DLPC6401ZFF [TI]

DLP® display controller for high-brightness portable displays | ZFF | 419 | 0 to 55;
DLPC6401ZFF
型号: DLPC6401ZFF
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DLP® display controller for high-brightness portable displays | ZFF | 419 | 0 to 55

外围集成电路
文件: 总50页 (文件大小:1284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
DLPC6401 DLP® 数据处理器  
1 特性  
集成展频计时  
集成 64Mb 帧存储器,无需使用外部高速存储器  
1
提供一个 30 位输入像素接口:  
外部存储器支持:针对微处理器和 PWM 序列的并  
行闪存  
YUVYCrCb RGB 数据格式  
每个色彩 89 10 位  
系统控制:  
像素时钟支持高达 150MHz  
DMD 电源和复位驱动器控制  
DMD 水平和垂直显示图像抖动  
提供一个单通道、基于低压差分信令 (LVDS) 且  
兼容平板显示 (FPD)-Link 的输入接口:  
支持边界扫描测试的 JTAG  
支持有效像素时钟速率高达 90MHz 的输入源  
419 引脚塑料球状引脚栅格阵列封装  
支持四种经解调的像素映射模式,适用于 8、  
910 YUVYCrCb RGB 格式的输入  
2 应用  
支持 45Hz 120Hz 的帧速率  
完全支持 Diamond 0.45 WXGA  
电池供电的移动式附件高清 (HD) 投影仪  
电池供电的智能 HD 附件  
无屏幕显示 交互式显示器  
移动电影院  
高速、双倍数据速率 (DDR) 数字微镜器件 (DMD)  
接口  
149.33MHz ARM926™微处理器  
游戏显示  
微处理器外设:  
可编程脉宽调制 (PWM) 和捕捉定时器  
两个 I2C 端口  
3 说明  
DLPC6401 数字控制器属于 DLP4500 (0.45 WXGA)  
芯片组,用于支持 DLP4500 数字微镜器件 (DMD) 的  
可靠运行。DLPC6401 控制器在系统电子设备与 DMD  
之间提供一个方便的多功能接口,从而实现了小外形尺  
寸的高分辨率 HD 显示屏。  
两个通用异步收发器 (UART) 端口(只用于调  
试)  
32KB 内部随机存取存储器 (RAM)  
专用发光二级管 (LED) PWM 发生器  
图像处理:  
针对标准、宽和黑边缘的自动锁  
器件信息 (1)  
1D 梯形失真校正  
部件号  
DLPC6401  
封装  
阵列尺寸(像素)  
可编程后期色彩校正 (Degamma)  
BGA (419)  
23.00mm x 23.00mm  
屏幕显示 (OSD)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
初始屏幕显示支持  
集成型时钟生成电路  
运行在单个 32MHz 晶振上  
典型应用图  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: DLPS031  
 
 
 
 
 
 
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
目录  
Switching Characteristics......................................... 18  
Detailed Description ............................................ 22  
7.1 Overview ................................................................. 22  
7.2 Functional Block Diagram ....................................... 22  
7.3 Feature Description................................................. 23  
7.4 Device Functional Modes........................................ 28  
Application and Implementation ........................ 29  
8.1 Application Information............................................ 29  
8.2 Typical Application ................................................. 29  
Power Supply Recommendations...................... 32  
9.1 System Power Regulation ...................................... 32  
9.2 System Power-Up Sequence.................................. 32  
9.3 Power-On Sense (POSENSE) Support .................. 33  
9.4 System Environment and Defaults.......................... 33  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications....................................................... 11  
6.1 Absolute Maximum Ratings .................................... 11  
6.2 ESD Ratings............................................................ 11  
6.3 Recommended Operating Conditions..................... 12  
6.4 Thermal Information................................................ 12  
6.5 Electrical Characteristics......................................... 13  
6.6 Electrical Characteristics (Normal Mode)................ 14  
6.7 System Oscillators Timing Requirements............... 14  
6.8 Test and Reset Timing Requirements .................... 15  
7
8
9
10 Layout................................................................... 35  
10.1 Layout Guidelines ................................................. 35  
10.2 Layout Example .................................................... 41  
10.3 Thermal Considerations........................................ 42  
11 器件和文档支持 ..................................................... 44  
11.1 器件支持................................................................ 44  
11.2 社区资源................................................................ 46  
11.3 ....................................................................... 46  
11.4 静电放电警告......................................................... 46  
11.5 Glossary................................................................ 46  
12 机械、封装和可订购信息....................................... 46  
6.9 JTAG Interface: I/O Boundary Scan Application  
Timing Requirements............................................... 15  
6.10 Port 1 Input Pixel Interface Timing Requirements 16  
6.11 Port 2 Input Pixel Interface (FPD-Link Compatible  
LVDS Input) Timing Requirements .......................... 16  
6.12 Synchronous Serial Port (SSP) Interface Timing  
Requirements........................................................... 17  
6.13 Programmable Output Clocks Switching  
Characteristics ......................................................... 17  
6.14 Synchronous Serial Port (SSP) Interface Switching  
Characteristics ......................................................... 18  
6.15 JTAG Interface: I/O Boundary Scan Application  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (June 2015) to Revision C  
Page  
已更新器件标记图。 ............................................................................................................................................................. 45  
Changes from Revision A (January 2014) to Revision B  
Page  
已添加 ESD 额定值表,特性 描述部分,器件功能模式应用和实施部分,电源相关建议部分,布局部分,器件和文  
档支持部分以及机械、封装和可订购信息部分 ....................................................................................................................... 1  
Removed V(ESD) values from Electrical Characteristics table .............................................................................................. 13  
Changes from Original (December 2013) to Revision A  
Page  
已删除产品预览................................................................................................................................................................... 1  
2
Copyright © 2013–2015, Texas Instruments Incorporated  
 
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
5 Pin Configuration and Functions  
ZFF PACKAGE  
419-PIN BGA  
TOP VIEW  
Copyright © 2013–2015, Texas Instruments Incorporated  
3
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
Pin Functions  
(2)  
PIN(1)  
NAME  
CONTROL  
I/O  
INTERNAL TERMINATION  
CLK SYSTEM  
DESCRIPTION  
NO.  
POWER  
TYPE  
External reset output, LOW true. This output is  
asserted low immediately upon asserting power-up  
reset (POSENSE) low and remains low while  
POSENSE remains low. EXT_ARSTZ continues to  
be held low after the release of power-up reset (that  
is, POSENSE set high) until released by software.  
EXT_ARSTZ is also asserted low approximately 5  
µs after the detection of a PWRGOOD or any  
internally-generated reset. In all cases, it remains  
active for a minimum of 2 ms after the reset  
condition is released by software. Note, the ASIC  
contains a software register that can be used to  
independently drive this output.  
EXT_ARST  
H20  
VDD33  
O1  
Async  
Power Good is an active-high signal with hysteresis  
that is generated by an external power supply or  
voltage monitor. A high value indicates all power is  
within operating voltage specifications and the  
system is safe to exit its reset state. A transition from  
high to low should indicate that the controller or  
DMD supply voltage will drop below their rated  
minimum level within the next 0.5 ms (POSENSE  
must remain active high during this interval). This is  
an early warning of an imminent power loss  
condition. This warning is required to enhance long-  
term DMD reliability. A DMD park sequence,  
followed by a full controller reset, is performed by the  
DLPC6401 when PWRGOOD goes low for a  
minimum of 4 µs protecting the DMD. This minimum  
de-assertion time is used to protect the input from  
glitches. Following this, the DLPC6401 is held in its  
reset state as long as PWRGOOD is low.  
I4  
H
PWRGOOD  
H19  
VDDC  
Async  
PWRGOOD must be driven high for typical  
operation. The DLPC6401 device acknowledges  
PWRGOOD as active after it is driven high for a  
minimum of 625 ns. Uses hysteresis.  
Power-On Sense is an active-high input signal with  
hysteresis that is generated by an external voltage  
monitor circuit. POSENSE must be driven inactive  
(low) when any of the controller supply voltages are  
below minimum operating voltage specifications.  
POSENSE must be active (high) when all controller  
supply voltages remain above minimum  
I4  
H
POSENSE  
G21  
Async  
specifications.  
Power On or Power Off is an active-high signal that  
indicates the power of the system. Power On or  
Power Off is high when the system is in power-up  
state, and low when the system is in standby. Power  
On or Power Off can also be used to power on or off  
an external power supply.  
POWER_ON_OFF N21  
VDD33  
VDD33  
B2  
Async  
Async  
Prior to transferring part of code from parallel flash  
content to internal memory, the internal memory is  
initialized and a memory test is performed. The  
result of this test (pass or fail) is recorded in the  
system status. If memory test fails, the initialization  
process is halted. INIT_DONE is asserted twice to  
indicate an error situation. See Figure 12.  
INIT_DONE  
F19  
B2  
This signal is sampled during power-up. If the signal  
is low, the I2C addresses are 0x34 and 0x35. If the  
signal is low, the I2C are 0x3A and 0x3B.  
I2C_ADDR_SEL  
I2C1_SCL  
F21  
J3  
VDD33  
VDD33  
B2  
B2  
Async  
N/A  
Requires an external pullup to  
3.3 V. The minimum  
acceptable pullup value is  
1 kΩ.  
I2C clock. Bidirectional, open-drain signal. I2C slave  
clock input from the external processor. This bus  
supports 400 kHz.  
Requires an external pullup to  
3.3 V. The minimum  
acceptable pullup value is  
1 kΩ.  
I2C data. Bidirectional, open-drain signal. I2C slave  
to accept command or transfer data to and from the  
external processor. This bus supports 400 kHz.  
I2C1_SDA  
J4  
VDD33  
B2  
I2C1_SCL  
(1) For instructions on handling unused pins, see General Handling Guidelines for Unused CMOS-Type Pins.  
(2) I/O Type: I = Input, O = Output, B = Bidirectional, and H = Hysteresis. See Table 1 for subscript explanation.  
4
Copyright © 2013–2015, Texas Instruments Incorporated  
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
Pin Functions (continued)  
(2)  
PIN(1)  
I/O  
INTERNAL TERMINATION  
CLK SYSTEM  
DESCRIPTION  
NAME  
NO.  
POWER  
TYPE  
Requires an external pullup to  
3.3 V. The minimum  
acceptable pullup value is 1  
kΩ. This input is not  
I2C bus 0, clock; I2C master for on-board peripherals  
such as temperature sensor. This bus supports 400-  
kHz, fast-mode operation.  
I2C0_SCL  
I2C0_SDA  
M2  
VDD33  
VDD33  
B8  
N/A  
5-V tolerant.  
Requires an external pullup to  
3.3 V. The minimum  
acceptable pullup value is 1  
kΩ. This input is not  
I2C bus 0, data; I2C master for on-board peripherals  
such as temperature sensor. This bus supports 400-  
kHz, fast-mode operation.  
M3  
B8  
I2C0_SCL  
5-V tolerant.  
SYSTEM CLOCK  
MOSC  
System clock oscillator input (3.3-V LVCMOS). Note  
that the MOSC must be stable a maximum of 25 ms  
after POSENSE transitions from high to low.  
A14  
A15  
VDD33  
VDD33  
I10  
N/A  
N/A  
MOSCN  
O10  
MOSC crystal return  
PORT 1: PARALLEL VIDEO AND GRAPHICS INPUT(3)(4)(5)  
P1A_CLK  
P1B_CLK  
P1C_CLK  
W15  
AB17  
Y16  
VDD33  
VDD33  
VDD33  
I4  
I4  
I4  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
N/A  
N/A  
N/A  
Port 1 input data pixel write clock 'A'  
Port 1 input data pixel write clock 'B'  
Port 1 input data pixel write clock 'C'  
B1  
H
P1_VSYNC  
Y15  
VDD33  
Includes an internal pulldown  
P1A_CLK  
Port 1 vertical sync. Uses hysteresis  
B1  
H
P1_HSYNC  
P1_DATEN  
P1_FIELD  
AB16  
AA16  
W14  
VDD33  
VDD33  
VDD33  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
P1A_CLK  
P1A_CLK  
P1A_CLK  
Port 1 horizontal sync. Uses hysteresis  
Port 1 data enable  
I4  
I4  
Port 1 field sync. Required for interlaced sources  
only (and not progressive)  
P1_A_9  
P1_A_8  
P1_A_7  
P1_A_6  
P1_A_5  
P1_A_4  
P1_A_3  
P1_A_2  
P1_A_1  
P1_A_0  
P1_B_9  
P1_B_8  
P1_B_7  
P1_B_6  
P1_B_5  
P1_B_4  
P1_B_3  
P1_B_2  
P1_B_1  
P1_B_0  
P1_C_9  
P1_C_8  
AB20  
AA19  
Y18  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
Port 1 A channel input pixel data (bit weight 128)  
Port 1 A channel input pixel data (bit weight 64)  
Port 1 A channel input pixel data (bit weight 32)  
Port 1 A channel input pixel data (bit weight 16)  
Port 1 A channel input pixel data (bit weight 8)  
Port 1 A channel input pixel data (bit weight 4)  
Port 1 A channel input pixel data (bit weight 2)  
Port 1 A channel input pixel data (bit weight 1)  
Port 1 A channel input pixel data (bit weight 0.5)  
Port 1 A channel input pixel data (bit weight 0.25)  
Port 1 B channel input pixel data (bit weight 128)  
Port 1 B channel input pixel data (bit weight 64)  
Port 1 B channel input pixel data (bit weight 32)  
Port 1 B channel input pixel data (bit weight 16)  
Port 1 B channel input pixel data (bit weight 8)  
Port 1 B channel input pixel data (bit weight 4)  
Port 1 B channel input pixel data (bit weight 2)  
Port 1 B channel input pixel data (bit weight 1)  
Port 1 B channel input pixel data (bit weight 0.5)  
Port 1 B channel input pixel data (bit weight 0.25)  
Port 1 C channel input pixel data (bit weight 128)  
Port 1 C channel input pixel data (bit weight 64)  
W17  
AB19  
AA18  
Y17  
AB18  
W16  
AA17  
U21  
U20  
V22  
U19  
V21  
W22  
W21  
AA20  
Y19  
W18  
P21  
P22  
(3) Port 1 can be used to support multiple source options for a given product (that is, HDMI, BT656). To do so, the data bus from both  
source components must be connected to the same port 1 pins and control given to the DLPC6401 to tri-state the inactive source. Tying  
them together like this causes some signal degradation due to reflections on the tri-stated path.  
(4) The A, B, and C input data channels of port 1 can be internally swapped for optimum board layout.  
(5) Sources feeding less than the full 10-bits per color component channel should be MSB justified when connected to the DLPC6401 and  
LSBs tied off to 0. For example, an 8-bit per color input should be connected to bits 9:2 of the corresponding A, B, or C input channel.  
BT656 are 8 or 10 bits in width. If a BT656-type input is used, the data bits must be MSB justified as with the other types of input  
sources on either of the A, B, or C data input channels.  
Copyright © 2013–2015, Texas Instruments Incorporated  
5
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
Pin Functions (continued)  
(2)  
PIN(1)  
NAME  
P1_C_7  
I/O  
POWER  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
INTERNAL TERMINATION  
CLK SYSTEM  
DESCRIPTION  
NO.  
R19  
R20  
R21  
R22  
T21  
T20  
T19  
U22  
TYPE  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
I4  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
Includes an internal pulldown  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
P1A_CLK  
Port 1 C channel input pixel data (bit weight 32)  
Port 1 C channel input pixel data (bit weight 16)  
Port 1 C channel input pixel data (bit weight 8)  
Port 1 C channel input pixel data (bit weight 4)  
Port 1 C channel input pixel data (bit weight 2)  
Port 1 C channel input pixel data (bit weight 1)  
Port 1 C channel input pixel data (bit weight 0.5)  
Port 1 C channel input pixel data (bit weight 0.25)  
P1_C_6  
P1_C_5  
P1_C_4  
P1_C_3  
P1_C_2  
P1_C_1  
P1_C_0  
PORT 2: FPD-LINK COMPATIBLE VIDEO AND GRAPHICS INPUT(6)  
Includes weak internal  
pulldown  
Positive differential input signal for clock, FPD-Link  
receiver  
RCK_IN_P  
RCK_IN_N  
RA_IN_P  
RA_IN_N  
RB_IN_P  
RB_IN_N  
RC_IN_P  
RC_IN_N  
RD_IN_P  
RD_IN_N  
RE_IN_P  
RE_IN_N  
Y9  
VDD33_FPD  
VDD33_FPD  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
I5  
N/A  
Includes weak internal  
pulldown  
Negative differential input signal for clock, FPD-Link  
receiver  
W9  
N/A  
Includes weak internal  
pulldown  
Positive differential input signal for data channel A,  
FPD-Link receiver  
AB10 VDD33_FPD  
AA10 VDD33_FPD  
RCK_IN  
RCK_IN  
RCK_IN  
RCK_IN  
RCK_IN  
RCK_IN  
RCK_IN  
RCK_IN  
RCK_IN  
RCK_IN  
Includes weak internal  
pulldown  
Negative differential input signal for data channel A,  
FPD-Link receiver  
Includes weak internal  
pulldown  
Positive differential input signal for data channel B,  
FPD-Link receiver  
Y11  
VDD33_FPD  
Includes weak internal  
pulldown  
Negative differential input signal for data channel B,  
FPD-Link receiver  
W11 VDD33_FPD  
AB12 VDD33_FPD  
AA12 VDD33_FPD  
Includes weak internal  
pulldown  
Positive differential input signal for data channel C,  
FPD-Link receiver  
Includes weak internal  
pulldown  
Negative differential input signal for data channel C,  
FPD-Link receiver  
Includes weak internal  
pulldown  
Positive differential input signal for data channel D,  
FPD-Link receiver  
Y13  
VDD33_FPD  
Includes weak internal  
pulldown  
Negative differential input signal for data channel D,  
FPD-Link receiver  
W13 VDD33_FPD  
AB14 VDD33_FPD  
AA14 VDD33_FPD  
Includes weak internal  
pulldown  
Positive differential input signal for data channel E,  
FPD-Link receiver  
Includes weak internal  
pulldown  
Negative differential input signal for data channel E,  
FPD-Link receiver  
(6) Port 2 is a single-channel FPD-Link compatible input interface. FPD-Link is a defacto industry standard FPD interface, which uses the  
high-bandwidth capabilities of LVDS signaling to serialize video and graphics data down to a couple wires to provide a low-wire count  
and low-EMI interface. Port 2 supports source rates up to a maximum effective clock of 90 MHz. The port 2 input pixel data must adhere  
to one of four supported data mapping formats (see Table 2). Given that port 2 inputs contain weak pulldown resistors, they can be left  
floating when not used.  
6
Copyright © 2013–2015, Texas Instruments Incorporated  
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
Pin Functions (continued)  
(2)  
PIN(1)  
NAME  
I/O  
INTERNAL TERMINATION  
CLK SYSTEM  
DESCRIPTION  
NO.  
POWER  
TYPE  
DMD INTERFACE  
DMD_D0  
A8  
B8  
DMD_D1  
DMD_D2  
C8  
DMD_D3  
D8  
DMD_D4  
B11  
C11  
D11  
E11  
C7  
DMD_D5  
DMD_D6  
DMD_D7  
DMD_D8  
DMD_D9  
B10  
E7  
DMD_D10  
DMD data pins. DMD data pins are DDR signals that  
are clocked on both edges of DMD_DCLK.  
All 24 DMD data signals are use to interface to the  
DLP4500.  
DMD_D11  
D10  
VDD_DMD  
O7  
DMD_DCLK  
DMD_D12  
A6  
A12  
B12  
C12  
D12  
B7  
DMD_D13  
DMD_D14  
DMD_D15  
DMD_D16  
DMD_D17  
DMD_D18  
A10  
D7  
DMD_D19  
DMD_D20  
B6  
DMD_D21  
E9  
DMD_D22  
C10  
C6  
DMD_D23  
DMD_DCLK  
DMD_LOADB  
DMD_SCTRL  
DMD_TRC  
DMD_DRC_BUS  
DMD_DRC_STRB  
A9  
VDD_DMD  
VDD_DMD  
VDD_DMD  
VDD_DMD  
VDD_DMD  
VDD_DMD  
O7  
O7  
O7  
O7  
O7  
O7  
N/A  
DMD data clock (DDR)  
B9  
DMD_DCLK  
DMD_DCLK  
DMD_DCLK  
DMD data load signal (active-low)  
DMD data serial control signal  
DMD data toggle rate control  
C9  
D9  
D5  
DMD_SAC_CLK DMD reset control bus data  
DMD_SAC_CLK DMD reset control bus strobe  
C5  
Requires a 30 to 51-kΩ  
external pullup resistor to  
VDD_DMD.  
DMD_DRC_OE  
B5  
VDD_DMD  
O7  
Async  
DMD reset control enable (active low)  
DMD_SAC_BUS  
DMD_SAC_CLK  
D6  
A5  
VDD_DMD  
VDD_DMD  
O7  
O7  
DMD_SAC_CLK DMD stepped-address control bus data  
N/A  
DMD stepped-address control bus clock  
DMD Power Enable control. This signal indicates to  
an external regulator that the DMD is powered.  
DMD_PWR_EN  
EXRES  
G20  
A3  
VDD_DMD  
O2  
O
Async  
DMD drive strength adjustment precision reference.  
A ±1% external precision resistor should be  
connected to this pin.  
Async  
FLASH INTERFACE  
PM_CS_0  
Reserved for future use. On the PCB, connect to  
VDD33 through a pullup resistor.  
U3  
U2  
U1  
VDD33  
VDD33  
VDD33  
O2  
O2  
O2  
Async  
Async  
Async  
PM_CS_1  
Boot flash (active low). Required for boot memory  
Reserved for future use. On the PCB, connect to  
VDD33 through a pullup resistor.  
PM_CS_2  
Copyright © 2013–2015, Texas Instruments Incorporated  
7
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
Pin Functions (continued)  
(2)  
PIN(1)  
NAME  
I/O  
INTERNAL TERMINATION  
CLK SYSTEM  
DESCRIPTION  
NO.  
V3  
POWER  
TYPE  
PM_ADDR_22  
PM_ADDR_21  
PM_ADDR_20  
PM_ADDR_19  
PM_ADDR_18  
PM_ADDR_17  
PM_ADDR_16  
PM_ADDR_15  
PM_ADDR_14  
PM_ADDR_13  
PM_ADDR_12  
PM_ADDR_11  
PM_ADDR_10  
PM_ADDR_9  
PM_ADDR_8  
PM_ADDR_7  
PM_ADDR_6  
PM_ADDR_5  
PM_ADDR_4  
PM_ADDR_3  
PM_ADDR_2  
PM_ADDR_1  
PM_ADDR_0  
PM_WE  
B2  
W1  
W2  
Y1  
AB2  
AA3  
Y4  
W5  
AB3  
AA4  
Y5  
W6  
AB4  
AA5  
Y6  
VDD33  
O2  
Async  
Flash memory address bit  
W7  
AB5  
AA6  
Y7  
AB6  
W8  
AA7  
AB7  
V2  
VDD33  
VDD33  
VDD33  
VDD33  
O2  
O2  
O2  
O2  
Async  
Async  
Async  
Async  
Write enable (active low)  
Output enable (active low)  
Upper byte(15:8) enable  
Lower byte(7:0) enable  
PM_OE  
U4  
PM_BLS_1  
AA8  
AB8  
M1  
N1  
PM_BLS_0  
PM_DATA_15  
PM_DATA_14  
PM_DATA_13  
PM_DATA_12  
PM_DATA_11  
PM_DATA_10  
PM_DATA_9  
PM_DATA_8  
PM_DATA_7  
PM_DATA_6  
PM_DATA_5  
PM_DATA_4  
PM_DATA_3  
PM_DATA_2  
PM_DATA_1  
PM_DATA_0  
N2  
N3  
VDD33  
B2  
Async  
Data bits, upper byte  
N4  
P1  
P2  
P3  
P4  
R2  
R3  
R4  
VDD33  
B2  
Async  
Data bits, lower byte  
T1  
T2  
T3  
T4  
LED DRIVER INTERFACE  
LEDR_PWM  
LEDG_PWM  
LEDB_PWM  
LEDR_EN  
K2  
K3  
K4  
L3  
L4  
K1  
LED red PWM output enable control  
VDD33  
VDD33  
O2  
O2  
Async  
Async  
LED green PWM output enable control  
LED blue PWM output enable control  
LED red PWM output  
LEDG_EN  
LED green PWM output  
LEDB_EN  
LED blue PWM output  
8
Copyright © 2013–2015, Texas Instruments Incorporated  
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
Pin Functions (continued)  
(2)  
PIN(1)  
I/O  
INTERNAL TERMINATION  
CLK SYSTEM  
DESCRIPTION  
NAME  
NO.  
POWER  
TYPE  
PERIPHERAL INTERFACE  
UART_TXD  
UART_RXD  
L19  
L21  
VDD33  
VDD33  
O2  
I4  
Async  
Async  
Transmit data output. Reserved for debug messages  
Receive data input. Reserved for debug messages  
Ready to send hardware flow control output.  
Reserved for debug messages  
UART_RTS  
UART_CTS  
M19  
L20  
VDD33  
O2  
I4  
Async  
Async  
Clear to send hardware flow control input. Reserved  
for debug messages  
VDD33  
(7)  
GENERAL PURPOSE I/O (GPIO)  
GPIO_37  
GPIO_36  
GPIO_35  
GPIO_34  
GPIO_33  
GPIO_32  
GPIO_31  
GPIO_29  
GPIO_28  
GPIO_27  
GPIO_25  
GPIO_24  
GPIO_23  
GPIO_21  
GPIO_20  
GPIO_19  
GPIO_18  
GPIO_15  
GPIO_14  
GPIO_13  
GPIO_12  
GPIO_11  
GPIO_10  
GPIO_06  
GPIO_05  
GPIO_04  
GPIO_03  
GPIO_02  
GPIO_00  
K21  
G1  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
B2  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
Async  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
H4  
H3  
H2  
F22  
G19  
F20  
E22  
E21  
D22  
E20  
D21  
N20  
N19  
D18  
C18  
B19  
B18  
L2  
M4  
A19  
C17  
A18  
D16  
C16  
B16  
A17  
C15  
OTHER INTERFACES  
Feedback from fan to indicate fan is connected and  
running  
FAN_LOCKED  
FAN_PWM  
B17  
D15  
VDD33  
VDD33  
B2  
B2  
Async  
Async  
Fan PWM speed control  
BOARD LEVEL TEST AND DEBUG  
TDI  
P18  
R18  
V15  
L18  
VDD33  
VDD33  
VDD33  
VDD33  
I4  
I4  
Includes internal pullup  
Includes internal pullup  
Includes internal pullup  
TCK  
N/A  
JTAG serial data in(8)  
JTAG serial data clock(8)  
JTAG test mode select(8)  
JTAG serial data out(8)  
TCK  
TMS1  
TDO1  
I4  
TCK  
TCK  
O1  
(7) GPIO signals must be configured by software for input, output, bidirectional, or open-drain. Some GPIOs have one or more alternate use  
modes, which are also software configurable. The reset default for all optional GPIOs is as an input signal. However, any alternate  
function connected to these GPIO pins with the exception of general-purpose clocks and PWM generation, are reset. An external pullup  
to the 3.3-V supply is required for each signal configured as open-drain. External pullup or pulldown resistors may be required to ensure  
stable operation before software is able to configure these ports.  
(8) All JTAG signals are LVCMOS-compatible.  
Copyright © 2013–2015, Texas Instruments Incorporated  
9
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
Pin Functions (continued)  
(2)  
PIN(1)  
NAME  
I/O  
INTERNAL TERMINATION  
CLK SYSTEM  
DESCRIPTION  
NO.  
POWER  
TYPE  
JTAG, RESET (active low). This pin should be pulled  
high (or left unconnected) when the JTAG interface  
is in use for boundary scan. Connect this pin to  
ground otherwise. Failure to tie this pin low during  
normal operation causes startup and initialization  
problems.(8)  
I4  
H
TRST  
RTCK  
V17  
VDD33  
Includes internal pullup  
Async  
G18  
V6  
VDD33  
VDD33  
O2  
N/A  
JTAG return clock(9)  
Includes internal pull down.  
External pulldown  
recommended for added  
protection.  
I4  
H
IC Tri-State Enable (active high). Asserting high tri-  
states all outputs except the JTAG interface.  
ICTSEN  
Async  
(9) For instructions on handling unused pins, see General Handling Guidelines for Unused CMOS-Type Pins.  
Functional Pin Descriptions (Reserved Pins)  
(2)  
PIN(1)  
I/O  
CLK  
INTERNAL TERMINATION  
DESCRIPTION  
SYSTEM  
NAME  
NO.  
POWER  
TYPE  
I4  
H
RESERVED  
RESERVED  
V7  
VDD33  
VDD33  
Includes internal pulldown  
N/A  
N/A  
Connect directly to ground on the PCB.  
N22, M22,  
P19, P20  
I4  
Includes an internal pulldown  
Includes an internal pullup  
Reserved(1)  
RESERVED  
RESERVED  
V16  
VDD33  
VDD33  
I4  
I4  
N/A  
N/A  
D1, J2  
F1, F2, G2,  
G3, G4  
RESERVED  
RESERVED  
RESERVED  
VDD33  
VDD33  
VDD33  
O2  
O2  
O1  
Includes internal pulldown  
N/A  
N/A  
N/A  
F3, J1, M21  
Leave these pins unconnected(1)  
H20, M18,  
M20  
H21, H22,  
J19, J20,  
J21, J22,  
K19, K20  
RESERVED  
VDD33  
B2  
Includes internal pulldown  
N/A  
Reserved(1)  
Reserved  
RESERVED  
RESERVED  
C1, D2, F4  
E3, E2  
VDD33  
VDD33  
B2  
N/A  
Async  
(1) For instructions on handling unused pins, see General Handling Guidelines for Unused CMOS-Type Pins.  
(2) I/O Type: I indicates input, O indicates output, B indicates bidirectional, and H indicates hysteresis. See Table 1 for subscript  
explanation.  
Table 1. I/O Type Subscript Definition  
I/O  
ESD STRUCTURE  
SUBSCRIPT  
DESCRIPTION  
3.3-V LVCMOS I/O buffer, with 4-mA drive  
3.3-V LVCMOS I/O buffer, with 8-mA drive  
3.3-V LVCMOS I/O buffer, with 12-mA drive  
3.3-V LVCMOS receiver  
1
2
ESD diode to VDD33 and GND  
ESD diode to VDD33 and GND  
ESD diode to VDD33 and GND  
ESD diode to VDD33 and GND  
ESD diode to VDD33 and GND  
N/A  
3
4
5
3.3-V LVDS receiver (FPD-Link I/F)  
None  
6
7
1.9-V LPDDR output buffer (DMD I/F)  
3.3-V I2C with 12-mA sink  
ESD diode to VDD_DMD and GND  
ESD diode to VDD33 and GND  
ESD diode to VDD33 and GND  
8
10  
OSC 3.3-V I/O compatible LVCMOS  
10  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
6 Specifications  
6.1 Absolute Maximum Ratings  
over recommended operating free-air temperature (unless otherwise noted)  
(1)  
MIN  
MAX  
UNIT  
ELECTRICAL  
VDDC (core 1.2-V power)  
VDD33 (CMOS I/O)  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.3  
–0.5  
–0.5  
–0.5  
–0.3  
–0.5  
–0.5  
1.7  
3.8  
2.3  
1.7  
3.8  
1.7  
1.7  
2.3  
2.3  
3.6  
3.6  
3.6  
3.6  
2.0  
3.6  
3.6  
VDD_DMD (DMD driver power)  
VDD12_FPD (FPD-Link LVDS interface 1.2-V power)  
VDD33_FPD (FPD-Link LVDS interface 3.3-V power)  
VDD12_PLLD (DDR clock generator – digital)  
VDD12_PLLM (master clock generator – digital)  
VDD_18_PLLD (DDR clock generator – analog)  
VDD_18_PLLM (master clock generator – analog)  
OSC (BC1850)  
Supply voltage(2)  
V
LVCMOS (BT3350)  
I2C (BT3350)  
VI  
Input voltage(3)  
Output voltage  
LVDS (BT3350)  
DMD LPDDR (BC1850)  
VO  
LVCMOS (BT3350)  
I2C (BT3350)  
ENVIRONMENTAL  
TJ  
Operating junction temperature  
Storage temperature  
0
115  
125  
°C  
°C  
Tstg  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to GND.  
(3) Applies to external input and bidirectional buffers.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
Electrostatic  
discharge  
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
V(ESD)  
±500  
±150  
V
Machine model (MM)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2013–2015, Texas Instruments Incorporated  
11  
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
I/O(1)  
MIN  
3.135  
1.8  
1.71  
1.71  
1.116  
1.116  
1.116  
0
NOM  
3.3  
1.9  
1.8  
1.8  
1.2  
1.2  
1.2  
MAX  
UNIT  
V
VDD33  
3.3-V supply voltage, I/O  
1.9-V supply voltage, I/O  
3.465  
2
VDD_DMD  
V
VDD_18_PLLD 1.8-V supply voltage, PLL analog  
VDD_18_PLLM 1.8-V supply voltage, PLL analog  
1.89  
V
1.89  
V
VDD12  
1.2-V supply voltage, core logic  
1.2-V supply voltage, PLL digital  
1.2-V supply voltage, PLL digital  
1.26  
V
VDD12_PLLD  
VDD12_PLLM  
1.26  
V
1.26  
V
OSC (10)  
VDD33  
VDD33  
VDD33  
2.2  
3.3-V LVCMOS (1, 2, 3, 4)  
3.3-V I2C (8)  
0
VI  
Input voltage  
V
0
3.3-V LVDS (5)  
0.6  
0
3.3-V LVCMOS (1, 2, 3, 4)  
3.3-V I2C (8)  
VDD33  
VDD33  
VDD_DMD  
55  
VO  
Output voltage  
0
V
1.9-V LPDDR (7)  
0
(2)  
TA  
TC  
TJ  
Operating ambient temperature range  
Operating top-center case temperature  
Operating junction temperature  
See  
0
°C  
°C  
°C  
(3)(4)  
See  
0
104  
0
105  
(1) The number inside each parenthesis for the I/O refers to the type defined in the I/O type subscript definition section.  
(2) Assumes a minimum 1-m/s airflow along with the JEDEC thermal resistance and associated conditions as listed www.ti.com/packaging.  
Thus, this is an approximate value that varies with environment and PCB design.  
(3) Maximum thermal values assume maximum power of 3 W.  
(4) Assume ψJT equals 0.33 C/W.  
6.4 Thermal Information(1)  
DLPC6401  
THERMAL METRIC(1)  
ZFF (BGA)  
419 PINS  
0.33  
UNIT  
ψJT  
Junction-to-top characterization parameter  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics Application  
Report, SPRA953.  
12  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
6.5 Electrical Characteristics(1)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2
TYP  
MAX UNIT  
OSC (10)  
High-level input  
threshold voltage  
3.3-V LVCMOS (1, 2, 3, 4)  
3.3-V I2C (8)  
2
VIH  
V
2.4  
OSC (10)  
0.8  
Low-level input  
threshold voltage  
3.3-V LVCMOS (1, 2, 3, 4)  
3.3-V I2C (8)  
0.8  
1
VIL  
V
Receiver input  
impedance  
RI  
3.3-V LVDS (5)  
3.3-V LVDS (5)  
3.3-V LVDS (5)  
3.3-V LVDS (5)  
3.3-V LVDS (5)  
VDDH = 3.3 V  
90  
–200  
200  
0.7  
110  
132  
200  
600  
2.1  
Input differential  
threshold  
Vidth  
|Vid|  
mV  
mV  
Absolute input  
differential voltage  
At minimum absolute  
input differential voltage  
Input common mode  
voltage range  
VICM  
V
At max absolute input  
differential voltage  
0.9  
1.9  
3.3-V LVCMOS (1, 2, 3, 4)  
3.3-V I2C (8)  
400  
550  
VHYS  
VOH  
Hysteresis (VT+ – VT–)  
mV  
V
3.3-V LVCMOS (1, 2, 3)  
1.9-V DMD LPDDR (7)  
1.9-V DMD LPDDR (7)  
3.3-V LVCMOS (1, 2, 3)  
3.3-V I2C (8)  
IOH = Max rated  
IOH = –0.1 mA  
IOL = 0.1 mA  
2.8  
High-level output  
voltage  
0.9 × VDD_DMD  
0.1 × VDD_DMD  
Low-level output  
voltage  
IOL = Max rated  
IOL = 3-mA sink  
0.4  
0.4  
VOL  
V
OSC (10)  
10.0  
3.3-V LVCMOS (1 to 4) (without  
internal pulldown)  
VIH = VDD33  
10  
IIH  
High-level input current  
µA  
3.3 V LVCMOS (1 to 4) (with  
internal pulldown)  
VIH = VDD33  
VIH = VDD33  
200  
3.3 V I2C (8)  
OSC (10)  
10  
–10.0  
3.3-V LVCMOS (1 to 4) (without  
internal pullup)  
VOH = VDD33  
VOH = VDD33  
–10  
IIL  
Low-level input current  
µA  
3.3-V LVCMOS (1 to 4) (with  
internal pullup)  
–200  
–10  
3.3-V I2C (8)  
VOH = VDD33  
VO = 1.5 V  
VO = 2.4 V  
VO = 2.4 V  
VO = 2.4 V  
VO = 0.4 V  
VO = 0.4 V  
VO = 0.4 V  
VO = 0.4 V  
1.9-V DMD LPDDR (7)  
3.3-V LVCMOS (1)  
3.3-V LVCMOS (2)  
3.3-V LVCMOS (3)  
1.9-V DMD LPDDR (7)  
3.3-V LVCMOS (1)  
3.3-V LVCMOS (2)  
3.3-V LVCMOS (3)  
3.3-V I2C (8)  
–4  
–4  
–8  
–12  
4
High-level output  
current  
IOH  
mA  
mA  
4
Low-level output  
current  
8
IOL  
12  
3
3.3-V LVCMOS (1, 2, 3)  
3.3-V I2C (8)  
–10  
–10  
2.8  
2.7  
3
10  
10  
4
High-impedance  
leakage current  
IOZ  
µA  
pF  
3.3-V LVCMOS (2)  
3.3-V LVCMOS (4)  
3.3-V I2C (8)  
3.3  
3.4  
3.2  
Input capacitance  
(including package)  
4.2  
3.5  
CI  
(1) The number inside each parenthesis for the I/O refers to the type defined in Table 1.  
Copyright © 2013–2015, Texas Instruments Incorporated  
13  
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
6.6 Electrical Characteristics (Normal Mode)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITION(1)  
Normal mode  
Normal mode  
Normal mode  
Normal mode  
Normal mode  
Normal mode  
MIN  
TYP  
600  
30  
MAX(2) UNIT  
ICC12  
Supply voltage, 1.2-V core power  
1020  
50  
mA  
mA  
mA  
mA  
mA  
mA  
Supply voltage, 1.9-V I/O power (DMD LPDDR)  
Supply voltage, 3.3-V (I/O) power  
ICC19_DMD  
ICC33  
40  
70  
ICC12_FPD  
ICC33_FPD  
ICC12_PLLD  
FPD-Link LVDS I/F supply voltage, 1.2-V power  
FPD-Link LVDS I/F supply voltage, 3.3-V power  
Supply voltage, PLL digital power (1.2 V)  
60  
100  
85  
50  
9
15  
Supply voltage, master clock generator PLL digital  
power (1.2 V)  
ICC12_PLLM  
ICC18_PLLD  
ICC18_PLLM  
PTOT  
Normal mode  
Normal mode  
Normal mode  
Normal mode  
9
10  
15  
16  
mA  
mA  
mA  
mW  
Supply voltage, PLL analog power (1.8 V)  
Supply voltage, master clock generator PLL analog  
power (1.8 V)  
10  
16  
Total power  
1225  
2200  
(1) Normal mode refers to ASIC operation during full functionality, active product operation. Typical values correspond to power dissipated  
on nominal process devices operating at nominal voltage and 70°C junction temperature (approximately 25°C ambient) displaying typical  
video-graphics content from a high-frequency source. Maximim values correspond to power dissipated on fast process devices  
operating at high voltage and 105°C junction temperature (approximately 55°C ambient) displaying typical video-graphics content from a  
high-frequency source. The increased power dissipation observed on fast process devices operated at maximum recommended  
temperature is primarily a result of increased leakage current.  
(2) Maximum power values are estimates and may not reflect the actual final power consumption of DLPC6401 ASIC.  
6.7 System Oscillators Timing Requirements  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
ƒclock  
tc  
Clock frequency, MOSC(1)  
Cycle time, MOSC(1)  
31.9968 32.0032  
MHz  
ns  
31.188 31.256  
tw(H)  
tw(L)  
tt  
Pulse duration(2), MOSC, high  
Pulse duration(2), MOSC, low  
Transition time(2), MOSC, tt = tf / tr  
50% to 50% reference points (signal)  
50% to 50% reference points (signal)  
20% to 80% reference points (signal)  
12.5  
12.5  
7.5  
ns  
ns  
ns  
Period jitter(2), MOSC (that is, the deviation in period from ideal period due solely to high-frequency  
jitter – not spread spectrum clocking)  
tjp  
–100  
100  
ps  
(1) The frequency range for MOSC is 32 MHz with ±100 PPM accuracy. (This includes impact to accuracy due to aging, temperature, and  
trim sensitivity.) The MOSC input cannot support spread spectrum clock spreading.  
(2) Applies only when driven by an external digital oscillator.  
14  
Copyright © 2013–2015, Texas Instruments Incorporated  
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
6.8 Test and Reset Timing Requirements  
MIN  
MAX  
625  
1
UNIT  
µs  
tW1(L)  
tt1  
tW2(L)  
tt2  
Pulse duration, inactive low, PWRGOOD  
Transition time, PWRGOOD, tt1 = tf / tr  
Pulse duration, inactive low, POSENSE  
Transition time, POSENSE, tt2 = tf / tr  
50% to 50% reference points (signal)  
20% to 80% reference points (signal)  
50% to 50% reference points (signal)  
20% to 80% reference points (signal)  
20% to 80% reference points (signal)  
4
µs  
500  
500  
µs  
µs  
tPH  
Power hold time, POSENSE remains active after  
PWGOOD is deasserted  
µs  
6.9 JTAG Interface: I/O Boundary Scan Application Timing Requirements  
MIN  
MAX  
UNIT  
MHz  
ns  
ƒclock  
tC  
Clock frequency, TCK  
10  
Cycle time, TCK  
100  
40  
tW(H)  
tW(L)  
tt  
Pulse duration, high  
50% to 50% reference points (signal)  
50% to 50% reference points (signal)  
20% to 80% reference points (signal)  
ns  
Pulse duration, low  
40  
ns  
Transition time, tt = tf / tr  
Setup time, TDI valid before TCK↑  
Hold time, TDI valid after TCK↑  
Setup time, TMS1 valid before TCK↑  
Hold time, TMS1 valid after TCK↑  
5
ns  
tSU  
th  
tSU  
th  
8
2
8
2
ns  
ns  
ns  
ns  
Copyright © 2013–2015, Texas Instruments Incorporated  
15  
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
MAX UNIT  
6.10 Port 1 Input Pixel Interface Timing Requirements  
MIN  
12  
ƒclock  
tc  
tw(H)  
tw(L)  
Clock frequency, P1A_CLK, P1B_CLK, P1C_CLK  
Cycle time, P1A_CLK, P1B_CLK, P1C_CLK  
Pulse duration, high  
150  
MHz  
ns  
6.666  
2.3  
83.33  
50% to 50% reference points (signal)  
50% to 50% reference points (signal)  
ns  
Pulse duration, low  
2.3  
ns  
Clock period jitter, P1A_CLK, P1B_CLK, P1C_CLK  
(that is, the deviation in period from ideal period)  
(1)  
tjp  
tt  
Max ƒclock  
See  
ps  
ns  
ns  
Transition time, tt = tf / tr, P1A_CLK, P1B_CLK, P1C_CLK 20% to 80% reference points (signal)  
0.6  
0.6  
2
3
Transition time, tt = tf / tr, P1_A(9-0), P1_B(9-0) , P1_C(9-  
20% to 80% reference points (signal)  
tt  
0), P1_HSYNC, P1_VSYNC, P1_DATEN  
Transition time, tt = tf / tr, ALF_HSYNC, ALF_VSYNC,  
20% to 80% reference points (signal)  
ALF_CSYNC(2)  
tt  
0.6  
3
ns  
SETUP AND HOLD TIMES(3)  
tsu  
th  
Setup time, P1_A(9-0), valid before P1x_CLK↑↓  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Hold time, P1_A(9-0), valid after P1x_CLK↑↓  
Setup time, P1_B(9-0), valid before P1x_CLK↑↓  
Hold time, P1_B(9-0), valid after P1x_CLK↑↓  
Setup time, P1_C(9-0), valid before P1x_CLK↑↓  
Hold time, P1_C(9-0), valid after P1x_CLK↑↓  
Setup time, P1_VSYNC, valid before P1x_CLK↑↓  
Hold time, P1_VSYNC, valid after P1x_CLK↑↓  
Setup time, P1_HSYNC, valid before P1x_CLK↑↓  
Hold time, P1_HSYNC, valid after P1x_CLK↑↓  
Setup time, P1_FIELD, valid before P1x_CLK↑↓  
Hold time, P1_FIELD, valid after P1x_CLK↑↓  
Setup time, P1_DATEN, valid before P1x_CLK↑↓  
Hold time, P1_DATEN, valid after P1x_CLK↑↓  
tsu  
th  
tsu  
th  
tsu  
th  
tsu  
th  
tsu  
th  
tsu  
th  
(1) Use the following formula to obtain the jitter: Maximum clock jitter = ±[(1 / ƒclock) – 5414 ps].  
(2) ALF_CSYNC, ALF_VSYNC and ALF_HSYNC are asynchronous signals.  
(3) Setup and hold times should be considered the same regardless of clock used [P1A_CLK, P1B_CLK, P1C_CLK].  
6.11 Port 2 Input Pixel Interface (FPD-Link Compatible LVDS Input) Timing  
Requirements(1)(2)(3)(4)(5)(6)  
MIN  
MAX  
90  
UNIT  
ƒclock  
tc  
Clock frequency, P2_CLK (LVDS input clock)  
Cycle time, P2_CLK (LVDS input clock)  
Clock or data slew rate (ƒpxck < 90 MHz)  
Clock or data slew rate (ƒpxck > 90 MHz)  
Link start-up time (internal)  
20  
11.1  
0.3  
MHz  
ns  
50  
V/ns  
V/ns  
ms  
tslew  
0.5  
tstartup  
1
(1) Minimize crosstalk and match traces on the PCB as close as possible.  
(2) Maintain the common mode voltage as close to 1.2 V as possible.  
(3) Maintain the absolute input differential voltage as high as possible.  
(4) The LVDS open input detection is related to a low common mode voltage only. It is not related to a low-differential swing.  
(5) LVDS power 3.3-V supply (VDD33_FPD) noise level should be below 100 mVPP  
(6) LVDS power 1.2-V supply (VDD12_FPD) noise level should be below 60 mVPP  
.
.
16  
Copyright © 2013–2015, Texas Instruments Incorporated  
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
6.12 Synchronous Serial Port (SSP) Interface Timing Requirements  
MIN  
10  
MAX  
UNIT  
ns  
tsu  
th  
tt  
Setup time, SSP0_RXD valid before SSP0_ CLK↓  
Hold time, SSP0_RXD valid after SSP0_ CLK↓  
Transition time(1), SSP0_RXD, tt = tf / tr  
10  
ns  
4
4
ns  
tsu  
th  
tt  
Setup time, SSP1_RXD valid before SSP1_ CLK↓  
Hold time, SSP1_RXD valid after SSP1_ CLK↓  
Transition time(1), SSP1_RXD, tt = tf / tr  
10  
10  
ns  
ns  
ns  
(1) 20% to 80% reference points (signal)  
6.13 Programmable Output Clocks Switching Characteristics  
over operating free-air temperature range, CL (min timing) = 5 pF, CL (max timing) = 50 pF (unless otherwise noted) (see  
Figure 5)  
FROM  
PARAMETER  
ƒclock Clock frequency, OCLKC(1)  
tc  
Cycle time, OCLKC(1)  
TO (OUTPUT)  
MIN  
MAX UNIT  
(INPUT)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
OCLKC  
OCLKC  
OCLKC  
OCLKC  
OCLKD  
OCLKD  
OCLKD  
OCLKD  
OCLKE  
OCLKE  
OCLKE  
OCLKE  
0.7759  
20.83  
48  
MHz  
ns  
1288.8  
tw(H) Pulse duration, high 50% to 50% reference points (signal)  
tw(L) Pulse duration, low(2) 50% to 50% reference points (signal)  
ƒclock Clock frequency, OCLKD(1)  
(tc / 2) – 2  
(tc / 2) – 2  
0.7759  
ns  
ns  
48  
MHz  
ns  
tc  
Cycle time, OCLKD  
20.83  
1288.8  
tw(H) Pulse duration, high(2) 50% to 50% reference points (signal)  
tw(L) Pulse duration, low(2) 50% to 50% reference points (signal)  
ƒclock Clock frequency, OCLKE(1)  
(tc / 2) – 2  
(tc / 2) – 2  
0.7759  
ns  
ns  
48  
MHz  
ns  
tc  
Cycle time, OCLKE  
20.83  
1288.8  
tw(H) Pulse duration, high(2) 50% to 50% reference points (signal)  
tw(L) Pulse duration, low(2) 50% to 50% reference points (signal)  
(tc / 2) – 2  
(tc / 2) – 2  
ns  
ns  
(1) The frequency of OCLKC through OCLKE is programmable.  
(2) The duty cycle of OCLKC through OCLKE is within ±2 ns of 50%.  
Copyright © 2013–2015, Texas Instruments Incorporated  
17  
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
6.14 Synchronous Serial Port (SSP) Interface Switching Characteristics  
over recommended operating conditions, CL (min timing) = 5 pF, CL (max timing) = 35 pF (unless otherwise noted) (see  
Figure 10)  
PARAMETER  
FROM (INPUT)  
TO (OUTPUT)  
SSP0_CLK  
SSP0_CLK  
SSP0_CLK  
MIN  
0.287  
0.107  
48  
MAX UNIT  
(1)(2)  
ƒclock  
tc  
Clock frequency, SSP0_CLK  
Cycle time, SSP0_CLK  
N/A  
N/A  
N/A  
9333  
3483  
kHz  
us  
tw(H)  
Pulse duration, high 50% to 50% reference points  
(signal)  
ns  
tw(L)  
Pulse duration, low 50% to 50% reference points  
(signal)  
N/A  
SSP0_CLK  
48  
ns  
tpd  
Output propagation, clock to Q, SSP0_TXD  
SSP0_CLK↑  
N/A  
SSP0_TXD  
SSP1_CLK  
SSP1_CLK  
SSP1_CLK  
–5  
5
ns  
kHz  
us  
(1)(2)  
ƒclock  
tc  
Clock frequency, SSP1_CLK  
2.296 74667  
Cycle time, SSP1_CLK  
N/A  
0.013  
5.85  
436  
tw(H)  
Pulse duration, high 50% to 50% reference points  
(signal)  
N/A  
ns  
tw(L)  
tpd  
Pulse duration, low 50% to 50% reference points  
(signal)  
N/A  
SSP1_CLK  
SSP1_TXD  
5.85  
–2  
ns  
ns  
Output propagation, clock to Q, SSP1_TXD  
SSP1_CLK↑  
2
(1) SSP output timing supports both positive and negative clocking polarity. Figure 10 shows only positive clocking polarity. When the clock  
polarity is configured through software to be negative, the data is transferred and captured on the opposite edge of the clock shown.  
(2) The maximum rates shown apply to master mode operation only. Slave mode operation is limited to 1/6 of these rates.  
6.15 JTAG Interface: I/O Boundary Scan Application Switching Characteristics  
Over operating free-air temperature range, CL (min timing) = 5 pF, CL (max timing) = 85 pF (unless otherwise noted)  
PARAMETER  
FROM (INPUT)  
TO (OUTPUT)  
MIN  
TYP  
MAX  
UNIT  
tpd  
Output propagation, clock to Q  
TCK↓  
TDO1  
3
12  
ns  
tt  
tt  
tc  
tw(H)  
tw(L)  
MOSC  
80%  
20%  
80%  
20%  
50%  
50%  
50%  
Figure 1. System Oscillators  
Power Up  
tt1  
80%  
50%  
20%  
80%  
50%  
20%  
80%  
50%  
20%  
PWRGOOD  
tt1  
tw1(L)  
80%  
50%  
20%  
POSENSE  
tt2  
DC Power Supplies  
PWRGOOD has no impact on operation for 60 ms after rising edge of POSENSE.  
Figure 2. Power Up  
18  
Copyright © 2013–2015, Texas Instruments Incorporated  
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
Power Down  
PWRGOOD  
tt1  
80%  
50%  
20%  
tt2  
tt2  
POSENSE  
80%  
50%  
20%  
80%  
50%  
20%  
tw2(L)  
tPH  
DC Power Supplies  
Figure 3. Power Down  
tt  
tc  
tw(H)  
ꢁ0%  
tw(L)  
ꢁ0%  
Ç/Y  
(input)  
80%  
20%  
ꢁ0%  
th  
tsu  
Ç5L  
Çꢀ{1  
(inputs)  
ëalid  
tpd(max)  
Ç5h1  
(outputs)  
ëalid  
Figure 4. I/O Boundary Scan  
tt  
tt  
tc  
OCLKC  
OCLKD  
OCLKE  
tw(H)  
50%  
tw(L)  
80%  
20%  
80%  
20%  
50%  
50%  
Figure 5. Programmable Output Clocks  
Copyright © 2013–2015, Texas Instruments Incorporated  
19  
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
tt  
tc  
tw(L)  
50%  
tw(H)  
50%  
80%  
20%  
Px_CLK  
(input)  
50%  
th  
tsu  
Px_Data and  
Px_Control  
(inputs)  
Valid  
Figure 6. Input Port 1 Interface  
Differential V(D0) - V(D1)  
Vid(max)  
Vid(min)  
0 V  
-Vid(min)  
-Vid(max)  
0.3 UI  
200ps  
200ps  
0.3 UI  
Teye=0.4 UI  
1UI  
0
Figure 7. Input Port 2 (LVDS) Interface  
Figure 8. (LVDS) Link Start-Up Timing  
20  
Copyright © 2013–2015, Texas Instruments Incorporated  
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
Figure 9. (LVDS) Clock – Data Skew Definition  
tt  
tc  
tw(H)  
50%  
tw(L)  
SSP_CLK  
(ASIC output)  
80%  
20%  
50%  
th  
50%  
tsu  
SSP_TXD  
(ASIC inputs)  
Valid  
Valid  
tpd(min)  
tpd(max)  
SSP_RXD  
(ASIC outputs)  
Valid  
Valid  
Figure 10. Synchronous Serial Port Interface  
DMD_D(23:0)  
DMD_SCTRL  
DMD_TRC  
DMD_LOADB  
tp1_h  
tp1_su  
DMD_DCLK  
tp1_cwl  
tp1_cwh  
No relationship  
DMD_SAC_CLK  
tp2_cwl  
tp2_cwh  
tp2_h  
DMD_SAC_BUS  
DMD_DAD_OEZ  
DMD_DAD_BUS  
DMD_DAD_STRB  
tp2_su  
Figure 11. DMD LPDDR Interface  
Copyright © 2013–2015, Texas Instruments Incorporated  
21  
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DLPC6401 is the display controller for the DLP4500 (.45 WXGA) DMD. DLPC6401 is part of the chipset  
comprised of the DLPC6401 controller and DLP4500 (.45 WXGA) DMD. Both the controller and the DMD must  
be used in conjunction with each other for reliable operation of the DLP4500 (.45 WXGA) DMD. The DLPC6401  
display controller provides interfaces and data- and image-processing functions that are optimized for small form  
factor, high-resolution, and high-brightness display applications. Applications include pico projectors, smart  
projectors, screenless displays, interactive displays, wearable displays, and digital signage. Standalone  
projectors must include a separate front-end chip to interface to the outside world (for example, video decoder,  
HDMI receiver, triple ADC, or USB I/F chip).  
7.2 Functional Block Diagram  
AC  
Power  
DC  
Power Supply  
DC  
I2C  
LEDs  
VGA  
regulators  
and LED  
Drivers  
Front End  
Processing  
Image Processing  
Degamma  
Primary Color Correction  
Chroma Interpolation  
Scaler  
1D Keystone  
On-screen Display  
Overlap Color Processing  
Formatter  
Spatial-  
Temporal  
Multiplexing  
Diamond  
DMD  
Analog  
Front End  
30-bit Parallel  
Port +  
10-bit BT656  
Component  
Video  
30  
30  
30  
ñ
ñ
ñ
ñ
ñ
ñ
ñ
ñ
ñ
Parallel  
Port  
ñ
Edge-adaptive  
Deinterlacer  
2D Y/C Decoder  
Color Space  
Conversion  
Brightness  
CVBS  
30  
ñ
ñ
DDR,  
80 œ 120 MHz  
DMD  
I/F  
Formatting  
30-bit LVDS  
Input Port  
I2C  
LVDS  
ñ
USB/SD/MMC  
(All Multimedia  
Formats)  
0.45 inch  
WXGA  
Multimedia  
Chip  
Embedded RAM 64Mb  
Test Pattern  
Generator  
JTAG  
JTAG  
Syncs  
Peripherals  
Input Clock/  
Sync generator  
Autolock  
ARM  
Flash  
I/F  
SSP  
GPIO  
I2C  
UART  
Internal Clock Circuit  
CLOCK  
Parallel  
Flash  
SSP  
GPIO  
(Keypad)  
(Fans)  
UART  
I2C  
EEPROM  
Temp sensor  
Tilt Sensor  
(I2C,PWM)  
22  
Copyright © 2013–2015, Texas Instruments Incorporated  
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
7.3 Feature Description  
Table 2. (LVDS) Receiver Supported Pixel Mapping Modes(1)  
MAPPING SELECTION  
4(2) [18-Bit Mode]  
LVDS RECEIVER INPUT MAPPING SELECTION 1 MAPPING SELECTION 2 MAPPING SELECTION 3  
RA Input Channel  
RDA(6)  
RDA(5)  
Map to GRN(4)  
Map to RED(9)  
Map to RED(8)  
Map to RED(7)  
Map to RED(6)  
Map to RED(5)  
Map to RED(4)  
Map to GRN(2)  
Map to RED(7)  
Map to RED(6)  
Map to RED(5)  
Map to RED(4)  
Map to RED(3)  
Map to RED(2)  
Map to GRN(0)  
Map to RED(5)  
Map to RED(4)  
Map to RED(3)  
Map to RED(2)  
Map to RED(1)  
Map to RED(0)  
Map to GRN(4)  
Map to RED(9)  
Map to RED(8)  
Map to RED(7)  
Map to RED(6)  
Map to RED(5)  
Map to RED(4)  
RDA(4)  
RDA(3)  
RDA(2)  
RDA(1)  
RDA(0)  
RB Input Channel  
RDB(6)  
Map to BLU(5)  
Map to BLU(4)  
Map to GRN(9)  
Map to GRN(8)  
Map to GRN(7)  
Map to GRN(6)  
Map to GRN(5)  
Map to BLU(3)  
Map to BLU(2)  
Map to GRN(7)  
Map to GRN(6)  
Map to GRN(5)  
Map to GRN(4)  
Map to GRN(3)  
Map to BLU(1)  
Map to BLU(0)  
Map to GRN(5)  
Map to GRN(4)  
Map to GRN(3)  
Map to GRN(2)  
Map to GRN(1)  
Map to BLU(5)  
Map to BLU(4)  
Map to GRN(9)  
Map to GRN(8)  
Map to GRN(7)  
Map to GRN(6)  
Map to GRN(5)  
RDB(5)  
RDB(4)  
RDB(3)  
RDB(2)  
RDB(1)  
RDB(0)  
RC Input Channel  
RDC(6)  
Map to DEN  
RDC(5)  
Map to VSYNC  
Map to HSYNC  
RDC(4)  
RDC(3)  
Map to BLU(9)  
Map to BLU(8)  
Map to BLU(7)  
Map to BLU(6)  
Map to BLU(7)  
Map to BLU(5)  
Map to BLU(4)  
Map to BLU(3)  
Map to BLU(2)  
Map to BLU(9)  
Map to BLU(8)  
Map to BLU(7)  
Map to BLU(6)  
RDC(2)  
Map to BLU(6)  
Map to BLU(5)  
Map to BLU(4)  
RDC(1)  
RDC(0)  
RD Input Channel  
RDD(6)  
Map to field (option 1 if applicable)  
RDD(5)  
Map to BLU(3)  
Map to BLU(2)  
Map to GRN(3)  
Map to GRN(2)  
Map to RED(3)  
Map to RED(2)  
Map to BLU(9)  
Map to BLU(8)  
Map to GRN(9)  
Map to GRN(8)  
Map to RED(9)  
Map to RED(8)  
Map to BLU(7)  
Map to BLU(6)  
Map to GRN(7)  
Map to GRN(6)  
Map to RED(7)  
Map to RED(6)  
No mapping  
No mapping  
No mapping  
No mapping  
No mapping  
No mapping  
RDD(4)  
RDD(3)  
RDD(2)  
RDD(1)  
RDD(0)  
RE Input Channel  
RDE(6)  
Map to field (option 2 if applicable)  
RDE(5)  
Map to BLU(1)  
Map to BLU(0)  
Map to GRN(1)  
Map to GRN(0)  
Map to RED(1)  
Map to RED(0)  
Map to BLU(9)  
Map to BLU(8)  
Map to GRN(9)  
Map to GRN(8)  
Map to RED(9)  
Map to RED(8)  
No mapping  
No mapping  
No mapping  
No mapping  
No mapping  
No mapping  
RDE(4)  
RDE(3)  
RDE(2)  
RDE(1)  
RDE(0)  
(1) Mapping options are selected by software.  
(2) If mapping option 4 is the only mapping mode needed, and if, and only if, a 'Field 1' or 'Field 2' input is not needed, then the board  
layout can leave the LVDS inputs for RD and RE channels floating.  
Copyright © 2013–2015, Texas Instruments Incorporated  
23  
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
7.3.1 System Reset Operation  
7.3.1.1 Power-Up Reset Operation  
Immediately following a power-up event, DLPC6401 hardware automatically brings up the master PLL and  
places the ASIC in normal power mode. It then follows the standard system reset procedure (see System Reset  
Operation).  
7.3.1.2 System Reset Operation  
Immediately following any type of system reset (power-up reset, PWRGOOD reset, watchdog timer timeout, and  
so on), the DLPC6401 device automatically returns to NORMAL power mode and returns to the following state.  
All GPIO tri-state and as a result, all GPIO-controlled voltage switches default to enabling power to all ASIC  
supply lines. (Assume these outputs are externally pulled-high.)  
The master PLL remains active (it is reset only after a power-up reset sequence) and most of the derived  
clocks are active. However, only those resets associated with the ARM9 processor and its peripherals are  
released. (The ARM9 is responsible for releasing all other resets.)  
ARM9 associated clocks default to their full clock rates. (Boot-up is a full speed.)  
All front-end derived clocks are disabled.  
The PLL feeding the DDR DMD I/F (PLLD) defaults to its power-down mode and all derived clocks are  
inactive with corresponding resets asserted. (The ARM9 is responsible for enabling these clocks and  
releasing associated resets.)  
DMD I/O (except DMD_DAD_OEZ) defaults to its outputs in a logic low state. DMD_DAD_OEZ defaults tri-  
stated, but should be pulled high through an external 30- to 51-kΩ pullup resistor on the PCB.  
All resets output by the DLPC6401 device remain asserted until released by the ARM9 (after boot-up).  
The ARM9 processor boots-up from external flash.  
When the ARM9 boots-up, the ARM9 API:  
Configures the programmable DDR clock generator (DCG) clock rates (that is, the DMD LPDDR I/F rate)  
Enables the DCG PLL (PLLD) while holding divider logic in reset  
When the DCG PLL locks, ARM9 software sets DMD clock rates  
API software then releases DCG divider logic resets, which in turn, enable all derived DCG clocks  
Releases external resets  
Application software then typically waits for a wake-up command (through the soft power switch on the projector)  
from the end user. When the projector is requested to wake-up, the software places the ASIC back in normal  
mode, re-initialize clocks, and resets as required.  
24  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
RESETZ  
(INIT_BUSY)  
(ERR IRQ)  
INIT_DONE  
100 ms (max)  
5 ms (max)  
0 ms (min)  
3 µs (min)  
I2C or DBI-C  
(SCL, SDA, CSZ  
t1  
t2  
t3 t4  
t5  
t6  
t2: device drives INIT_DONE high within 5 ms after reset is release. Indicates auto-initialization is busy  
t3: I2C or DBI-C access to DLPC6401 device does not start until the INIT_BUSY flag (on INIT_DONE) goes low.  
This can occur within 100 ms, but may take several seconds  
t5: an active high pulse on INIT_DONE following the initialization period indicates a detected error condition. The  
device reports the source of the error in the system status.  
Figure 12. Internal Memory Test Diagram  
7.3.1.3 Spread Spectrum Clock Generator Support  
The DLPC6401 device supports limited, internally-controlled, spread spectrum clock spreading on the DMD  
interface. The purpose is to frequency spread all signals on the high-speed, external interfaces to reduce EMI  
emissions. Clock spreading is limited to triangular waveforms. The DLPC6401 device provides modulation  
options of 0%, ±0.5%, and ±1.0% (center-spread modulation).  
7.3.1.4 GPIO Interface  
The DLPC6401 device provides 38 software-programmable, general-purpose I/O pins. Each GPIO pin is  
individually configurable as either input or output. In addition, each GPIO output can be either configured as  
push-pull or open-drain. Some GPIO have one or more alternate-use modes, which are also software  
configurable. The reset default for all GPIO is as an input signal. However, any alternate function connected to  
these GPIO pins, with the exception of general-purpose clocks and PWM generation, will be reset. When  
configured as open-drain, the outputs must be externally pulled-up (to the 3.3-V supply). External pullup or  
pulldown resistors may be required to ensure stable operation before software is able to configure these ports.  
7.3.1.5 Source Input Blanking  
Vertical and horizontal blanking requirements for both input ports are defined as follows (see 视频时序参数定义).  
Minimum port 1 vertical blanking:  
Vertical back porch: 370 µs  
Vertical front porch: 2 lines  
Total vertical blanking: 370 µs + 3 lines  
Minimum port 2 vertical blanking:  
Vertical back porch: 370 µs  
Vertical front porch: 0 lines  
Total vertical blanking: 370 µs + 3 lines  
Minimum port 1 and port 2 horizontal blanking:  
Horizontal back porch (HBP): 10 pixels  
Horizontal front porch (HFP): 0 pixels  
Total horizontal blanking (THB):  
Copyright © 2013–2015, Texas Instruments Incorporated  
25  
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
0.45 WXGA DMD: Roundup (154286 / Source_APPL, 0)  
0.4 XGA DMD: Roundup (144686 / Source_APPL, 0) pixels  
7.3.1.6 Video and Graphics Processing Delay  
The DLPC6401 device introduces a fixed number of field and frame delays. For optimum audio and video  
synchronization, this delay must be matched in the audio path. Table 3 defines the video delay to support audio  
matching.  
Frame and fields in Table 3 refer to source frames and fields.  
Table 3. Primary Channel and Video-Graphics Processing Delay  
2D VIDEO  
DECODER  
FORMATTER  
BUFFER  
TOTAL  
DELAY  
SOURCE  
DE-INTERLACING  
10 to 47 Hz  
Non-interlaced graphics  
Disabled  
{0 frames}  
Disabled  
{0 frames}  
Enabled  
{1 frame}  
1 frame  
1 frame  
1 frame  
1 frame  
1 field  
47 to 63 Hz  
Non-interlaced graphics  
Disabled  
{0 frames}  
Disabled  
{0 frames}  
Enabled  
{1 frame}  
63 to 120 Hz  
Non-interlaced graphics  
Disabled  
{0 frames}  
Disabled  
{0 frames}  
Enabled  
{1 frame}  
100 to 120 Hz  
Display at native rate graphics  
Disabled  
{0 frames}  
Disabled  
{0 frames}  
Enabled  
{1 frame}  
50 to 60 Hz interlaced  
SDTV video (NTSC, PAL, SECAM)  
Enabled  
{0 fields}  
Edge adaptive de-interlacing enabled  
{0 fields}  
Enabled  
{1 field}  
60 Hz interlaced  
HDTV video (480i, 1080i)  
Disabled  
{0 fields}  
Edge adaptive de-interlacing enabled  
{0 fields}  
Enabled  
{1 field}  
1 field  
24 to 30 Hz interlaced  
HDTV video (480i, 1080i)  
Disabled  
{0 fields}  
Edge adaptive de-interlacing enabled  
{0 fields}  
Enabled  
{1 field}  
1 field  
60 Hz progress  
HDTV video (480p, 720p)  
Disabled  
{0 frames}  
N/A  
{0 frames}  
Enabled  
{1 frame}  
1 frame  
1 frame  
24 to 30 Hz Progress  
HDTV video (480p, 720p)  
Disabled  
{0 frames}  
N/A  
{0 frames}  
Enabled  
{1 frame}  
63 to 87 Hz  
Interlaced graphics  
1280 APPL and 75 MHz  
Disabled  
{0 fields}  
Edge adaptive de-interlacing enabled  
{0 fields}  
Enabled  
{1 field}  
1 field  
1 field  
63 to 87 Hz  
Interlaced graphics  
>1280 APPL or >75 MHz  
Disabled  
{0 fields}  
Field-dependent scaling enabled  
{0 fields}  
Enabled  
{1 field}  
7.3.2 Program Memory Flash/SRAM Interface  
The DLPC6401 device provides three external program memory chip selects:  
PM_CSZ_0 – Available for optional SRAM or flash device (128 Mb)  
PM_CSZ_1 – Dedicated CS for boot flash device (that is standard NOR-type flash, 128 Mb)  
PM_CSZ_2 – Available for optional SRAM or flash device (128 Mb)  
Flash and SRAM access timing is software programmable up to 31 wait states. Wait state resolution is 6.7 ns in  
normal mode and 53.57 ns in low-power modes. Table 4 shows wait state program values for typical flash  
access times.  
Table 4. Wait State Program Values for Typical Flash Access Times  
NORMAL MODE(1)  
= Roundup (Device_Access_Time / 6.7 ns)  
207 ns  
LOW-POWER MODE(1)  
= Roundup (Device_Access_Time / 53.57 ns)  
1660 ns  
Formula to Calculate the Required Wait  
State Value  
Max Supported Device Access Time  
(1) Assumes a maximum single direction trace length of 75 mm.  
26  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
 
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
Note that when another device such as an SRAM or additional flash is used in conjunction with the boot flash,  
care must be taken to keep stub length short and located as close as possible to the flash end of the route.  
The DLPC6401 device provides enough Program Memory Address pins to support a flash or SRAM device up to  
128 Mb. For systems not requiring this capacity, up to two address pins can be used as GPIO instead.  
Specifically, the two most significant address bits (that is PM_ADDR_22 and PM_ADDR_21) are shared on pins  
GPIO_16 and GPIO_17 respectively. Like other GPIO pins, these pins float in a high-impedance input state  
following reset; therefore, if these GPIO pins are to be reconfigured as Program Memory Address pins, they  
require board-level pulldown resistors to prevent any Flash address bits from floating until software is able to  
reconfigure the pins from GPIO to Program Memory Address. Also note, that until software reconfigures the pins  
from GPIO to Program Memory Address, upper portions of flash memory are not accessible.  
Table 5 shows typical GPIO_16 and GPIO_17 pin configurations for various flash sizes.  
Table 5. Typical GPIO_16 and GPIO_17 Pin Configurations for Various Flash Sizes  
FLASH SIZE  
32 Mb or less  
64 Mb  
GPIO_36 PIN CONFIGURATION  
GPIO_17  
GPIO_35 PIN CONFIGURATION  
GPIO_16  
GPIO_17  
PM_ADDR_22(*)(1)  
PM_ADDR_21(*)(1)  
PM_ADDR_21(*)(1)  
128 Mb  
(1) (*) = Board-level pulldown resistor required  
7.3.2.1 Calibration and Debug Support  
The DLPC6401 device contains a test point output port, TSTPT_(7:0), which provides selected system calibration  
support as well as ASIC debug support. These test points are inputs while reset is applied and switch to outputs  
when reset is released. The state of these signals is sampled upon the release of system reset and the captured  
value configures the test mode until the next time reset is applied. Each test point includes an internal pulldown  
resistor and thus external pullups are used to modify the default test configuration. The default configuration  
(x00) corresponds to the TSTPT(7:0) outputs being driven low for reduce switching activity during normal  
operation. For maximum flexibility, TI recommends an option to jumper to an external pullup for TSTPT(0). Note  
that adding a pullup to TSTPT(7:1) may have adverse affects for normal operation and TI does not recommend  
it. Note that these external pullups are sampled only after a 0-to-1 transition on POSENSE and thus changing  
their configuration after reset has been released does not have any affect until the next time reset is asserted  
and released. Table 6 defines the test mode selection for two programmable scenarios defined by TSTPT_(0):  
Table 6. Test Mode Selection  
NO SWITCHING  
ACTIVITY  
ARM AHB DEBUG SIGNAL SET  
TSTPT(3:0) CAPTURE  
VALUE  
x0  
0
x1  
TSTPT(0)  
TSTPT(1)  
TSTPT(2)  
TSTPT(3)  
TSTPT(4)  
TSTPT(5)  
TSTPT(6)  
TSTPT(7)  
ARM9 HREADY  
0
HSEL for all external program memory  
ARM9 HTRANS(1)  
0
0
PFC HREADY OUT (ARM9 R/W)  
PFC EMI(2) request (ARM9 R/W)  
PFC EMI(2) request accept (ARM9 R/W)  
PFC EMI(2) access done (ARM9 R/W)  
ARM9 Gate_The_Clk  
0
0
0
0
(1) These are only the default output selections. Software can reprogram the selection at any time.  
(2) PFC EMI is the parallel flash controller external memory interface  
7.3.2.2 Board-Level Test Support  
The in-circuit tri-state enable signal (ICTSEN) is a board-level test control signal. By driving ICTSEN to a logic-  
high state, all ASIC outputs (except TDO1 and TDO2) are tri-stated.  
The DLPC6401 device also provides JTAG boundary scan support on all I/O signals, non-digital I/O, and a few  
special signals. Table 7 defines these exceptions.  
Copyright © 2013–2015, Texas Instruments Incorporated  
27  
 
 
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
Table 7. DLPC6401 – Signals Not Covered by JTAG  
SIGNAL NAME  
TDO2  
PKG BALL  
M18  
V16  
TMS2  
MOSC  
A14  
MOSCN  
VPGM  
A15  
D17  
A3  
EXRES  
RA_IN_P  
RA_IN_N  
RB_IN_P  
RB_IN_N  
RC_IN_P  
RC_IN_N  
RD_IN_P  
RD_IN_N  
RE_IN_P  
RE_IN_N  
RCK_IN_P  
RCK_IN_N  
AB10  
AA10  
Y11  
W11  
AB12  
AA12  
Y13  
W13  
AB14  
AA14  
Y9  
W9  
7.4 Device Functional Modes  
DLPC6401 has two functional modes (ON/OFF) controlled by a single pin PROJ_ON:  
When pin PROJ_ON is set high, the projector automatically powers up and an image is projected from the  
DMD.  
When pin PROJ_ON is set low, the projector automatically powers down to save power.  
28  
Copyright © 2013–2015, Texas Instruments Incorporated  
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DLCP6401 controller is required to be coupled with DLP4500 DMD to provide a reliable display solution for  
various data and video display applications. The DMDs are spatial light modulators which reflect incoming light  
from an illumination source to one of two directions, with the primary direction being into a projection or collection  
optic. Each application is derived primarily from the optical architecture of the system and the format of the data  
coming into the DLCP6401. Applications of interest include accessory projectors, smart projectors, screenless  
display, embedded in display devices like notebooks, laptops, tablets, and hot spots. Other applications include  
wearable (near-eye or head mounted) displays, interactive displays, low-latency gaming displays, and digital  
signage.  
8.2 Typical Application  
A common application when using the DLPC6401 is for creating a pico-projector that can be used as an  
accessory to a smartphone, tablet, or laptop. The DLPC6401 in the pico-projector receives images from a  
multimedia front-end within the product as shown in Figure 13.  
Parallel  
Flash  
VGA  
EPROM  
I2C  
Analog  
I2C  
Front End  
Composite, Component,  
SVideo  
DLP4500 DMD  
(.45 WXGA)  
Port 1  
30 bit Parallel  
HDMI  
HDMI  
I2C  
(R, G, B, HS, VS, clk)  
Receiver/  
Display Port  
Receiver  
DDR  
24  
DLPC6401  
Display Port  
I2C  
(23mm x 23mm)  
Port 2  
LVDS (Flat Panel Display  
Link Compatible)  
Multimedia  
Front End  
GPIO  
IR USB  
RS232  
I2C  
LED  
Discrete LED Driver  
(WiFi Display)  
DLP specific hardware  
Generic Front End Hardware  
12V DC Supply  
Regulators to generate different  
power supply used in system.  
3.3V, 5V, 1.2V, 1.9V, 8.5V, -10V, 16V  
Figure 13. Typical Application Diagram  
Copyright © 2013–2015, Texas Instruments Incorporated  
29  
 
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
Typical Application (continued)  
8.2.1 Design Requirements  
A pico-projector is created by using a DLP chipset comprised of DLP4500 DMD and a DLPC6401 controller. The  
DLPC6401 controller does the digital image processing and the DLP4500 DMD is the display device for  
producing the projected image. In addition to the these DLP chips in the chipset, other chips may be needed.  
Typically a Flash part is needed to store the software and firmware. Additionally, a discrete LED driver solution is  
required to provide the LED driver functionality for LED illumination. The illumination light that is applied to the  
DMD is typically from red, green, and blue LEDs. These are often contained in three separate packages, but  
sometimes more than one color of LED die may be in the same package to reduce the overall size of the pico-  
projector. DLPC6401 controller provides either parallel- or LVDS-interface to connect the DLPC6401 controller to  
the multimedia front-end for receiving images and video.  
8.2.1.1 Recommended MOSC Crystal Oscillator Configuration  
Table 8. Crystal Port Characteristics  
PARAMETER  
NOMINAL  
3.9  
UNIT  
pF  
MOSC to GND capacitance  
MOSCZ to GND capacitance  
3.8  
pF  
Table 9. Recommended Crystal Configuration(1)  
PARAMETER  
RECOMMENDED  
UNIT  
Crystal circuit configuration  
Crystal type  
Parallel resonant  
Fundamental (first harmonic)  
Crystal nominal frequency  
32 MHz  
Crystal frequency temperature stability  
±30 PPM  
Overall crystal frequency tolerance (including accuracy, stability,  
aging, and trim sensitivity)  
±100 PPM  
Crystal ESR  
50 (max)  
Ω
pF  
pF  
Ω
Crystal load  
10  
7 (max)  
100  
Crystal shunt load  
RS drive resistor (nominal)  
RFB feedback resistor (nominal)  
CL1 external crystal load capacitor (MOSC)  
CL2 external crystal load capacitor (MOSCN)  
PCB layout  
1
MΩ  
pF  
pF  
(1)  
See  
(1)  
See  
TI recommends a ground isolation ring around the crystal.  
(1) Typical drive level with the TCX 9C32070001 crystal (ESRmax = 30 Ω) = 160 µW  
30  
Copyright © 2013–2015, Texas Instruments Incorporated  
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
MOSC  
MOSCN  
CL = Crystal load capacitance (Farads)  
CL1 = 2 * (CL œ CStray-MOSC  
CL2 = 2 * (CL œ CStray-MOSCN  
RFB  
)
)
RS  
CStray-MOSC = Sum of Package & PCB capacitance at  
the crystal pin associated with ASIC signal MOSC.  
CStray-MOSCN = Sum of Package & PCB capacitance at  
the crystal pin associated with ASIC signal MOSCN.  
Crystal  
CL1  
CL2  
Figure 14. Recommended Crystal Oscillator Configuration  
It is assumed that the external crystal oscillator will stabilize within 50 ms after stable power is applied.  
8.2.2 Detailed Design Procedure  
For connecting the DLPC6401 controller and the DLP4500 DMD together, see the reference design schematic.  
Layout guidelines should be followed to achieve a reliable projector. To complete the DLP system, an optical  
module or light engine is required that contains the DLP4500 DMD, associated illumination sources, optical  
elements, and necessary mechanical components.  
8.2.3 Application Curve  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
1
2
3
4
5
6
7
8
[ꢀꢁ /urrent (!)  
Figure 15. Relative Output vs LED Current  
Copyright © 2013–2015, Texas Instruments Incorporated  
31  
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
9 Power Supply Recommendations  
9.1 System Power Regulation  
Table 10 shows the recommended power delivery budget for DC offset and AC noise as observed at the  
corresponding DLPC6401 power pins.  
Table 10. Recommended Power Delivery Budget for DC Offset and AC Noise  
NOMINAL  
VOLTAGE  
TOTAL SUPPLY  
MARGIN  
ASIC POWER RAIL  
USAGE  
(1)  
VDDC  
ASIC core  
Internal PLLs  
1.2 V  
1.2 V  
1.8 V  
1.9 V  
3.3 V  
1.2 V  
3.3 V  
±5%  
VDD12_PLLM/ VDD12_PLLD  
±5%  
VDD_18_PLLM/ VDD18_PLLD Internal PLLs  
±5%(2)  
±5%  
VDD_DMD  
VDD33  
DMD LPDDR I/O  
LVCMOS I/O  
±5%  
VDD12_FPD  
VDD33_FPD  
FPD-Link LVDS I/F  
FPD-Link LVDS I/F  
±5%  
±5%  
(1) Total supply margin = DC offset budget + AC noise budget  
(2) When possible, TI suggests that a tighter supply tolerance (±3%) be used for the 1.8-V power to the  
PLLs to improve system noise immunity  
TI strongly recommends that the VDD_18_PLLM and VDD_18_PLLD power feeding internal PLLs be derived  
from an isolated linear regulator to minimize the AC noise component. It is acceptable for VDD12_PLLM and  
VDD12_PLLD to be derived from the same regulator as the core VDD12, but they should be filtered.  
9.2 System Power-Up Sequence  
Although the DLPC6401 device requires an array of power supply voltages (1.2 V, 1.8 V, 1.9 V, and 3.3 V), there  
are no restrictions regarding the relative order of power supply sequencing. This is true for both power-up and  
power-down scenarios. Similarly, there is no minimum time between powering-up and powering-down the  
different supplies feeding the DLPC6401 device. However, note that it is not uncommon for there to be power-  
sequencing requirements for the devices that share the supplies with the DLPC6401 device. For example:  
1.2-V core power should be applied whenever any I/O power is applied. This ensures the state of the  
associated I/O that are powered are controlled to a known state. Thus, TI recommends to apply core power  
first. Other supplies should be applied only after the 1.2-V ASIC core has ramped up.  
All ASIC power should be applied before POSENSE is asserted to ensure proper power-up initialization is  
performed. 1.8-V PLL power, 1.9-V I/O power, and 3.3-V I/O power should remain applied as long as 1.2-V  
core power is applied and POSENSE is asserted.  
It is assumed that all DLPC6401 device power-up sequencing is handled by external hardware. It is also  
assumed that an external power monitor will hold the DLPC6401 device in system reset during power-up (that is,  
POSENSE = 0). It should continue to assert system reset until all ASIC voltages have reached minimum  
specified voltage levels. During this time, all ASIC I/O are either tri-stated or driven low. The master PLL (PLLM)  
is released from reset upon the low-to-high transition of POSENSE, but the DLPC6401 device keeps the rest of  
the ASIC in reset for an additional 100 ms to allow the PLL to lock and stabilize its outputs. After this 100-ms  
delay, ARM9-related internal resets are de-asserted, causing the microprocessor to begin its boot-up routine.  
Figure 16 shows the recommended DLPC6401 system power-up sequence.  
32  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
System Power-Up Sequence (continued)  
1.2 V  
(VDDC ASIC Core)  
3.3 V  
(VDD33 ASIC I/O)  
1.2 V and 1.8 V  
(ASIC PLL)  
1.2 V and 3.3 V  
(FPD-Link  
VDD12_FPD and  
VDD33_FPD)  
1.9 V  
(VDD_DMD)  
POSENSE  
Figure 16. System Power-Up Sequence  
9.3 Power-On Sense (POSENSE) Support  
It is difficult to set up a power monitor to trip exactly on the ASIC minimum supply voltage specification. Thus for  
practical reasons, TI recommends that the external power monitor generating POSENSE target its threshold to  
90% of the minimum supply voltage specifications and ensure that POSENSE remain low a sufficient amount of  
time for all supply voltages to reach minimum ASIC requirements and stabilize. Note that the trip voltage for  
detecting the loss of power is not critical for POSENSE and thus may be as low as 50% of rated supply voltages.  
In addition, the reaction time to respond to a low voltage condition is not critical for POSENSE; however,  
PWRGOOD does have much more critical requirements in these areas.  
9.4 System Environment and Defaults  
9.4.1 DLPC6401 System Power-Up and Reset Default Conditions  
Following system power-up, the DLPC6401 device performs a power-up initialization routine that defaults the  
ASIC to its normal power mode, in which ARM9-related clocks are enabled at their full rate and associated resets  
are released. Most other clocks default to disabled state with associated resets asserted until released by the  
processor. These same defaults are also applied as part of all system reset events (watch dog timer timeout, and  
so on) that occur without removing or cycling power.  
Following power-up or system reset initialization, the ARM9 boots from an external flash memory after which it  
enables the rest of the ASIC clocks. When system initialization is complete, application software determines if  
and when to enter low-power mode.  
9.4.2 1.2-V System Power  
The DLPC6401 device can support a power delivery system with a single 1.2-V power source derived from a  
switching regulator. The DLPC6401 main core should receive 1.2-V power directly from the regulator output and  
the internal ASIC PLLs (VDDC, VDD12_PLLD, and VDD12_PLLM) should receive individually-filtered versions  
of this 1.2-V power. For specific filter recommendations, see PCB Layout Guidelines for Internal ASIC Power.  
9.4.3 1.8-V System Power  
A single 1.8-V power source should be used to supply both DLPC6401 internal PLLs. To keep this power as  
clean as possible, TI recommends that this power be sourced by a linear regulator that is individually filtered for  
each PLL (VDD_18_PLLD and VDD_18PLLM). For specific filter recommendations, see PCB Layout Guidelines  
for Internal ASIC Power.  
Copyright © 2013–2015, Texas Instruments Incorporated  
33  
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
System Environment and Defaults (continued)  
9.4.4 1.9-V System Power  
To maximize signal integrity, TI recommends to use an independent linear regulator to source the 1.9-V supply  
that supports the DMD interface (VDD_DMD). To achieve maximum performance, this supply must be tightly  
regulated to operating within a 1.9-V ±0.1 V range.  
9.4.5 3.3-V System Power  
The DLPC6401 device can support a power delivery system with a single 3.3-V power sources derived from a  
switching regulator. This 3.3-V power supplies all of the LVCMOS I/O. 3.3-V power should remain active in all  
power modes (VDD33) for which 1.2-V core power is applied.  
9.4.6 FPD-Link Input LVDS System Power  
The DLPC6401 device supports an FPD-Link compatible, LVDS input for an additional method of inputting video  
or graphics data for display. This interface has some special ASIC power considerations that are separate from  
the other ASIC 1.2- or 3.3-V power rails. Figure 17 shows a FPD-Link 1.2-V power pin (VDD12_FPD)  
configuration example.  
0.1 Ω DC/1 Ω at 2 Mhz Ferrite  
Ex. TDK HF70ACB201209-TL  
FPD12  
1.2 V rail  
(1.2 V)  
10 uF  
0.1 uF  
Figure 17. FPD-Link  
In addition, TI recommends to place 0.1-µF low equivalent series resistor (ESR) capacitors to ground as close to  
the FPD-Link lower pins of the ASIC as possible. FPD-Link 3.3-V power pins (FPD33) should also use external  
capacitors in the same manner as for VDD12_FPD pins.  
When FPD-Link is not used, the user can omit the previously mentioned filtering. However, the corresponding  
voltages must still be provided to avoid potential long-term reliability issues.  
9.4.7 Power Good (PWRGOOD) Support  
The PWRGOOD signal is defined as an early warning signal that alerts the ASIC 500 µs before DC supply  
voltages drop below specifications. This allows the ASIC to park the DMD ensuring the integrity of future  
operation. For practical reasons, TI recommends that the monitor sensing PWRGOOD be on the input side of  
supply regulators.  
9.4.8 5-V Tolerant Support  
The DLPC6401 device does not support any 5-V tolerant I/O. However, note that source signals ALF_HSYNC,  
ALF_VSYNC, and I2C typically have 5-V requirements and special measures must be taken to support them. TI  
recommends the use of a 5- to 3.3-V level shifter.  
34  
Copyright © 2013–2015, Texas Instruments Incorporated  
 
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
10 Layout  
10.1 Layout Guidelines  
TI recommends 2-ounce copper (2.6-mil) power and ground planes in the PCB design to achieve needed thermal  
connectivity.  
10.1.1 PCB Layout Guidelines for Internal ASIC Power  
TI recommends the following guidelines to achieve desired ASIC performance relative to internal PLLs:  
The DLPC6401 device contains two PLLs (PLLM and PLLD), each of which has a dedicated 1.2-V digital and  
1.8-V analog supply. These 1.2-V PLL pins should be individually isolated from the main 1.2-V system supply  
through a ferrite bead. The impedance of the ferrite bead should be much greater than that of the capacitor at  
frequencies where noise is expected. Specifically the impedance of the ferrite bead must be less than 0.5 Ω  
in the frequency range of 100 to 300 kHz and greater than 10 Ω in the frequency range >100 MHz.  
As a minimum, 1.8-V analog PLL power and ground pins should be isolated using an LC-filter with a ferrite  
serving as the inductor and a 0.1-µF capacitor on the ASIC side of the ferrite. TI recommends that this 1.8-V  
PLL power be supplied from a dedicated linear regulator and each PLL should be individually isolated from  
the regulator. The same ferrite recommendations described for the 1.2-V digital PLL supply apply to the 1.8-V  
analog PLL supplies.  
When designing the overall supply filter network, take care to ensure no resonance occurs. Particularly take  
care around the 1- to 2-mHz band, as this coincides with the PLL natural loop frequency.  
Signal VIA  
PCB Pad  
VIA to Common Analo/g  
Digital Board Power Plane  
ASIC Pad  
VIA to Common Analo/g  
Digital Board Ground Plane  
C
B
A
E
D
F
Local  
Decoupling  
for the PLL  
Digital Supply  
22  
MOSC  
Crystal  
Oscillator  
PLLM_  
VSS  
MOSC  
N
15  
PLLM_  
VAS  
PLLM_  
VDD  
PLLM_  
VAD  
PLLD_  
VSS  
10.0uF  
MOSC  
14  
13  
12  
FB  
FB  
PLLD_  
VAS  
PLLD_  
VDD  
PLLD_  
VAD  
10.0uF  
10.0uF  
FB  
FB  
10.0uF  
Figure 18. PLL Filter Layout  
Copyright © 2013–2015, Texas Instruments Incorporated  
35  
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
Layout Guidelines (continued)  
High-frequency decoupling is required for both 1.2-V and 1.8-V PLL supplies and should be provided as close as  
possible to each of the PLL supply package pins. TI recommends placing decoupling capacitors under the  
package on the opposite side of the board. Use high-quality, low-ESR, monolithic, surface mount capacitors.  
Typically 0.1 µF for each PLL supply should be sufficient. The length of a connecting trace increases the  
parasitic inductance of the mounting, and thus, where possible, there should be no trace, allowing the via to butt  
up against the land itself. Additionally, the connecting trace should be made as wide as possible. Further  
improvement can be made by placing vias to the side of the capacitor lands or doubling the number of vias.  
The location of bulk decoupling depends on the system design. Typically, a good ceramic capacitor in the 10-µF  
range is adequate.  
10.1.2 PCB Layout Guidelines for Quality Auto-Lock Performance  
One of the most important factors in getting good performance from Auto-Lock is to design the PCB with the  
highest-quality signal integrity possible. TI recommends the following:  
Place the ADC chip as close to the VESA/video connectors as possible.  
Avoid crosstalk to the analog signals by keeping them away from digital signals.  
Do not place the digital ground or power planes under the analog area between the VESA connector to the  
ADC chip.  
Avoid crosstalk onto the RGB analog signals. Separate them from the VESA Hsync and Vsync signals.  
Analog power should not be shared with the digital power directly.  
Try to keep the trace lengths of the RGB as equal as possible.  
Use good quality (1%) termination resistors for the RGB inputs to the ADC.  
If the green channel must be connected to more than the ADC green input and ADC sync-on-green input,  
provide a good-quality high-impendence buffer to avoid adding noise to the green channel.  
10.1.3 DMD Interface Considerations  
The DMD interface is modeled after the low-power DDR memory (LPDDR) interface. To minimize power  
dissipation, the LPDDR interface is defined to be unterminated. This makes good PCB signal integrity  
management imperative. In particular, impedance control and crosstalk mitigation is critical to robust operation.  
LPDDR board design recommendations include 3× design rules (that is, trace spacing = 3× trace width), ±10%  
impedance control, and signal routing directly over a neighboring reference plane (ground or 1.9-V plane).  
DMD interface performance is also a function of trace length, so even with good board design, the length of the  
line limits performance. The DLPC6401 device works over a very-narrow range of DMD signal routing lengths at  
120 MHz only. The device provides the option to reduce the interface clock rate to facilitate a longer interface  
(this includes 106.7-MHz, 96-MHz, 87.7-MHz, and 80-MHz programming options). However, note that reducing  
the interface clock rate has the impact of increasing DMD load time, which in turn reduces image quality. Even  
with a clock reduction, the edge rates required to achieve the fastest clock rates still exist and cause overshoot  
and undershoot issues if there is excessive crosstalk, or the line is too short. Thus, ensuring positive timing  
margin requires attention to many factors.  
As an example, DMD interface system timing margin can be calculated as follows:  
Setup margin = (DLPC6401 output setup) – (DMD input setup) – (PCB routing mismatch) – (PCB SI degradation)  
(1)  
Hold-time margin = (DLPC6401 output hold) – (DMD input hold) – (PCB routing mismatch) – (PCB SI degradation) (2)  
Where PCB SI degradation is signal integrity degradation due to PCB effects, which include simultaneously  
switching output (SSO) noise, crosstalk, and inter-symbol interference (ISI). The DLPC6401 I/O timing  
parameters can be found in their corresponding tables. Similarly, PCB routing mismatch can be budgeted and  
met through controlled PCB routing. However, PCB SI degradation is not so straightforward.  
In an attempt to minimize the signal integrity analysis that would otherwise be required, the following PCB design  
guidelines are provided as a reference of an interconnect system that satisfies both waveform quality and timing  
requirements (accounting for both PCB routing mismatch and PCB SI degradation). Variation from these  
recommendations may also work, but should be confirmed with PCB signal integrity analysis or lab  
measurements.  
36  
Copyright © 2013–2015, Texas Instruments Incorporated  
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
Layout Guidelines (continued)  
PCB design:  
Configuration:  
Asymmetric dual stripline  
Signal routing layer thickness (T):  
Single-ended signal impedance controlled:  
Differential signal impedance controlled:  
1.0-oz copper (1.2 mil)  
50 Ω (±10%)  
100-Ω differential (±10%)  
PCB Stackup:  
Reference plane 1 is assumed to be a ground plane for proper return path.  
Reference plane 2 is assumed to be the 1.9-V DMD I/O power plane or another ground plane.  
Dielectric FR4, (Er):  
4.3 at 1 GHz (nominal)  
Signal trace distance to reference plane 1 (H1): 5 mil (nominal)  
Signal trace distance to reference plane 2 (H2): 30.4 mil (nominal)  
If additional routing layers are required, ensure they are adjacent to one of these reference planes  
Reference Plane 1  
H1  
W
W
T
Trace  
S
Trace  
H2  
Dielectric Er  
H2  
T
Trace  
Trace  
H1  
Reference Plane 2  
Figure 19. PCB Stackup Geometries  
Flex design:  
Configuration:  
2-layer microstrip  
The reference plane is assumed to be a ground plane for proper return path.  
Vias: Max 2 per signal  
Copyright © 2013–2015, Texas Instruments Incorporated  
37  
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
Layout Guidelines (continued)  
Single trace width:  
4 mil (min)  
Signal routing layer thickness (T):  
Single-ended signal impedance controlled:  
0.5-oz copper (0.6 mil)  
50 Ω (±10%)  
Table 11. General PCB Routing (Applies to All Corresponding PCB Signal)  
PARAMETER  
APPLICATION  
SINGLE-ENDED SIGNALS  
REQUIREMENT  
UNIT  
4
(0.1)  
mil  
(mm)  
Escape routing in ball field  
Minimum  
5
mil  
(mm)  
Line width (W)(1)  
PCB etch data or control  
PCB etch clocks  
Minimum  
Minimum  
Minimum  
Minimum  
Minimum  
(0.13)  
7
mil  
(mm)  
(0.18)  
4
(0.1)  
mil  
(mm)  
Escape routing in ball field  
PCB etch data or control  
PCB etch clocks  
Minimum  
Line spacing to other signals (S)  
mil  
(mm)  
2× the line width(2)  
mil  
(mm)  
3x the line width  
(1) Line width is expected to be adjusted to achieve impedance requirements  
(2) 3× line spacing is recommended for all signals to help achieve the desired signal integrity  
Table 12. DMD I/F, PCB Interconnect Length Matching Requirements(1)(2)  
SIGNAL GROUP LENGTH MATCHING  
I/F  
SIGNAL GROUP  
REFERENCE SIGNAL  
MAX MISMATCH  
UNIT  
DMD_TRC,  
DMD_SCTRL,  
DMD_LOADB  
DMD_D(23:0)  
±200  
(±5.08)  
mil  
(mm)  
DMD (DDR)  
DMD_DCLK  
DMD_SAC_BUS,  
DMD_DAD_OEZ,  
DMD_DAD_STRB,  
DMD_DAD_BUS  
±200  
(± 5.08)  
mil  
(mm)  
DMD (SDR)  
DMD_SAC_CLK  
(1) These values apply to the PCB routing only. They do not include any internal package routing mismatch associated with the DLPC6401  
or the DMD. Additional margin can be attained if internal DLPC6401 package skew is taken into account.  
(2) To minimize EMI radiation, serpentine routes added to facilitate matching should be implemented on signal layers only, and between  
reference planes.  
Table 13. DMD I/F, PCB(1) Interconnect Min and Max Length Limitations (Note Operating Frequency  
Dependencies)(2)  
SIGNAL ROUTING LENGTH  
BUS  
SIGNAL GROUP  
MAX(3)(4)  
UNIT  
MIN(3)  
120 MHz  
106.7 MHz  
96 MHz  
87.7 MHz  
DMD_DCLK,  
DMD_TRC,  
DMD_SCTRL,  
DMD_LOADB  
DMD_D(23:0)  
2480  
(63)  
2953  
(75)  
3465  
(88)  
3937  
(100)  
3937  
(100)  
mil  
(mm)  
DMD (DDR)  
(1) Signal lengths below the stated minimum likely result in excessive overshoot or undershoot (at any frequency).  
(2) PCB layout assumes 2× design rules (that is, line spacing = 2× line width). However, 3× design rules reduce crosstalk and significantly  
help performance.  
(3) Minimum and maximum signal routing length includes escape routing.  
(4) DMD-DDR maximum signal length is a function of the DMD_DCLK rate.  
38  
Copyright © 2013–2015, Texas Instruments Incorporated  
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
Table 13. DMD I/F, PCB() Interconnect Min and Max Length Limitations (Note Operating Frequency  
Dependencies)() (continued)  
SIGNAL ROUTING LENGTH  
BUS  
SIGNAL GROUP  
MAX(3)(4)  
UNIT  
MIN(3)  
120 MHz  
106.7 MHz 96 MHz  
87.7 MHz  
DMD_SAC_CLK,  
DMD_SAC_BUS,  
DMD_DAD_OEZ,  
DMD_DAD_STRB,  
DMD_DAD_BUS  
512  
(13)  
5906  
(150)  
mil  
(mm)  
DMD (SDR)  
spacer  
Number of layer changes:  
Minimize layer changes  
Stubs:  
Stubs should be avoided  
Termination requirements:  
DMD DDR data:  
Specifically: DMD_D(23-0)  
External [5-Ω] series termination (at the transmitter)  
DMD DDR clock  
Specifically: DMD_DCLK  
External [5-Ω] series termination  
DMD TRC, SCTRL, load: Specifically: DMD_TRC, DMD_SCTRL, DMD_LOADB  
External [5-Ω] series termination (at the transmitter)  
DMD SAC and  
miscellaneous control:  
Specifically: DMD_SAC_CLK, DMD_SAC_BUS, DMD_DAD_STRB,  
DMD_DAD_BUS  
External [5-Ω] series termination (at the transmitter)  
DAD output enable:  
Specifically: DMD_DAD_OEZ  
External [0-Ω] series termination  
Instead this signal must be externally pulled-up to VDD_DMD through a 30- to  
51-kΩ resistor.  
However, note that both the DLPC6401 output timing parameters and the DMD input timing parameters include  
timing budget to account for their respective internal package routing skew. Thus, additional system margin can  
be attained by comprehending the package variations and compensating for them in the PCB layout. To increase  
system timing margin, TI recommends that DLPC6401 package variation be compensated for (by signal group),  
but it may not be desirable to compensate for DMD package skew. Because, each DMD has a different skew  
profile making the PCB layout DMD specific. Thus, if an OEM wants to use a common PCB design for different  
DMDs, TI recommends that either the DMD package skew variation not be compensated for on the PCB or the  
package lengths for all applicable DMDs be considered. Table 14 provides the DLPC6401 package output delay  
at the package ball for each DMD I/F signal. DMD internal routing skew data is contained in the DMD data sheet.  
Table 14. DLPC6401 DMD I/F Package Routing Length  
SIGNAL  
DMD_D0  
DMD_D1  
DMD_D2  
DMD_D3  
DMD_D4  
DMD_D5  
DMD_D6  
TOTAL DELAY (ps)  
PACKAGE BALL  
SIGNAL  
DMD_D14  
DMD_D15  
DMD_D16  
DMD_D17  
DMD_D18  
DMD_D19  
DMD_D20  
TOTAL DELAY (ps)  
PACKAGE BALL  
25.9  
19.6  
13.4  
7.4  
A8  
B8  
19  
B12  
C12  
D12  
B7  
11.7  
4.7  
C8  
D8  
21.5  
24.8  
8.3  
18.1  
11.1  
4.4  
B11  
C11  
D11  
A10  
D7  
23.9  
B6  
Copyright © 2013–2015, Texas Instruments Incorporated  
39  
 
 
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
Table 14. DLPC6401 DMD I/F Package Routing Length (continued)  
SIGNAL  
DMD_D7  
DMD_D8  
DMD_D9  
DMD_D10  
DMD_D11  
DMD_D12  
DMD_D13  
TOTAL DELAY (ps)  
PACKAGE BALL  
SIGNAL  
DMD_D21  
TOTAL DELAY (ps)  
PACKAGE BALL  
0
E11  
C7  
1.6  
10.7  
16.7  
24.8  
18  
E9  
C10  
C6  
A9  
14.8  
18.4  
6.4  
DMD_D22  
B10  
E7  
DMD_D23  
DMD_DCLK  
DMD_LOADB  
DMD_SCTRL  
DMD_TRC  
4.8  
D10  
A6  
B9  
29.8  
25.7  
11.4  
4.6  
C9  
D9  
A12  
10.1.4 General Handling Guidelines for Unused CMOS-Type Pins  
To avoid potentially damaging current caused by floating CMOS input-only pins, TI recommends that unused  
ASIC input pins be tied through a pullup resistor to its associated power supply or a pulldown to ground. For  
ASIC inputs with an internal pullup or pulldown resistors, it is unnecessary to add an external pullup or pulldown,  
unless specifically recommended. Note that internal pullup and pulldown resistors are weak and should not be  
expected to drive the external line.  
Unused output-only pins can be left open.  
When possible, TI recommends that unused bidirectional I/O pins be configured to their output state such that  
the pin can be left open. If this control is not available and the pins may become an input, then they should be  
pulled-up (or pulled-down) using an appropriate resistor.  
40  
Copyright © 2013–2015, Texas Instruments Incorporated  
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
10.2 Layout Example  
Figure 20. Layer 3  
Copyright © 2013–2015, Texas Instruments Incorporated  
41  
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
Layout Example (continued)  
Figure 21. Layer 4  
10.3 Thermal Considerations  
The underlying thermal limitation for the DLPC6401 device is that the maximum operating junction temperature  
(TJ) not be exceeded (this is defined in the Recommended Operating Conditions). This temperature depends on  
operating ambient temperature, airflow, PCB design (including the component layout density and the amount of  
copper used), power dissipation of the DLPC6401 device, and power dissipation of surrounding components.  
The DLPC6401 package is designed primarily to extract heat through the power and ground planes of the PCB,  
thus copper content and airflow over the PCB are important factors.  
42  
版权 © 2013–2015, Texas Instruments Incorporated  
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
Thermal Considerations (接下页)  
The recommended maximum operating ambient temperature (TA) is provided primarily as a design target and is  
based on maximum DLPC6401 power dissipation and RθJA at 1 m/s of forced airflow, where RθJA is the thermal  
resistance of the package as measured using a JEDEC-defined standard test PCB. This JEDEC test PCB is not  
necessarily representative of the DLPC6401 PCB, and thus the reported thermal resistance may not be accurate  
in the actual product application. Although the actual thermal resistance may be different, it is the best  
information available during the design phase to estimate thermal performance. However, after the PCB is  
designed and the product is built, TI highly recommends that thermal performance be measured and validated.  
To do this, the top-center case temperature should be measured under the worst-case product scenario  
(maximum power dissipation, maximum voltage, and maximum ambient temperature) and validated not to  
exceed the maximum recommended case temperature (TC). This specification is based on the measured φJT for  
the DLPC6401 package and provides a relatively accurate correlation to junction temperature. Take care when  
measuring this case temperature to prevent accidental cooling of the package surface. TI recommends a small  
(approximately 40-gauge) thermocouple. The bead and the thermocouple wire should contact the top of the  
package and be covered with a minimal amount of thermally-conductive epoxy. The wires should be routed  
closely along the package and the board surface to avoid cooling the bead through the wires.  
版权 © 2013–2015, Texas Instruments Incorporated  
43  
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 器件命名规则  
11.1.1.1 视频时序参数定义  
每帧有效扫描行数 (ALPF) 定义一帧中包含可显示数据的行数:ALPF 是每帧总行数 (TLPF) 的子集。  
每行有效像素 (APPL) 定义包含可显示数据的一行中的像素时钟数:APPL 是每行总像素 (TPPL) 的子集。  
水平后沿 (HBP) 消隐 水平同步之后,第一个有效像素之前的消隐像素时钟数量。注意:HBP 时间以各自同步信号  
的前缘(有效)边沿为基准。  
水平前沿 (HFP) 消隐 最后一个有效时钟之后,水平同步之前的消隐像素时钟的数量。  
水平同步 (HS) 定义水平间隔(行)开始的时序基准点。绝对基准点由 HS 信号的有效边沿定义。有效边沿(源定  
义的上升沿或下降沿)是测量所有水平消隐参数的基准。  
每帧总行数 (TLPF) 以行数定义垂直扫描时间(帧时间):TLPF = 每帧总行数(有效和无效行)  
每行总像素 (TPPL) 以像素时钟数定义水平行扫描时间:TPPL = 每行总像素时钟数(有效和无效像素时钟)  
垂直后沿 (VBP) 消隐 垂直同步后,第一个有效行之前的消隐行的数量。  
垂直前沿 (VFP) 消隐 最后有效行之后,垂直同步前的消隐行的数量。  
垂直同步 (VS) 定义垂直间隔(帧)开始的时序基准点。这个绝对基准点由 VS 信号的有效边沿定义。有效边沿  
(源定义的上升沿或下降沿)是测量所有垂直消隐参数的基准。  
TPPL  
Vertical Back Porch (VBP)  
APPL  
Horizontal  
Back  
Porch  
Horizontal  
Front  
Porch  
TLPF  
(HBP)  
(HFP)  
ALPF  
Vertical Front Porch (VFP)  
22. 时序参数图  
44  
版权 © 2013–2015, Texas Instruments Incorporated  
DLPC6401  
www.ti.com.cn  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
器件支持 (接下页)  
11.1.1.2 器件标记  
标记定义:  
1 行: DLP®设备名称  
2 行:铸造部件号  
3 行:SSSSSSYYWW-QQ:封装组件信息  
SSSSSS:制造工厂  
YYWW:日期代码(YY = :: WW = 周)  
QQ:合格等级选项 工程样品在此处以 ES 后缀标记。  
例如,TAIWAN1324-ES 表示在台湾制造的工程样品,制造日期是 2013 年第 24 周  
4 行:LLLLLLL e1:半导体晶圆的铸造批次代码以及无铅焊锡球标记  
LLLLLLL:铸造批次代码  
e1:表示含 SnAgCu 的无铅焊锡球  
版权 © 2013–2015, Texas Instruments Incorporated  
45  
DLPC6401  
ZHCSC08C DECEMBER 2013REVISED AUGUST 2015  
www.ti.com.cn  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
DLP is a registered trademark of Texas Instruments.  
ARM926 is a trademark of ARM.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
46  
版权 © 2013–2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Mar-2018  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
DLPC6401ZFF  
ACTIVE  
BGA  
ZFF  
419  
60  
TBD  
Call TI  
Call TI  
0 to 55  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明  
德州仪器 (TI) 公司有权按照最新发布的 JESD46 对其半导体产品和服务进行纠正、增强、改进和其他修改,并不再按最新发布的 JESD48 提  
供任何产品和服务。买方在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。  
TI 公布的半导体产品销售条款 (http://www.ti.com/sc/docs/stdterms.htm) 适用于 TI 已认证和批准上市的已封装集成电路产品的销售。另有其  
他条款可能适用于其他类型 TI 产品及服务的使用或销售。  
复制 TI 数据表上 TI 信息的重要部分时,不得变更该等信息,且必须随附所有相关保证、条件、限制和通知,否则不得复制。TI 对该等复制文  
件不承担任何责任。第三方信息可能受到其它限制条件的制约。在转售 TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去  
相关 TI 产品或服务的明示或暗示保证,且构成不公平的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。  
买方和在系统中整合 TI 产品的其他开发人员(总称设计人员)理解并同意,设计人员在设计应用时应自行实施独立的分析、评价和判断,且  
应全权 负责并确保 应用的安全性, 及设计人员的 应用 (包括应用中使用的所有 TI 产品)应符合所有适用的法律法规及其他相关要求。设计  
人员就自己设计的 应用声明,其具备制订和实施下列保障措施所需的一切必要专业知识,能够 (1) 预见故障的危险后果,(2) 监视故障及其后  
果,以及 (3) 降低可能导致危险的故障几率并采取适当措施。设计人员同意,在使用或分发包含 TI 产品的任何 应用前, 将彻底测试该等 应用  
和 和该等应用所用 TI 产品的 功能而设计。  
TI 提供技术、应用或其他设计建议、质量特点、可靠性数据或其他服务或信息,包括但不限于与评估模块有关的参考设计和材料(总称“TI 资  
),旨在帮助设计人员开发整合了 TI 产品的 应用, 如果设计人员(个人,或如果是代表公司,则为设计人员的公司)以任何方式下载、  
访问或使用任何特定的 TI 资源,即表示其同意仅为该等目标,按照本通知的条款使用任何特定 TI 资源。  
TI 所提供的 TI 资源,并未扩大或以其他方式修改 TI TI 产品的公开适用的质保及质保免责声明;也未导致 TI 承担任何额外的义务或责任。  
TI 有权对其 TI 资源进行纠正、增强、改进和其他修改。除特定 TI 资源的公开文档中明确列出的测试外,TI 未进行任何其他测试。  
设计人员只有在开发包含该等 TI 资源所列 TI 产品的 应用时, 才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或  
其他法理授予您任何TI知识产权的任何其他明示或默示的许可,也未授予您 TI 或第三方的任何技术或知识产权的许可,该等产权包括但不限  
于任何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务  
的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权  
的许可。  
TI 资源系按原样提供。TI 兹免除对资源及其使用作出所有其他明确或默认的保证或陈述,包括但不限于对准确性或完整性、产权保证、无屡  
发故障保证,以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。TI 不负责任何申索,包括但不限于因组合产品所致或  
与之有关的申索,也不为或对设计人员进行辩护或赔偿,即使该等产品组合已列于 TI 资源或其他地方。对因 TI 资源或其使用引起或与之有关  
的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿,不管 TI 是否获悉可能会产生上述损害赔  
偿,TI 概不负责。  
TI 已明确指出特定产品已达到特定行业标准(例如 ISO/TS 16949 ISO 26262)的要求外,TI 不对未达到任何该等行业标准要求而承担  
任何责任。  
如果 TI 明确宣称产品有助于功能安全或符合行业功能安全标准,则该等产品旨在帮助客户设计和创作自己的 符合 相关功能安全标准和要求的  
应用。在应用内使用产品的行为本身不会 配有 任何安全特性。设计人员必须确保遵守适用于其应用的相关安全要求和 标准而设计。设计人员  
不可将任何 TI 产品用于关乎性命的医疗设备,除非已由各方获得授权的管理人员签署专门的合同对此类应用专门作出规定。关乎性命的医疗  
设备是指出现故障会导致严重身体伤害或死亡的医疗设备(例如生命保障设备、心脏起搏器、心脏除颤器、人工心脏泵、神经刺激器以及植入  
设备)。此类设备包括但不限于,美国食品药品监督管理局认定为 III 类设备的设备,以及在美国以外的其他国家或地区认定为同等类别设备  
的所有医疗设备。  
TI 可能明确指定某些产品具备某些特定资格(例如 Q100、军用级或增强型产品)。设计人员同意,其具备一切必要专业知识,可以为自己的  
应用选择适合的 产品, 并且正确选择产品的风险由设计人员承担。设计人员单方面负责遵守与该等选择有关的所有法律或监管要求。  
设计人员同意向 TI 及其代表全额赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2018 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY