Input Clock  
Second Input Clock  
Third Input Clock  
Controller internal re-mapping  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Red / Cr  
Green / Y  
(Output 1 full pixel per clock, non-contiguous)  
Blue / Cb  
7-6. 8-Bit RGB-888 or YCbCr-888 I/O Mapping  
[Input 1 single Y/Cr-Cb pixel per clock œ Contiguous]  
23  
0
Cr / Cb  
Y
Blue / Cb  
Controller input mapping  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Input Order must be Cr/Cb Y  
First Input Clock  
Second Input Clock  
Controller internal re-mapping  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Cr/Cb  
Y
Blue / Cb  
[Output 1 full pixel per clock œ Non-Contiguous]  
7-7. 8-Bit Serial YCbCr-422 I/O Mapping  
7.3.2 Pattern Display  
Pattern display is one of the key capabilities of the DLPC3478 display and light controller. When the DLPC3478  
controller is configured for pattern display, most video processing functions can be bypassed to allow for  
accurate pattern display. For user flexibility and simple system design the DLPC3478 controller supports both  
external pattern and internal pattern streaming modes. In external pattern streaming mode, patterns are sent to  
the DLPC3478 controller over parallel interface. In internal pattern streaming mode, 1D patterns are pre-loaded  
in flash memory and a host command is sent to DLPC3478 controller to display the patterns. Internal pattern  
mode allows for a simple system design by eliminating the need for any external processor to generate and sent  
1D patterns to the DLPC3478 controller.  
The DLPC3478 controller has two optional trigger out signals and one optional trigger in signal to synchronize  
patterns with a camera, sensor, or other peripherals.  
7-3. Pattern Display Signals  
SIGNAL NAME  
DESCRIPTION  
External Pattern Mode: Active at the beginning of each input frame.  
Internal Pattern Mode: Active at the beginning of a predefined group of patterns.  
TRIG_OUT_1 (TSTPT_4)  
Active during display of each pattern. When operating in external pattern mode, one video frame can  
have multiple patterns.  
TRIG_OUT_2 (GPIO_07)  
TRIG_IN (3DR)  
Active in Internal Pattern Display mode only. An external input trigger signal is used to advance to the  
next pattern in internal pattern mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DLPC3478  
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
7.3.2.1 External Pattern Mode  
External pattern mode supports 8-bit and 1-bit monochrome or RGB patterns.  
7.3.2.1.1 8-bit Monochrome Patterns  
In 8-bit external pattern mode, the DLPC3478 controller supports up to 120-Hz input frame rate (VSYNC). In this  
mode, the 24-bit input data sent over the parallel interface can be configured as a combination of 1 (8-bits), 2  
(16-bits), or 3 (24-bits) 8-bit patterns. 方程1 calculates the maximum pattern rate for an 8-bit pattern.  
120 Hz × 3 = 360 Hz  
(1)  
where  
the maximum allowed input frame rate is 120 Hz  
The DLPC3478 controller firmware allows for the following user programmability.  
Exposure time (tExposure): Time during which a pattern displays and the illumination is on.  
DarkPre time (tDarkPre): Dark time (before the pattern exposure) during which no pattern displays and the  
illumination is off.  
DarkPost time (tDarkPost): Dark time (after the pattern exposure) during which no pattern displays and the  
illumination is off.  
Number of 8-bit patterns within a frame: 1, 2, or 3 within each frame period  
Selection of Illuminator that is on for each 8-bit pattern.  
TRIG_OUT_1 and TRIG_OUT_2 signal configuration and delay.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
7-8 shows a configuration with 3 × 8-bit patterns.  
VSYNC  
[Frame N+1] PDATA 23:0  
tDarkPost  
Parallel Input  
tDarkPost  
tDarkPre  
tDarkPost  
tDarkPre  
tDarkPre  
tExposure  
tExposure  
tExposure  
[Frame N]  
PDATA 23:16  
[Frame N]  
PDATA 15:8  
[Frame N]  
PDATA 7:0  
Displayed Pattern  
Illuminator  
BLUE LED  
BLUE LED  
BLUE LED  
t
D1  
Trigger Out 1  
(Frame Trigger)  
t
D2  
t
D2  
t
D2  
Trigger Out 2  
(Pattern Trigger)  
tD1 is the configurable delay for the frame trigger  
tD2 is the configurable delay for the sub-frame trigger  
7-8. 3 × 8-bit (Blue) Pattern Configurations  
3 × 8-bit patterns are displayed within each input VSYNC frame period.  
tDarkPre, tExposure and tDarkPostare the same for each pattern within a frame period.  
The sum of dark time and exposure time (tDarkPre + tExposure + tDarkPost) for the three patterns must be equal to  
or less than the full frame period. If the sum is less than the full frame period, additional dark time will be  
appended to the end of the last pattern.  
The Blue LED is configured to be on for each pattern.  
TRIG_OUT_1 (Frame Trigger) is configured active high polarity and will have a minimum pulse width of 20  
microseconds. TRIG_OUT_1 delay (tD1) is configured with respect to input VSYNC  
.
TRIG_OUT_2 (Pattern Trigger) is configured active high polarity and stays active during the pattern  
exposure . TRIG_OUT_2 delay (tD2) is configured with reference to the start of the pattern and is set once per  
pattern within a frame.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
7-9 shows a configuration with 2 × 8-bit patterns.  
VSYNC  
[Frame N+1] PDATA 23:0  
tDarkPost  
[Frame N+2] PDATA 23:0  
tDarkPost  
Parallel Input  
tDarkPost  
tDarkPre  
tDarkPost  
tDarkPre  
tDarkPre  
tExposure  
[Frame N]  
PDATA 23:16  
tDarkPre  
tExposure  
[Frame N]  
PDATA 15:8  
tExposure  
tExposure  
[Frame N+1]  
PDATA 15:8  
[Frame N+1]  
PDATA 23:16  
Displayed Pa ern  
Illuminator  
RED LED  
RED LED  
RED LED  
RED LED  
tD1  
tD1  
Trigger Out 1  
(Frame Trigger)  
tD2  
tD2  
tD2  
tD2  
Trigger Out 2  
(Pa ern Trigger)  
7-9. 2 × 8-bit (Red) Pattern Configurations  
2 × 8-bit patterns are displayed within each input VSYNC frame period.  
tDarkPre, tExposure and tDarkPost are the same for each pattern within a frame period.  
The sum of dark time and exposure time (tDarkPre + tExposure + tDarkPost) for the three patterns must be equal to  
or less than the full frame period. If the sum is less than the full frame period, additional dark time will be  
appended to the end of the last pattern.  
The Red LED is configured to be ON for each pattern.  
TRIG_OUT_1 (Frame Trigger) is configured active high polarity and will have a minimum pulse width of 20  
microseconds. TRIG_OUT_1 delay (tD1) is configured with respect to input VSYNC  
.
TRIG_OUT_2 (Pattern Trigger) is configured active high polarity and stays active during the pattern  
exposure. TRIG_OUT_2 delay (tD2) is configured with reference to the start of the pattern and is set once per  
pattern within a frame.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
7-10 shows a configuration with 1 × 8-bit patterns.  
V
SYNC  
[Frame N+1] PDATA 23:16  
[Frame N+2] PDATA 23:16  
[Frame N+1] PDATA 23:16  
Parallel Input  
[Frame N] PDATA 23:16  
tExposure  
tDarkPre  
tExposure  
tDarkPost tDarkPre  
tDarkPost  
Displayed Pa ern  
GREEN LED  
GREEN LED  
Illuminator  
tD1  
tD1  
Trigger Out 1  
(Frame Trigger)  
Trigger Out 2  
tD2  
tD2  
(Pa ern Trigger)  
7-10. 1 × 8-bit (Green) Pattern Configurations  
1 × 8-bit pattern is displayed within each input VSYNC frame period.  
tDarkPre, tExposure and tDarkPost are the same for each pattern within a frame period.  
The sum of dark time and exposure time (tDarkPre + tExposure + tDarkPost) for the three patterns must be equal to  
or less than the full frame period. If the sum is less than the full frame period, additional dark time will be  
appended to the end of the last pattern.  
The Green LED is configured to be on for each pattern.  
TRIG_OUT_1 (Frame Trigger) is configured active high polarity and will have a minimum pulse width of 20  
microseconds. TRIG_OUT_1 delay (tD1) is configured with respect to input VSYNC  
.
TRIG_OUT_2 (Pattern Trigger) is configured active high polarity and stays active during the pattern  
exposure . TRIG_OUT_2 delay (tD2) is configured with reference to the start of the pattern and is set once per  
pattern within a frame.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
7.3.2.1.2 1-Bit Monochrome Patterns  
Similar to the 8-bit external pattern mode, the maximum supported 24-bit input frame for 1-bit external pattern  
mode is 104.2 Hz. In 1-bit pattern mode each of the 24-bit inputs are treated as separate binary patterns  
resulting in a maximum of 24 patterns. The maximum pattern rate for each 1-bit pattern is 2500 Hz.  
The DLPC3478 controller firmware allows for the following user programmability:  
Exposure time: Time during which a pattern is displayed.  
Dark time: Time during which no pattern is displayed and the illumination in off.  
Number of 1-bit patterns within a frame - up to maximum of 24.  
Illuminator: Illuminator that is on for each 1-bit pattern. User defined illuminator is auto selected for all the  
patterns within a frame. User cannot select different illuminator for different 1-bit patterns within a frame.  
TRIG_OUT_1 and TRIG_OUT_2 signal configuration and delay.  
7-11 shows a configuration with 24 × 1-bit patterns.  
VSYNC  
[Frame N+1] PDATA 23:0  
[Frame N+2] PDATA 23:0  
Parallel Input  
t
t
t
DarkPost+Pre  
t
DarkPost+Pr  
DarkPost+Pre  
DarkPre  
e
tExposure  
tExposure  
tExposure  
tExposure  
tExposure  
tExposure  
Displayed Pa ern  
Illuminator  
Pat 0  
Pat 1  
Pat 23  
Pat 0  
Pat 1  
Pat 23  
Blue  
LED  
Blue  
LED  
Blue  
LED  
Blue  
LED  
Blue  
LED  
Blue  
LED  
t
D1  
t
D1  
Trigger Out 1  
(Set Trigger)  
tD2  
tD2  
tD2  
tD2  
tD2  
tD2  
Trigger Out 2  
(Pa ern Trigger)  
7-11. 24 × 1-bit (Blue) Pattern Configurations  
24 × 1-bit patterns are displayed within each input VSYNC frame period.  
tDarkPre, tExposure and tDarkPost are the same for each pattern within a frame period.  
The sum of dark time and exposure time (tDarkPre + tExposure + tDarkPost) for all the 1-bit patterns must be equal  
to or less than the full frame period. If the sum is less than the full frame period, additional dark time will be  
appended to the end of the last pattern.  
The Blue LED is configured to be ON for each pattern.  
TRIG_OUT_1 (Frame Trigger) is configured active high polarity and will have a minimum pulse width of 20  
microseconds. TRIG_OUT_1 delay (tD1) is configured with respect to input VSYNC  
.
TRIG_OUT_2 (Pattern Trigger) is configured active high polarity and stays active during the pattern  
exposure. TRIG_OUT_2 delay (tD2) is configured with reference to the start of the pattern and is set once per  
pattern within a frame.  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
7.3.2.2 Internal Pattern Mode  
There are two key differences between internal and external pattern mode:  
Internal pattern mode only supports 1D patterns i.e the pattern data is the same across the entire row or  
column of the DMD (7-12, 7-13).  
Internal pattern mode enables user to design a simple system by eliminating need of an external processor to  
generate and send patterns every frame. In internal pattern mode one row or one column patterns are pre-  
loaded in the flash memory and a command is send to DLPC3478 controller to display the patterns.  
Implementation details on how to create patterns, save patterns in Flash memory and load patterns from  
flash memory into the DLPC3478 controllers internal memory are described in Software Programmers  
Guide.  
Copy to every column on the DMD  
7-12. Column Replication  
Copy to every line on the DMD  
Line of Data  
7-13. Row Replication  
Internal pattern mode additionally provides two configurations to trigger the display of patterns, free running  
mode, (shown in 7-14) and trigger in mode (shown in 7-15).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DLPC3478  
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
7.3.2.2.1 Free Running Mode  
In free running mode the DLPC3478 controller generates an internal synchronization signal to display pre-stored  
patterns. User sends an I2C command to instruct the DLPC3478 controller to download the 1D patterns from  
flash memory into DLPC3478 controllers internal memory and begin display of the 1D patterns.  
Internally  
Generated V  
SYNC  
Pattern Data  
tDarkPre+Post  
Pattern Data  
Pattern Data  
tExposure  
tDarkPre  
Pat  
M
Pat 0  
Pat 1  
Pat N  
Pat 0  
Pat 1  
Pattern Display  
Illuminator  
Blue  
LED  
Blue  
LED  
Blue  
LED  
Blue  
LED  
Blue  
LED  
Blue  
LED  
tD1  
Trigger Out 1  
(Set Trigger)  
tD2  
Trigger Out 2  
(Pattern Trigger)  
7-14. Free Running Mode  
The device displays multiple 1D patterns within an internally-generated VSYNC period. tExposure (exposure  
time), tDarkPre and tDarkPost (dark time) are equal for all the 1D patterns within one internally generated VSYNC  
frame.  
The Blue LED is configured to be on for each pattern.  
TRIG_OUT_1 (Frame Trigger) is configured active high polarity and will have a minimum pulse width of 20  
microseconds. TRIG_OUT_1 delay (tD1) is configured with respect to internally generated VSYNC  
.
TRIG_OUT_2 (Pattern Trigger) is configured active high polarity and stays active during the pattern  
exposure. TRIG_OUT_2 delay (tD2) is configured with reference to the start of each pattern.  
VSYNC is generated internally according to different sets of patterns stored in the SPI flash memory.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
7.3.2.2.2 Trigger In Mode  
Trigger In mode provides higher level of control to the user for displaying patterns. In this mode, the user  
determines when to display the pattern by sending an external trigger signal to the DLPC3478 controller. The  
DLPC3478 controller outputs a Pattern Ready signal to let the user know when DLPC3478 controller is ready to  
accept an external trigger signal.  
Pa ern Ready  
(Output)  
Trigger In  
(External)  
Load  
Pa ern Data  
tDarkPre+DarkPost  
tDarkPost+Load  
tDarkPre  
tExposure  
Pat  
0
Pat N  
Pat 0  
Pat 1  
Pat M  
Pat 1  
Pa ern Display  
Illuminator  
Blue  
LED  
Blue  
LED  
Blue  
LED  
Blue LED  
Blue LED  
BLUE LED  
tD1  
tD1  
Trigger Out 1  
(Set Trigger)  
tD2  
tD2  
Trigger Out 2  
(Pa ern Trigger)  
7-15. Trigger In Mode  
The DLPC3478 controller sets the Pattern Ready signal high to denote that the DLPC3478 controller is ready  
to accept the Trigger In signal.  
The user sends the external trigger input signal to the DLPC3478 controller to begin the display of the next  
pattern with tExposure (exposure time), tDarkPre and tDarkPost (dark time).  
The Blue LED is configured to be on for each pattern.  
TRIG_OUT_1 (Pattern Set Trigger) is configured active high polarity and will have a minimum pulse width of  
20 microseconds. TRIG_OUT_1 delay (tD1) is configured with respect to external trigger input (TRIG_IN).  
TRIG_OUT_2 (Pattern Trigger) is configured active high polarity and stays active during the pattern  
exposure. TRIG_OUT_2 delay (tD2) is configured with reference to the start of each pattern exposure.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
7.3.3 Device Startup  
The HOST_IRQ signal is provided to indicated when the system has completed auto-initialization.  
While reset is applied, HOST_IRQ is tri-stated (an external pullup resistor pulls the line high).  
HOST_IRQ remains tri-stated (pulled high externally) until the boot process completes. While the signal is  
pulled high, this indicates that the controller is performing boot-up and auto-initialization.  
As soon as possible after the controller boots-up, the controller drives HOST_IRQ to a logic high state to  
indicate that the controller is continuing to perform auto-initialization (no real state changes occur on the  
external signal).  
The software sets HOST_IRQ to a logic low state at the completion of the auto-initialization process. At the  
falling edge of the signal, the initialization is complete.  
The DLPC34xx controller is ready to receive commands through I2C or accept video over the video interface  
only after auto-initialization is complete.  
The controller initialization typically completes (HOST_IRQ goes low) within 500 ms of RESETZ being  
asserted. However, this time may vary depending on the software version and the contents of the user  
configurable auto initialization file.  
RESETZ  
auto-initialization  
HOST_IRQ  
(with external pullup)  
(INIT_BUSY)  
t0  
t1  
t0: rising edge of RESETZ; auto-initialization begins  
t1: falling edge of HOST_IRQ; auto-initialization is complete  
7-16. HOST_IRQ Timing  
7.3.4 SPI Flash  
7.3.4.1 SPI Flash Interface  
The DLPC34xx controller requires an external SPI serial flash memory device to store the firmware. Follow the  
below guidelines and requirements in addition to the requirements listed in the Flash Interface Timing  
Requirements section.  
The controller supports a maximum flash size of 128 Mb (16 MB). See the DLPC34xx Validated SPI Flash  
Device Options table for example compatible flash options. The minimum required flash size depends on the  
size of the utilized firmware. The firmware size depends upon a variety of factors including the number of  
sequences, lookup tables, and splash images.  
The DLPC34xx controller uses a single SPI interface that complies to industry standard SPI flash protocol. The  
device will begin accessing the flash at a nominal 1.42-MHz frequency before running at a nominal 30-MHz rate.  
The flash device must support these rates.  
The controller has two independent SPI chip select (CS) control lines. Ensure that the chip select pin of the flash  
device is connects to SPI0_CSZ0 as the controller boot routine is executes from the device connected to chip  
select zero. The boot routine uploads program code from flash memory to program memory then transfers  
control to an auto-initialization routine within program memory.  
The DLPC34xx is designed to support any flash device that is compatible with the modes of operation, features,  
and performance as defined in the Additional DLPC34xx SPI Flash Requirements table below 7-4, 7-5, and  
7-6.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
7-4. Additional DLPC34xx SPI Flash Requirements  
FEATURE  
DLPC34xx REQUIREMENT  
SPI interface width  
SPI polarity and phase settings  
Fast READ addressing  
Programming mode  
Page size  
Single  
SPI mode 0  
Auto-incrementing  
Page mode  
256 B  
Sector size  
4-KB sector  
Any  
Block size  
Block protection bits  
Status register bit(0)  
Status register bit(1)  
Status register bits(6:2)  
Status register bit(7)  
0 = Disabled  
Write in progress (WIP), also called flash busy  
Write enable latch (WEN)  
A value of 0 disables programming protection  
Status register write protect (SRWP)  
Because the DLPC34xx controller supports only single-byte status register R/W command execution,  
it may not be compatible with flash devices that contain an expansion status byte. However, as long  
as the expansion status byte is considered optional in the byte 3 position and any write protection  
control in this expansion status byte defaults to unprotected, then the flash device is likely compatible  
with the DLPC34xx.  
Status register bits(15:8)  
(that is expansion status byte)  
The DLPC34xx controller is intended to support flash devices with program protection defaults of either enabled  
or disabled. The controller assumes the default is enabled and proceeds to disable any program protection as  
part of the boot process.  
The DLPC34xx issues these commands during the boot process:  
A write enable (WREN) instruction to request write enable, followed by  
A read status register (RDSR) instruction (repeated as needed) to poll the write enable latch (WEL) bit  
After the write enable latch (WEL) bit is set, a write status register (WRSR) instruction that writes 0 to all 8  
bits (this disables all programming protection)  
Prior to each program or erase instruction, the DLPC34xx controller issues similar commands:  
A write enable (WREN) instruction to request write enable, followed by  
A read status register (RDSR) instruction (repeated as needed) to poll the write enable latch (WEL) bit  
After the write enable latch (WEL) bit is set, the program or erase instruction  
Note that the flash device automatically clears the write enable status after each program and erase instruction.  
7-5 and 7-6 below list the specific instruction OpCode and timing compatibility requirements. The  
DLPC34xx controller does not adapt protocol or clock rate based on the flash type connected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
7-5. SPI Flash Instruction OpCode and Access Profile Compatibility Requirements  
BYTE 1  
SPI FLASH COMMAND  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE 6  
(OPCODE)  
Fast READ (1 output)  
Read status  
0x0B  
0x05  
0x01  
0x06  
0x02  
0x20  
0xC7  
ADDRS(0)  
N/A  
ADDRS(1)  
N/A  
ADDRS(2)  
STATUS(0)  
dummy  
DATA(0)(1)  
Write status  
STATUS(0)  
See (2)  
Write enable  
Page program  
Sector erase (4 KB)  
Chip erase  
ADDRS(0)  
ADDRS(0)  
ADDRS(1)  
ADDRS(1)  
ADDRS(2)  
ADDRS(2)  
DATA(0)(1)  
(1) Shows the first data byte only. Data continues.  
(2) Access to a second (expansion) write status byte not supported by the DLPC34xx controller.  
7-6 below and the Flash Interface Timing Requirements section list the specific timing compatibility  
requirements for a DLPC34xx compatible flash device.  
7-6. SPI Flash Key Timing Parameter Compatibility Requirements  
SPI FLASH TIMING PARAMETER(1) (2)  
SYMBOL  
ALTERNATE SYMBOL  
MIN  
MAX  
UNIT  
Access frequency (all commands)  
FR  
fC  
MHz  
1.4  
30.1  
Chip select high time (also called chip select  
deselect time)  
tSHSL  
tCSH  
ns  
200  
0  
Output hold time  
tCLQX  
tCLQV  
tDVCH  
tCHDX  
tHO  
tV  
tDSU  
tDH  
ns  
ns  
ns  
ns  
Clock low to output valid time  
Data in set-up time  
Data in hold time  
11  
5  
5  
(1) The timing values apply to the specification of the peripheral flash device, not the DLPC34xx controller. For example, the flash device  
minimum access frequency (FR) must be 1.4 MHz or less and the maximum access frequency must be 30.1 MHz or greater.  
(2) The DLPC34xx does not drive the HOLD or WP (active low write protect) pins on the flash device, and thus these pins must be tied to  
a logic high on the PCB through an external pullup.  
In order for the DLPC34xx controller to support 1.8-V, 2.5-V, or 3.3-V serial flash devices, the VCC_FLSH pin  
must be supplied with the corresponding voltage. The DLPC34xx Validated SPI Flash Device Options table  
contains a list of validated 1.8-V, 2.5-V, or 3.3-V compatible SPI serial flash devices supported by the DLPC34xx  
controller.  
7-7. DLPC34xx Validated SPI Flash Device Options(1) (2) (3)  
DENSITY (Mb)  
VENDOR  
PART NUMBER  
1.8-V COMPATIBLE DEVICES  
W25Q40BWUXIG  
PACKAGE SIZE  
4 Mb  
4 Mb  
8 Mb  
Winbond  
Macronix  
Macronix  
2 × 3 mm USON  
MX25U4033EBAI-12G  
1.43 × 1.94 mm WLCSP  
1.68 × 1.99 mm WLCSP  
MX25U8033EBAI-12G  
2.5- OR 3.3-V COMPATIBLE DEVICES  
Winbond W25Q16CLZPIG  
16 Mb  
5 × 6 mm WSON  
(1) The flash supply voltage must equal VCC_FLSH supply voltage on the DLPC34xx controller. Make sure to order the device that  
supports the correct supply voltage as multiple voltage options are often available.  
(2) Numonyx (Micron) serial flash devices typically do not support the 4 KB sector size compatibility requirement for the DLPC34xx  
controller.  
(3) The flash devices in this table have been formally validated by TI. Other flash options may be compatible with the DLPC34xx controller,  
but they have not been formally validated by TI.  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
 
 
 
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
7.3.4.2 SPI Flash Programming  
The SPI pins of the flash can directly be driven for flash programming while the DLPC34xx controller I/Os are tri-  
stated. SPI0_CLK, SPI0_DOUT, and SPI0_CSZ0 I/O can be tri-stated by holding RESETZ in a logic low state  
while power is applied to the controller. The logic state of the SPI0_CSZ1 pin is not affected by this action.  
Alternatively, the DLPC34xx controller can program the SPI flash itself when commanded via I2C if a valid  
firmware image has already been loaded and the controller is operational.  
7.3.5 I2C Interface  
Both of the DLPC34xx I2C interface ports support a 100-kHz baud rate. Because I2C interface transactions  
operate at the speed of the slowest device on the bus, there is no requirement to match the speed of all devices  
in the system.  
7.3.6 Content Adaptive Illumination Control (CAIC)  
Content Adaptive Illumination control (CAIC) is part of the IntelliBright® suite of advanced image processing  
algorithms that adaptively enhances brightness and reduces power. In common real-world image content most  
pixels in the images are well below full scale for the for the R (red), G (green), and B (blue) digital channels input  
to the DLPC34xx. As a result of this, the average picture level (APL) for the overall image is also well below full  
scale, and the dynamic range for the collective set of pixel values is not fully used. CAIC takes advantage of the  
headroom between the source image APL and the top of the available dynamic range of the display system.  
CAIC evaluates images on a frame-by-frame basis and derives three unique digital gains, one for each of the R,  
G, and B color channel. During image processing, CAIC applies each gain to all pixels in the associated color  
channel. The calculated gain is applied to all pixels in that channel so that the pixels as a group collectively shift  
upward and as close to full scale as possible. To prevent any image quality degradation, the gains are set at the  
point where just a few pixels in each color channel are clipped. The Source Pixels for a Color Channel and  
Pixels for a Color Channel After CAIC Processing figures below show an example of the application of CAIC for  
one color channel.  
Single-pixel  
Headroom  
255  
255  
APL Headroom  
Clipped  
to 255  
166  
110  
Time  
Time  
(1) APL = 110  
.
(1) APL = 166  
(2) Channel gain = 166/110 = 1.51  
7-17. Source Pixels for a Color Channel  
7-18. Pixels for a Color Channel After CAIC  
Processing  
Above, 7-18 shows the gain that is applied to a color processing channel inside the DLPC34xx. Additionally,  
CAIC adjusts the power for the R, G, and B LED by commanding different LED currents. For each color channel  
of an individual frame, CAIC intelligently determines the optimal combination of digital gain and LED power. The  
user configurable CAIC settings heavily influence the amount of digital gain that is applied to a color channel and  
the LED power for that color.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
0.33  
0.22  
0.18  
(1)  
CAIC Disabled  
= 1 W  
CAIC Enabled  
P = 0.73 W  
TOTAL  
P
TOTAL  
(1) With CAIC enabled, if red and blue LEDs require less than nominal power for a given input image, the red and blue LED power will  
reduce.  
7-19. CAIC Power Reduction Mode (for Constant Brightness)  
As CAIC applies a digital gain to each color channel and adjusts the power to each LED, CAIC ensures the  
resulting color balance in the final image matches the target color balance for the projector system. Thus, the  
effective displayed white point of images is held constant by CAIC from frame to frame.  
CAIC can be used to increase the overall image brightness while holding the total power for all LEDs constant,  
or CAIC can be used to hold the overall image brightness constant while decreasing LED power. In summary,  
CAIC has two primary modes of operation:  
Power reduction mode holds overall image brightness constant while reducing LED power  
Enhanced brightness mode holds overall LED power constant while enhancing image brightness  
In power reduction mode, since the R, G, and B channels can be gained up by CAIC inside the DLPC34xx, the  
LED power can be reduced for any color channel until the brightness of the color on the screen is unchanged.  
Thus, CAIC can achieve an overall LED power reduction while maintaining the same overall image brightness as  
if CAIC was not used. 7-19 shows an example of LED power reduction by CAIC for an image where the red  
and blue LEDs can consume less power.  
In enhanced brightness mode the R, G, and B channels can be gained up by CAIC with LED power generally  
being held constant. This results in an enhanced brightness with no power savings.  
While there are two primary modes of operation described, the DLPC34xx actually operates within the extremes  
of pure power reduction mode and enhanced brightness mode. The user can configure which operating mode  
the DLPC34xx will more closely follow by adjusting the CAIC gain setting as described in the software  
programmer's guide.  
In addition to the above functionality, CAIC also can be used as a tool with which FOFO (full-on full-off) contrast  
on a projection system can be improved. While operating in power reduction mode, the DLPC34xx reduces LED  
power as the intensity of the image content for each color channel decreases. This will result in the LEDs  
operating at nominal settings with full-on content (a white screen) and reducing power output until the dimmest  
possible content (a black screen) is reached. In this latter case, the LEDs will be operating at minimum power  
output capacity and thus producing the minimum possible amount of off-state light. This optimization provided by  
CAIC will thereby improve FOFO contrast ratio. The given contrast ratio will further increase as nominal LED  
current (full-on state) is increased.  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
7.3.7 Local Area Brightness Boost (LABB)  
Local area brightness boost (LABB), part of the IntelliBrightsuite of advanced image processing algorithms,  
adaptively gains up regions of an image that are dim relative to the average picture level. The controller applies  
significant gain to some regions of the image, and applies little or no gain to other regions. The LABB algorithm  
evaluates images frame-by-frame and calculates the local area gains to be used for each image. Since many  
images have a net overall boost in gain, even if the controller applies no gain to some parts of the image, the  
controller boosts the overall perceived brightness of the image.  
7-20 below shows a split screen example of the impact of the LABB algorithm for an image that includes dark  
areas.  
7-20. LABB enabled (left side) and LABB disabled (right side)  
The LABB algorithm operates most effectively when ambient light conditions are used to help determine the  
decision about the strength of gains utilized. For this reason, it may be useful to include an ambient light sensor  
in the system design that is used to measure the display screen's reflected ambient light. This sensor can assist  
in dynamically controlling the LABB strength. Set the LABB gain higher for bright rooms to help overcome  
washed out images. Set the LABB gain lower in dark rooms to prevent overdriven pixel intensities in images.  
7.3.8 3D Glasses Operation  
When using 3D glasses (with 3D video input and appropriate software support), the controller outputs sync  
information to align the left eye and right eye shuttering in the glasses with the displayed DMD image frames. 3D  
glasses typically use either Infrared (IR) transmission or DLP Linktechnology to achieve this synchronization.  
One glasses type uses an IR transmitter on the system PCB to send an IR sync signal to an IR receiver in the  
glasses. In this case DLPC34xx controller output signal GPIO_04 can be used to cause the IR transmitter to  
send an IR sync signal to the glasses. The 7-21 figure shows the timing sequence for the GPIO_04 signal.  
The second type of glasses relies on sync information that is encoded into the light being output from the  
projection lens. This approach uses the DLP Link feature for 3D video. Many 3D glasses from different suppliers  
have been built using this method. The advantage of using the DLP Link feature is that it takes advantage of  
existing projector hardware to transmit the sync information to the glasses. This method may give an advantage  
in cost, size and power savings in the projector.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
When using DLP Link technology, one light pulse per DMD frame is output from the projection lens while the  
glasses have both shutters closed. To achieve this, the DLPC34xx tells the DLPAxxxx when to turn on the  
illumination source (typically LEDs or lasers) so that an encoded light pulse is output once per DMD frame.  
Because the shutters in the glasses are both off when the pulse is sent, the projector illumination source is also  
off except when the light is sent to create the pulse. The pulses may use any color; however, due to the  
transmission property of the eye-glass LCD shutter lenses and the sensitivity of the white-light sensor used on  
the eye-glasses, it is highly recommended that blue is not used for pulses. Red pulses are the recommended  
color to use. The 7-21 figure below shows 3D timing information. 7-22 and 7-8 show the timing for the  
light pulses when using the DLP Link feature.  
50 Hz or 60 Hz  
(HDMI)  
L
R
L
R
L
R
L
R
L
R
L
R
100 Hz or 120 Hz  
(34xx Input)  
L
R
L
R
L
R
L
R
L
R
L
R
3DR (1)(2)  
(3D L/R input)  
100 Hz or 120 Hz  
(on DMD)  
R
L
R
L
R
L
R
L
R
L
R
L
GPIO_04 (1)  
(3D L/R output)  
0 µs (min)  
5 µs (max)  
GPIO_04  
LED_SEL_0, LED_SEL_1  
Video  
Video  
On DMD  
Dark time  
t1  
t2  
(1) Left = 1, Right = 0  
(2) 3DR must toggle 1 ms before VSYNC  
t1: both shutters turned off  
t2: next shutter turned on  
7-21. 3D Display Left and Right Frame and Signal Timing  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
video data on subframe n  
video data on subframe n+1  
3D glasses shutter  
E
A
C
B
D
A
Video  
Video  
t1  
t2  
The time offset of DLP Link pulses at the end of a subframe alternates between B and B+D where D is the delta offset.  
7-22. 3D DLP Link Pulse Timing  
7-8. 3D DLP Link Timing  
HDMI Source Frame DLPC34xx Input Frame  
A
B
C
D
E
Rate (Hz)(1)  
Rate (Hz)  
(µs)  
(µs)  
(µs)  
(µs)  
(µs)  
20 - 32  
128 - 163  
49.0  
98  
> 500  
> 500  
> 500  
> 500  
> 500  
> 500  
> 622  
> 658  
> 655  
> 634  
> 632  
> 630  
> 2000  
> 2000  
> 2000  
> 2000  
> 2000  
> 2000  
(31.8 nominal)  
(161.6 nominal)  
20 - 32  
128 - 163  
50.0  
51.0  
59.0  
60.0  
61.0  
100  
102  
118  
120  
122  
(31.2 nominal)  
(158.4 nominal)  
20 - 32  
128 - 163  
(30.6 nominal)  
(155.3 nominal)  
20 - 32  
128 - 163  
(26.4 nominal)  
(134.2 nominal)  
20 - 32  
128 - 163  
(26.0 nominal)  
(132.0 nominal)  
20 - 32  
128 - 163  
(25.6 nominal)  
(129.8 nominal)  
(1) Timing parameter C is always the sum of B+D.  
7.3.9 Test Point Support  
The DLPC34xx test point output port, TSTPT_(7:0), provides selected system calibration and controller debug  
support. These test points are inputs when reset is applied. These test points are outputs when reset is released.  
The controller samples the signal state upon the release of system reset and then uses the captured value to  
configure the test mode until the next time reset is applied. Because each test point includes an internal  
pulldown resistor, external pullups must be used to modify the default test configuration.  
The default configuration (b000) corresponds to the TSTPT_(2:0) outputs remaining tri-stated to reduce  
switching activity during normal operation. For maximum flexibility, a jumper to external pullup resistors is  
recommended for TSTPT_(2:0). The pullup resistors on TSTPT_(2:0) can be used to configure the controller for  
a specific mode or option. TI does not recommend adding pullup resistors to TSTPT_(7:3) due to potentially  
adverse effects on normal operation. For normal use TSTPT_(7:3) should be left unconnected. The test points  
are sampled only during a 0-to-1 transition on the RESETZ input, so changing the configuration after reset is  
released does not have any effect until the next time reset asserts and releases. 7-9 describes the test mode  
selections for one programmable scenario defined by TSTPT_(2:0).  
7-9. Test Mode Selection Scenario Defined by TSTPT_(2:0)  
NO SWITCHING ACTIVITY  
CLOCK DEBUG OUTPUT  
TSTPT_(2:0) = 0b010  
60 MHz  
TSTPT OUTPUT VALUE(1)  
TSTPT_(2:0) = 0b000  
TSTPT_0  
TSTPT_1  
TSTPT_2  
HI-Z  
HI-Z  
HI-Z  
30 MHz  
0.7 to 22.5 MHz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: DLPC3478  
 
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
7-9. Test Mode Selection Scenario Defined by TSTPT_(2:0) (continued)  
NO SWITCHING ACTIVITY  
CLOCK DEBUG OUTPUT  
TSTPT OUTPUT VALUE(1)  
TSTPT_(2:0) = 0b000  
TSTPT_(2:0) = 0b010  
TSTPT_3  
TSTPT_4  
TSTPT_5  
TSTPT_6  
TSTPT_7  
HI-Z  
HI-Z  
HI-Z  
HI-Z  
HI-Z  
HIGH  
LOW  
HIGH  
HIGH  
7.5 MHz  
(1) These are default output selections. Software can reprogram the selection at any time.  
7.3.10 DMD Interface  
The DLPC34xx controller DMD interface consists of one high-speed (HS), 1.8-V sub-LVDS, output-only interface  
and one low speed (LS), 1.8-V LVCMOS SDR interface with a typical fixed clock speed of 120 MHz.  
7.3.10.1 Sub-LVDS (HS) Interface  
The DLP3010LC (0.3 inch 720p) DMD does not require all of the available output data lanes of the controller.  
Internal software selection allows the controller to support multiple DMD interface swap configurations. These  
options can improve board layout by remapping specific combinations of DMD interface lines to other DMD  
interface lines as needed. 7-10 shows the two options available for the DLP3010LC DMD. Leave any unused  
DMD signal pairs unconnected on the final board design.  
7-10. DLP3010LC (0.3 inch 720p) DMD ASIC to 8-Lane DMD Pin Mapping Options  
DLPC3478 ASIC 8 LANE DMD ROUTING OPTIONS  
DMD PINS  
OPTION 1  
OPTION 2  
HS_WDATA_D_P  
HS_WDATA_D_N  
HS_WDATA_E_P  
HS_WDATA_E_N  
Input DATA_p_0  
Input DATA_n_0  
HS_WDATA_C_P  
HS_WDATA_C_N  
HS_WDATA_F_P  
HS_WDATA_F_N  
Input DATA_p_1  
Input DATA_n_1  
HS_WDATA_B_P  
HS_WDATA_B_N  
HS_WDATA_G_P  
HS_WDATA_G_N  
Input DATA_p_2  
Input DATA_n_2  
HS_WDATA_A_P  
HS_WDATA_A_N  
HS_WDATA_H_P  
HS_WDATA_H_N  
Input DATA_p_3  
Input DATA_n_3  
HS_WDATA_H_P  
HS_WDATA_H_N  
HS_WDATA_A_P  
HS_WDATA_A_N  
Input DATA_p_4  
Input DATA_n_4  
HS_WDATA_G_P  
HS_WDATA_G_N  
HS_WDATA_B_P  
HS_WDATA_B_N  
Input DATA_p_5  
Input DATA_n_5  
HS_WDATA_F_P  
HS_WDATA_F_N  
HS_WDATA_C_P  
HS_WDATA_C_N  
Input DATA_p_6  
Input DATA_n_6  
HS_WDATA_E_P  
HS_WDATA_E_N  
HS_WDATA_D_P  
HS_WDATA_D_N  
Input DATA_p_7  
Input DATA_n_7  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
DLPC3478  
www.ti.com.cn  
DLPC34xx  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
High Speed sub-LVDS DDR Interface  
DMD_HS_WDATA_A_N  
DMD_HS_WDATA_A_P  
DMD_HS_WDATA_B_N  
DMD_HS_WDATA_B_P  
(Example DMD)  
DLP3010  
1280 x 720 display  
DMD_HS_WDATA_C_N  
DMD_HS_WDATA_C_P  
Sub-LVDS-DMD  
DMD_HS_WDATA_D_N  
DMD_HS_WDATA_D_P  
DMD_HS_CLK_N  
DMD_HS_CLK_P  
DMD_HS_WDATA_E_N  
DMD_HS_WDATA_E_P  
DMD_HS_WDATA_F_N  
DMD_HS_WDATA_F_P  
DMD_HS_WDATA_G_N  
DMD_HS_WDATA_G_P  
DMD_HS_WDATA_H_N  
DMD_HS_WDATA_H_P  
DMD_LS_CLK  
DMD_LS_WDATA  
DMD_DEN_ARSTZ  
DMD_LS_RDATA  
Low Speed SDR Interface (120 MHz)  
7-23. DLP3010LC (.3 720p) DMD Interface Example  
The sub-LVDS high-speed interface waveform quality and timing on the DLPC34xx controller depends on the  
total length of the interconnect system, the spacing between traces, the characteristic impedance, etch losses,  
and how well matched the lengths are across the interface. Thus, ensuring positive timing margin requires  
attention to many factors.  
In an attempt to minimize the signal integrity analysis that would otherwise be required, the DMD Control and  
Sub-LVDS Signals layout section is provided as a reference of an interconnect system that satisfy both  
waveform quality and timing requirements (accounting for both PCB routing mismatch and PCB signal integrity).  
Variation from these recommendations may also work, but should be confirmed with PCB signal integrity  
analysis or lab measurements.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: DLPC3478  
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
7.4 Device Functional Modes  
The DLPC34xx controller has two functional modes (ON and OFF) controlled by a single pin, PROJ_ON  
(GPIO_08).  
When the PROJ_ON pin is set high, the controller powers up and can be programmed to send data to the  
DMD.  
When the PROJ_ON pin is set low, the controller powers down and consumes minimal power.  
7.5 Programming  
The DLPC34xx controller contains an Arm® Cortex®-M3 processor with additional functional blocks to enable  
video processing and control. TI provides software as a firmware image. The customer is required to flash this  
firmware image onto the SPI flash memory. The DLPC34xx controller loads this firmware during startup and  
regular operation. The controller and its accompanying DLP chipset requires this proprietary software to operate.  
The available controller functions depend on the firmware version installed. Different firmware is required for  
different chipset combinations (such as when using different PMIC devices). See Documentation Support at the  
end of this document or contact TI to view or download the latest published software.  
Users can modify software behavior through I2C interface commands. For a list of commands, view the software  
user's guide accessible through the Documentation Support page.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
8 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
DLPC3478 display and light controller with DLP3010LC DMD enables high accuracy and very small form factor  
3D Depth sensing products. This section describes typical 3D depth sensor DLP systems using both external  
and internal pattern streaming modes. The DMDs are spatial light modulators which reflect incoming light from  
an illumination source to one of two directions, with the primary direction being into projection or collection  
optics. The optical architecture of the system and the format of the image digital data coming into the DLPC3478  
are what primarily determine the application requirements.  
Typical applications include:  
Battery-powered, mobile accessory  
3D Camera  
Tablets  
Smartphones  
Laptop  
Dental scanner (desktop or intra-oral)  
Robotics  
In-line automated inspection  
3D biometrics: facial and finger print recognition  
Light exposure: 3D printers, programmable spatial and temporal light exposure  
8.2 Typical Application  
8.2.1 Pattern projector for 3D depth scanning  
DLPC3478 controller with DLP3010LC DMD enables high accuracy and very small form factor 3D Depth  
scanner products. 8-1 shows a typical 3D depth scanner system block diagram using external pattern  
streaming mode.  
1.1 V  
1.1 Reg  
L3  
SYSPWR  
L2  
DC  
Supplies  
1.8 V  
1.8 V external  
L1  
DLPA200x  
VSPI  
V
LED  
1.8 V  
PROJ_ON  
LED_SEL (2)  
PROJ_ON  
I
SPI (4)  
GPIO_8  
SPI1  
RESETZ  
PARKZ  
2
C
R
LIM  
INTZ  
Thermistor  
Video  
HOST_IRQ  
DSI (10)  
CMP_OUT  
Front End  
HDMI  
VDDLP12  
VDD  
1.1 V  
Illumination  
optics  
Parallel Interface (28)  
DLPC3478  
System  
Controller  
RC_  
CHARGE  
Flash  
SPI (4)  
SPI0  
GPIO_10  
Keypad  
V
, V ,  
BIAS OFFSET  
TSTPT_4  
GPIO_7  
TRIG_OUT_1  
TRIG_OUT_2  
VCC_18  
1.8 V  
V
RESET  
DMD  
DLP3010LC  
VCC_INTF  
CTRL  
Sub-LVDS DATA  
TI DLP Chipset  
Non-TI Device  
VCC_FLSH  
1.8 V  
A. Options to elect different LEDs, but only 1 channel used at a time  
8-1. External Pattern Streaming Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: DLPC3478  
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
8.2.1.1 Design Requirements  
A high accuracy 3D depth scanner product can be created by using a DLP chipset comprised of DLP3010LC  
DMD, DLPC3478 controller and DLPA200x or DLPA300x PMIC/LED drive. The DLPC3478 simplifies the pattern  
generation, the DLPA200x or DLPA300x provides the needed analog functions and DMD displays the required  
patterns for accurate 3D depth scanning.  
In addition to the three DLP devices in the chipset, other components may be required to complete the  
application. Minimally, a flash component is required to store patterns, the software, and the firmware in order to  
control the DLPC3478 controller.  
DLPC3478 controller supports any illumination source including IR light source (LEDs or vertical-cavity surface-  
emitting laser - VCSEL), UV light source, or visible light source (red, green or blue LEDs or lasers).  
For connecting the DLPC3478 controller to the host processing for receiving patterns or video data, the parallel  
interface is used. Connect an I2C interface to the host processor to send commands to the DLPC3478 controller.  
The only required power supplies that are external to the projector system chipset are the battery (SYSPWR)  
and possibly a regulated 1.8-V supply (some TI PMICs generate the 1.8-V supply but the DLPA200x does not).  
The entire pico-projector can be turned on and off by using a single signal called PROJ_ON. When PROJ_ON is  
high, the projector turns on and begins displaying images. When PROJ_ON is set low, the projector turns off and  
draws just microamps of current on SYSPWR. If 1.8 V is supplied separately from the PMIC (as is the case with  
the DLPA200x), when PROJ_ON is set low, the 1.8-V supply can continue to be left at 1.8 V and used by other  
non-projector sections of the product.  
8.2.1.2 Detailed Design Procedure  
For connecting the DLP3010LC DMD, the DLPC3478 controller and the DLPA200x or DLPA300x PMIC/LED  
driver see the reference design schematic. An example board layout is included in the reference design data  
base. Follow the layout guidelines shown in 10 to achieve reliable DLP system results.  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
8.2.1.3 Application Curve  
As the LED currents that are driven through the red, green or blue LEDs are increased, the brightness of the  
projector increases. This increase is somewhat non-linear, and the curve for typical white screen lumens  
changes with LED currents is shown in 8-2. For the LED currents shown, it is assumed that the same current  
amplitude is applied to the red, green, and blue LEDs. For mono-chrome use case with a single LED or a  
different light source, this curve will be different and the specific light source documentation needs to be referred  
for similar information.  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
100  
200  
300 400  
Current (mA)  
500  
600  
700  
D001  
8-2. Luminance vs Current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: DLPC3478  
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
8.2.2 3D Depth Scanner Using Internal Pattern Streaming Mode  
8-3 shows a typical 3D depth scanner system block diagram using internal pattern streaming mode.  
A. Options to elect different LEDs, but only 1 channel used at a time  
8-3. Internal Pattern Streaming Mode  
8.2.2.1 Design Requirements  
The design requirements for the 3D Depth scanner system using Internal Pattern Streaming Mode is identical to  
the design procedure for the 3D Depth capture system External Pattern Streaming Mode. (See the 8.2.1.1  
section.)  
8.2.2.2 Detailed Design Procedure  
The design procedure for the 3D Depth scanner Using Internal Pattern Streaming Mode is identical to the design  
procedure for the 3D Depth scanner using External Pattern Streaming Mode. (See the 8.2.1.2 section.)  
8.2.2.3 Application Curve  
See the 8.2.1.3 as the brightness considerations are similar in both external and internal pattern streaming  
modes.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
9 Power Supply Recommendations  
9.1 PLL Design Considerations  
It is acceptable for the VDD_PLLD and VDD_PLLM to be derived from the same regulator as the core VDD.  
However, to minimize the AC noise component, apply a filter as recommended in the PLL Power Layout section.  
9.2 System Power-Up and Power-Down Sequence  
Although the DLPC34xx controller requires an array of power supply voltage pins (for example, VDD, VDDLP12,  
VDD_PLLM/D, VCC18, VCC_FLSH, and VCC_INTF), if VDDLP12 is tied to the 1.1-V VDD supply (which is  
assumed to be the typical configuration), then there are no restrictions regarding the relative order of power  
supply sequencing to avoid damaging the DLPC34xx controller (this remains true for both power-up and power-  
down scenarios). The controller requires no minimum delay time between powering-up and powering-down the  
individual supplies if the VDDLP12 is tied to the 1.1-V VDD supply.  
However, if the VDDLP12 pin is not tied to the VDD supply, then the VDDLP12 pin must be powered-on only  
after the VDD supply is powered-on. And in a similar sequence, the VDDLP12 pin must be powered-off before  
the VDD supply is powered-off. If the VDDLP12 pin is not tied to VDD, then the VDDLP12 pin and VDD supply  
pins must be powered-on or powered-off within 100 ms of each other.  
Although there is no risk of damaging the DLPC34xx controller when the above power sequencing rules are  
followed, these additional power sequencing recommendations must be considered to ensure proper system  
operation:  
To ensure that the DLPC34xx controller output signal states behave as expected, all controller I/O supplies  
are encouraged to remain applied while VDD core power is applied. If VDD core power is removed while the  
I/O supply (VCC_INTF) is applied, then the output signal states associated with the inactive I/O supply go to  
a high impedance state.  
Because additional power sequencing rules may exist for devices that share the supplies with the DLPC34xx  
controller (such as the PMIC and DMD), these devices may force additional system power sequencing  
requirements.  
9-1, 9-2, and 9-3 show the DLPC34xx power-up sequence, the normal PARK power-down sequence,  
and the fast PARK power-down sequence of a typical DLPC34xx system.  
When the VDD core power is applied, but I/O power is not applied, the controller may draw additional leakage  
current. This leakage current does not affect the normal DLPC34xx controller operation or reliability.  
Note  
During a Normal Park it is recommended to maintain SYSPWR within specification for at least 50 ms  
after PROJ_ON goes low. This is to allow the DMD to be parked and the power supply rails to safely  
power down. After 50 ms, SYSPWR can be turned off. If a DLPA200x is used, it is also recommended  
that the 1.8-V supply fed into the DLPA200x load switch be maintained within specification for at least  
50 ms after PROJ_ON goes low.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: DLPC3478  
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
Signals  
from PMIC (DLPA3000)  
from other source  
Pre-Initial-  
ization  
Power  
System State  
Startup  
Initialization  
Regular Operation  
SYSPWR  
PROJ_ON (GPIO_8)  
VDD (1.1 V)  
VDD_PLLM/D (1.1 V)  
(a)  
VDDLP12 (if not tied to VDD)  
VCC18 (1.8 V)  
VCC_INTF (e.g. 1.8 V)  
VCC_FLSH (e.g. 1.8 V)  
PARKZ  
(b)  
(c)  
(d)  
PLL_REFCLK  
HOST_IRQ  
RESETZ  
(e)  
I2C (activity)  
t1  
t2  
t3  
t0  
t0:  
t1:  
SYSPWR applied to the PMIC. All other voltage rails are derived from SYSPWR.  
All supplies reach 95% of their specified nominal value. Note HOST_IRQ may go high sooner if it is pulled-up to a different  
external supply.  
t2:  
Point where RESETZ is deasserted (goes high). This indicates the beginning of the controller auto-initialization routine.  
HOST_IRQ goes low to indicate initialization is complete.  
t3:  
(a):  
(b):  
(c):  
VDDLP12 must be powered on after VDD if it is supplied from a separate source.  
PLL_REFCLK is allowed to be active before power is applied.  
PLL_REFCLK must be stable within 5 ms of all power being applied. For external oscillator applications this is oscillator  
dependent, and for crystal applications this is crystal and controller oscillator cell dependent.  
(d):  
(e):  
PARKZ must be high before RESETZ releases to support auto-initialization. RESETZ must also be held low for at least 5 ms  
after the power supplies are in specification.  
I2C activity cannot start until HOST_IRQ goes low to indicate auto-initialization completes.  
9-1. System Power-Up Waveforms (With DLPA3000)  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
Signals  
from PMIC (DLPA3000)  
from other source  
Normal  
Park  
System State  
Regular operation  
Power supply shutdown  
(b)  
SYSPWR  
(c)  
PROJ_ON (GPIO_8)  
VDD (1.1 V)  
VDD_PLLM/D (1.1 V)  
VDDLP12  
(if not tied to VDD)  
VCC18 (1.8 V)  
VCC_INTF (e.g. 1.8 V)  
VCC_FLSH (e.g. 1.8 V)  
PARKZ  
PLL_REFCLK  
HOST_IRQ  
RESETZ  
(a)  
I2C (activity)  
t1  
t2  
t3  
t4  
t5  
t1:  
t2:  
t3:  
t4:  
t5:  
(a):  
(b):  
PROJ_ON goes low to begin the power down sequence.  
The controller finishes parking the DMD.  
RESETZ is asserted which causes HOST_IRQ to be pulled high.  
All controller power supplies are turned off.  
SYSPWR is removed now that all other supplies are turned off.  
I2C activity must stop before PROJ_ON is deasserted (goes low).  
The DMD will be parked within 20 ms of PROJ_ON being deasserted (going low). VDD, VDD_PLLM/D, VCC18, VCC_INITF, and  
VCC_FLSH power supplies and the PLL_REFCLK must be held within specification for a minimum of 20 ms after PROJ_ON is  
deasserted (goes low). However, 20 ms does not satisfy the typical shutdown timing of the entire chipset. It is therefore  
recommended to follow note (c).  
(c):  
It is recommended that SYSPWR not be turned off for 50 ms after PROJ_ON is deasserted (goes low). This time allows the  
DMD to be parked, the controller to turn off, and the PMIC supplies to shut down.  
9-2. Normal Park Power-Down Waveforms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
Signals  
from PMIC (DLPA3000)  
from other source  
Fast  
Park  
(a)  
System State  
Regular operation  
Power supplies collapse  
SYSPWR  
PROJ_ON (GPIO_8)  
VDD (1.1 V)  
VDD_PLLM/D (1.1 V)  
VDDLP12  
(if not tied to VDD)  
VCC18 (1.8 V)  
VCC_INTF (e.g. 1.8 V)  
VCC_FLSH (e.g. 1.8 V)  
(b)  
PARKZ  
PLL_REFCLK  
HOST_IRQ  
RESETZ  
I2C (activity)  
t1  
t3  
t4  
t2  
t1:  
A fault is detected (in this example the PMIC detects a UVLO condition) and PARKZ is asserted (goes low) to tell the controller to  
initiate a fast park of the DMD.  
t2:  
t3:  
t4:  
(a):  
The controller finishes the fast park procedure.  
RESETZ is asserted which puts the controller in a reset state which causes HOST_IRQ to be pulled high.  
Eventually all power supplies that were derived from SYSPWR collapse.  
VDD, VDD_PLLM/D, VCC18, VCC_INITF, and VCC_FLSH power supplies and the PLL_REFCLK must be held within  
specification for a minimum of 32 µs after PARKZ is asserted (goes low).  
(b):  
VCC18 must remain in specification long enough to satisfy DMD power sequencing requirements defined in the DMD datasheet.  
Also see the DLPAxxxx datasheets for more information.  
9-3. Fast Park Power-Down Waveforms  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
9.3 Power-Up Initialization Sequence  
An external power monitor is required to hold the DLPC34xx controller in system reset during the power-up  
sequence by driving RESETZ to a logic-low state. It shall continue to drive RESETZ low until all controller  
voltages reach the minimum specified voltage levels, PARKZ goes high, and the input clocks are stable. The  
external power monitoring is automatically done by the DLPAxxxx PMIC.  
No signals output by the DLPC34xx controller will be in their active state while RESETZ is asserted. The  
following signals are tri-stated while RESETZ is asserted:  
SPI0_CLK  
SPI0_DOUT  
SPI0_CSZ0  
SPI0_CSZ1  
GPIO [19:00]  
Add external pullup (or pulldown) resistors to all tri-stated output signals (including bidirectional signals to be  
configured as outputs) to avoid floating controller outputs during reset if they are connected to devices on the  
PCB that can malfunction. For SPI, at a minimum, include a pullup to any chip selects connected to devices.  
Unused bidirectional signals can be configured as outputs in order to avoid floating controller inputs after  
RESETZ is set high.  
The following signals are forced to a logic low state while RESETZ is asserted and the corresponding I/O power  
is applied:  
LED_SEL_0  
LED_SEL_1  
DMD_DEN_ARSTZ  
After power is stable and the PLL_REFCLK_I clock input to the DLPC34xx controller is stable, then RESETZ  
should be deactivated (set to a logic high). The DLPC34xx controller then performs a power-up initialization  
routine that first locks its PLL followed by loading self configuration data from the external flash. Upon release of  
RESETZ, all DLPC34xx I/Os will become active. Immediately following the release of RESETZ, the HOST_IRQ  
signal will be driven high to indicate that the auto initialization routine is in progress. However, since a pullup  
resistor is connected to signal HOST_IRQ, this signal will have already gone high before the controller actively  
drives it high. Upon completion of the auto-initialization routine, the DLPC34xx controller will drive HOST_IRQ  
low to indicate the initialization done state of the controller has been reached.  
To ensure reliable operation, during the power-up initialization sequence, GPIO_08 (PROJ_ON) must not be  
deasserted. In other words, once the startup routine has begun (by asserting PROJ_ON), the startup routine  
must complete (indicated by HOST_IRQ going low) before the controller can be commanded off (by deasserting  
PROJ_ON).  
Note  
No I2C or DSI (if applicable) activity is permitted until HOST_IRQ goes low.  
9.4 DMD Fast Park Control (PARKZ)  
PARKZ is an input early warning signal that must alert the controller at least 32 µs before DC supply voltages  
drop below specifications. Typically, the PARKZ signal is provided by the DLPAxxxx interrupt output signal.  
PARKZ must be deasserted (set high) prior to releasing RESETZ (that is, prior to the low-to-high transition on  
the RESETZ input) for normal operation. When PARKZ is asserted (set low) the controller performs a Fast Park  
operation on the DMD which assists in maintaining the lifetime of the DMD. The reference clock must continue  
running and RESETZ must remain deactivated for at least 32 µs after PARKZ has been asserted (set low) to  
allow the park operation to complete.  
Fast Park operation is only intended for use when loss of power is imminent and beyond the control of the host  
processor (for example, when the external power source has been disconnected or the battery has dropped  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: DLPC3478  
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
below a minimum level). The longest lifetime of the DMD may not be achieved with Fast Park operation. The  
longest lifetime is achieved with a Normal Park operation (initiated through GPIO_08). Hence, PARKZ is typically  
only used instead of a Normal Park request if there is not enough time for a Normal Park. A Normal Park  
operation takes much longer than 32 µs to park the mirrors. During a Normal Park operation, the DLPAxxxx  
keeps on all power supplies, and keeps RESETZ high, until the longer mirror parking has completed.  
Additionally, the DLPAxxxx may hold the supplies on for a period of time after the parking has been completed.  
View the relevant DLPAxxxx datasheet for more information. The longer mirror parking time ensures the longest  
DMD lifetime and reliability. The DMD Parking Switching Characteristics section specifies the park timings.  
9.5 Hot Plug I/O Usage  
The DLPC34xx controller provides fail-safe I/O on all host interface signals (signals powered by VCC_INTF).  
This allows these inputs to externally be driven even when no I/O power is applied. Under this condition, the  
controller does not load the input signal nor draw excessive current that could degrade controller reliability. For  
example, the I2C bus from the host to other components is not affected by powering off VCC_INTF to the  
DLPC34xx controller. The allows additional devices on the I2C bus to be utilized even if the controller is not  
powered on. TI recommends weak pullup or pulldown resistors to avoid floating inputs for signals that feed back  
to the host.  
If the I/O supply (VCC_INTF) powers off, but the core supply (VDD) remains on, then the corresponding input  
buffer may experience added leakage current; however, the added leakage current does not damage the  
DLPC34xx controller.  
However, if VCC_INTF is powered and VDD is not powered, the controller may drives the IIC0_xx pins low which  
prevents communication on this I2C bus. Do not power up the VCC_INTF pin before powering up the VDD pin  
for any system that has additional secondary devices on this bus.  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
10 Layout  
10.1 Layout Guidelines  
For a summary of the PCB design requirements for the DLPC34xx controller see PCB Design Requirements for  
TI DLP Pico TRP Digital Micromirror Devices. Some applications (such as high frame rate video) may require the  
use of 1-oz (or greater) copper planes to manage the controller package heat.  
10.1.1 PLL Power Layout  
Follow these recommended guidelines to achieve acceptable controller performance for the internal PLL. The  
DLPC34xx controller contains two internal PLLs which have dedicated analog supplies (VDD_PLLM,  
VSS_PLLM, VDD_PLLD, and VSS_PLLD). At a minimum, isolate the VDD_PLLx power and VSS_PLLx ground  
pins using a simple passive filter consisting of two series ferrite beads and two shunt capacitors (to widen the  
spectrum of noise absorption). Its recommended that one capacitor be 0.1 µF and one be 0.01 µF. Place all  
four components as close to the controller as possible. Its especially important to keep the leads of the high  
frequency capacitors as short as possible. Connect both capacitors from VDD_PLLM to VSS_PLLM and  
VDD_PLLD to VSS_PLLD on the controller side of the ferrite beads.  
Select ferrite beads with these characteristics:  
DC resistance less than 0.40 Ω  
Impedance at 10 MHz equal to or greater than 180 Ω  
Impedance at 100 MHz equal to or greater than 600 Ω  
The PCB layout is critical to PLL performance. It is vital that the quiet ground and power are treated like analog  
signals. Therefore, VDD_PLLM and VDD_PLLD must be a single trace from the DLPC34xx controller to both  
capacitors and then through the series ferrites to the power source. Make the power and ground traces as short  
as possible, parallel to each other, and as close as possible to each other.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: DLPC3478  
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
signal via  
via to common analog digital board power plane  
via to common analog digital board ground plane  
PCB pad  
Controller pad  
1
2
3
4
5
A
Signal  
Signal  
VSS  
Signal  
F
VSS_  
PLLM  
G
Signal  
VSS  
VSS  
Signal  
Local  
decoupling  
for the PLL  
digital  
GND  
FB  
FB  
supply  
PLL_  
REF  
CLK_I  
VDD_  
PLLM  
VSS_  
PLLD  
H
1.1-V  
Power  
PLL_  
REF  
CLK_O  
Crystal  
Circuit  
VDD_  
PLLD  
J
VSS  
VDD  
10-1. PLL Filter Layout  
10.1.2 Reference Clock Layout  
The DLPC34xx controller requires an external reference clock to feed the internal PLL. Use either a crystal or  
oscillator to supply this reference. The DLPC34xx reference clock must not exceed a frequency variation of ±200  
ppm (including aging, temperature, and trim component variation).  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: DLPC3478  
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
10-2 shows the required discrete components when using a crystal.  
PLL_REFCLK_I  
PLL_REFCLK_O  
RFB  
RS  
Crystal  
CL1  
CL2  
CL = Crystal load capacitance (farads)  
CL1 = 2 × (CL Cstray_pll_refclk_i)  
CL2 = 2 × (CL Cstray_pll_refclk_o)  
where:  
Cstray_pll_refclk_i = Sum of package and PCB stray capacitance at the crystal pin associated with the controller pin pll_refclk_i.  
Cstray_pll_refclk_o = Sum of package and PCB stray capacitance at the crystal pin associated with the controller pin pll_refclk_o.  
10-2. Required Discrete Components  
10.1.2.1 Recommended Crystal Oscillator Configuration  
10-1. Crystal Port Characteristics  
PARAMETER  
NOM  
UNIT  
pF  
PLL_REFCLK_I TO GND capacitance  
PLL_REFCLK_O TO GND capacitance  
1.5  
1.5  
pF  
10-2. Recommended Crystal Configuration  
PARAMETER (1) (2)  
RECOMMENDED  
UNIT  
Crystal circuit configuration  
Crystal type  
Parallel resonant  
Fundamental (first harmonic)  
24  
Crystal nominal frequency  
MHz  
PPM  
ms  
Crystal frequency tolerance (including accuracy, temperature, aging and trim sensitivity) ±200  
Maximum startup time  
1.0  
Crystal equivalent series resistance (ESR)  
Crystal load  
120 (max)  
Ω
6
pF  
RS drive resistor (nominal)  
RFB feedback resistor (nominal)  
CL1 external crystal load capacitor  
CL2 external crystal load capacitor  
100  
1
Ω
MΩ  
pF  
See equation in 10-2 notes  
See equation in 10-2 notes  
pF  
A ground isolation ring around the  
crystal is recommended  
PCB layout  
(1) Temperature range of 30°C to 85°C.  
(2) The crystal bias is determined by the controllers VCC_INTF voltage rail, which is variable (not the VCC18 rail).  
If an external oscillator is used, then the oscillator output must drive the PLL_REFCLK_I pin on the DLPC34xx  
controller, and the PLL_REFCLK_O pin must be left unconnected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: DLPC3478  
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
10-3. Recommended Crystal Parts  
TEMPERATURE  
AND AGING  
(ppm)  
LOAD  
CAPACITANCE  
(pF)  
PACKAGE  
DIMENSIONS  
(mm)  
MAXIMUM  
MANUFACTURER  
SPEED  
(MHz)  
PART NUMBER  
(1) (2)  
ESR ()  
KDS  
DSX211G-24.000M-8pF-50-50  
XRCGB24M000F0L11R0  
24  
24  
±50  
120  
120  
8
6
2.0 × 1.6  
2.0 × 1.6  
Murata  
±100  
NX2016SA 24M  
NDK  
24  
±145  
120  
6
2.0 × 1.6  
EXS00A-CS05733  
(1) The crystal devices in this table have been validated to work with the DLPC34xx controller. Other devices may also be compatible but  
have not necessarily been validated by TI.  
(2) Operating temperature range: 30°C to 85°C for all crystals.  
10.1.3 Unused Pins  
To avoid potentially damaging current caused by floating CMOS input-only pins, TI recommends tying unused  
controller input pins through a pullup resistor to its associated power supply or a pulldown resistor to ground. For  
controller inputs with internal pullup or pulldown resistors, it is unnecessary to add an external pullup or pulldown  
unless specifically recommended. Note that internal pullup and pulldown resistors are weak and should not be  
expected to drive an external device. The DLPC34xx controller implements very few internal resistors and are  
listed in the tables found in the Pin Configuration and Functions section. When external pullup or pulldown  
resistors are needed for pins that have weak pullup or pulldown resistors, choose a maximum resistance of 8  
kΩ.  
Never tie unused output-only pins directly to power or ground. Leave them open.  
When possible, TI recommends that unused bidirectional I/O pins are configured to their output state such that  
the pin can remain open. If this control is not available and the pins may become an input, then include an  
appropriate pullup (or pulldown) resistor.  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
10.1.4 DMD Control and Sub-LVDS Signals  
10-4. Maximum Pin-to-Pin PCB Interconnect Recommendations  
SIGNAL INTERCONNECT TOPOLOGY  
DMD BUS SIGNAL(1) (2)  
UNIT  
SINGLE-BOARD SIGNAL  
MULTI-BOARD SIGNAL  
ROUTING LENGTH  
ROUTING LENGTH  
DMD_HS_CLK_P  
6.0  
in  
See (3)  
DMD_HS_CLK_N  
(152.4)  
(mm)  
DMD_HS_WDATA_A_P  
DMD_HS_WDATA_A_N  
DMD_HS_WDATA_B_P  
DMD_HS_WDATA_B_N  
DMD_HS_WDATA_C_P  
DMD_HS_WDATA_C_N  
DMD_HS_WDATA_D_P  
DMD_HS_WDATA_D_N  
6.0  
in  
See (3)  
(152.4)  
(mm)  
DMD_HS_WDATA_E_P  
DMD_HS_WDATA_E_N  
DMD_HS_WDATA_F_P  
DMD_HS_WDATA_F_N  
DMD_HS_WDATA_G_P  
DMD_HS_WDATA_G_N  
DMD_HS_WDATA_H_P  
DMD_HS_WDATA_H_N  
6.5  
in  
DMD_LS_CLK  
See (3)  
See (3)  
See (3)  
See (3)  
(165.1)  
(mm)  
6.5  
in  
DMD_LS_WDATA  
DMD_LS_RDATA  
(165.1)  
(mm)  
6.5  
in  
(165.1)  
(mm)  
7.0  
in  
DMD_DEN_ARSTZ  
(177.8)  
(mm)  
(1) Maximum signal routing length includes escape routing.  
(2) Multi-board DMD routing length is more restricted due to the impact of the connector.  
(3) Due to PCB variations, these recommendations cannot be defined. Any board design should SPICE simulate with the controller IBIS  
model (found under the Tools & Software tab of the controller web page) to ensure routing lengths do not violate signal requirements.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: DLPC3478  
 
 
 
DLPC3478  
www.ti.com.cn  
UNIT  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
10-5. High Speed PCB Signal Routing Matching Requirements  
SIGNAL GROUP LENGTH MATCHING(1) (2) (3)  
INTERFACE  
SIGNAL GROUP  
REFERENCE SIGNAL  
MAX MISMATCH(4)  
DMD_HS_WDATA_A_P  
DMD_HS_WDATA_A_N  
DMD_HS_WDATA_B_P  
DMD_HS_WDATA_B_N  
DMD_HS_WDATA_C_P  
DMD_HS_WDATA_C_N  
DMD_HS_WDATA_D_P  
DMD_HS_WDATA_D_N  
DMD_HS_CLK_P  
DMD_HS_CLK_N  
±1.0  
in  
DMD(5)  
(±25.4)  
(mm)  
DMD_HS_WDATA_E_P  
DMD_HS_WDATA_E_N  
DMD_HS_WDATA_F_P  
DMD_HS_WDATA_F_N  
DMD_HS_WDATA_G_P  
DMD_HS_WDATA_G_N  
DMD_HS_WDATA_H_P  
DMD_HS_WDATA_H_N  
±0.025  
in  
DMD  
DMD  
DMD  
DMD  
DMD_HS_WDATA_x_P  
DMD_HS_CLK_P  
DMD_HS_WDATA_x_N  
DMD_HS_CLK_N  
DMD_LS_CLK  
N/A  
(±0.635)  
(mm)  
±0.025  
in  
(±0.635)  
(mm)  
DMD_LS_WDATA  
DMD_LS_RDATA  
±0.2  
in  
(±5.08)  
(mm)  
in  
DMD_DEN_ARSTZ  
N/A  
(mm)  
(1) The length matching values apply to PCB routing lengths only. Internal package routing mismatch associated with the DLPC34xx  
controller or the DMD require no additional consideration.  
(2) Training is applied to DMD HS data lines. This is why the defined matching requirements are slightly relaxed compared to the LS data  
lines.  
(3) DMD LS signals are single ended.  
(4) Mismatch variance for a signal group is always with respect to the reference signal.  
(5) DMD HS data lines are differential, thus these specifications are pair-to-pair.  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
 
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
10-6. Signal Requirements  
PARAMETER  
REFERENCE  
REQUIREMENT  
DMD_LS_WDATA  
DMD_LS_CLK  
Required  
Required  
DMD_DEN_ARSTZ  
DMD_LS_RDATA  
DMD_HS_WDATA_x_y  
DMD_HS_CLK_y  
DMD_LS_WDATA  
DMD_LS_CLK  
Acceptable  
Source series termination  
Required  
Not acceptable  
Not acceptable  
Not acceptable  
Not acceptable  
Not acceptable  
Not acceptable  
Not acceptable  
Not acceptable  
68 Ω±10%  
68 Ω±10%  
68 Ω±10%  
68 Ω±10%  
100 Ω±10%  
100 Ω±10%  
DMD_DEN_ARSTZ  
DMD_LS_RDATA  
DMD_HS_WDATA_x_y  
DMD_HS_CLK_y  
DMD_LS_WDATA  
DMD_LS_CLK  
Endpoint termination  
DMD_DEN_ARSTZ  
DMD_LS_RDATA  
DMD_HS_WDATA_x_y  
DMD_HS_CLK_y  
DMD_LS_WDATA  
DMD_LS_CLK  
PCB impedance  
SDR (single data rate) referenced to DMD_LS_DCLK  
SDR referenced to DMD_LS_DCLK  
DMD_DEN_ARSTZ  
DMD_LS_RDATA  
DMD_HS_WDATA_x_y  
DMD_HS_CLK_y  
SDR  
Signal type  
SDR referenced to DMD_LS_DLCK  
sub-LVDS  
sub-LVDS  
10.1.5 Layer Changes  
Single-ended signals: Minimize the number of layer changes.  
Differential signals: Individual differential pairs can be routed on different layers. Ideally ensure that the  
signals of a given pair do not change layers.  
10.1.6 Stubs  
Avoid using stubs.  
10.1.7 Terminations  
DMD_HS differential signals require no external termination resistors.  
Make sure the DMD_LS_CLK and DMD_LS_WDATA signal paths include a 43-Ωseries termination resistor  
located as close as possible to the corresponding controller pins.  
Make sure the DMD_LS_RDATA signal path includes a 43-Ωseries termination resistor located as close as  
possible to the corresponding DMD pin.  
The DMD_DEN_ARSTZ pin requires no series resistor.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: DLPC3478  
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
10.1.8 Routing Vias  
The number of vias on DMD_HS signals must be minimized and ideally not exceed two.  
Any and all vias on DMD_HS signals must be located as close to the controller as possible.  
The number of vias on the DMD_LS_CLK and DMD_LS_WDATA signals must be minimized and ideally not  
exceed two.  
Any and all vias on the DMD_LS_CLK and DMD_LS_WDATA signals must be located as close to the  
controller as possible.  
10.1.9 Thermal Considerations  
The underlying thermal limitation for the DLPC34xx controller is that the maximum operating junction  
temperature (TJ) not be exceeded (this is defined in the Recommended Operating Conditions section).  
Some factors that influence TJ are as follows:  
operating ambient temperature  
airflow  
PCB design (including the component layout density and the amount of copper used)  
power dissipation of the DLPC34xx controller  
power dissipation of surrounding components  
The controller package is designed to primarily extract heat through the power and ground planes of the PCB.  
Thus, copper content and airflow over the PCB are important factors.  
The recommends maximum operating ambient temperature (TA) is provided primarily as a design target and is  
based on maximum DLPC34xx controller power dissipation and RθJA at 0 m/s of forced airflow, where RθJA is  
the thermal resistance of the package as measured using a JEDEC defined standard test PCB with two, 1-oz  
power planes. This JEDEC test PCB is not necessarily representative of the DLPC34xx controller PCB, so the  
reported thermal resistance may not be accurate in the actual product application. Although the actual thermal  
resistance may be different, it is the best information available during the design phase to estimate thermal  
performance. TI highly recommended that thermal performance be measured and validated after the PCB is  
designed and the application is built.  
To evaluate the thermal performance, measure the top center case temperature under the worse case product  
scenario (maximum power dissipation, maximum voltage, maximum ambient temperature), and validate the  
controller does not exceed the maximum recommended case temperature (TC). This specification is based on  
the measured φJT for the DLPC34xx controller package and provides a relatively accurate correlation to junction  
temperature.  
Take care when measuring this case temperature to prevent accidental cooling of the package surface. TI  
recommends a small (approximately 40 gauge) thermocouple. Place the bead and thermocouple wire so that  
they contact the top of the package. Cover the bead and thermocouple wire with a minimal amount of thermally  
conductive epoxy. Route the wires closely along the package and the board surface to avoid cooling the bead  
through the wires.  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: DLPC3478  
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
10.2 Layout Example  
10-3. Layout Recommendation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.1.2 Device Nomenclature  
11.1.2.1 Device Markings  
1
2
DLPC3478  
SC  
DLPC347xRXXX  
XXXXXXXXXX-TT  
LLLLLL.ZZZ  
3
4
5
PH YYWW  
Terminal A1 corner identifier  
Marking Definitions:  
Line 1:  
DLP® Device Name: DLPC3478 device name ID.  
SC: Solder ball composition  
e1: Indicates lead-free solder balls consisting of SnAgCu  
G8: Indicates lead-free solder balls consisting of tin-silver-copper (SnAgCu) with silver content  
less than or equal to 1.5% and that the mold compound meets TI's definition of green.  
Line 2:  
TI Part Number  
DLP® Device Name: DLPC347x = x indicates 8 device name ID.  
R corresponds to the TI device revision letter for example A, B or C  
XXX corresponds to the device package designator.  
Line 3:  
Line 4:  
XXXXXXXXXX-TT Manufacturer part number  
LLLLLL.ZZZ Foundry lot code for semiconductor wafers and lead-free solder ball marking  
LLLLLL: Fab lot number  
ZZZ: Lot split number  
Line 5:  
PH YYWW: Package assembly information  
PH: Manufacturing site  
YYWW: Date code (YY = Year :: WW = Week)  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
Note  
1. Engineering prototype samples are marked with an X suffix appended to the TI part number. For  
example, 2512737-0001X.  
2. See , for DLPC347x resolutions on the DMD supported per part number.  
11.1.3 Video Timing Parameter Definitions  
See 11-1 for a visual description.  
Active Lines Per Frame Defines the number of lines in a frame containing displayable data. ALPF is a  
(ALPF)  
Active Pixels Per Line Defines the number of pixel clocks in a line containing displayable data. APPL is a  
(APPL) subset of the TPPL.  
Horizontal Back Porch Defines the number of blank pixel clocks after the active edge of horizontal sync but  
(HBP) Blanking before the first active pixel.  
Horizontal Front Porch Defines the number of blank pixel clocks after the last active pixel but before  
(HFP) Blanking horizontal sync.  
Horizontal Sync (HS or Timing reference point that defines the start of each horizontal interval (line). The  
subset of the TLPF.  
Hsync)  
active edge of the HS signal defines the absolute reference point. The active edge  
(either rising or falling edge as defined by the source) is the reference from which all  
horizontal blanking parameters are measured.  
Total Lines Per Frame Total number of active and inactive lines per frame; defines the vertical period (or  
(TLPF) frame time).  
Total Pixel Per Line Total number of active and inactive pixel clocks per line; defines the horizontal line  
(TPPL) period in pixel clocks.  
Vertical Sync (VS or Timing reference point that defines the start of the vertical interval (frame). The  
Vsync)  
absolute reference point is defined by the active edge of the VS signal. The active  
edge (either rising or falling edge as defined by the source) is the reference from  
which all vertical blanking parameters are measured.  
Vertical  
Back  
Porch Defines the number of blank lines after the active edge of vertical sync but before  
(VBP) Blanking  
the first active line.  
Vertical Front Porch Defines the number of blank lines after the last active line but before the active edge  
(VFP) Blanking  
of vertical sync.  
TPPL  
Vertical Back Porch (VBP)  
APPL  
Horizontal  
Back  
Porch  
Horizontal  
Front  
Porch  
TLPF  
ALPF  
(HBP)  
(HFP)  
Vertical Front Porch (VFP)  
11-1. Parameter Definitions  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: DLPC3478  
 
DLPC3478  
www.ti.com.cn  
ZHCSHY3C APRIL 2018 REVISED DECEMBER 2020  
11.2 Documentation Support  
11.2.1 Related Documentation  
The following table lists quick access links for associated parts of the DLP chipset.  
11-1. Chipset Documentation  
TECHNICAL  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
TOOLS & SOFTWARE  
DOCUMENTS  
Click here  
Click here  
Click here  
Click here  
Click here  
DLPA2000  
DLPA2005  
DLPA3000  
DLPA3005  
DLP3010LC  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
IntelliBright, , Linkare trademarks of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
®, IntelliBright®, and DLP® are registered trademarks of Texas Instruments.  
Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: DLPC3478  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Feb-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLPC3478CZEZ  
ACTIVE  
NFBGA  
ZEZ  
201  
119  
RoHS & Green  
SNAGCU  
Level-3-260C-168Hrs  
-30 to 85  
(DLPC3478 G8, DLP  
C3478 G8)  
DLPC3478CZEZ  
ECP292548C-8G  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Feb-2022  
Addendum-Page 2  
PACKAGE OUTLINE  
ZEZ0201A  
NFBGA - 1 mm max height  
SCALE 1.000  
PLASTIC BALL GRID ARRAY  
13.1  
12.9  
A
B
BALL A1 CORNER  
13.1  
12.9  
1 MAX  
C
SEATING PLANE  
0.1 C  
0.31  
0.21  
BALL TYP  
TYP  
11.2 TYP  
SYMM  
(0.9) TYP  
R
P
N
M
L
K
J
(0.9) TYP  
SYMM  
11.2  
TYP  
H
G
F
0.4  
201X  
E
D
C
0.3  
0.15  
0.08  
C A  
C
B
B
A
1
2
5 6  
3 7 9 10 11 12 13 14 15  
4
8
0.8 TYP  
0.8 TYP  
BALL A1 CORNER  
4221521/A 03/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZEZ0201A  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
201X ( 0.4)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
A
B
C
(0.8) TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
SYMM  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.4)  
METAL  
(
0.4)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221521/A 03/2015  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZEZ0201A  
NFBGA - 1 mm max height  
PLASTIC BALL GRID ARRAY  
(
0.4) TYP  
(0.8) TYP  
1
2
3
4
5
6
8
9
13 14 15  
7
10 11 12  
A
B
C
(0.8) TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE:8X  
4221521/A 03/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY