DP83825IRMQR [TI]

具有 50MHz 速率且外形尺寸超小 (3mm x 3mm) 的低功耗 10/100Mbps 以太网 PHY 收发器 | RMQ | 24 | -40 to 85;
DP83825IRMQR
型号: DP83825IRMQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 50MHz 速率且外形尺寸超小 (3mm x 3mm) 的低功耗 10/100Mbps 以太网 PHY 收发器 | RMQ | 24 | -40 to 85

以太网 局域网(LAN)标准 以太网:16GBASE-T 电信 电信集成电路
文件: 总111页 (文件大小:1840K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
DP83825I 低功耗 10/100Mbps 以太网物理层收发器  
1 特性  
2 应用  
1
超小尺寸 10/100Mbps PHYQFN 3mm ×  
3mm24 引脚  
楼宇自动化:IP 摄像机,HMI  
消费类电子产品:STBOTTIPTV、游戏机  
电缆长度 > 150 米  
极低功耗 < 127mW  
打印机  
电子销售终端  
工厂自动化  
小型系统解决方案:集成式 MDI MAC 终端电阻  
可编程节能模式  
3 说明  
主动睡眠  
DP83825I 是一款具有超小尺寸的超低功耗以太网物理  
层收发器,集成了 PMD 子层,可支持 10BASE-Te 和  
100BASE-TX 以太网协议。该收发器支持长达 150 米  
CAT5e 电缆。DP83825I 通过外部变压器直接连接  
双绞线介质。在主从模式下,此器件通过简化 MII  
(RMII) MAC 层相连。在 RMII 主模式下提供  
50MHz 的输出时钟。这一输出时钟与 MDI 衍生时钟同  
步,以减少系统抖动。  
深度断电  
节能以太网 (EEE) IEEE 802.3az  
对传统的 MAC 提供 EEE 支持  
局域网唤醒 (WoL)  
电压模式线路驱动器  
MAC 接口:RMII(主从模式)  
3.3V 单电源  
I/O 电压:1.8V 3.3V  
中继器:在非托管模式中为 RMII 背对背模式  
用于配置和状态的 MDC/MDIO 接口  
快速链路丢弃模式  
DP83825I 同样支持节能以太网、局域网唤醒和 MAC  
隔离,以进一步降低系统功耗。对于不支持通过 MAC  
发送 EEE 信号的传统 MAC,可通过对寄存器进行配  
置启用节能模式。DP83825I 能在非托管中继器模式下  
工作。在该模式下,DP83825I 作为中继器运行,无需  
对寄存器进行配置。 为了便于开发和调试,DP83825I  
提供了集成式电缆诊断工具、内置自检和环回功能。  
诊断 特性  
基于 TDR 的开路和短路电缆诊断  
内置数据包发生器  
多个环回路径  
器件信息(1)  
可编程硬件中断引脚  
器件型号  
DP83825I  
封装  
封装尺寸(标称值)  
工作温度范围:-40°C 85°C  
3.00mm × 3.00mm,  
间距 0.4mm  
符合 IEEE 802.3 100BASE-TX 10BASE-Te 规  
QFN (24)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
DP83825I 应用图  
25 MHz XTAL/Ref  
Clock 25/50 MHz  
Ref Clock: 50MHz  
Media Types  
-100BASE-TX  
-10BASE-Te  
Interrupt  
M
A
C
RMII ( Master/Slave)  
Media Interface  
(MDI)  
DP83825  
MDC,MDIO  
AVDD :3.3V  
VDDIO:3.3/1.8V  
Copyright © 2018, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNLS638  
 
 
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 36  
7.5 Programming .......................................................... 38  
7.6 Register Maps......................................................... 41  
Application and Implementation ........................ 90  
8.1 Application Information............................................ 90  
8.2 Typical Applications ............................................... 90  
Power Supply Recommendations...................... 94  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements................................................ 9  
6.7 Timing Diagrams..................................................... 11  
6.8 Typical Characteristics............................................ 14  
Detailed Description ............................................ 18  
7.1 Overview ................................................................. 18  
7.2 Functional Block Diagram ....................................... 19  
7.3 Feature Description................................................. 19  
8
9
10 Layout................................................................... 94  
10.1 Layout Guidelines ................................................. 94  
10.2 Layout Example .................................................... 98  
11 器件和文档支持 ..................................................... 99  
11.1 接收文档更新通知 ................................................. 99  
11.2 社区资源................................................................ 99  
11.3 ....................................................................... 99  
11.4 静电放电警告......................................................... 99  
11.5 Glossary................................................................ 99  
12 机械、封装和可订购信息..................................... 100  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (December 2018) to Revision A  
Page  
将器件状态从预告信息更改为生产数据” ............................................................................................................................. 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
5 Pin Configuration and Functions  
DP83825 RMQ Package  
24-Pin QFN  
Top View  
RD_M  
RD_P  
7
8
23  
22  
TX_D0  
RX_ER/S (A-MDIX)  
GND  
GND  
9
21  
TD_M  
TD_P  
10  
11  
20  
19  
CRS_DV/S (PhyAd  
VDDIO  
d[1])  
Not to scale  
DP83825I Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Reset: I, PD  
Active: I, PD  
RMII Transmit Enable: TX_EN is active high signal and is presented on the rising edge  
of the TX_CLK. TX_EN indicates the presence of valid data inputs on TX_D [1:0].  
TX_EN  
1
RMII Master Mode: 50 MHz Clock Out(default).  
Reset: I, PD, S  
Active: O  
50MHzOut/LED2  
2
3
RMII Slave Mode: LED_2(default). This pin can be configured as GPIO using register  
configuration.  
Interrupt / Power Down(default): The default function of this pin is power down.  
Register access is required to configure this pin as an interrupt. In power-down  
function, an active low signal on this pin places the device in power down mode. When  
this pin is configured as an interrupt pin, this pin is asserted low when an interrupt  
condition occurs. The pin has an open-drain output with a weak internal pullup (9.5KΩ).  
Some applications may require an external pullup resistor.  
Reset: I, PU  
Active: I, PU  
INTR/PWRDN  
(1) The pin functions are defined below:  
Type I: Input  
Type O: Output  
Type I/O: Input/Output  
Type PD or PU: Internal Pulldown or Pullup  
Type S: Strap Configuration Pin  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
DP83825I Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
LED0 : Activity Indication LED indicates transmit and receive activity in addition to the  
status of the Link. The LED is ON when Link is good. The LED blinks when the  
transmitter or receiver is active. This pin can also act as GPIO through register  
configuration.  
Reset: I, PD, S  
Active: O  
LED0  
4
This pin is at 3.3 V always and not linked to voltage supplied to VDDIO pin. This  
is to avoid external components when operating PHY at VDDIO 1.8 V.  
RST_N: This pin is an active low reset input. Asserting this pin low for at least 1 μs will  
force a reset process to occur. Initiation of reset causes strap pins to be re-scanned  
and resets all the internal registers of the PHY to default value.  
Reset: I, PU  
Active: I, PU  
RST_N  
5
6
Input Analog Supply: 3.3 V. For decoupling capacitor requirements, refer to the  
Application and Implementation section.20  
VDDA3V3  
Power  
RD_M  
RD_P  
GND  
7
8
A
A
Differential Receive Input (PMD): These differential inputs are automatically configured  
to accept either 10BASE-Te, 100BASE-TX specific signaling mode  
9
GND  
A
Ground: Connect to Ground  
TD_M  
TD_P  
10  
11  
Differential Transmit Output (PMD): These differential outputs are configured to either  
10BASE-Te, 100BASE-TX signaling mode based on configuration chosen for PHY.  
A
Crystal Output: Reference Clock output. XO pin is used for crystal only. This pin should  
be left floating when a CMOS-level oscillator is connected to XI.  
XO  
12  
A
Crystal / Oscillator Input Clock  
XI/50MHzIn  
RBIAS  
13  
14  
A
A
RMII Master mode: 25-MHz ±50 ppm-tolerance crystal or oscillator clock  
RMII Slave mode: 50-MHz ±50 ppm-tolerance CMOS-level oscillator clock  
RBIAS value 6.49 KΩ 1% connected to ground  
Reset: I, PU-  
10K  
Active: IO, PU-  
10K  
Management Data I/O: Bidirectional management data signal that may be source by  
the management station or the PHY. This pin has internal pullup of 10 KΩ. External  
pullup of up to 2.2 KΩ can be added if needed  
MDIO  
15  
Management Data Clock: Synchronous clock to the MDIO serial management  
input/output data. This clock may be asynchronous to the MAC transmit and receive  
clocks. The maximum clock rate is 25 MHz. There is no minimum clock rate.  
Reset: I, PD  
Active: I, PD  
MDC  
16  
17  
RMII Receive Data: Symbols received on the cable are decoded and presented on  
these pins synchronous to reference clock. They contain valid data when RX_DV is  
asserted.  
Reset: I, PD, S  
Active: O  
RX_D1  
RMII Receive Data: Symbols received on the cable are decoded and presented on  
these pins synchronous to reference clock. They contain valid data when RX_DV is  
asserted.  
Reset: I, PD, S  
Active: O  
RX_D0  
VDDIO  
18  
19  
I/O Supply : 3.3 V/1.8 V. For decoupling capacitor requirements, refer to the Application  
and Implementation section.  
Power  
Reset: I, PD, S  
Active: O  
Carrier Sense / Receive Data Valid: This pin combines the RMII Carrier and Receive  
Data Valid indications.  
CRS_DV  
GND  
20  
21  
GND  
Ground pin  
RMII Receive Error: This pin indicates an error symbol has been detected within a  
received packet in RMII mode. RX_ER is asserted high synchronously to the rising  
edge of the reference clock. This pin is not required to be used by the MAC in RMII  
because the PHY will automatically corrupting data on a receive error.  
Reset: I, PD, S  
Active: O  
RX_ER  
22  
Reset: I, PD  
Active: I, PD  
TX_D0  
TX_D1  
23  
24  
RMII Transmit Data: TX_D[1:0] received from the MAC and shall be synchronous to the  
rising edge of the reference clock.  
Reset: I, PD  
Active: I, PD  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
(
PARAMETER  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
4
UNIT  
V
Analog supply voltage  
IO supply voltage  
AVDD3V3  
VDDIO3V3  
VDDIO1V8  
Tj  
4
V
2.1  
105  
150  
4
V
Junction Temperature  
Storage Temperature  
MDI pins  
°C  
°C  
V
Tstg  
–65  
-0.3  
TD–, TD+, RD–, RD+  
MAC interface pins  
SMI interface pins  
XI  
–0.3  
–0.3  
–0.3  
–0.3  
4
V
4
V
4
V
Reset  
4
V
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
PARAMETER  
DEFINITION  
MIN  
MAX  
UNIT  
Human-body  
All Pins ( except MDI)  
±1.5  
kV  
model (HBM), per  
ANSI/ESDA/JEDE  
C JS-001(1)  
MDI ( Media Dependent Interface) pins  
±5  
kV  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing  
withless than 500-V HBM is possible with the necessary precautions.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
AVDD3V3  
MIN  
3
TYP  
3.3  
3.3  
1.8  
MAX  
3.6  
UNIT  
Analog supply voltage  
IO supply voltage  
V
V
V
VDDIO3V3  
VDDIO1V8  
3
3.6  
1.62  
1.98  
Operating Free Air  
Temperature (DP83825I)  
Ta  
–40  
VDDIO-10%  
VDDIO-10%  
25  
VDDIO  
85  
C
V
V
V
TX_EN, TX_D0, TX_D1, RX_D0, RX_D1, RX_DV,  
RX_ER, MDIO, MDC, INT/PWDN, RESET  
VDDIO+10  
%
Pins  
Pins  
Pins  
VDDIO+10  
%
XI Osclliator Input  
LED0  
VDDIO  
AVDD3V3-  
10%  
AVDD3V3+  
10%  
AVDD3V3  
6.4 Thermal Information  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-case (bottom) thermal resistance  
Junction-to-board thermal resistance  
53.5  
49.6  
28.6  
2.3  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJC(bot)  
RθJB  
YJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
28.5  
14.9  
YJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
6.5 Electrical Characteristics  
over operating free-air temperature range with VDDA = 3.3V (unless otherwise noted)  
(1)  
PARAMETER  
IEEE Tx CONFORMANCE (100BaseTx)  
Differential Output Voltage  
TEST CONDITIONS  
100 Base Tx idle transmission  
10BaseTe data transmission  
MIN  
TYP  
1.0  
MAX  
UNIT  
V
IEEE Tx CONFORMANCE (10BaseTe)  
Differential Voltage  
1.75  
V
POWER CONSUMPTION ( Power Optimised Mode )  
I(AVDD3  
RMII Master (100BaseTx)  
V3)  
Traffic = 50%  
Traffic = 50%  
Traffic = 50%  
Traffic = 50%  
Traffic = 50%  
Traffic = 50%  
37.5  
37.5  
7.5  
mA  
mA  
mA  
mA  
mA  
mA  
I(AVDD3  
RMII Slave (100BaseTx)  
V3)  
I(VDDIO  
RMII Master (100BaseTx)  
=3V3)  
I(VDDIO  
RMII Slave (100BaseTx)  
=3V3)  
3.5  
I(VDDIO  
RMII Master (100BaseTx)  
=1V8)  
4.5  
I(VDDIO  
RMII Slave (100BaseTx)  
=1V8)  
1.6  
POWER CONSUMPTION ( Cable Reach Optimised Mode)  
I(AVDD3  
V3)  
RMII Master (100BaseTx)  
RMII Master (100BaseTx)  
RMII Master (10BaseTe)  
RMII Master (10BaseTe)  
RMII Slave (100BaseTx)  
RMII Slave (100BaseTx)  
RMII Slave (10BaseTe)  
RMII Slave (10BaseTe)  
RMII Master (100BaseTx)  
RMII Master (100BaseTx)  
RMII Master (10BaseTe)  
RMII Master (10BaseTe)  
RMII Slave (100BaseTx)  
RMII Slave (100BaseTx)  
RMII Slave (10BaseTe)  
RMII Slave (10BaseTe)  
RMII Master (100BaseTx)  
Traffic = 50%  
41  
41  
28  
32  
41  
41  
28  
32  
7.5  
10  
6.5  
7.5  
3.5  
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
I(AVDD3  
V3)  
Traffic = 100%  
Traffic = 50%  
Traffic = 100%  
Traffic = 50%  
Traffic = 100%  
Traffic = 50%  
Traffic = 100%  
Traffic = 50%  
Traffic = 100%  
Traffic = 50%  
Traffic = 100%  
Traffic = 50%  
Traffic = 100%  
Traffic = 50%  
Traffic = 100%  
Traffic = 50%  
50  
I(AVDD3  
V3)  
I(AVDD3  
V3)  
40  
50  
50  
I(AVDD3  
V3)  
I(AVDD3  
V3)  
I(AVDD3  
V3)  
I(AVDD3  
V3)  
40  
14  
12  
I(VDDIO  
=3V3)  
I(VDDIO  
=3V3)  
I(VDDIO  
=3V3)  
I(VDDIO  
=3V3)  
I(VDDIO  
=3V3)  
I(VDDIO  
=3V3)  
8
6
I(VDDIO  
=3V3)  
2.5  
2.5  
4
I(VDDIO  
=3V3)  
6
I(VDDIO  
=1V8)  
14  
(1) Ensured by production test, characterization or design  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Electrical Characteristics (continued)  
(1)  
over operating free-air temperature range with VDDA = 3.3V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I(VDDIO  
=1V8)  
RMII Master (100BaseTx)  
Traffic = 100%  
5.5  
14  
mA  
I(VDDIO  
=1V8)  
RMII Master (10BaseTe)  
RMII Master (10BaseTe)  
RMII Slave (100BaseTx)  
RMII Slave (100BaseTx)  
RMII Slave (10BaseTe)  
RMII Slave (10BaseTe)  
Traffic = 50%  
Traffic = 100%  
Traffic = 50%  
Traffic = 100%  
Traffic = 50%  
Traffic = 100%  
4
4
mA  
mA  
mA  
mA  
mA  
mA  
I(VDDIO  
=1V8)  
14  
6
I(VDDIO  
=1V8)  
1.5  
2.5  
1
I(VDDIO  
=1V8)  
I(VDDIO  
=1V8)  
I(VDDIO  
=1V8)  
1
6
POWER CONSUMPTION (Low Power Modes)  
100 BaseTx link in EEE mode with LPIs  
ON  
100 BaseTx EEE mode  
15.5  
mA  
Deep Power Down  
3.5  
4
mA  
mA  
mA  
mA  
mA  
I(AVDD=  
3V3)  
IEEE Power Down  
Active Sleep  
11  
37  
5.5  
Active but not Link  
RESET  
100 BaseTx EEE mode  
Deep Power Down  
IEEE Power Down  
Active Sleep  
2
2.5  
2
mA  
mA  
mA  
mA  
mA  
mA  
I(VDDIO  
=3V3)  
5
Active but not Link  
RESET  
5
2.5  
100 BaseTx EEE mode  
Deep Power Down  
IEEE Power Down  
Active Sleep  
2
1.5  
1.5  
3
mA  
mA  
mA  
mA  
mA  
mA  
I(VDDIO  
=1V8)  
Active but not Link  
RESET  
3
1.5  
BOOTSTRAP DC CHARACTERISTICS (2 Level)  
VIH_3v3  
VIL_3v3  
VIH_1v8  
VIL_1v8  
High Level Bootstrap Threshold : 3V3  
Low Level Bootstrap Threshold : 3V3  
High Level Bootstrap Threshold:1V8  
Low Level Bootstrap Threshold :1V8  
1.3  
1.3  
V
V
V
V
0.6  
0.6  
30  
Crystal oscillator  
Load Capacitance  
15  
pF  
IO  
VIH High Level Input Voltage  
VIL Low Level Input Voltage  
VOH High Level Output Voltage  
VOLLow Level Output Voltage  
VDDIO= 3V3+/- 10%  
1.7  
2.4  
V
V
V
V
VDDIO= 3V3+/- 10%  
0.8  
0.4  
3V3  
IoH= -2mA, VDDIO=3V3 +/-10%  
IoL= 2mA, VDDIO=3V3 +/- 10%  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
(1)  
over operating free-air temperature range with VDDA = 3.3V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.65*VD  
DIO  
VIH High Level Input Voltage  
VDDIO= 1V8+/- 10%  
V
0.35*VD  
DIO  
VIL Low Level Input Voltage  
VDDIO= 1V8+/- 10%  
V
V
1V8  
VDDIO-  
0.45  
VOH High Level Output Voltage  
IoH= -2mA, VDDIO=1V8 +/-10%  
VOLLow Level Output Voltage  
Iih (VIN=VCC)  
IoL= 2mA, VDDIO=1V8 +/- 10%  
TA=-40 TO 85C, VIN=VDDIO  
TA=-40 TO 85C, VIN=GND  
Tri State Output High Current  
Tri State Output Low Current  
0.45  
15  
V
uA  
uA  
uA  
uA  
pF  
Iil (VIN=GND)  
15  
Iozh  
-15  
-15  
15  
Iozl  
15  
Cin ( Input Capacitance)  
R Pull Down  
5
10  
8
8
13 Kohms  
R Pull UP  
10  
13 Kohms  
XI input osc clock pk-pk  
XI input osc clock common mode  
VDDIO  
VDDIO/2  
V
V
8
Copyright © 2018–2019, Texas Instruments Incorporated  
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
6.6 Timing Requirements  
PARAMETER  
MIN  
0.5  
NOM  
MAX  
UNIT  
POWER-UP TIMING  
T1  
T2  
T3  
Voltage Ramp Duration ( 0 to 100% VDDIO)(1)  
Supply Sequencing AVDD followed by VDDIO  
Voltage Ramp Duration ( 0 to 100% of AVDD)  
40  
200  
40  
ms  
ms  
ms  
0.5  
POR release time / Powerup to SMI ready: Post power-up stabilization time  
prior to MDC preamble for register access  
T4  
T5  
50  
ms  
Powerup to FLP  
1500  
ms  
V
Pedestal Voltage on AVDD, VDDIO before Power Ramp  
0.3  
RESET TIMING  
RESET PULSE Width: Miminum Reset pulse width to be able to reset (w/o  
debouncing caps)  
T1  
25  
us  
Reset to SMI ready: Post reset stabilization time prior to MDC preamble for  
register access  
T2  
T3  
2
ms  
Reset to FLP  
1500  
0.5  
ms  
ms  
ms  
Reset to 100M signaling (strapped mode)  
Reset to RMII Master clock  
0.2  
100M EEE timings  
Sleep time (Ts)  
210  
20  
us  
ms  
us  
us  
Quiet time (Tq)  
Refresh time (Tr)  
Wake time (Tw_sys_tx)  
200  
36  
RMII Master TIMING (100M)  
RMII Master Clock Period  
20  
ns  
%
RMII Master Clock Duty Cycle  
35  
4
65  
14  
65  
T2  
T3  
T4  
TX_D[1:0], TX_ER, TX_EN Setup to RMII Master Clock  
TX_D[1:0], TX_ER, TX_EN Hold from RMII Master Clock  
RX_D[1:0], RX_ER, CRS_DV Delay from RMII Master Clock rising edge  
ns  
ns  
ns  
2
4
10  
20  
RMII Slave TIMING (100M)  
T1  
Input Reference Clock Period  
ns  
%
Reference Clock Duty Cycle  
35  
4
T2  
TX_D[1:0], TX_ER, TX_EN Setup to XI Clock rising(2)  
TX_D[1:0], TX_ER, TX_EN Hold from XI Clock rising  
RX_D[1:0], RX_ER, CRS_DV Delay from XI Clock rising  
ns  
ns  
ns  
T3  
2
T4  
4
14  
10  
SMI TIMING  
T1  
T2  
T3  
T4  
MDC to MDIO (Output) Delay Time  
MDIO (Input) to MDC Setup Time  
MDIO (Input) to MDC Hold Time  
MDC Frequency  
0
10  
10  
ns  
ns  
ns  
2.5  
20  
MHz  
OUTPUT CLOCK TIMING (50M RMII Master Clock)  
Frequency (PPM)  
Duty Cycle  
-50  
35  
50  
65  
ppm  
%
Rise time  
4000  
4000  
450  
40  
ps  
Fall Time  
ps  
Jitter (Long Term)  
ps  
RefCLK to clock out delay with multiple resets  
INPUT CLOCK tolerance  
ns  
25MHz  
Frequency Tolerance  
-50  
50  
ppm  
(1) Clock shall be available at power ramp. If Clock is provided after power ramp, external Reset of PHY is needed once clock is available  
(2) RMII Slave Output Timing default supports setup time upto 7.5 ns. For 7.5ns to 10.5ns, program register 0x0017.8 = 1, 0x0042=0x0014  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Timing Requirements (continued)  
PARAMETER  
Rise / Fall Time  
MIN  
NOM  
MAX  
UNIT  
ns  
5
1.75  
60  
Jitter Tolerance (Accumulated over 100,000 cycles)  
Duty Cycle  
ns  
40  
%
input phase noise at 1KHz  
input phase noise at 10KHz  
input phase noise at 100KHz  
input phase noise at 1MHz  
input phase noise at 10MHz  
-98  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
ppm  
-113  
-113  
-113  
-113  
50  
50MHz  
Frequency Tolerance  
-50  
40  
Rise / Fall Time  
5
ns  
Jitter Tolerance (Accumulated over 100,000 cycles)  
Duty Cycle  
1.75  
60  
ns  
%
input phase noise at 1KHz  
input phase noise at 10KHz  
input phase noise at 100KHz  
input phase noise at 1MHz  
input phase noise at 10MHz  
-87  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
-107  
-107  
-107  
-107  
LATENCY TIMING  
Slave RMII Rising edge XI clock with assertion TX_EN to SSD symbol on  
105  
105  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MDI (100M)  
Master RMII Rising edge clock with assertion TX_EN to SSD symbol on  
MDI (100M)  
Tx  
Slave RMII Rising edge XI clock with assertion TX_EN to SSD symbol on  
MDI (10M)  
1350  
1300  
350  
Master RMII Rising edge clock with assertion TX_EN to SSD symbol on  
MDI (10M)  
SSD symbol on MDI to Slave RMII Rising edge of XI clock with assertion of  
CRS_DV (100M)  
SSD symbol on MDI to Master RMII Rising edge of Master clock with  
assertion of CRS_DV (100M)  
325  
Rx  
SSD symbol on MDI to Slave RMII Rising edge of XI clock with assertion of  
CRS_DV (10M)  
2150  
2150  
SSD symbol on MDI to Master RMII Rising edge of Master clock with  
assertion of CRS_DV (10M)  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
6.7 Timing Diagrams  
T1  
VVDDIO  
VAVDD  
XI  
0.3V  
0V  
T3  
T2  
0.3V  
0V  
Clock shall be available at Power Ramp, Else additional RESET_N is needed  
Hardware  
RESET_N  
T4  
MDC  
`
FLP Burst  
T5  
1. Power-Up Timing  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Timing Diagrams (接下页)  
VVDD  
XI  
tT1  
Hardware  
RESET_N  
32 Clocks  
tT2  
MDC  
T3  
FLP Burst  
2. Reset Timing  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Timing Diagrams (接下页)  
MDC  
tT4t  
tT1t  
MDIO  
(output)  
MDC  
tT2t  
tT3t  
MDIO  
(input)  
Valid Data  
3. Serial Management Timing  
tT1t  
XI  
Master Clock  
tT2t  
tT3t  
TX_D[1:0]  
TX_EN  
Valid Data  
4. RMII Transmit Timing  
tT1t  
XI  
RX_CLK  
Master Clock  
tT2t  
RX_D[1:0]  
CRS_DV  
RX_DV  
Valid Data  
RX_ER  
5. RMII Receive Timing  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
6.8 Typical Characteristics  
This section describes the DP83825 Drive characteristics for VDDIO 3.3 V and 1.8 V.  
6. LED_0, LED_1, CLKOUT VOH 3.3 V  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Typical Characteristics (接下页)  
This section describes the DP83825 Drive characteristics for VDDIO 3.3 V and 1.8 V.  
7. LED_0, LED_1, CLKOUT VOL 3.3 V  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
This section describes the DP83825 Drive characteristics for VDDIO 3.3 V and 1.8 V.  
8. LED_1, CLKOUT VOH 1.8 V  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Typical Characteristics (接下页)  
This section describes the DP83825 Drive characteristics for VDDIO 3.3 V and 1.8 V.  
9. LED_1, CLKOUT VOL 1.8 V  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DP83825I is a fully-featured single-port Physical Layer transceiver compliant to IEEE802.3 10BASE-Te and  
100BASE-TX standards. The device supports the standard Reduced Media Independent Interface (RMII) for  
direct connection to Media Access Controller (MAC).  
The device is designed for a single 3.3-V power supply with an integrated LDO to provide voltage rails needed  
for internal blocks. The device allows I/O voltage interfaces for 3.3 V or 1.8 V. Automatic supply configuration  
within the DP83825I allows for any combination of VDDIO supply and AVDD supply without the need for  
additional configuration settings.  
The DP83825I uses mixed-signal processing to perform equalization, data recovery, and error correction to  
achieve robust operation over a CAT5e twisted-pair cable greater than 150 meters. DP83825I supports various  
Low Power features like Active Sleep, IEEE Power Down and Deep Power Down. It also supports Energy  
Efficient Ethernet and Wake-on-LAN.  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.2 Functional Block Diagram  
RMII Option  
Serial  
Management  
RMII Interface  
TX  
Data  
RX  
TX_CLK  
RX_CLK  
Data  
MII  
Registers  
10BASE-Te  
And  
10BASE-Te  
And  
100BASE-TX  
100BASE-TX  
Auto-Negotiation  
Wake-on-LAN  
Energy Efficient Ethernet  
Clock  
Generation  
Transmit Block  
Receive Block  
DAC  
ADC  
BIST  
LED  
Driver  
Cable Diagnostics  
Auto-MDIX  
Reference  
Clock  
TD  
RD  
LEDs  
7.3 Feature Description  
7.3.1 Auto-Negotiation (Speed / Duplex Selection)  
Auto-Negotiation provides a mechanism for exchanging configuration information between the two ends of a link  
segment. This mechanism is implemented by exchanging Fast Link Pulses (FLP). FLPs are burst pulses that  
provide the information used to communicate the abilities between two devices at each end of a link segment.  
The DP83825I supports 100BASE-TX and 10BASE-Te modes of operation for Auto-Negotiation. Auto-  
Negotiation ensures that the highest common speed is selected based on the advertised abilities of the Link  
Partner and the local device. Auto-Negotiation can be enabled or disabled in hardware, using the bootstrap, or by  
register configuration, using bit[12] in the Basic Mode Control Register (BMCR, address 0x0000). For further  
details regarding Auto-Negotiation, refer to Clause 28 of the IEEE 802.3 specification.  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 Auto-MDIX Resolution  
The DP83825I can determine if a “straight” or “crossover” cable is used to connect to the link partner. It can  
automatically re-assign channel A and B to establish link with the link partner. Auto-MDIX resolution precedes the  
actual Auto-Negotiation process that involves exchange of FLPs to advertise capabilities. Automatic MDI/MDIX is  
described in IEEE 802.3 Clause 40, section 40.8.2. It is not a required implementation for 10BASE-Te and  
100BASE-TX. Auto-MDIX can also be used when operating the PHY in Forced modes.  
Auto-MDIX can be enabled or disabled in hardware, using the hardware bootstrap, or by register configuration,  
using bit[15] of the PHY Control Register (PHYCR, address 0x0019). When Auto-MDIX is disabled, the PMA is  
forced to either MDI (“straight”) or MDIX (“crossover”). Manual configuration of MDI or MDIX can also be  
accomplished using register configuration, using bit[14] of the PHYCR.  
7.3.3 Energy Efficient Ethernet  
7.3.3.1 EEE Overview  
Energy Efficient Ethernet (EEE), defined by IEEE 802.3az, is a capability integrated into Layer 1 (Physical Layer)  
and Layer 2 (Data Link Layer) to operate in Low Power Idle (LPI) mode. In LPI mode, power is saved during  
periods of low packet utilization. EEE defines the protocol to enter and exit LPI mode without dropping the link or  
corrupting packets.  
The DP83825I EEE supports 100-Mbps and 10-Mbps speeds. In 10BASE-Te operation, EEE operates with a  
reduced transmit amplitude that is fully interoperable with a 10BASE-T PHY.  
7.3.3.2 EEE Negotiation  
EEE is advertised during Auto-Negotiation. Auto-Negotiation is performed at power up, on management  
command, after link failure, or due to user intervention. EEE is supported if and only if both link partners  
advertise EEE capabilities. If EEE is not supported, all EEE functions are disabled and the MAC should not  
assert LPI. To advertise EEE capabilities, the PHY needs to exchange an additional formatted next page and  
unformatted next page in sequence.  
EEE Negotiation can be activated using Register Access. IEEE 802.3az defines MMD3 and MMD7 as the  
locations for EEE control and status registers. The MMD3 registers 0x1014, 0x1001, 0x1016, and MMD7  
registers 0x203C and 0x203D contain all the required controls and status indications for operating EEE. The  
Energy Efficient Ethernet Configuration Register #3 (EEECFG3, address 0x04D1) contains controls for EEE  
configuration bypass. By default, EEE capabilities are bypassed. To advertise EEE based on MMD3 and MMD7  
registers, EEE capabilities bypass needs to be disabled (0x04D1.0 = 0, 0x04D1.3 = 0) and EEE Advertisement  
shall be enabled (MMD7 0x203C.1 = 1).  
7.3.4 EEE for Legacy MACs Not Supporting 802.3az  
The device can be configured to initiate LPI signaling (Idle and Refresh) through register programming as well.  
This feature enables the system to perform EEE even when the MAC used is not supporting EEE. In this mode,  
responsibility of enabling and disabling LPI signaling lies on the Host Controller Application. While the DP83825I  
is in LPI signaling mode, this application will move the DP83825I into active mode before sending any data over  
the MAC interface. The DP83825I does not have buffering capability to store the data while in LPI signaling  
mode. To enable EEE through register configuration, the following registers must be configured:  
1. Enable EEE capabilities by writing 0x04D1.0 = 0, 0x04D1.3 = 0  
2. Advertise EEE capabilities during auto-negotiation by writing (MMD7 0x203C.1 = 1)  
3. Renegotiate the link by writing 0x0000.9 = 1  
4. Forced Tx LPI idles by writing 0x04D1.12 = 1  
5. Write 0x04D1.12=0 to stop transmitting LPI Idles  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Feature Description (接下页)  
7.3.5 Wake-on-LAN Packet Detection  
Wake-on-LAN (WoL) provides a mechanism to detect specific frames and notify the connected controller through  
either register status change, GPIO indication, or an interrupt flag. The WoL feature within the DP83825I allows  
for connected devices residing above the Physical Layer to remain in a low power state until frames with the  
qualifying credentials are detected. Supported WoL frame types include: Magic Packet and Magic Packet with  
Secure-ON Match. When a qualifying WoL frame is received, the DP83825I WoL logic circuit is able to generate  
a user-defined event (either pulses or level change) through any of the GPIO pins or a status interrupt flag to  
inform a connected controller that a wake event has occurred. Additionally, the DP83825I includes a CRC Gate  
to prevent invalid packets from triggering a wake-up event. The Wake-on-LAN feature includes:  
Identification of WoL frames in all supported speeds (100BASE-TX and 10BASE-Te).  
Wake-up interrupt generation upon reception of a WoL frame.  
CRC error checking of WoL frames to prevent interrupt generation from invalid frames.  
7.3.5.1 Magic Packet Structure  
When configured for Magic Packet detection, the DP83825I scans all incoming frames addressed to the node for  
a specific data sequence. This sequence identifies the frame as a Magic Packet frame.  
A Magic Packet frame must also meet the basic requirements for the LAN technology chosen, such as SOURCE  
ADDRESS, DESTINATION ADDRESS (which may be the receiving station’s IEEE address or a BROADCAST  
ADDRESS), and CRC.  
The specific Magic Packet sequence consists of 16 duplications of the MAC address of this node, with no breaks  
or interruptions, followed by Secure-ON password if security is enabled. This sequence can be located anywhere  
within the packet, but must be preceded by a synchronization stream. The synchronization stream is defined as 6  
bytes of 0xFF.  
DEST (6 bytes)  
SRC (6 bytes)  
MISC (X bytes, X >= 0)  
FF … FF (6 bytes)  
MAGIC Pattern  
DEST * 16  
Secure-On Password (6 bytes)  
MISC (Y bytes, Y >= 0)  
CRC (4 bytes)  
Only if Secure-On is Enabled  
10. Magic Packet Structure  
7.3.5.2 Magic Packet Example  
The following is an example Magic Packet for a Destination Address of 11h 22h 33h 44h 55h 66h and a secure-  
on password 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh:  
DESTINATION SOURCE MISC FF FF FF FF FF FF  
11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66  
11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66  
11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66  
11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66  
11 22 33 44 55 66 11 22 33 44 55 66 11 22 33 44 55 66  
11 22 33 44 55 66 2A 2B 2C 2D 2E 2F MISC CRC  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.5.3 Wake-on-LAN Configuration and Status  
Wake-on-LAN functionality is configured through the Receive Configuration Register (RXFCFG, address  
0x04A0). Wake-on-LAN status is reported in the Receiver Status Register (RXFS, address 0x04A1). The Wake-  
on-LAN interrupt flag configuration and status is located in the MII Interrupt Status Register #2 (MISR2, address  
0x0013).  
7.3.6 Low Power Modes  
The DP83825I supports three Low Power Modes. This section discusses the principles behind these low power  
modes and configuration to enable them.  
7.3.6.1 Active Sleep  
When the DP83825I enters into Active Sleep mode, all internal circuitry shuts down in the PHY except for the  
SMI and energy detection circuitry on the TD± and RD± pins. In this mode, the DP83825 sends out NLPs every  
1.4 seconds to wake up the link partner. Automatic power up occurs when a link partner is detected.  
Active Sleep is enabled by setting bits[14:12] = 0b110 in the PHY Specific Control Register (PHYSCR, address  
0x0011).  
7.3.7 IEEE Power Down  
IEEE Power Down shuts down all PHY circuitry except the SMI and internal clock circuitry.  
IEEE Power Down can be activated by either register access or through the INTR/PWRDN pin when the pin is  
configured for power-down function.  
To enable IEEE Power Down through the INTR/PWRDN pin, the pin must be driven LOW to ground.  
To enable IEEE Power Down through the SMI, set bit[11] = 1 in the Basic Mode Control Register (BMCR,  
address 0x0000).  
7.3.8 Deep Power Down  
Deep Power Down shuts down all PHY circuitry except the SMI. In this mode, the PHY PLL is shut-down to  
further reduce power consumption.  
Deep Power Down is activated by first enabling IEEE Power Down (from either the SMI or INT/PWDN_N pin)  
and then setting bit[2] = 1 in the Deep Power Down Control Register (DPDWN, address 0x0428).  
7.3.9 RMII Repeater Mode  
The DP83825I provides an option to enable repeater mode functionality to extend the cable reach in un-  
managed mode (without the need of additional register configuration). Two DP83825I can be connected in back-  
to-back mode without any external configuration. It provides a Hardware Strap to configure the CRS_DV pin of  
RMII interface to RX_DV pin for back-to-back operation. 11 shows the RMII pin connection that can enable  
DP83825I Repeater mode. If using managed mode, external Reset to both PHYs will be triggered at the same  
time.  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Feature Description (接下页)  
TX_D0  
TX_D1  
RX_D0  
RX_D1  
RX_D0  
RX_D1  
TX_D0  
TX_D1  
DP83825  
DP83825  
( RMII Slave Mode)  
( RMII Slave Mode)  
RX_DV  
TX_EN  
TX_EN  
RX_DV  
XI  
XI  
XI  
50 MHz  
(Oscillator)  
11. RMII Repeater Mode  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.10 Reduced Media Independent Interface (RMII)  
The DP83825I incorporates the Reduced Media Independent Interface (RMII) as specified in the RMII  
specification v1.2. The purpose of this interface is to provide a reduced pin count alternative to the IEEE 802.3  
MII as specified in Clause 22. Architecturally, the RMII specification provides an additional reconciliation layer on  
either side of the MII, but can be implemented in the absence of an MII. The DP83825I offers two types of RMII  
operations: RMII Slave and RMII Master. In RMII Master operation, the DP83825I operates off either a 25-MHz  
CMOS-level oscillator connected to XI pin or a 25-MHz crystal connected across XI and XO pins. A 50-MHz  
output clock referenced from DP83825I can be connected to the MAC. In RMII Slave operation, the DP83825I  
operates off of a 50-MHz CMOS-level oscillator connected to the XI pin and shares the same clock as the MAC.  
Alternatively, in RMII Slave mode, the PHY can run from 50MHz clock provided by the Host MAC.  
The RMII specification has the following characteristics:  
Supports 100BASE-TX and 10BASE-Te.  
Single clock reference sourced from the MAC to PHY (or from an external source)  
Provides independent 2-bit wide transmit and receive data paths  
Uses CMOS signal levels, the same levels as the MII interface  
In this mode, data transfers are two bits for every clock cycle using the internal 50-MHz reference clock for both  
transmit and receive paths.  
The RMII signals are summarized in 1:  
1. RMII Signals  
FUNCTION  
Receive Data Lines  
PINS  
TX_D[1:0]  
RX_D[1:0]  
TX_EN  
Transmit Data Lines  
Receive Control Signal  
Transmit Control Signal  
CRS_DV  
TX_EN  
TX_D[1:0]  
RX_CLK (optional)  
RX_DV (optional)  
RX_ER (optional)  
RX_D[1:0]  
PHY  
MAC  
CRS_DV  
XI  
(pin 23)  
50-MHz Reference  
Clock  
12. RMII Slave Signaling  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
TX_EN  
TX_D[1:0]  
RX_CLK (optional)  
RX_DV (optional)  
RX_ER (optional)  
RX_D[1:0]  
PHY  
MAC  
CRS_DV  
50-MHz Reference Clock  
RX_D3  
(pin 1)  
25-MHz Reference  
Clock  
13. RMII Master Signaling  
Data on TX_D[1:0] are latched at the PHY with reference to the clock edges on the XI pin. Data on RX_D[1:0]  
are latched at the MAC with reference to the same clock edges on the XI pin.  
In addition, CRX_DV can be configured as RX_DV signal. It allows a simpler method of recovering received data  
without the need to separate RX_DV from the CRS_DV indication.  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
7.3.11 Serial Management Interface  
The Serial Management Interface provides access to the DP83825I internal register space for status information  
and configuration. The SMI is compatible with IEEE 802.3 clause 22 and clause 45. The implemented register  
set consists of the registers required by the IEEE 802.3 plus several others to provide additional visibility and  
controllability of the DP83825I.  
The SMI includes the management clock (MDC) and the management input/output data pin (MDIO). MDC is  
sourced by the external management entity, also called Station (STA), and can run at a maximum clock rate of  
25 MHz. MDC is not expected to be continuous, and can be turned off by the external management entity when  
the bus is idle.  
MDIO is sourced by the external management entity and by the PHY. The data on the MDIO pin is latched on  
the rising edge of the MDC. MDIO pin requires a pullup resistor (2.2 Kor 1.5K), which pulls MDIO high  
during IDLE and turnaround.  
Up to 4 PHYs can share a common SMI bus. To distinguish between the PHYs, during power up or hardware  
reset, the DP83825I latches the Phy_Address[1:0] configuration pins to determine its address.  
The management entity must not start an SMI transaction in the first cycle after power up or hardware reset. To  
maintain valid operation, the SMI bus must remain inactive at least one MDC cycle after reset is deasserted. In  
normal MDIO transactions, the register address is taken directly from the management-frame reg_addr field, thus  
allowing direct access to 32 16-bit registers (including those defined in IEEE 802.3 and vendor-specific). The  
data field is used for both reading and writing. The Start code is indicated by a <01> pattern. This pattern makes  
sure that the MDIO line transitions from the default idle line state. Turnaround is defined as an idle bit time  
inserted between the Register Address field and the Data field. To avoid contention during a read transaction, no  
device may actively drive the MDIO signal during the first bit of turnaround. The addressed DP83825I drives the  
MDIO with a zero for the second bit of turnaround and follows this with the required data.  
For write transactions, the station-management entity writes data to the addressed DP83825I, thus eliminating  
the requirement for MDIO Turnaround. The turnaround time is filled by the management entity by inserting <10>.  
2. SMI Protocol  
SMI PROTOCOL  
Read Operation  
Write Operation  
<idle><start><op code><PHY address><reg addr><turnaround><data><idle>  
<idle><01><10><AAAAA><RRRRR><Z0><XXXX XXXX XXXX XXXX><idle>  
<idle><01><01><AAAAA><RRRRR><10><XXXX XXXX XXXX XXXX><idle>  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.3.11.1 Extended Register Space Access  
The DP83825I SMI function supports read and write access to the extended register set using the Register  
Control Register (REGCR, address 0x000D), the Data Register (ADDAR, address 0x000E), and the MDIO  
Manageable Device (MMD) indirect method defined in IEEE 802.3ah draft for Clause 22 for accessing the  
Clause 45 extended register set.  
The standard register set, MDIO registers 0 to 31, is accessed using the normal direct-MDIO access or the  
indirect method, except for register REGCR and register ADDAR, which are accessed only using the normal  
MDIO transaction. The SMI function will ignore indirect access to these registers.  
REGCR is the MMD access control. In general, register REGCR[4:0] is the device address DEVAD that directs  
any accesses of the ADDAR register to the appropriate MMD.  
The DP83825I supports three MMD device addresses:  
1. The Vendor-Specific device address DEVAD[4:0] = 11111 is used for general MMD register accesses.  
2. DEVAD[4:0] = 00011 is used for Energy Efficient Ethernet MMD register accesses. Register names for  
registers accessible at this device address are preceded by MMD3.  
3. DEVAD[4:0] = 00111 is used for Energy Efficient Ethernet MMD registers accesses. Register names for  
registers accessible at this device address are preceded by MMD7.  
All accesses through register REGCR and ADDAR must use the correct DEVAD. Transactions with other  
DEVAD are ignored. REGCR[15:14] holds the access function: address (00), data with no post increment (01),  
data with post increment on read and writes (10) and data with post increment on writes only (11).  
ADDAR is the address/data MMD register. ADDAR is used in conjunction with REGCR to provide the access  
to the extended register set. If register REGCR[15:14] is (00), then ADDAR holds the address of the extended  
address space register. Otherwise, ADDAR holds the data as indicated by the contents of its address  
register. When REGCR[15:14] is set to (00), accesses to register ADDAR modify the extended register set  
address register. This address register must always be initialized in order to access any of the registers within  
the extended register set.  
When REGCR[15:14] is set to (01), accesses to register ADDAR access the register within the extended  
register set selected by the value in the address register.  
When REGCR[15:14] is set to (10), access to register ADDAR access the register within the extended  
register set selected by the value in the address register. After that access is complete, for both reads and  
writes, the value in the address register is incremented.  
When REGCR[15:14] is set to (11), access to register ADDAR access the register within the extended  
register set selected by the value in the address register. After that access is complete, for write access only,  
the value in the address register is incremented. For read accesses, the value of the address register remains  
unchanged.  
The following sections describe how to perform operations on the extended register set using register REGCR  
and ADDAR. The descriptions use the device address for general MMD register accesses (DEVAD[4:0] =  
11111). For register accesses to the MMD3 or MMD7 registers the corresponding device address would be used.  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
7.3.11.2 Write Address Operation  
To set the address register:  
1. Write the value 0x001F (address function field = 00, DEVAD = 31) to register REGCR.  
2. Write the register address to register ADDAR.  
Subsequent writes to register ADDAR (step 2) continue to write the address register.  
7.3.11.3 Read Address Operation  
To read the address register:  
1. Write the value 0x001F (address function field = 00, DEVAD = 31) to register REGCR.  
2. Read the register address from register ADDAR.  
Subsequent reads to register ADDAR (step 2) continue to read the address register.  
7.3.11.4 Write (No Post Increment) Operation  
To write a register in the extended register set:  
1. Write the value 0x001F (address function field = 00, DEVAD = 31) to register REGCR.  
2. Write the desired register address to register ADDAR.  
3. Write the value 0x401F (data, no post increment function field = 01, DEVAD = 31) to register REGCR.  
4. Write the content of the desired extended register set to register ADDAR.  
Subsequent writes to register ADDAR (step 4) continue to rewrite the register selected by the value in the  
address register.  
Steps (1) and (2) can be skipped if the address register was previously configured.  
7.3.11.5 Read (No Post Increment) Operation  
To read a register in the extended register set:  
1. Write the value 0x001F (address function field = 00, DEVAD = 31) to register REGCR.  
2. Write the desired register address to register ADDAR.  
3. Write the value 0x401F (data, no post increment function field = 01, DEVAD = 31) to register REGCR.  
4. Read the content of the desired extended register set in register ADDAR.  
Subsequent reads to register ADDAR (step 4) continue to reading the register selected by the value in the  
address register.  
Steps (1) and (2) can be skipped if the address register was previously configured.  
7.3.11.6 Write (Post Increment) Operation  
1. Write the value 0x001F (address function field = 00, DEVAD = 31) to register REGCR.  
2. Write the desired register address to register ADDAR.  
3. Write the value 0x801F (data, post increment function field = 10, DEVAD = 31) or the value 0xC01F (data,  
post increment on writes function field = 11, DEVAD = 31) to register REGCR.  
4. Write the content of the desired extended register set to register ADDAR.  
Subsequent writes to register ADDAR (step 4) write the next higher addressed data register selected by the  
value of the address register; the address register is incremented after each access.  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.3.11.7 Read (Post Increment) Operation  
To read a register in the extended register set and automatically increment the address register to the next  
higher value following the write operation:  
1. Write the value 0x001F (address function field = 00, DEVAD = 31) to register REGCR.  
2. Write the desired register address to register ADDAR.  
3. Write the value 0x801F (data, post increment function field = 10, DEVAD = 31) to register REGCR.  
4. Read the content of the desired extended register set in register ADDAR.  
Subsequent reads to register ADDAR (step 4) read the next higher addressed data register selected by the value  
of the address register; the address register is incremented after each access.  
7.3.11.8 Example Write Operation (No Post Increment)  
The following example will demonstrate a write operation with no post increment. In this example, the MAC  
impedance will be adjusted to 99.25 Ω using the IO MUX GPIO Control Register (IOCTRL, address 0x0461).  
1. Write the value 0x001F to register 0x000D.  
2. Write the value 0x0461 to register 0x000E. (Sets desired register to the IOCTRL)  
3. Write the value 0x401F to register 0x000D.  
4. Write the value 0x0400 to register 0x000E. (Sets MAC impedance to 99.25 Ω)  
7.3.11.9 Example Read Operation (No Post Increment)  
The following example will demonstrate a read operation with no post increment. In this example, the MMD7  
Energy Efficient Ethernet Link Partner Ability Register (MMD7_EEE_LP_ABILITY, address 0x703D) will be read.  
1. Write the value 0x0007 to register 0x000D.  
2. Write the value 0x003D to register 0x000E. (Sets desired register to the MMD7_EEE_LP_ABILITY)  
3. Write the value 0x4007 to register 0x000D.  
4. Read the value of register 0x000E. (Data read is the value contained within the MMD7_EEE_LP_ABILITY)  
7.3.12 100BASE-TX  
7.3.12.1 100BASE-TX Transmitter  
The 100BASE-TX transmitter consists of several functional blocks which convert synchronous 4-bit nibble data,  
as provided by the MII, to a scrambled MLT-3 125 Mbps serial data stream on the MDI. 4B5B encoding and  
decoding is detailed in 3 below.  
The transmitter section consists of the following functional blocks:  
1. Code-Group Encoder and Injection Block  
2. Scrambler Block with Bypass Option  
3. NRZ to NRZI Encoder Block  
4. Binary to MLT-3 Converter / Common Driver Block  
The bypass option for the functional blocks within the 100BASE-TX transmitter provides flexibility for applications  
where data conversion is not always required. The DP83825I implements the 100BASE-TX transmit state  
machine diagram as specified in the IEEE 802.3 Standard, Clause 24.  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
3. 4B5B Code-Group Encoding / Decoding  
NAME  
PCS 5B CODE-GROUP  
MII 4B NIBBLE CODE  
DATA CODES  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
11110  
01001  
10100  
10101  
01010  
01011  
01110  
01111  
10010  
10011  
10110  
10111  
11010  
11011  
11100  
11101  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
IDLE AND CONTROL CODES(1)  
H
00100  
11111  
11000  
10001  
01101  
00111  
00000  
HALT code-group - Error code  
Inter-Packet IDLE - 0000  
First Start of Packet - 0101  
Second Start of Packet - 0101  
First End of Packet - 0000  
Second End of Packet - 0000  
EEE LPI - 0001(2)  
I
J
K
T
R
P
INVALID CODES  
V
V
V
V
V
V
V
V
V
00001  
00010  
00011  
00101  
00110  
01000  
01100  
10000  
11001  
(1) Control code-groups I, J, K, T, and R in data fields will be mapped as invalid codes, together with RX_ER asserted.  
(2) Energy Efficient Ethernet LPI must also have TX_ER / RX_ER asserted and TX_EN / RX_DV deasserted.  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.3.12.1.1 Code-Group Encoding and Injection  
The code-group encoder converts 4-bit (4B) nibble data generated by the MAC into 5-bit (5B) code-groups for  
transmission. This conversion is required to allow control data to be combined with packet data code-groups.  
Refer to 3 for 4B to 5B code-group mapping details.  
The code-group encoder substitutes the first 8-bits of the MAC preamble with a J/K code-group pair (11000  
10001) upon transmission. The code-group encoder continues to replace subsequent 4B preamble and data  
nibbles with corresponding 5B code-groups. At the end of the transmit packet, upon the deassertion of transmit  
enable (TX_EN) signal from the MAC, the code-group encoder injects the T/R code-group pair (01101 00111)  
indicating the end of the frame.  
After the T/R code-group pair, the code-group encoder continuously injects IDLEs into the transmit data stream  
until the next transmit packet is detected (reassertion of transmit enable).  
7.3.12.1.2 Scrambler  
The scrambler is required to control the radiated emissions at the media connector and on the twisted-pair cable.  
By scrambling the data, the total energy launched onto the cable is randomly distributed over a wide frequency  
range. Without the scrambler, energy levels at the MDI and on the cable could peak beyond FCC limitations at  
frequencies related to repeating 5B sequences (that is, continuous transmission of IDLEs).  
The scrambler is configured as a closed-loop linear feedback shift register (LFSR) with an 11-bit polynomial. The  
output of the closed-loop LFSR is X-ORd with the serial NRZ data from the code-group encoder. The result is a  
scrambled data stream with sufficient randomization to decrease radiated emissions at certain frequencies by as  
much as 20 dB.  
7.3.12.1.3 NRZ to NRZI Encoder  
After the transmit data stream has been serialized and scrambled, the data must be NRZI-encoded to comply  
with the TP-PMD standard for 100BASE-TX transmission over Category-5, unshielded twisted-pair cable. There  
is no ability to bypass this block within the DP83825I. The NRZI data is sent to the 100-Mbps Driver.  
7.3.12.1.4 Binary to MLT-3 Converter  
The binary to MLT-3 conversion is accomplished by converting the serial binary data stream output from the  
NRZI encoder into two binary data streams with alternately phased logic one events. These two binary streams  
are then fed to the twisted-pair output driver which converts the voltage to current and alternately drives either  
side of the transmit transformer primary winding, resulting in a minimal current MLT-3 signal.  
The 100BASE-TX MLT-3 signal sourced by the PMD output Pair common driver is controlled by the slew rate.  
The designer should consider this when selecting AC-coupling magnetics to ensure TP-PMD standard-compliant  
transition times (3 ns < Trise/fall < 5 ns).  
The 100BASE-TX transmit TP-PMD function within the DP83825I is capable of sourcing only MLT-3-encoded  
data. Binary output from the PMD Output Pair is not possible in 100-Mbps mode. Fully-encoded MLT-3 on both  
Tx+ and Tx– and can be configured through Register 0x0404 (for example, in transformer-less designs).  
7.3.12.2 100BASE-TX Receiver  
The 100BASE-TX receiver consists of several functional blocks which convert the scrambled MLT-3 125-Mbps  
serial data stream to synchronous 2-bit wide data that is provided to the RMII.  
The receive section consists of the following functional blocks:  
1. Input and BLW Compensation  
2. Signal Detect  
3. Digital Adaptive Equalization  
4. MLT-3 to Binary Decoder  
5. Clock Recovery Module  
6. NRZI to NRZ Decoder  
7. Descrambler  
8. Serial to Parallel  
9. Code-Group Alignment  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
10. 4B/5B Decoder  
11. Link Integrity Monitor  
12. Bad SSD Detection  
7.3.13 10BASE-Te  
The 10BASE-Te transceiver module is IEEE 802.3-compliant. It includes the receiver, transmitter, collision  
detection, heartbeat, loopback, jabber, and link integrity functions, as defined in the standard.  
7.3.13.1 Squelch  
Squelch is responsible for determining when valid data is present on the differential receive inputs. The squelch  
circuitry employs a combination of amplitude and timing measurements (as specified in the IEEE 802.3 10BASE-  
Te standard) to determine the validity of data on the twisted-pair inputs.  
The signal at the start of a packet is checked by the squelch, and any pulses not exceeding the squelch level  
(either positive or negative, depending upon polarity) are rejected. When this first squelch level is exceeded  
correctly, the opposite squelch level must then be exceeded no earlier than 50 ns. Finally, the signal must again  
exceed the original squelch level no earlier than 50 ns to qualify as a valid input waveform, and not be rejected.  
This checking procedure results in the typical loss of three preamble bits at the beginning of each packet. When  
the transmitter is operating, five consecutive transitions are checked before indicating that valid data is present.  
At this time, the squelch circuitry is reset.  
7.3.13.2 Normal Link Pulse Detection and Generation  
The link pulse generator produces pulses as defined in the IEEE 802.3 10BASE-Te standard. Each link pulse is  
nominally 100 ns in duration and transmitted every 16 ms in the absence of transmit data. Link pulses are used  
to check the integrity of the connection with the remote end.  
7.3.13.3 Jabber  
Jabber is a condition in which a station transmits for a period of time longer than the maximum permissible  
packet length, usually due to a fault condition. The jabber function monitors the DP83825I output and disables  
the transmitter if it attempts to transmit a packet of longer than legal size. A jabber timer monitors the transmitter  
and disables the transmission if the transmitter is active for approximately 100 ms. When disabled by the Jabber  
function, the transmitter stays disabled for the entire time that the module's internal transmit enable is asserted.  
This signal must be deasserted for approximately 500 ms (unjab time) before the Jabber function re-enables the  
transmit outputs. The Jabber function is only available and active in 10BASE-Te mode.  
7.3.13.4 Active Link Polarity Detection and Correction  
Swapping the wires within the twisted-pair can cause polarity errors, and the wrong polarity affects 10BASE-Te  
connections. 100BASE-TX is immune to polarity problems because it uses MLT-3 encoding. 10BASE-Te receive  
block automatically detects reversed polarity.  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.3.14 Loopback Modes  
There are several loopback options within the DP83825I that test and verify various functional blocks within the  
PHY. Enabling loopback modes allow for in-circuit testing of the digital and analog data paths. The DP83825I  
may be configured to any one of the Near-End Loopback modes or to the Far-End (reverse) Loopback mode. MII  
Loopback is configured using the Basic Mode Control Register (BMCR, address 0x0000). All other loopback  
modes are enabled using the BIST Control Register (BISCR, address 0x0016). Except where otherwise noted,  
loopback modes are supported for all speeds (10/100 Mbps and all MAC interfaces).  
Reverse  
Loopback  
PCS  
Loopback  
Analog  
Loopback  
MAC  
MII  
Loopback  
Digital  
Loopback  
External  
Loopback  
14. Loopback Test Modes  
7.3.14.1 Near-End Loopback  
Near-End Loopback provides the ability to loop the transmitted data back to the receiver through the digital or  
analog circuitry. The point at which the signal is looped back is selected using loopback control bits[3:0] in the  
BISCR register. Auto-Negotiation should be disabled before selecting the Near-End Loopback modes. This  
constraint does not apply for external-loopback mode.  
7.3.14.2 MII Loopback  
MII Loopback is the most shallow loop through the PHY. It is a useful test mode to validate communications  
between the MAC and the PHY. When in MII Loopback, data transmitted from a connected MAC on the TX path  
is internally looped back in the DP83825I to the RX pins where it can be checked by the MAC.  
MII Loopback is enabled by setting bit[14] in the BMCR and bit[2] in BISCR.  
7.3.14.3 PCS Loopback  
PCS Loopback occurs in the PCS layer of the PHY. No signal processing is performed when using PCS  
Loopback.  
PCS Input Loopback is enabled by setting bit[0] in the BISCR.  
PCS Output Loopback is enabled by setting bit[1] in the BISCR.  
7.3.14.4 Digital Loopback  
Digital Loopback includes the entire digital transmit and receive paths. Data is looped back prior to the analog  
circuitry.  
Digital Loopback is enabled by setting bit[2] in the BISCR.  
7.3.14.5 Analog Loopback  
When operating in 10BASE-Te or 100BASE-TX mode, signals can be looped back after the analog front-end.  
Analog Loopback requires 100-terminations across pins #1 and #2, as well as 100-terminations across pins  
#3 and #6 at the RJ45.  
Analog Loopback is enabled by setting bit[3] in the BISCR.  
版权 © 2018–2019, Texas Instruments Incorporated  
33  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
7.3.14.6 Far-End (Reverse) Loopback  
Far-End (Reverse) loopback is a special test mode to allow PHY testing with a link partner. In this mode, data  
that is received from the Link Partner passes through the PHY’s receiver, is looped back at the MAC interface  
and then transmitted back to the Link Partner. While in Reverse Loopback mode, all data signals that come from  
the MAC are ignored. It requires 100-terminations across pins #1 and #2.  
Reverse Loopback is enabled by setting bit[4] in the BISCR.  
7.3.15 BIST Configurations  
The DP83825I incorporates an internal PRBS Built-in Self-Test (BIST) circuit to accommodate in-circuit testing  
and diagnostics. The BIST circuit can be used to test the integrity of transmit and receive data paths. The BIST  
can be performed using both internal loopbacks (digital or analog) or external loopback using a cable fixture. The  
BIST simulates pseudo-random data transfer scenarios in format of real packets and Inter-Packet Gap (IPG) on  
the lines. The BIST allows full control of the packet lengths and the IPG.  
The BIST Packet Length is controlled using bits[10:0] in the BIST Control and Status Register #2 (BICSR2,  
address 0x001C). The BIST IPG Length is controlled using bits[7:0] in the BIST Control and Status Register #1  
(BICSR1, address 0x001B).  
The BIST is implemented with independent transmit and receive paths, with the transmit clock generating a  
continuous stream of a pseudo-random sequence. The device generates a 15-bit pseudo-random sequence for  
BIST. Received data is compared to the generated pseudo-random data to determine pass/fail status. The  
number of error bytes that the PRBS checker received is stored in bits[15:8] of the BICSR1. PRBS lock status  
and sync can be read from the BIST Control Register (BISCR, address 0x0016).  
The PRBS test can be put in a continuous mode by using bit[14] in the BISCR. In continuous mode, when the  
BIST error counter reaches the maximum value, the counter starts counting from zero again. To read the BIST  
error count, bit[15] in the BICSR1 must be set to '1'. This will lock the current value of the BIST errors for reading.  
Note that setting bit[15] also clears the BIST Error Counter.  
34  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.3.16 Cable Diagnostics  
With the vast deployment of Ethernet devices, the need for a reliable, comprehensive, and user-friendly cable  
diagnostic tool is more important than ever. The wide variety of cables, topologies, and connectors deployed  
require a non-intrusively way to identify and report cable faults. The DP83825I offers Time Domain Reflectometry  
(TDR) capabilities to detect opens and shorts on the cable.  
7.3.16.1 TDR  
The DP83825I uses Time Domain Reflectometry (TDR) to determine the quality of the cables, connectors, and  
terminations, in addition to estimating the cable length. Some of the possible problems that can be diagnosed  
include opens, shorts, cable impedance mismatch, bad connectors, termination mismatches, cross faults, cross  
shorts, and any other discontinuities along the cable.  
The DP83825I transmits a test pulse of known amplitude (1 V) down each of the two pairs of an attached cable.  
The transmitted signal continues down the cable and reflects from each cable imperfection, fault, connector and  
from the end of the cable itself. After the pulse transmission, the DP83825I measures the return time and  
amplitude of all these reflected pulses. This technique enables measuring the distance and magnitude  
(impedance) of non-terminated cables (open or short), discontinuities (bad connectors) and improperly  
terminated cables with ±1m accuracy.  
For all TDR measurements, the transformation between time of arrival and physical distance is done by the  
external host using minor computations (such as multiplication, addition and lookup tables). The host must know  
the expected propagation delay of the cable, which depends, among other things, on the cable category (for  
example, CAT5, CAT5e, or CAT6).  
TDR measurement is allowed in the following scenarios:  
While the Link Partner is disconnected – cable is unplugged at the other side  
Link Partner is connected but remains “quiet” (for example, in power down mode)  
TDR could be automatically activated when the link fails or is dropped  
TDR Auto-Run can be enabled by using bit[8] in the Control Register #1 (CR1, address 0x0009). When a link  
drops, TDR will automatically execute and store the results in the respective TDR Cable Diagnostic Location  
Result Registers #1 - #5 (CDLRR, addresses 0x0180 to 0x0184) and the Cable Diagnostic Amplitude Result  
Registers #1 - #5 (CDLAR, addresses 0x0185 to 0x0189). TDR can also be run manually using bit[15] in the  
Cable Diagnostic Control Register (CDCR, address 0x001E). Cable diagnostic status is obtained by reading  
bits[1:0] in the CDCR. Additional TDR functions including cycle averaging and crossover disable can be found in  
the Cable Diagnostic Specific Control Register (CDSCR, address 0x0170).  
版权 © 2018–2019, Texas Instruments Incorporated  
35  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
7.3.16.2 Fast Link Down Functionality  
The DP83825I includes advanced link-down capabilities that support various real-time applications. The link-  
down mechanism is configurable and includes enhanced modes that allow extremely fast link-drop reaction  
times.  
The DP83825I supports an enhanced link drop mechanism, also called Fast Link Drop (FLD), which shortens the  
observation window for determining link. There are multiple ways of determining link status, which can be  
enabled or disabled based on user preference. Fast Link Drop can be enabled in software using register  
configuration. FLD can be configured using the Control Register #3 (CR3, address 0x000B). Bits[3:0] and bit[10]  
allow for various FLD conditions to be enabled. When a link drop occurs, the indication of a particular fault  
condition can be read from the Fast Link Down Status Register (FLDS, address 0x000F).  
First Link Failure  
Occurrence  
Valid Link  
Low Quality Data / Link Loss  
Link Drop  
Link Loss  
Indication  
(Link LED)  
15. Fast Link Down  
Fast Link Down criteria include:  
RX Error Count - when a predefined number of 32 RX_ERs occur in a 10-μs window, the link will be dropped.  
MLT3 Error Count - when a predefined number of 20 MLT3 errors occur in a 10-μs window, the link will be  
dropped.  
Low SNR Threshold - when a predefined number of 20 threshold crossings occur in a 10-μs window, the link  
will be dropped.  
Signal/Energy Loss - when the energy detector indicates energy loss, the link will be dropped.  
The Fast Link Down functionality allows the use of each of these options separately or in any combination.  
Because this mode enables extremely quick reaction time, it is more exposed to  
temporary bad link-quality scenarios.  
7.3.17 Single Voltage Supply  
The DP83825I integrates the LDO to generate internal power rails needed for the device  
7.4 Device Functional Modes  
DP83825I offers modes to optimize cable reach and power consumption. In default mode, it offers a cable reach  
of 100 meters and above. To achieve a 150-meter cable with the lowest power consumption and Energy Efficient  
Ethernet, the designer must program a configuration after PHY is out of reset. The following section describes  
the various modes available and configuration required to achieve these.  
Default Mode  
This mode offers a 100+ meters cable reach mode where no additional configuration programming is needed.  
Power Optimized Mode  
This mode offers the lowest power consumption along with a cable reach of 130 meters and more. 4  
shows the required register configuration that is programmed through the MDC/MDIO interface.  
36  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Device Functional Modes (接下页)  
4. Configurations for Power Optimized Mode, 130-Meter Cable Reach  
Register Address  
0x0416  
Value  
0x1F30  
0x000D  
0x0200  
0x0BC0  
0x0011  
0x0001  
0x0000  
0x06E3  
0x579C  
0x0000  
0x4000  
0x8110  
0x0048  
0x040D  
0x0429  
0x030B  
0X030C  
0x033C  
0X0311  
0x0313  
0x033A  
0x0404  
0x001F  
0x033D  
0x031B  
Cable Reach Optimized Mode  
This mode offers a cable reach of 150 meters and more. 5 shows the required register configuration that is  
programmed through the MDC/MDIO interface.  
5. Configurations for Cable Reach Optimized Mode, 150-Meter Cable Reach  
Register Address  
0x0416  
Value  
0x1F30  
0x000D  
0x0200  
0x0BC0  
0x0011  
0x0001  
0x0000  
0x06E3  
0x579C  
0x0080  
0x4000  
0x8110  
0x0048  
0x040D  
0x0429  
0x030B  
0X030C  
0x033C  
0X0311  
0x0313  
0x033A  
0x0404  
0x001F  
0x033D  
0x031B  
Cable Reach Optimized Mode with EEE  
Energy Efficient Ethernet (EEE) is disabled by default in the DP83825I. EEE must be enabled through  
register programming. 6 shows the required register configuration that is programmed through the  
MDC/MDIO interface  
6. Configurations for EEE  
Register Address  
0x0416  
Value  
0x1F30  
0x000d  
0x0200  
0x0BC0  
0x0011  
0x0001  
0x0000  
0x040D  
0x0429  
0x030B  
0x30C  
0x33C  
0x0311  
版权 © 2018–2019, Texas Instruments Incorporated  
37  
 
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
6. Configurations for EEE (接下页)  
Register Address  
0x0313  
0x033A  
0x0404  
0x0130  
0x0123  
0x030F  
0x04D4  
0x4D5  
Value  
0x06E3  
0x579C  
0x0080  
0x4750  
0x0800  
0x0400  
0x6633  
0x027F  
0x01B0  
0x01B0  
0xFC36  
0x1103  
0x0882  
0x2010  
0x00FF  
0xA5A5  
0x0982  
0x231D  
0x0F8F  
0x861E  
0x00C2  
0x215B  
0x4000  
0x8110  
0x0048  
0x4D6  
0x4D7  
0x031F  
0x031C  
0x0101  
0x010A  
0x04CE  
0x04CD  
0x0308  
0x04CF  
0x04D0  
0x033E  
0x04D1  
0x04D2  
0x001F  
0x033D  
0x031B  
7.5 Programming  
The DP83825I provide IEEE-defined register set for programming and status. It also provides an additional  
register set to configure other features not supported through IEEE registers.  
7.5.1 Straps Configuration  
The DP83825 uses many of the functional pins as strap options to place the device into specific modes of  
operation. The values of these pins are sampled at power up or hard reset. During software resets, the strap  
options are internally reloaded from the values sampled at power up or hard reset. The strap option pin  
assignments are defined below. Configuration of the device may be done through the strap pins or through the  
management register interface. A pullup resistor or a pulldown resistor of suggested values may be used to set  
the voltage ratio of the strap pin input and the supply to select one of the possible selected modes. The MAC  
interface pins must support I/O voltages of 3.3 V and 1.8 V. As the strap inputs are implemented on these pins,  
the straps must also support operation at 3.3-V and 1.8-V supplies depending on what voltage was selected for  
I/O. All strap pins have two levels.  
38  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Programming (接下页)  
VDDIO  
Rhi  
V
STRAP  
9k  
25%  
Rlo  
16. Strap Circuit  
7. 2-Level Strap Resistor Ratio  
TARGET VOLTAGE  
Vtyp (V)  
IDEAL RESISTORS  
MODE  
Vmin (V)  
Vmax (V)  
0.35 x VDDIO  
VDDIO  
Rhi (kΩ)  
Rlo (kΩ)  
2.49  
0
1
0
OPEN  
2.49  
0.7 x VDDIO  
OPEN  
7.5.1.1 Straps for PHY Address  
8. PHY Address Strap Table  
PIN NAME  
STRAP NAME  
PIN #  
DEFAULT  
PHY_ADD0  
RX_D0  
PhyAdd[0]  
18  
0
MODE 0  
0
MODE 1  
1
PHY_ADD1  
CRS_DV  
PhyAdd[1]  
20  
0
MODE 0  
MODE 1  
0
1
PHY Address strap is 2-bit strap on pin 20 and 18 and shall be read as [1:0] respectively as 00 01 10 11. Default PHY Address is 00.  
9. RMII MAC Mode Strap Table  
PIN NAME  
STRAP NAME  
PIN #  
DEFAULT  
0
1
0
RMII Master Mode  
RMII Slave Mode  
RX_D1  
Master/Slave  
17  
0
Pin 20 is configured as CRS_DV  
50MHzOut/LED2  
RX_DV_En  
2
0
Pin 20 is configured as RX_DV ( For RMII  
Repeater Mode)  
1
10. Auto_Neg Strap Table  
PIN NAME  
STRAP NAME  
PIN #  
DEFAULT  
0
1
Auto MDIX Enable  
Auto MDIX Disable  
RX_ER  
A-MDIX  
22  
0
版权 © 2018–2019, Texas Instruments Incorporated  
39  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
10. Auto_Neg Strap Table (接下页)  
PIN NAME  
STRAP NAME  
PIN #  
DEFAULT  
0
1
Auto Negotiation Enable  
LED0  
ANeg_Dis  
4
0
Auto-Negotiation Disable. Force Mode  
100M Enabled  
40  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.6 Register Maps  
Table 11 lists the memory-mapped registers for the Device registers. All register offset addresses not listed in  
Table 11 should be considered as reserved locations and the register contents should not be modified.  
Table 11. Device Registers  
Offset  
0x0  
Acronym  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
BMCR_Register  
BMSR_Register  
PHYIDR1_Register  
PHYIDR2_Register  
ANAR_Register  
ALNPAR_Register  
ANER_Register  
ANNPTR_Register  
ANLNPTR_Register  
CR1_Register  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
CR2_Register  
0xB  
CR3_Register  
0xC  
Register_12  
0xD  
REGCR_Register  
ADDAR_Register  
FLDS_Register  
PHYSTS_Register  
PHYSCR_Register  
MISR1_Register  
MISR2_Register  
FCSCR_Register  
RECR_Register  
BISCR_Register  
RCSR_Register  
LEDCR_Register  
PHYCR_Register  
10BTSCR_Register  
BICSR1_Register  
BICSR2_Register  
CDCR_Register  
PHYRCR_Register  
MLEDCR_Register  
COMPT_Regsiter  
Register_101  
0xE  
0xF  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1E  
0x1F  
0x25  
0x27  
0x101  
0x10A  
0x123  
0x130  
0x170  
0x171  
0x172  
0x173  
0x174  
0x175  
Register_10a  
Register_123  
Register_130  
CDSCR_Register  
CDSCR2_Register  
TDR_172_Register  
CDSCR3_Register  
TDR_174_Register  
TDR_175_Register  
Copyright © 2018–2019, Texas Instruments Incorporated  
41  
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 11. Device Registers (continued)  
Offset  
0x176  
0x177  
0x178  
0x180  
0x181  
0x182  
0x183  
0x184  
0x185  
0x186  
0x187  
0x188  
0x189  
0x18A  
0x302  
0x308  
0x30B  
0x30C  
0x30F  
0x311  
0x313  
0x31C  
0x31F  
0x33C  
0x33E  
0x404  
0x40D  
0x416  
0x429  
0x456  
0x460  
0x461  
0x467  
0x468  
0x469  
0x4A0  
0x4A1  
0x4A2  
0x4A3  
0x4A4  
0x4CD  
0x4CE  
0x4CF  
0x4D0  
0x4D1  
0x4D2  
0x4D4  
Acronym  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
TDR_176_Register  
CDSCR4_Register  
TDR_178_Register  
CDLRR1_Register  
CDLRR2_Register  
CDLRR3_Register  
CDLRR4_Register  
CDLRR5_Register  
CDLAR1_Register  
CDLAR2_Register  
CDLAR3_Register  
CDLAR4_Register  
CDLAR5_Register  
CDLAR6_Register  
IO_CFG_Register  
SPARE_OUT  
DAC_CFG_0  
DAC_CFG_1  
DSP_CFG_0  
DSP_CFG_2  
DSP_CFG_4  
DSP_CFG_13  
DSP_CFG_16  
DSP_CFG_25  
DSP_CFG_27  
ANA_LD_PROG_SL_Register  
ANA_RX10BT_CTRL_Register  
Register_416  
Register_429  
GENCFG_Register  
LEDCFG_Register  
IOCTRL_Register  
SOR1_Register  
SOR2_Register  
Register_0x469_Register  
RXFCFG_Register  
RXFS_Register  
RXFPMD1_Register  
RXFPMD2_Register  
RXFPMD3_Register  
Register_0x4cd  
Register_0x4ce  
Register_0x4cf  
EEECFG2_Register  
EEECFG3_Register  
Register_0x4d2  
Register_0x4d4  
42  
Copyright © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Table 11. Device Registers (continued)  
Offset  
0x4D5  
Acronym  
Register Name  
Section  
Go  
DSP_100M_STEP_2_Register  
DSP_100M_STEP_3_Register  
DSP_100M_STEP_4_Register  
MMD3_PCS_CTRL_1_Register  
MMD3_PCS_STATUS_1  
0x4D6  
Go  
0x4D7  
Go  
0x1000  
0x1001  
0x1014  
0x1016  
0x203C  
0x203D  
Go  
Go  
MMD3_EEE_CAPABILITY_Register  
MMD3_WAKE_ERR_CNT_Register  
MMD7_EEE_ADVERTISEMENT_Register  
MMD7_EEE_LP_ABILITY_Register  
Go  
Go  
Go  
Go  
Complex bit access types are encoded to fit into small table cells. Table 12 shows the codes that are used for  
access types in this section.  
Table 12. Device Access Type Codes  
Access Type  
Read Type  
H
Code  
Description  
H
R
Set or cleared by hardware  
Read  
R
Write Type  
W
W
W
W
W
Write  
Write  
Write  
Write  
W, SC  
W, STRAP  
W, STRAP (A-  
MDIX)  
W, STRAP  
(ANEG_Dis)  
W
W
W
Write  
Write  
Write  
W, STRAP  
(ANGE_Dis )  
W, STRAP(  
Master/Slave)  
Reset or Default Value  
-n  
Value after reset or the default  
value  
7.6.1 BMCR_Register Register (Offset = 0x0) [reset = 0x3100]  
BMCR_Register is shown in Table 13.  
Return to Summary Table.  
Table 13. BMCR_Register Register Field Descriptions  
Bit  
Field  
Type  
W,SC  
Reset  
0x0  
Description  
15  
Reset  
PHY Software Reset: Writing a 1 to this bit resets the PHY PCS  
registers. When the reset operation is done, this bit is cleared to 0  
automatically. PHY Vendor Specific registers will not be cleared.  
0x0 = Normal Operation  
0x1 = Initiate software Reset / Reset in Progress  
Copyright © 2018–2019, Texas Instruments Incorporated  
43  
 
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 13. BMCR_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
14  
MII_Loopback  
R/W  
0x0  
MII Loopback: When MII loopback mode is activated, the transmitted  
data presented on MII TXD is looped back to MII RXD internally.  
Applicable for the only available RMII interface. It also needs to set  
following additional bit BISCR 0x0016[4:0] = 0b00100 for 100Base-  
TX and BISCR 0x0016[4:0] = 00001b for 10Base-Te  
0x0 = Normal Operation  
0x1 = MII Loopback enabled  
13  
12  
Speed_Selection  
R/W  
0x1  
Speed Select: When Auto-Negotiation is disabled (bit [12] = 0 in  
Register 0x0000), writing to this bit allows the port speed to be  
selected.  
0x0 = 10 Mbps  
0x1 = 100 Mbps  
Auto-Negotiation_Enable R/W,STRA 0x1  
Auto-Negotiation Enable:  
P(ANEG_Di  
s)  
0x0 = Disable Auto-Negotiation - bits [8] and [13] determine the  
port speed and duplex mode  
0x1 = Enable Auto-Negotiation - bits [8] and [13] of this register  
are ignored when this bit is set  
11  
IEEE_Power_Down  
R/W  
R/W  
0x0  
Power Down: The PHY is powered down after this bit is set. Only  
register access is enabled during this power down condition. To  
control the power down mechanism, this bit is OR'ed with the input  
from the INT/PWDN_N pin. When the active low INT/PWDN_N is  
asserted, this bit is set.  
0x0 = Normal Operation  
0x1 = IEEE Power Down  
10  
Isolate  
0x0  
0x0  
Isolate:  
0x0 = Normal Operation  
0x1 = Isolates the port from the MII with the exception of the  
serial management interface. It also disables50MHz clock in  
RMII Master Mode  
9
Restart_Auto-Negotiation R/W,SC  
Restart Auto-Negotiation: If Auto-Negotiation is disabled (bit [12] =  
0), bit [9] is ignored. This bit is self-clearing and will return a value of  
1 until Auto-Negotiation is initiated, whereupon it will self-clear.  
Operation of the Auto-Negotiation process is not affected by the  
management entity clearing this bit.  
0x0 = Normal Operation  
0x1  
=
Restarts Auto-Negotiation, Re-initiates the Auto-  
Negotiation process  
8
7
Duplex_Mode  
Collision_Test  
R/W  
R/W  
0x1  
0x0  
Duplex Mode: When Auto-Negotiation is disabled, writing to this bit  
allows the port Duplex capability to be selected.  
0x0 = Half-Duplex  
0x1 = Full-Duplex  
Collision Test: When set, this bit causes the COL signal to be  
asserted in response to the assertion of TX_EN within 512 bit times.  
The COL signal is de-asserted within 4 bit times in response to the  
de-assertion to TX_EN.  
0x0 = Normal Operation  
0x1 = Enable COL Signal Test  
6-0  
RESERVED  
R
0x0  
Reserved  
44  
Copyright © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.6.2 BMSR_Register Register (Offset = 0x1) [reset = 0x7849]  
BMSR_Register is shown in Table 14.  
Return to Summary Table.  
Table 14. BMSR_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
100Base-T4  
0x0  
0x1  
100Base-T4 Capable: This protocol is not available. Always reads as  
0.  
14  
13  
12  
11  
100Base-TX_Full-Duplex  
100Base-TX_Half-Duplex  
10Base-T_Full-Duplex  
10Base-T_Half-Duplex  
RESERVED  
100Base-TX Full-Duplex Capable:  
0x0 = Device not able to perform Full-Duplex 100Base-TX  
0x1 = Device able to perform Full-Duplex 100Base-TX  
0x1  
0x1  
0x1  
100Base-TX Half-Duplex Capable:  
0x0 = Device not able to perform Half-Duplex 100Base-TX  
0x1 = Device able to perform Half-Duplex 100Base-TX  
10Base-T Full-Duplex Capable:  
0x0 = Device not able to perform Full-Duplex 10Base-T  
0x1 = Device able to perform Full-Duplex 10Base-T  
10Base-T Half-Duplex Capable:  
0x0 = Device not able to perform Half-Duplex 10Base-T  
0x1 = Device able to perform Half-Duplex 10Base-T  
10-7  
6
R
0x0  
0x1  
Reserved  
SMI_Preamble_Suppressi  
on  
Preamble Suppression Capable: If this bit is set to 1, 32-bits of  
preamble needed only once after reset, invalid opcode or invalid  
turnaround. he device requires minimum of 500ns gap between two  
transactions, followed by one posedge of MDC and MDIO=1, before  
starting the next transaction.  
0x0 = Device not able to perform management transaction with  
preambles suppressed  
0x1 = Device able to perform management transaction with  
preamble suppressed  
5
4
Auto-  
0x0  
0x0  
Auto-Negotiation Complete:  
Negotiation_Complete  
0x0 = Auto Negotiation process not completed (either still in  
process, disabled or reset)  
0x1 = Auto-Negotiation process completed  
Remote_Fault  
H
Remote Fault: Far End Fault indication or notification from Link  
Partner of Remote Fault. This bit is cleared on read or reset.  
0x0 = No remote fault condition detected  
0x1 = Remote fault condition detected  
3
2
Auto-Negotiation_Ability  
Link_Status  
0x1  
0x0  
Auto-Negotiation Ability:  
0x0 = Device is not able to perform Auto-Negotiation  
0x1 = Device is able to perform Auto-Negotiation  
Link Status:  
0x0 = Link not established  
0x1 = Valid link established (for either 10 Mbps or 100 Mbps  
operation)  
1
Jabber_Detect  
H
0x0  
Jabber Detect:  
0x0 = No jabber condition detected This bit only has meaning  
for 10Base-T operation.  
0x1 = Jabber condition detected  
Copyright © 2018–2019, Texas Instruments Incorporated  
45  
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 14. BMSR_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
Extended_Capability  
0x1  
Extended Capability:  
0x0 = Basic register set capabilities only  
0x1 = Extended register capabilities  
7.6.3 PHYIDR1_Register Register (Offset = 0x2) [reset = 0x2000]  
PHYIDR1_Register is shown in Table 15.  
Return to Summary Table.  
Table 15. PHYIDR1_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x2000  
Description  
PHY Identifier Register #1  
15-0  
Organizationally_Unique_I  
dentifier_Bits_21:6  
7.6.4 PHYIDR2_Register Register (Offset = 0x3) [reset = 0xA140]  
PHYIDR2_Register is shown in Table 16.  
Return to Summary Table.  
Table 16. PHYIDR2_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
PHY Identifier Register #2  
15-10  
Organizationally_Unique_I  
dentifier_Bits_5:0  
0x28  
9-4  
3-0  
Model_Number  
0x14  
Vendor Model Number: The six bits of vendor model number are  
mapped from bits [9] to [4]  
Revision_Number  
0x0  
Model Revision Number: Four bits of the vendor model revision  
number are mapped from bits [3:0]. This field is incremented for all  
major device changes.  
7.6.5 ANAR_Register Register (Offset = 0x4) [reset = 0x1E1]  
ANAR_Register is shown in Table 17.  
Return to Summary Table.  
Table 17. ANAR_Register Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
0x0  
Description  
15  
Next_Page  
Next Page Indication:  
0x0 = Next Page Transfer not desired  
0x1 = Next Page Transfer desired  
14  
13  
RESERVED  
R
0x0  
0x0  
Reserved  
Remote_Fault  
R/W  
Remote Fault:  
0x0 = No Remote Fault detected  
0x1 = Advertises that this device has detected a Remote Fault.  
Please note DP83825 does not support Remote Fault. This bit  
shall not be set by Application  
12  
11  
RESERVED  
R
0x0  
0x0  
Reserved  
Asymmetric_Pause  
R/W  
Asymmetric Pause Support For Full-Duplex Links:  
0x0 = Do not advertise asymmetric pause ability  
0x1 = Advertise asymmetric pause ability  
46  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Table 17. ANAR_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
10  
Pause  
R/W  
0x0  
Pause Support for Full-Duplex Links:  
0x0 = Do not advertise pause ability  
0x1 = Advertise pause ability  
9
8
100Base-T4  
0x0  
100Base-T4 Support:  
0x0 = Do not advertise 100Base-T4 ability  
0x1 = Advertise 100Base-T4 ability  
100Base-TX_Full-Duplex R/W,STRA 0x1  
100Base-TX Full-Duplex Support: Values does not matter in forced-  
mode  
P(ANGE_Di  
s)  
0x0 = Do not advertise 100Base-TX Full-Duplex ability Values  
does not matter in forced-mode  
0x1 = Advertise 100Base-TX Full-Duplex ability  
7
6
100Base-TX_Half-Duplex R/W,STRA 0x1  
100Base-TX Half-Duplex Support: Values does not matter in forced-  
mode  
P(ANGE_Di  
s)  
0x0 = Do not advertise 100Base-TX Half-Duplex ability Values  
does not matter in forced-mode  
0x1 = Advertise 100Base-TX Half-Duplex ability  
10Base-T_Full-Duplex  
10Base-T_Half-Duplex  
Selector_Field  
R/W,STRA 0x1  
P(ANGE_Di  
s)  
10Base-T Full-Duplex Support: Values does not matter in forced-  
mode  
0x0 = Do not advertise 10Base-T Full-Duplex ability Values  
does not matter in forced-mode  
0x1 = Advertise 10Base-T Full-Duplex ability  
5
R/W,STRA 0x1  
P(ANGE_Di  
s)  
10Base-T Half-Duplex Support: Values does not matter in forced-  
mode  
0x0 = Do not advertise 10Base-T Half-Duplex ability Values  
does not matter in forced-mode  
0x1 = Advertise 10Base-T Half-Duplex ability  
4-0  
R/W  
0x1  
Protocol Selection Bits: Technology selector field (IEEE802.3u  
<00001>)  
7.6.6 ALNPAR_Register Register (Offset = 0x5) [reset = 0x0]  
ALNPAR_Register is shown in Table 18.  
Return to Summary Table.  
Table 18. ALNPAR_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Next_Page  
0x0  
Next Page Indication:  
0x0 = Link partner does not desire Next Page Transfer  
0x1 = Link partner desires Next Page Transfer  
14  
13  
12  
Acknowledge  
Remote_Fault  
RESERVED  
0x0  
Acknowledge:  
0x0 = Link partner does not acknowledge reception of link code  
word  
0x1 = Link partner acknowledges reception of link code word  
Remote Fault:  
0x0  
0x0  
0x0 = Link partner does not advertise remote fault event  
detection  
0x1 = Link partner advertises remote fault event detection  
Reserved  
R
Copyright © 2018–2019, Texas Instruments Incorporated  
47  
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 18. ALNPAR_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
11  
Asymmetric_Pause  
0x0  
Asymmetric Pause:  
0x0 = Link partner does not advertise asymmetric pause ability  
0x1 = Link partner advertises asymmetric pause ability  
10  
9
Pause  
0x0  
0x0  
0x0  
Pause:  
0x0 = Link partner does not advertise pause ability  
0x1 = Link partner advertises pause ability  
100Base-T4  
100Base-T4 Support:  
0x0 = Link partner does not advertise 100Base-T4 ability  
0x1 = Link partner advertises 100Base-T4 ability  
8
100Base-TX_Full-Duplex  
100Base-TX Full-Duplex Support:  
0x0 = Link partner does not advertise 100Base-TX Full-Duplex  
ability  
0x1 = Link partner advertises 100Base-TX Full-Duplex ability  
100Base-TX Half-Duplex Support:  
7
6
100Base-TX_Half-Duplex  
10Base-T_Full-Duplex  
10Base-T_Half-Duplex  
Selector_Field  
0x0  
0x0  
0x0  
0x0  
0x0 = Link partner does not advertise 100Base-TX Half-Duplex  
ability  
0x1 = Link partner advertises 100Base-TX Half-Duplex ability  
10Base-T Full-Duplex Support:  
0x0 = Link partner does not advertise 10Base-T Full-Duplex  
ability  
0x1 = Link partner advertises 10Base-T Full-Duplex ability  
10Base-T Half-Duplex Support:  
5
0x0 = Link partner does not advertise 10Base-T Half-Duplex  
ability  
0x1 = Link partner advertises 10Base-T Half-Duplex ability  
4-0  
Protocol Selection Bits: Technology selector field (IEEE802.3  
<00001>)  
7.6.7 ANER_Register Register (Offset = 0x6) [reset = 0x4]  
ANER_Register is shown in Table 19.  
Return to Summary Table.  
Table 19. ANER_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-5  
RESERVED  
R
0x0  
Reserved  
4
Parallel_Detection_Fault  
H
0x0  
Parallel Detection Fault:  
0x0 = No fault detected  
0x1 = A fault has been detected during the parallel detection  
process  
3
2
Link_Partner_Next_Page_  
Able  
0x0  
0x1  
Link Partner Next Page Ability:  
0x0 = Link partner is not able to exchange next pages  
0x1 = Link partner is able to exchange next pages  
Local_Device_Next_Page  
_Able  
Next Page Ability:  
0x0 = Local device is not able to exchange next pages  
0x1 = Local device is able to exchange next pages  
48  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Table 19. ANER_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
Page_Received  
H
0x0  
Link Code Word Page Received:  
0x0 = A new page has not been received  
0x1 = A new page has been received  
0
Link_Partner_Auto-  
Negotiation_Able  
0x0  
Link Partner Auto-Negotiation Ability:  
0x0 = Link partner does not support Auto-Negotiation  
0x1 = Link partner supports Auto-Negotiation  
7.6.8 ANNPTR_Register Register (Offset = 0x7) [reset = 0x2001]  
ANNPTR_Register is shown in Table 20.  
Return to Summary Table.  
Table 20. ANNPTR_Register Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
0x0  
Description  
15  
Next_Page  
Next Page Indication:  
0x0 = Do not advertise desire to send additional next pages  
0x1 = Advertise desire to send additional next pages  
14  
13  
RESERVED  
R
0x0  
0x1  
Reserved  
Message_Page  
R/W  
Message Page:  
0x0 = Current page is an unformatted page  
0x1 = Current page is a message page  
12  
11  
Acknowledge_2  
R/W  
0x0  
0x0  
Acknowledge2: Acknowledge2 is used by the next page function to  
indicate that Local Device has the ability to comply with the message  
received.  
0x0 = Cannot comply with message  
0x1 = Will comply with message  
Toggle  
Toggle: Toggle is used by the Arbiitration function within Auto-  
Negotiation to synchronize with the Link Parnter during Next Page  
exchange. This bit always takes the opposite value of the Toggle bit  
in the previously exchanged Link Code Word.  
0x0 = Value of toggle bit in previously transmitted Link Code  
Word was 1  
0x1 = Value of toggle bit in previously transmitted Link Code  
Word was 0  
10-0  
CODE  
R/W  
0x1  
This field represents the code field of the next page transmission. If  
the Message Page bit is set (bit [13] of this register), then the code is  
interpreted as a Message Page, as defined in annex 28C of IEEE  
802.3u. Otherwise, the code is interperated as an Unformatted Page,  
and the interpretation is application specific. The default value of the  
CODE represents a Null Page as defined in Annex 28C of IEEE  
802.3u.  
Copyright © 2018–2019, Texas Instruments Incorporated  
49  
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
7.6.9 ANLNPTR_Register Register (Offset = 0x8) [reset = 0x0]  
ANLNPTR_Register is shown in Table 21.  
Return to Summary Table.  
Table 21. ANLNPTR_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Next Page Indication:  
15  
Next_Page  
0x0  
0x0 = Do not advertise desire to send additional next pages  
0x1 = Advertise desire to send additional next pages  
14  
Acknowledge  
0x0  
Acknowledge:  
0x0 = Link partner does not acknowledge reception of link code  
work  
0x1 = Link partner acknowledges reception of link code word  
13  
12  
Message_Page  
Acknowledge_2  
0x0  
0x0  
Message Page:  
0x0 = Current page is an unformatted page  
0x1 = Current page is a message page  
Acknowledge2: Acknowledge2 is used by the next page function to  
indicate that Local Device has the ability to comply with the message  
received.  
0x0 = Cannot comply with message  
0x1 = Will comply with message  
11  
Toggle  
0x0  
Toggle: Toggle is used by the Arbiitration function within Auto-  
Negotiation to synchronize with the Link Parnter during Next Page  
exchange. This bit always takes the opposite value of the Toggle bit  
in the previously exchanged Link Code Word.  
0x0 = Value of toggle bit in previously transmitted Link Code  
Word was 1  
0x1 = Value of toggle bit in previously transmitted Link Code  
Word was 0  
10-0  
Message/Unformatted_Fie  
ld  
0x0  
This field represents the code field of the next page transmission. If  
the Message Page bit is set (bit 13 of this register), then the code is  
interpreted as a Message Page, as defined in annex 28C of IEEE  
802.3u. Otherwise, the code is interperated as an Unformatted Page,  
and the interpretation is application specific. The default value of the  
CODE represents a Null Page as defined in Annex 28C of IEEE  
802.3u.  
7.6.10 CR1_Register Register (Offset = 0x9) [reset = 0x0]  
CR1_Register is shown in Table 22.  
Return to Summary Table.  
Table 22. CR1_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
15-10  
RESERVED  
R
0x0  
9
8
RESERVED  
R
0x0  
0x0  
TDR_Auto-Run  
R/W  
TDR Auto-Run at Link Down  
0x0 = Disable automatic execution of TDR  
0x1 = Enable execution of TDR procedure after link down event  
7
6
RESERVED  
RESERVED  
R
R
0x0  
0x0  
Reserved  
Reserved  
50  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Table 22. CR1_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
Robust_Auto_MDIX  
R/W  
0x0  
Robust Auto-MDIX: If link partners are configured for operational  
modes that are not supported by normal Auto-MDIX, Robust Auto-  
MDIX allows MDI/MDIX resolution and prevents deadlock.  
0x0 = Disable Auto-MDIX  
0x1 = Enable Robust Auto-MDIX  
4
3-2  
1
RESERVED  
R
0x0  
0x0  
0x0  
Reserved  
RESERVED  
R
Reserved  
Fast_RXDV_Detection  
R/W  
Fast RXDV Detection:  
0x0 = Disable Fast RX_DV detection. The PHY operates in  
normal mode. RX_DV assertion after detection of /JK/.  
0x1 = Enable assertion high of RX_DV on receive packet due  
to detection of /J/ symbol only. If a consecutive /K/ does not  
appear, RX_ER is generated.  
0
RESERVED  
R
0x0  
Reserved  
7.6.11 CR2_Register Register (Offset = 0xA) [reset = 0x0]  
CR2_Register is shown in Table 23.  
Return to Summary Table.  
Table 23. CR2_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
15  
RESERVED  
R
0x0  
14  
13-7  
6
RESERVED  
RESERVED  
RESERVED  
R
0x0  
0x0  
0x0  
0x0  
Reserved  
R
Reserved  
R
Reserved  
5
Extended_Full-  
Duplex_Ability  
R/W  
Extended Full-Duplex Ability:  
0x0 = Diable Extended Full-Duplex Ability. Decision to work in  
Full-Duplex or Half-Duplex mode follows IEEE specification  
0x1 = Enable Full-Duplex while working with link partner in  
forced 100Base-TX. When the PHY is set to Auto-Negotiation  
or Force 100Base-TX and the link partner is operated in Force  
100Base-TX, the link is always Full-Duplex  
4
3
2
RESERVED  
R
0x0  
0x0  
0x0  
Reserved  
RESERVED  
R
Reserved  
RX_ER_During_IDLE  
R/W  
Detection of Receive Symbol Error During IDLE State:  
0x0 = Disable detection of Receive symbol error during IDLE  
state  
0x1 = Enable detection of Receive symbol error during IDLE  
state  
1
Odd-  
R/W  
0x0  
0x0  
Detection of Transmit Error:  
Nibble_Detection_Disable  
0x0 = Enable detection of de-assertion of TX_EN on an odd-  
nibble boundary. In this case TX_EN is extended by one  
additional TX_CLK cycle and behaves as if TX_ER were  
asserted during that additional cycle  
0x1 = Disable detection of transmit error in odd-nibble boundary  
Reserved  
0
RESERVED  
R
Copyright © 2018–2019, Texas Instruments Incorporated  
51  
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
7.6.12 CR3_Register Register (Offset = 0xB) [reset = 0x0]  
CR3_Register is shown in Table 24.  
Return to Summary Table.  
Table 24. CR3_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
RESERVED  
R
0x0  
Reserved  
10  
Descrambler_Fast_Link_D R/W  
own_Mode  
0x0  
Descrambler Fast Link Drop: This option can be enabled in parallel  
to the other fast link down modes in bits [3:0].  
0x0 = Do not drop the link on descrambler link loss  
0x1 = Drop the link on descrambler link loss  
9
8
7
6
RESERVED  
RESERVED  
RESERVED  
Polarity_Swap  
R
0x0  
0x0  
0x0  
0x0  
Reserved  
Reserved  
Reserved  
R
R
R/W  
Polarity Swap: Port Mirror Function: To enable port mirroring, set this  
bit and bit [5] high.  
0x1 = Inverted polarity on both pairs: TD+ and TD-, RD+ and  
RD- 0h = Normal polarity  
5
MDI/MDIX_Swap  
R/W  
0x0  
MDI/MDIX Swap: Port Mirror Function: To enable port mirroring, set  
this bit and bit [6] high.  
0x0 = MDI pairs normal (Receive on RD pair, Transmit on TD  
pair)  
0x1 = Swap MDI pairs (Receive on TD pair, Transmit on RD  
pair)  
4
RESERVED  
R
0x0  
0x0  
Reserved  
3-0  
Fast_Link_Down_Mode  
R/W  
Fast Link Down Modes: a) Bit 3 Drop the link based on RX Error  
count of the MII interface. When a predefined number of 32 RX Error  
occurences in a 10us interval is reached, the link will be dropped. b)  
Bit 2 Drop the link based on MLT3 Error count (Violation of the MLT3  
coding in the DSP output). When a predefined number of 20 MLT3  
Error occurences in10us interval is reached, the link will be dropped.  
c) Bit 1 Drop the link based on Low SNR Threshold. When a  
predefined number of 20 Threshold crossing occurences in a 10us  
interval is reached, the link will be dropped. d) Bit 0 Drop the link  
based on Signal/Energy Loss indication. When the Energy detector  
indicates Energy Loss, the link will be dropped. Typical reaction time  
is 10us. The Fast Link Down function is an OR of all 5 options (bits  
[10] and [3:0]), the designer can enable any combination of these  
conditions.  
7.6.13 Register_12 Register (Offset = 0xC) [reset = 0x0]  
Register_12 is shown in Table 25.  
Return to Summary Table.  
Table 25. Register_12 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
Link_Quality_interrupt  
0x0  
interrupt for Link quality indication  
interrupt for energy detect indication  
Interrupt for link status  
14  
13  
12  
11  
energy_detect_interrupt  
link_interrupt  
0x0  
0x0  
0x0  
0x0  
speed_interrupt  
duplex_interrupt  
interrupt for speed status  
interrupt for duplex  
52  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Table 25. Register_12 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
10  
auto_negotiation_complet  
e_interrupt  
0x0  
interrupt for autonegotiation  
interrupt for false carrier  
9
false_carrier_half_full_inte  
rrupt  
0x0  
8
7
rhf_interrupt  
0x0  
0x0  
interrupt for rhf  
Link_Quality_interrupt_en R/W  
able  
interrupt enable for Link quality indication  
6
energy_detect_interrupt_e R/W  
nable  
0x0  
interrupt enable for energy detect indication  
5
4
3
2
link_interrupt_enable  
speed_interrupt_enable  
duplex_interrupt_enable  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
0x0  
Interrupt enable for link status  
interrupt enalble for speed status  
interrupt enable for duplex  
auto_negotiation_complet R/W  
e_interrupt_enable  
interrupt enable for autonegotiation  
1
0
false_carrier_half_full_inte R/W  
rrupt_enable  
0x0  
0x0  
interrupt enable for false carrier  
interrupt enable for rhf  
rhf_interrupt_enable  
R/W  
7.6.14 REGCR_Register Register (Offset = 0xD) [reset = 0x0]  
REGCR_Register is shown in Table 26.  
Return to Summary Table.  
Table 26. REGCR_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-14  
Extended_Register_Com R/W  
mand  
0x0  
Extended Register Command:  
0x0 = Address  
0x1 = Data, no post increment  
0x2 = Data, post increment on read and write  
0x3 = Data, post increment on write only  
13-5  
4-0  
RESERVED  
DEVAD  
R
0x0  
0x0  
Reserved  
R/W  
Device Address: Bits [4:0] are the device address, DEVAD, that  
directs any accesses of ADDAR register (0x000E) to the appropriate  
MMD. Specifically, the DP83825 uses the vendor specific DEVAD  
[4:0] = '11111' for accesses to registers 0x04D1 and lower. For  
MMD3 access, the DEVAD[4:0] = '00011'. For MMD7 access, the  
DEVAD[4:0] = '00111'. All accesses through registers REGCR and  
ADDAR should use the DEVAD for either MMD, MMD3 or MMD7.  
Transactions with other DEVAD are ignored.  
7.6.15 ADDAR_Register Register (Offset = 0xE) [reset = 0x0]  
ADDAR_Register is shown in Table 27.  
Return to Summary Table.  
Table 27. ADDAR_Register Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
0x0  
Description  
15-0  
Address/Data  
If REGCR register bits [15:14] = '00', holds the MMD DEVAD's  
address register, otherwise holds the MMD DEVAD's data.  
Copyright © 2018–2019, Texas Instruments Incorporated  
53  
 
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
7.6.16 FLDS_Register Register (Offset = 0xF) [reset = 0x0]  
FLDS_Register is shown in Table 28.  
Return to Summary Table.  
Table 28. FLDS_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-9  
RESERVED  
R
0x0  
Reserved  
8-4  
Fast_Link_Down_Status  
H
0x0  
Fast Link Down Status: Status Registers that latch high each time a  
given Fast Link Down mode is activated and causes a link drop  
(assuming the modes were enabled)  
0x1 = Signal/Energy Lost  
0x2 = SNR Level  
0x4 = MLT3 Errors  
0x8 = RX Errors  
0x10 = Descrambler Loss Sync  
3-0  
RESERVED  
R
0x0  
Reserved  
7.6.17 PHYSTS_Register Register (Offset = 0x10) [reset = 0x0]  
PHYSTS_Register is shown in Table 29.  
Return to Summary Table.  
Table 29. PHYSTS_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15  
RESERVED  
R
Reserved  
14  
MDI/MDIX_Mode  
0x0  
MDI/MDIX Mode Status:  
0x0 = MDI Pairs normal (Receive on RD pair, Transmit on TD  
pair)  
0x1 = MDI Pairs swapped (Receive on TD pair, Transmit on RD  
pair)  
13  
Receive_Error_Latch  
Polarity_Status  
H
0x0  
Receive Error Latch: This bit will be cleared upon a read of the  
RECR register  
0x0 = No receive error event has occurred  
0x1 = Receive error event has occurred since last read of  
RXERCNT register (0x0015)  
12  
11  
H
H
0x0  
0x0  
Polarity Status: This bit is a duplication of bit [4] in the 10BTSCR  
register (0x001A). This bit will be cleared upon a read of the  
10BTSCR register, but not upon a read of the PHYSTS register.  
0x0 = Correct Polarity detected  
0x1 = Inverted Polarity detected  
False_Carrier_Sense_Lat  
ch  
False Carrier Sense Latch: This bit will be cleared upon a read of the  
FCSR register.  
0x0 = No False Carrier event has occurred  
0x1 = False Carrier even has occurred since last read of  
FCSCR register (0x0014)  
10  
9
Signal_Detect  
0x0  
0x0  
Signal Detect: Active high 100Base-TX unconditional Signal Detect  
indication from PMD  
Descrambler_Lock  
Descrambler Lock: Active high 100Base-TX Descrambler Lock  
indication from PMD  
54  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Table 29. PHYSTS_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
8
Page_Received  
0x0  
Link Code Word Page Received: This bit is a duplicate of Page  
Received (bit [1]) in the ANER register and it is cleared on read of  
the ANER register (0x0006).  
0x0 = Link Code Word Page has not been received  
0x1 = A new Link Code Word Page has been received  
7
6
5
MII_Interrupt  
Remote_Fault  
Jabber_Detect  
H
0x0  
0x0  
0x0  
MII Interrupt Pending: Interrupt source can be determined by reading  
the MISR register (0x0012). Reading the MISR will clear this  
interrupt bit indication.  
0x0 = No interrupt pending  
0x1 = Indicates that an internal interrupt is pending  
Remote Fault: Cleared on read of BMSR register (0x0001) or by  
reset.  
0x1  
= Remote Fault condition detected. Fault criteria:  
notification from link partner of Remote Fault via Auto-  
Negotiation 0h = No Remote Fault condition detected  
Jabber Detection: This bit is only for 10 Mbps operation. This bit is a  
duplicate of the Jabber Detect bit in the BMSR register (0x0001) and  
will not be cleared upon a read of the PHYSTS register.  
0x0 = No Jabber  
0x1 = Jabber condition detected  
4
3
2
1
0
Auto-Negotiation_Status  
MII_Loopback_Status  
Duplex_Status  
0x0  
0x0  
0x0  
0x0  
0x0  
Auto-Negotiation Status:  
0x0 = Auto-Negotiation not complete  
0x1 = Auto-Negotiation complete  
MII Loopback Status:  
0x0 = Normal operation  
0x1 = Loopback enabled  
Duplex Status:  
0x0 = Half-Duplex mode  
0x1 = Full-Duplex mode  
Speed_Status  
Speed Status:  
0x0 = 100 Mbps mode  
0x1 = 10 Mbps mode  
Link_Status  
Link Status: This bit is duplicated from the Link Status bit in the  
BMSR register ( address 0x0001) and will not be cleared upon a  
read of the PHYSTS register.  
0x0 = No link established  
0x1 = Valid link established (for either 10 Mbps or 100 Mbps)  
7.6.18 PHYSCR_Register Register (Offset = 0x11) [reset = 0x108]  
PHYSCR_Register is shown in Table 30.  
Return to Summary Table.  
Table 30. PHYSCR_Register Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
0x0  
Description  
15  
Disable_PLL  
Disable PLL: Note: clock circuitry can be disabled only in IEEE  
power down mode.  
0x0 = Normal operation  
0x1 = Disable internal clocks circuitry  
Copyright © 2018–2019, Texas Instruments Incorporated  
55  
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 30. PHYSCR_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
14  
Power_Save_Mode_Enabl R/W  
e
0x0  
Power Save Mode Enable:  
0x0 = Normal operation  
0x1 = Enable power save modes  
13-12  
Power_Save_Modes  
R/W  
0x0  
Power Save Mode:  
0x0 = Normal operation mode. PHY is fully functional  
0x1 = Reserved  
0x2 = Active Sleep, Low Power Active Energy Saving mode  
that shuts down all internal circuitry besides SMI and energy  
detect functionalities. In this mode the PHY sends NLP every  
1.4 seconds to wake up link partner. Automatic power-up is  
done when link partner is detected.  
11  
Scrambler_Bypass  
R/W  
0x0  
Scrambler Bypass:  
0x0 = Scrambler bypass disabled  
0x1 = Scrambler bypass enabled  
10  
RESERVED  
R
0x0  
0x1  
Reserved  
9-8  
Loopback_FIFO_Depth  
R/W  
Far-End Loopback FIFO Depth: This FIFO is used to adjust RX  
(receive) clock rate to TX clock rate. FIFO depth needs to be set  
based on expected maximum packet size and clock accuracy.  
Default value sets to 5 nibbles.  
0x0 = 4 nibbles FIFO  
0x1 = 5 nibbles FIFO  
0x2 = 6 nibbles FIFO  
0x3 = 8 nibbles FIFO  
7-5  
4
RESERVED  
R
0x0  
0x0  
0x1  
Reserved  
RESERVED  
R
Reserved  
3
Interrupt_Polarity  
R/W  
Interrupt Polarity:  
0x0 = Steady state (normal operation) is 0 logic and during  
interrupt is 1 logic  
0x1 = Steady state (normal operation) is 1 logic and during  
interrupt is 0 logic  
2
Test_Interrupt  
R/W  
0x0  
Test Interrupt: Forces the PHY to generate an interrupt to facilitate  
interrupt testing. Interrupts will continue to be generated as long as  
this bit remains set.  
0x0 = Do not generate interrupt  
0x1 = Generate an interrupt  
1
0
Interrupt_Enable  
R/W  
R/W  
0x0  
0x0  
Interrupt Enable: Enable interrupt dependent on the event enables in  
the MISR register (0x0012).  
0x0 = Disable event based interrupts  
0x1 = Enable event based interrupts  
Interrupt_Output_Enable  
Interrupt Output Enable: Enable active low interrupt events via the  
INTR/PWERDN pin by configuring the INTR/PWRDN pin as an  
output.  
0x0 = INTR/PWRDN is a Power Down pin  
0x1 = INTR/PWRDN is an interrupt output  
56  
Copyright © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.6.19 MISR1_Register Register (Offset = 0x12) [reset = 0x0]  
MISR1_Register is shown in Table 31.  
Return to Summary Table.  
Table 31. MISR1_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15  
Link_Quality_Interrupt  
H
Change of Link Quality Status Interrupt:  
0x0 = Link quality is Good  
0x1 = Change of link quality when link is ON  
14  
13  
12  
11  
10  
9
Energy_Detect_Interrupt  
H
H
H
H
H
H
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Change of Energy Detection Status Interrupt:  
0x0 = No change of energy detected  
0x1 = Change of energy detected  
Link_Status_Changed_Int  
errupt  
Change of Link Status Interrupt:  
0x0 = No change of link status  
0x1 = Change of link status interrupt is pending  
Speed_Changed_Interrupt  
Change of Speed Status Interrupt:  
0x0 = No change of speed status  
0x1 = Change of speed status interrupt is pending  
Duplex_Mode_Changed_I  
nterrupt  
Change of Duplex Status Interrupt:  
0x0 = No change of duplex status  
0x1 = Change of duplex status interrupt is pending  
Auto-  
Auto-Negotiation Complete Interrupt:  
Negotiation_Completed_In  
terrupt  
0x0 = No Auto-Negotiation complete event is pending  
0x1 = Auto-Negotiation complete interrupt is pending  
False_Carrier_Counter_H  
alf-Full_Interrupt  
False Carrier Counter Half-Full Interrupt:  
0x0 = False Carrier half-full event is not pending  
0x1 = False Carrier counter (Register FCSCR, address 0x0014)  
exceeds half-full interrupt is pending  
8
Receive_Error_Counter_H  
alf-Full_Interrupt  
H
0x0  
Receiver Error Counter Half-Full Interrupt:  
0x0 = Receive Error half-full event is not pending  
0x1 = Receive Error counter (Register RECR, address 0x0015)  
exceeds half-full interrupt is pending  
7
6
5
4
3
2
Link_Quality_Interrupt_En R/W  
able  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Enable interrupt on change of link quality  
Enable interrupt on change of energy detection  
Enable interrupt on change of link status  
Energy_Detect_Interrupt_ R/W  
Enable  
Link_Status_Changed_En R/W  
able  
Speed_Changed_Interrupt R/W  
_Enable  
Enable Interrupt on change of speed status  
Enable Interrupt on change of duplex status  
Enable Interrupt on Auto-negotiation complete event  
Duplex_Mode_Changed_I R/W  
nterrupt_Enable  
Auto-  
R/W  
Negotiation_Completed_E  
nable  
1
0
False_Carrier_HF_Enable R/W  
0x0  
0x0  
Enable Interrupt on False Carrier Counter Register half-full event  
Enable Interrupt on Receive Error Counter Register half-full event  
Receive_Error_HF_Enabl R/W  
e
Copyright © 2018–2019, Texas Instruments Incorporated  
57  
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
7.6.20 MISR2_Register Register (Offset = 0x13) [reset = 0x0]  
MISR2_Register is shown in Table 32.  
Return to Summary Table.  
Table 32. MISR2_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15  
EEE_Error_Interrupt  
H
Energy Efficient Ethernet Error Interrupt:  
0x0 = EEE error has not occurred  
0x1 = EEE error has occurred  
14  
13  
12  
11  
10  
9
Auto-  
H
H
H
H
H
H
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Auto-Negotiation Error Interrupt:  
Negotiation_Error_Interrup  
t
0x0 = No Auto-Negotiation error even pending  
0x1 = Auto-Negotiation error interrupt is pending  
Page_Received_Interrupt  
Page Receiver Interrupt:  
0x0 = Page has not been received  
0x1 = Page has been received  
Loopback_FIFO_OF/UF_  
Event_Interrupt  
Loopback FIFO Overflow/Underflow Event Interrupt:  
0x0 = No FIFO Overflow/Underflow event pending  
0x1 = FIFO Overflow/Underflow event interrupt pending  
MDI_Crossover_Change_I  
nterrupt  
MDI/MDIX Crossover Status Change Interrupt:  
0x0 = MDI crossover status has not changed  
0x1 = MDI crossover status changed interrupt is pending  
Sleep_Mode_Interrupt  
Sleep Mode Event Interrupt:  
0x0 = No Sleep mode event pending  
0x1 = Sleep mode event interrupt is pending  
Inverted_Polarity_Interrupt  
__/_WoL_Packet_Receive  
d_Interrupt  
Inverted Polarity Interrupt / WoL Packet Received Interrupt:  
0x0 = No Inverted polarity event pending / No WoL oacket  
received  
0x1 = Inverted Polarity interrupt pending / WoL packet was  
recieved  
8
Jabber_Detect_Interrupt  
H
0x0  
Jabber Detect Event Interrupt:  
0x0 = No Jabber detect event pending  
0x1 = Jabber detect even interrupt pending  
7
6
EEE_Error_Interrupt_Ena R/W  
ble  
0x0  
0x0  
Enable interrupt on EEE Error  
Auto-  
R/W  
Enable Interrupt on Auto-Negotiation error event  
Negotiation_Error_Interrup  
t_Enable  
5
4
3
2
1
0
Page_Received_Interrupt R/W  
_Enable  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Enable Interrupt on page receive event  
Loopback_FIFO_OF/UF_ R/W  
Enable  
Enable Interrupt on loopback FIFO Overflow/Underflow event  
Enable Interrupt on change of MDI/X status  
Enable Interrupt on sleep mode event  
MDI_Crossover_Change_ R/W  
Enable  
Sleep_Mode_Event_Enabl R/W  
e
Polarity_Changed_/_WoL R/W  
_Packet_Enable  
Enable Interrupt on change of polarity status  
Enable Interrupt on Jabber detection event  
Jabber_Detect_Enable  
R/W  
58  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.6.21 FCSCR_Register Register (Offset = 0x14) [reset = 0x0]  
FCSCR_Register is shown in Table 33.  
Return to Summary Table.  
Table 33. FCSCR_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
0x0  
Description  
15-8  
RESERVED  
R
Reserved  
7-0  
False_Carrier_Event_Cou  
nter  
False Carrier Event Counter: This 8-bit counter increments on every  
false carrier event. This counter stops when it reaches its maximum  
count (FFh). When the counter exceeds half-full (7Fh), an interrupt  
event is generated. This register is cleared on read.  
7.6.22 RECR_Register Register (Offset = 0x15) [reset = 0x0]  
RECR_Register is shown in Table 34.  
Return to Summary Table.  
Table 34. RECR_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-0  
Receive_Error_Counter  
RX_ER Counter: When a valid carrier is presented (only while RXDV  
is set), and there is at least one occurrence of an invalid data  
symbol, this 16-bit counter increments for each receive error  
detected. The RX_ER counter does not count in MII loopback mode.  
The counter stops when it reaches its maximum count (FFh). When  
the counter exceeds half-full (7Fh), an interrupt is generated. This  
register is cleared on read.  
7.6.23 BISCR_Register Register (Offset = 0x16) [reset = 0x100]  
BISCR_Register is shown in Table 35.  
Return to Summary Table.  
Table 35. BISCR_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15  
RESERVED  
R
Reserved  
14  
13  
BIST_Error_Counter_Mod R/W  
e
0x0  
0x0  
BIST Error Counter Mode:  
0x0 = Single mode, when BIST Error Counter reaches its max  
value, PRBS checker stops counting.  
0x1 = Continuous mode, when the BIST Error counter reaches  
its max value, a pulse is generated and the counter starts  
counting from zero again.  
PRBS_Checker_Config  
R/W  
PRBS Checker Config:bit[13:12]  
0x0 = PRBS Generator and Checker both are disabled  
0x1 = PRBS Generator Enabled, Trasnmit Single Packet with  
Constant Data as configured in register 0x001C. Checker is  
disabled  
0x2 = PRBS Generation is disabled. PRBS Checker is Enabled  
0x3 = PRBS Generator and Checker both enabled. PRBS  
Generating Continous Packets as configured in register 0x001C  
Copyright © 2018–2019, Texas Instruments Incorporated  
59  
 
 
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 35. BISCR_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
12  
Packet_Generation_Enabl R/W  
e
0x0  
Packet Generation Enable:bit[13:12]  
0x0 = PRBS Generator and Checker both are disabled  
0x1 = PRBS Generator Enabled, Trasnmit Single Packet with  
Constant Data as configured in register 0x001C. Checker is  
disabled  
0x2 = PRBS Generation is disabled. PRBS Checker is Enabled  
0x3 = PRBS Generator and Checker both enabled. PRBS  
Generating Continous Packets as configured in register 0x001C  
11  
PRBS_Checker_Lock/Syn  
c
0x0  
PRBS Checker Lock/Sync Indication:  
0x0 = PRBS checker is not locked  
0x1 = PRBS checker is locked and synced on received bit  
stream  
10  
9
PRBS_Checker_Sync_Lo  
ss  
H
0x0  
0x0  
0x1  
PRBS Checker Sync Loss Indication:  
0x0 = PRBS checker has not lost sync  
0x1 = PRBS checker has lost sync  
Packet_Generator_Status  
Power_Mode  
Packet Generation Status Indication:  
0x0 = Packet Generator is off  
0x1 = Packet Generator is active and generating packets  
8
Sleep Mode Indication:  
0x0 = Indicates that the PHY is in active sleep mode  
0x1 = Indicates that the PHY is in normal power mode  
7
6
RESERVED  
R
0x0  
0x0  
Reserved  
Transmit_in_MII_Loopbac R/W  
k
Transmit Data in MII Loopback Mode (valid only at 100 Mbps)  
0x0 = Data is not transmitted to the line in MII loopback  
0x1 = Enable transmission of data from the MAC received on  
the TX pins to the line in parallel to the MII loopback to RX pins.  
This bit may be set only in MII Loopback mode - setting bit [14]  
in in BMCR register (0x0000)  
5
RESERVED  
R
0x0  
0x0  
Reserved  
4-0  
Loopback_Mode  
R/W  
Loopback Mode Select: The PHY provides several options for  
loopback that test and verify various functional blocks within the  
PHY. Enabling loopback mode allows in-circuit testing of the  
DP83825 digital and analog data paths  
0x1 = PCS Input Loopback (Use for 10Base-Te only)  
0x2 = PCS Output Loopback  
0x4 = Digital Loopback ( Use for 100Base-TX Only)  
0x8 = Analog Loopback (requires 100Ω termination)  
0x10 = Reverse Loopback  
7.6.24 RCSR_Register Register (Offset = 0x17) [reset = 0x1]  
RCSR_Register is shown in Table 36.  
Return to Summary Table.  
Table 36. RCSR_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-13  
RESERVED  
R
Reserved  
60  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Table 36. RCSR_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
12  
RESERVED  
R
0x0  
11  
10  
9
RESERVED  
R
0x0  
0x0  
0x0  
0x0  
RESERVED  
R
RESERVED  
R
8
RMII_TX_Clock_Shift  
R/W  
RMII TX Clock Shift: Applicable only in RMII Slave Mode  
0x0 = Transmit path internal clock shift is disabled  
0x1 = Transmit path internal clock shift is enabled  
7
RMII_Clock_Select  
R/W,STRA 0x0  
P(Master/Sl  
ave)  
RMII Reference Clock Select: Strap ( Master/Slave) determines the  
clock reference requirement.  
0x0 = 25MHz clock reference, crystal or CMOS-level oscillator  
0x1 = 50MHz clock reference, CMOS-level oscillator  
6
5
4
RESERVED  
R
0x0  
0x0  
0x0  
Reserved  
RESERVED  
R
Reserved  
RMII_Revision_Select  
R/W  
RMII Revision Select:  
0x0 = (RMII revision 1.2) CRS_DV will toggle at the end of a  
packet to indicate de-assertion of CRS  
0x1 = (RMII revision 1.0) CRS_DV will remain asserted until  
final data is transferred. CRS_DV will not toggle at the end of a  
packet  
3
2
RMII_Overflow_Status  
RMII_Underflow_Status  
0x0  
0x0  
0x1  
RX FIFO Overflow Status:  
0x0 = Overflow detected  
0x1 = Normal  
RX FIFO Underflow Status:  
0x0 = Underflow detected  
0x1 = Normal  
1-0  
Receive_Elasticity_Buffer R/W  
_Size  
Receive Elasticity Buffer Size: This field controls the Receive  
Elasticity Buffer which allows for frequency variation tolerance  
between the 50MHz RMII clock and the recovered data. The  
following values indicate the tolerance in bits for a single packet. The  
minimum setting allows for standard Ethernet frame sizes at ±50ppm  
accuracy. For greater frequency tolerance, the packet lengths may  
be scaled (for ±100ppm), divide the packet lengths by 2).  
0x0 = 14 bit tolerance (up to 16800 byte packets)  
0x1 = 2 bit tolerance (up to 2400 byte packets)  
0x2 = 6 bit tolerance (up to 7200 byte packets)  
0x3 = 10 bit tolerance (up to 12000 byte packets)  
7.6.25 LEDCR_Register Register (Offset = 0x18) [reset = 0x400]  
LEDCR_Register is shown in Table 37.  
Return to Summary Table.  
Table 37. LEDCR_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-11  
RESERVED  
R
Reserved  
Copyright © 2018–2019, Texas Instruments Incorporated  
61  
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 37. LEDCR_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
10-9  
Blink_Rate  
R/W  
0x2  
LED Blinking Rate (ON/OFF duration):  
0x0 = 20Hz (50 ms)  
0x1 = 10Hz (100 ms)  
0x2 = 5Hz (200 ms)  
0x3 = 2Hz (500 ms)  
8
7
RESERVED  
R
0x0  
0x0  
Reserved  
LED_Link_Polarity  
R/W  
LED Link Polarity Setting: Link LED polarity defined by strapping  
value of this pin. This register allows for override of this strap value.  
0x0 = Active Low polarity setting  
0x1 = Active High polarity setting  
6-5  
4
RESERVED  
R
0x0  
0x0  
Reserved  
Drive_Link_LED  
R/W  
Drive Link LED Select:  
0x0 = Normal operation  
0x1 = Drive value of ON/OFF bit [1] onto LED_0 output pin  
3-2  
1
RESERVED  
R
0x0  
0x0  
Reserved  
Link_LED_ON/OFF_Settin R/W  
g
Value to force on Link LED output  
0
RESERVED  
R
0x0  
Reserved  
7.6.26 PHYCR_Register Register (Offset = 0x19) [reset = 0x8000]  
PHYCR_Register is shown in Table 38.  
Return to Summary Table.  
Table 38. PHYCR_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Auto-MDIX Enable:  
0x0 = Disable Auto-Negotiation Auto-MDIX capability  
0x1 = Enable Auto-Negotiation Auto-MDIX capability  
Force MDIX:  
15  
Auto_MDI/X_Enable  
R/W,STRA 0x1  
P(A-MDIX)  
14  
Force_MDI/X  
R/W  
0x0  
0x0 = Normal operation (Receive on RD pair, Transmit on TD  
pair)  
0x1 = Force MDI pairs to cross (Receive on TD pair, Transmit  
on RD pair)  
13  
12  
Pause_RX_Status  
Pause_TX_Status  
0x0  
0x0  
Pause Receive Negotiation Status: Indicates that pause receive  
should be enabled in the MAC. Based on bits [11:10] in ANAR  
register and bits [11:10] in ANLPAR register settings. The function  
shall be enabled according to IEEE 802.3 Annex 28B Table 28B-3,  
'Pause Resolution', only if the Auto-Negotiation highest common  
denominator is a Full-Duplex technology.  
Pause Transmit Negotiated Status: Indicates that pause should be  
enabled in the MAC. Based on bits [11:10] in ANAR register and bits  
[11:10] in ANLPAR register settings. This function shall be enabled  
according to IEEE 802.3 Annex 28B Table 28B-3, 'Pause  
Resolution', only if the Auto-Negotiation highest common  
denominator is a Full-Duplex technology.  
62  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Table 38. PHYCR_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
11  
MII_Link_Status  
0x0  
MII Link Status:  
0x0 = No active 100Base-TX Full-Duplex link, established using  
Auto-Negotiation  
0x1  
= 100Base-TX Full-Duplex link is active and it was  
established using Auto-Negotiation  
10-8  
7
RESERVED  
R
0x0  
0x0  
Reserved  
Bypass_LED_Stretching  
R/W  
Bypass LED Stretching: Set this bit to '1' to bypass the LED  
stretching, the LED reflects the internal value.  
0x0 = Normal LED operation  
0x1 = Bypass LED stretching  
6
RESERVED  
R
0x0  
Reserved  
5
LED_Configuration  
PHY_Address  
R/W  
H
0x0  
0x0  
4-0  
PHY ADDRESS  
7.6.27 10BTSCR_Register Register (Offset = 0x1A) [reset = 0x0]  
10BTSCR_Register is shown in Table 39.  
Return to Summary Table.  
Table 39. 10BTSCR_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-14  
RESERVED  
R
Reserved  
13  
Receiver_Threshold_Enab R/W  
le  
0x0  
Lower Receiver Threshold Enable:  
0x0 = Normal 10Base-T operation  
0x1 = Enable 10Base-T lower receiver threshold to allow  
operation with longer cables  
12-9  
Squelch  
R/W  
0x0  
Squelch Configuration: Used to set the Peak Squelch 'ON' threshold  
for the 10Base-T receiver. Starting from 200mV to 600mV, step size  
of 50mV with some overlapping as shown below:  
0x0 = 200mV  
0x1 = 250mV  
0x2 = 300mV  
0x3 = 350mV  
0x4 = 400mV  
0x5 = 450mV  
0x6 = 500mV  
0x7 = 550mV  
0x8 = 600mV  
8
7
RESERVED  
NLP_Disable  
R
0x0  
0x0  
Reserved  
R/W  
NLP Transmission Control:  
0x0 = Enable transmission of NLPs  
0x1 = Disable transmission of NLPs  
6-5  
RESERVED  
R
0x0  
Reserved  
Copyright © 2018–2019, Texas Instruments Incorporated  
63  
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 39. 10BTSCR_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
Polarity_Status  
0x0  
Polarity Status: This bit is a duplication of bit [12] in the PHYSTS  
register (0x0010). Both bits will be cleared upon a read of 10BTSCR  
register, but not upon a read of the PHYSTS register.  
0x0 = Correct Polarity detected  
0x1 = Inverted Polarity detected  
3-1  
0
RESERVED  
R
0x0  
0x0  
Reserved  
Jabber_Disable  
R/W  
Jabber Disable: Note: This function is only applicable in 10Base-Te  
operation.  
0x0 = Jabber function enabled  
0x1 = Jabber function disabled  
7.6.28 BICSR1_Register Register (Offset = 0x1B) [reset = 0x7D]  
BICSR1_Register is shown in Table 40.  
Return to Summary Table.  
Table 40. BICSR1_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
BIST_Error_Count  
0x0  
BIST Error Count: Holds number of errored bytes received by the  
PRBS checker. Value in this register is locked and cleared when  
write is done to bit [15]. When BIST Error Counter Mode is set to '0',  
count stops on 0xFF (see register 0x0016) Note: Writing '1' to bit [15]  
will lock the counter's value for successive read operation and clear  
the BIST Error Counter.  
7-0  
BIST_IPG_Length  
R/W  
0x7D  
BIST IPG Length: Inter Packet Gap (IPG) Length defines the size of  
the gap (in bytes) between any 2 successive packets generated by  
the BIST. Default value is 0x7D (equal to 125 bytes*4 = 500 bytes).  
Binary values shall be multiplied by 4 to get the actual IPG length  
7.6.29 BICSR2_Register Register (Offset = 0x1C) [reset = 0x5EE]  
BICSR2_Register is shown in Table 41.  
Return to Summary Table.  
Table 41. BICSR2_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
0x5EE  
Description  
15-11  
RESERVED  
R
Reserved  
10-0  
BIST_Packet_Length  
R/W  
BIST Packet Length: Length of the generated BIST packets. The  
value of this register defines the size (in bytes) of every packet that  
is generated by the BIST. Default value is 0x5DC, which is equal to  
1500 bytes.  
64  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.6.30 CDCR_Register Register (Offset = 0x1E) [reset = 0x0]  
CDCR_Register is shown in Table 42.  
Return to Summary Table.  
Table 42. CDCR_Register Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
0x0  
Description  
15  
Cable_Diagnostic_Start  
Cable Diagnostic Process Start: Diagnostic Start bit is cleared once  
Diagnostic Done indication bit is triggered.  
0x0 = Cable Diagnostic is disabled  
0x1 = Start cable measurement  
14  
13-2  
1
cfg_rescal_en  
R/W  
R
0x0  
0x0  
0x0  
Resistor calibration Start  
Reserved  
RESERVED  
Cable_Diagnostic_Status  
Cable Diagnostic Process Done:  
0x0 = Cable Diagnostic had not completed  
0x1 = Indication that cable measurement process is complete  
0
Cable_Diagnostic_Test_F  
ail  
0x0  
Cable Diagnostic Process Fail:  
0x0 = Cable Diagnostic has not failed  
0x1 = Indication that cable measurement process failed  
7.6.31 PHYRCR_Register Register (Offset = 0x1F) [reset = 0x0]  
PHYRCR_Register is shown in Table 43.  
Return to Summary Table.  
Table 43. PHYRCR_Register Register Field Descriptions  
Bit  
Field  
Type  
R/W,SC  
Reset  
0x0  
Description  
15  
Software_Hard_Reset  
Software Hard Reset:  
0x0 = Normal Operation  
0x1 = Reset PHY. This bit is self cleared and has the same  
effect as Hardware reset pin.  
14  
Digital_reset  
R/W,SC  
0x0  
Software Restart:  
0x0 = Normal Operation  
0x1 = Restart PHY. This bit is self cleared and resets all PHY  
circuitry except the registers.  
13  
RESERVED  
RESERVED  
R
R
0x0  
0x0  
Reserved  
Reserved  
12-0  
7.6.32 MLEDCR_Register Register (Offset = 0x25) [reset = 0x41]  
MLEDCR_Register is shown in Table 44.  
Return to Summary Table.  
Table 44. MLEDCR_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
0x0  
Description  
15-10  
RESERVED  
R
Reserved  
9
MLED_Polarity_Swap  
R/W  
MLED Polarity Swap: The polarity of MLED depends on the routing  
configuration and the strap on COL pin. If the pin strap is Pull-Up  
then polarity is active low. If the pin strap is Pull-Down then polarity  
is active high.  
Copyright © 2018–2019, Texas Instruments Incorporated  
65  
 
 
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 44. MLEDCR_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
8-7  
RESERVED  
R
0x0  
Reserved  
6-3  
LED_0_Configuration  
R/W  
0x8  
MLED Configurations:  
0x0 = LINK OK  
0x1 = RX/TX Activity  
0x2 = TX Activity  
0x3 = RX Activity  
0x4 = Collision  
0x5 = Speed, High for 100BASE-TX  
0x6 = Speed, High for 10BASE-T  
0x7 = Full-Duplex  
0x8 = LINK OK / BLINK on TX/RX Activity  
0x9 = Active Stretch Signal  
0xA = MII LINK (100BT+FD)  
0xB = LPI Mode (EEE)  
0xC = TX/RX MII Error  
0xD = Link Lost (remains on until register 0x0001 is read)  
0xE = Blink for PRBS error (remains ON for single error,  
remains until counter is cleared)  
0xF = Reserved  
2-1  
0
RESERVED  
cfg_mled_en  
R
0x0  
0x1  
Reserved  
R/W  
MLED Route to LED_0:  
0x0 = Link status routed to LED_0  
0x1 = MLED routed to LED_0  
7.6.33 COMPT_Regsiter Register (Offset = 0x27) [reset = 0x0]  
COMPT_Regsiter is shown in Table 45.  
Return to Summary Table.  
Table 45. COMPT_Regsiter Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
0x0  
Description  
15-4  
RESERVED  
R
Reserved  
3-0  
Compliance_Test_Configu R/W  
ration  
Compliance Test Configuration Select: Bit [4] in Register 0x0027 = 1,  
Enables 10Base-T Test Patterns Bit [4] in Register 0x0428 = 1,  
Enables 100Base-TX Test Modes Bits [3:0] select the 10Base-T test  
pattern, as follows: 0000 = Single NLP 0001 = Single Pulse 1 0010 =  
Single Pulse 0 0011 = Repetitive 1 0100 = Repetitive 0 0101 =  
Preamble (repetitive '10 ') 0110 = Single 1 followed by TP_IDLE  
0111 = Single 0 followed by TP_IDLE 1000 = Repetitive '1001 '  
sequence 1001 = Random 10Base-T data 1010 = TP_IDLE_00 1011  
= TP_IDLE_01 1100 = TP_IDLE_10 1101 = TP_IDLE_11 100Base-  
TX Test Mode is determined by bits {[5] in register 0x0428, [3:0] in  
register 0x0027}. The bits determine the number of 0's to follow a '1'.  
0,0001 = Single '0' after a '1' 0,0010 = Two '0' after a '1' 0,0011 =  
Three '0' after a '1' 0,0100 = Four '0' after a '1' 0,0101 = Five '0' after  
a '1' 0,0110 = Six '0' after a '1' 0,0111 = Seven '0' after a '1' 1,1111 =  
Thirty one '0' after a '1' 0,0000 = Clears the shift register Note 1: To  
reconfigure the 100Base-TX Test Mode, bit [4] must be cleared in  
register 0x0428 and then reset to '1' to configure the new pattern.  
Note 2: When performing 100Base-TX or 10Base-T tests modes, the  
speed must be forced using the Basic Mode Control Register  
(BMCR), address 0x0000.  
66  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.6.34 Register_101 Register (Offset = 0x101) [reset = 0x2082]  
Register_101 is shown in Table 46.  
Return to Summary Table.  
Table 46. Register_101 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
cfg_energy_lost_th_norma R/W  
l
0x20  
DSP_ENERGY_THR_VAL register  
7
6-5  
4
cfg_dfe_freeze  
R/W  
R
0x1  
0x0  
0x0  
0x1  
0x0  
DSP_FRZ_CTRL_REGISTER  
Reserved  
RESERVED  
cfg_seq_wd_off  
cfg_ss_bad_mse_tc_sel  
R/W  
R/W  
WD_TIMER_CTRL Register  
DSP_100M_MSE_TIMER VAL  
DSP_100M_CTRL register  
3-1  
0
cfg_use_nrg_det_le_only_ R/W  
as_int  
7.6.35 Register_10a Register (Offset = 0x10A) [reset = 0x2040]  
Register_10a is shown in Table 47.  
Return to Summary Table.  
Table 47. Register_10a Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
cfg_energy_window_len_n R/W  
ormal  
0x20  
DSP_100M_ENERGY_VAL Register  
DSP_ENERGY_THR_VAL register  
7-0  
cfg_energy_on_th_normal R/W  
0x40  
7.6.36 Register_123 Register (Offset = 0x123) [reset = 0x51C]  
Register_123 is shown in Table 48.  
Return to Summary Table.  
Table 48. Register_123 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
0x51C  
Description  
15  
RESERVED  
R
Reserved  
14-0  
cfg_100m_mse_good2_th R/W  
MSE threshold for loop convergence check  
7.6.37 Register_130 Register (Offset = 0x130) [reset = 0x4F28]  
Register_130 is shown in Table 49.  
Return to Summary Table.  
Table 49. Register_130 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15  
RESERVED  
R
Reserved  
14-12  
11  
10  
9
cfg_100m_retrain_tc_sel  
R/W  
0x4  
0x1  
0x1  
0x1  
0x1  
Timer for gain recalibration  
Enable Gain recalibration  
Gain recalibration step select  
Trigger select for energy lost  
Selection for energy lost clr  
cfg_retrain_cagc_bypass R/W  
cfg_retrain_cagc_gear  
cfg_energy_lost_usec  
R/W  
R/W  
8
cfg_energy_lost_clear_sel R/W  
Copyright © 2018–2019, Texas Instruments Incorporated  
67  
 
 
 
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 49. Register_130 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
7-0  
cfg_seq_wd_sel  
R/W  
0x28  
WD Timer cnt sel  
7.6.38 CDSCR_Register Register (Offset = 0x170) [reset = 0x410]  
CDSCR_Register is shown in Table 50.  
Return to Summary Table.  
Table 50. CDSCR_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15  
RESERVED  
R
Reserved  
14  
Cable_Diagnostic_Cross_ R/W  
Disable  
0x0  
Cross TDR Diagnostic Mode:  
0x0 = TDR looks for reflections on channel other than the  
transmit channel configured by 0x170[13]  
0x1 = TDR looks for reflections on same channel as transmit  
channel configured by 0x170[13]  
13  
12  
cfg_tdr_chan_sel  
R/W  
0x0  
0x0  
TDR TX channel select:  
0x0 = Select channel A as transmit channel.  
0x1 = Select channel B as transmit channel.  
cfg_tdr_dc_rem_no_init  
RESERVED  
R/W  
R
To make sure DC removal module is not reset before TDR and dc  
removal is effective on TDR reflection  
11  
0x0  
0x4  
Reserved  
10-8  
Cable_Diagnostic_Averag R/W  
e_Cycles  
Number of TDR Cycles to Average:  
0x0 = 1 TDR cycle  
0x1 = 2 TDR cycles  
0x2 = 4 TDR cycles  
0x3 = 8 TDR cycles  
0x4 = 16 TDR cycles  
0x5 = 32 TDR cycles  
0x6 = 64 TDR cycles  
0x7 = Reserved  
7
RESERVED  
R
0x0  
0x1  
Reserved  
6-4  
cfg_tdr_seg_num  
R/W  
Selects cable segment on which TDR is to be performed - 000b =  
Reserved 001b = 0m to 10m 010b = 10m to 20m 011b = 20m to  
40m 100b = 40m to 80m 101b = 80m and beyond 110b = Reserved  
111b = Reserved  
3-0  
RESERVED  
R
0x0  
Reserved  
7.6.39 CDSCR2_Register Register (Offset = 0x171) [reset = 0x0]  
CDSCR2_Register is shown in Table 51.  
Return to Summary Table.  
Table 51. CDSCR2_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-0  
RESERVED  
R
Reserved  
68  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.6.40 TDR_172_Register Register (Offset = 0x172) [reset = 0x0]  
TDR_172_Register is shown in Table 52.  
Return to Summary Table.  
Table 52. TDR_172_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-0  
RESERVED  
R
Reserved  
7.6.41 CDSCR3_Register Register (Offset = 0x173) [reset = 0x1304]  
CDSCR3_Register is shown in Table 53.  
Return to Summary Table.  
Table 53. CDSCR3_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
cfg_tdr_seg_duration  
R/W  
0x13  
Duration of the segment selected for TDR, calculated by  
-
(Length_in_meters*2*5.2)/8 For Segment #1, 8'hD For Segment #2,  
8'hD For Segment #3, 8'h1A For Segment #4, 8'h34 For Segment  
#5, 8'h8F  
7-0  
cfg_tdr_initial_skip  
R/W  
0x4  
No of samples to be avoided before start of segment configured -  
For Segment #1, 8'h7 For Segment #2, 8'h14 For Segment #3, 8'h21  
For Segment #4, 8'h3B For Segment #5, 8'h6F  
7.6.42 TDR_174_Register Register (Offset = 0x174) [reset = 0x0]  
TDR_174_Register is shown in Table 54.  
Return to Summary Table.  
Table 54. TDR_174_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-0  
RESERVED  
R
Reserved  
7.6.43 TDR_175_Register Register (Offset = 0x175) [reset = 0x1004]  
TDR_175_Register is shown in Table 55.  
Return to Summary Table.  
Table 55. TDR_175_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-14  
RESERVED  
R
0x0  
Reserved  
13-11  
cfg_tdr_sdw_avg_loc  
R/W  
0x2  
TDR shadow average location - For Segment #1, 3'h2 For Segment  
#2, 3'h2 For Segment #3, 3'h2 For Segment #4, 3'h2 For Segment  
#5, 3'h2  
10-5  
4
RESERVED  
R
0x0  
0x0  
0x4  
Reserved  
Reserved  
RESERVED  
R
3-0  
cfg_tdr_fwd_shadow  
R/W  
Length of forward shadow for the segment configured (to avoid  
shadow of a fault peak be seen as another fault peak) - For Segment  
#1, 4'h4 For Segment #2, 4'h4 For Segment #3, 4'h5 For Segment  
#4, 4'h8 For Segment #5, 4'hB  
Copyright © 2018–2019, Texas Instruments Incorporated  
69  
 
 
 
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
7.6.44 TDR_176_Register Register (Offset = 0x176) [reset = 0x5]  
TDR_176_Register is shown in Table 56.  
Return to Summary Table.  
Table 56. TDR_176_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
0x5  
Description  
15-5  
RESERVED  
R
Reserved  
4-0  
cfg_tdr_p_loc_thresh_seg R/W  
7.6.45 CDSCR4_Register Register (Offset = 0x177) [reset = 0x1E00]  
CDSCR4_Register is shown in Table 57.  
Return to Summary Table.  
Table 57. CDSCR4_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
RESERVED  
R
0x0  
Reserved  
12-8  
7-0  
Short_Cables_Threshold  
RESERVED  
R/W  
R
0x1E  
0x0  
TH to compensate for strong reflections in short cables  
Reserved  
7.6.46 TDR_178_Register Register (Offset = 0x178) [reset = 0x2]  
TDR_178_Register is shown in Table 58.  
Return to Summary Table.  
Table 58. TDR_178_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
0x2  
Description  
15-3  
RESERVED  
R
Reserved  
2-0  
cfg_tdr_tx_pulse_width_se R/W  
g
TDR TX Pulse width for Segment - For Segment #1, 3'h2 For  
Segment #2, 3'h2 For Segment #3, 3'h2 For Segment #4, 3'h2 For  
Segment #5, 3'h6  
7.6.47 CDLRR1_Register Register (Offset = 0x180) [reset = 0x0]  
CDLRR1_Register is shown in Table 59.  
Return to Summary Table.  
Table 59. CDLRR1_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
0x0  
Description  
15-8  
RESERVED  
R
Reserved  
7-0  
TD_Peak_Location_1  
Location of the First peak discovered by the TDR mechanism on  
Transmit Channel (TD). The value of these bits need to be translated  
into distance from the PHY.  
70  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.6.48 CDLRR2_Register Register (Offset = 0x181) [reset = 0x0]  
CDLRR2_Register is shown in Table 60.  
Return to Summary Table.  
Table 60. CDLRR2_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-0  
RESERVED  
R
Reserved  
7.6.49 CDLRR3_Register Register (Offset = 0x182) [reset = 0x0]  
CDLRR3_Register is shown in Table 61.  
Return to Summary Table.  
Table 61. CDLRR3_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-0  
RESERVED  
R
Reserved  
7.6.50 CDLRR4_Register Register (Offset = 0x183) [reset = 0x0]  
CDLRR4_Register is shown in Table 62.  
Return to Summary Table.  
Table 62. CDLRR4_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-0  
RESERVED  
R
Reserved  
7.6.51 CDLRR5_Register Register (Offset = 0x184) [reset = 0x0]  
CDLRR5_Register is shown in Table 63.  
Return to Summary Table.  
Table 63. CDLRR5_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-0  
RESERVED  
R
Reserved  
7.6.52 CDLAR1_Register Register (Offset = 0x185) [reset = 0x0]  
CDLAR1_Register is shown in Table 64.  
Return to Summary Table.  
Table 64. CDLAR1_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
0x0  
Description  
15-7  
RESERVED  
R
Reserved  
6-0  
TD_Peak_Amplitude_1  
Amplitude of the First peak discovered by the TDR mechanism on  
Transmit Channel (TD). The value of these bits is translated into  
type of cable fault and/or interference.  
Copyright © 2018–2019, Texas Instruments Incorporated  
71  
 
 
 
 
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
7.6.53 CDLAR2_Register Register (Offset = 0x186) [reset = 0x0]  
CDLAR2_Register is shown in Table 65.  
Return to Summary Table.  
Table 65. CDLAR2_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-0  
RESERVED  
R
Reserved  
7.6.54 CDLAR3_Register Register (Offset = 0x187) [reset = 0x0]  
CDLAR3_Register is shown in Table 66.  
Return to Summary Table.  
Table 66. CDLAR3_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-0  
RESERVED  
R
Reserved  
7.6.55 CDLAR4_Register Register (Offset = 0x188) [reset = 0x0]  
CDLAR4_Register is shown in Table 67.  
Return to Summary Table.  
Table 67. CDLAR4_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-0  
RESERVED  
R
Reserved  
7.6.56 CDLAR5_Register Register (Offset = 0x189) [reset = 0x0]  
CDLAR5_Register is shown in Table 68.  
Return to Summary Table.  
Table 68. CDLAR5_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-0  
RESERVED  
R
Reserved  
7.6.57 CDLAR6_Register Register (Offset = 0x18A) [reset = 0x0]  
CDLAR6_Register is shown in Table 69.  
Return to Summary Table.  
Table 69. CDLAR6_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-12  
RESERVED  
R
Reserved  
11  
TD_Peak_Polarity_1  
0x0  
Polarity of the First peak discovered by the TDR mechanism on  
Transmit Channel (TD).  
10-6  
5
RESERVED  
R
0x0  
0x0  
Reserved  
Cross_Detect_on_TD  
Cross Reflections were detected on TD. Indicate on Short between  
TD and TD  
4
3
RESERVED  
RESERVED  
R
R
0x0  
0x0  
Reserved  
Reserved  
72  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Table 69. CDLAR6_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
2
RESERVED  
R
0x0  
1-0  
RESERVED  
R
0x0  
7.6.58 IO_CFG_Register Register (Offset = 0x302) [reset = 0x0]  
IO_CFG_Register is shown in Table 70.  
Return to Summary Table.  
Table 70. IO_CFG_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-14  
MaC_Impedance_Control R/W  
0x0  
MAC Impedance Control: MAC interface impedance control sets the  
series termination for the digital pins.  
0x0 = 50 Ohms termination  
0x1 = 25 Ohms termination  
13  
12-9  
12-9  
7
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
cfg_clkout25m_off  
R
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
R
R
R
15-6  
6
R
R/W  
This bit shall be set by Application to reduce the current  
consumption  
0x0 = CLKOUT25 available  
0x1 = LED_1_GPIO is available  
5-3  
2-0  
RESERVED  
R
0x0  
0x0  
Reserved  
Pin2_GPIO_Configuration R/W  
GPIO Configuration:  
0x0 = clkout50m (only in master mode)  
0x1 = LED_2  
0x2 = WoL  
0x3 = 0  
0x4 = MDINT  
0x5 = 0  
0x6 = 1  
0x7 = 0  
5-0  
RESERVED  
R
0x0  
Reserved  
Copyright © 2018–2019, Texas Instruments Incorporated  
73  
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
7.6.59 SPARE_OUT Register (Offset = 0x308) [reset = 0x2]  
SPARE_OUT is shown in Table 71.  
Return to Summary Table.  
Table 71. SPARE_OUT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-1  
spare_out  
R/W  
0x1  
Analog Spare Bits Bit 1 - Tied to 1'b1 to act as revision ID Bit 2 -  
cfg_rmii_rx_clk_sel Bit 4 - Freeze all loops when rx_is_dis is high Bit  
5: Bypass MSE checker in LPI_WAKE state Bit 6 - Enable freeze in  
STEADY_STATE before entering LPI_FREEZE Bit 7: Enable  
counter based Freeze mechanism for LPI Freeze cycle Bit 8:  
Choose tmer of 176us/192us for the Counter based Freeze during  
LPI refresh cycle Bit 10 - Freeze fagc in LPI_WAIT Bit 11 - Freeze  
ffe in LPI_WAIT Bit 12 - Freeze dfe in LPI_WAIT Bit 13 - Freeze kp  
loop in LPI_WAIT Bit 14 - Freeze kf loop in LPI_WAIT Bit 15 -  
Freeze dc removal in LPI_WAIT  
0
cfg_clkout_25m_off_statu  
s
0x0  
This bit is applicable in DP83825 only. And is only RO  
0x0 = CLKOUT25 available  
0x1  
= LED_1_GPIO is available and is controlled by  
digpad3_3_gpio_ctrl  
7.6.60 DAC_CFG_0 Register (Offset = 0x30B) [reset = 0xC00]  
DAC_CFG_0 is shown in Table 72.  
Return to Summary Table.  
Table 72. DAC_CFG_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-12  
RESERVED  
R
Reserved  
11-6  
5-0  
cfg_dac_minus_one_val  
cfg_dac_zero_val  
R/W  
R/W  
0x30  
0x0  
LD data for mlt3 encoded data of minus one  
LD data for mlt3 encoded data of zero  
7.6.61 DAC_CFG_1 Register (Offset = 0x30C) [reset = 0x20]  
DAC_CFG_1 is shown in Table 73.  
Return to Summary Table.  
Table 73. DAC_CFG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-6  
RESERVED  
R
0x0  
Reserved  
5-0  
cfg_dac_plus_one_val  
R/W  
0x20  
LD data for mlt3 encoded data of plus one  
7.6.62 DSP_CFG_0 Register (Offset = 0x30F) [reset = 0x464]  
DSP_CFG_0 is shown in Table 74.  
Return to Summary Table.  
Table 74. DSP_CFG_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-11  
RESERVED  
R
Reserved  
10-8  
7
cfg_100m_ffe1_tc_sel  
cfg_ffe1_freeze  
R/W  
R/W  
0x4  
0x0  
Timer for FFE_1 State  
Freeze FFE option in FFE_1 State. 1 -> Freeze.  
74  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Table 74. DSP_CFG_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
cfg_ffe2_freeze  
R/W  
0x1  
Freeze FFE option in FFE_2 State. 1 -> Freeze.  
Freeze FFE option in FFE_3 State. 1 -> Freeze.  
5
cfg_ffe3_freeze  
R/W  
R/W  
0x1  
0x1  
4-2  
cfg_deq_thr_check_en  
Enable bits for different metric checks during DEQ sweep.  
cfg_deq_thr_check_en[0] -> Enables DFE Coeff thr check.  
cfg_deq_thr_check_en[1]  
->  
Enables  
MSE  
thr  
check.  
cfg_deq_thr_check_en[2] -> Enables pre-cursor value thr check.  
1
0
cfg_tloop_freqacc_clr_deq R/W  
sweep  
0x0  
0x0  
Option to re-initialize tloop freq acc during DEQ sweep iterations.  
cfg_dfe_reset_deqsweep R/W  
Option to reset DFE Coeff during DEQ sweep iterations.  
7.6.63 DSP_CFG_2 Register (Offset = 0x311) [reset = 0x1FC]  
DSP_CFG_2 is shown in Table 75.  
Return to Summary Table.  
Table 75. DSP_CFG_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-14  
cfg_cagc_gain_mapping_ R/W  
sel  
0x0  
Option to select different combinations of BPF, PGA gain by CAGC.  
0 -> default option. Other options are 1 and 2. (There are only 3  
options.)  
13  
cfg_deq_coeff_sel  
R/W  
0x0  
Equalization mode ctrl register  
0x0 = Optimal Coefficients for less pre-cursor.  
0x1 = DEQ Coefficients from Table 2 (LS)  
12-9  
8-1  
0
RESERVED  
R
0x0  
Reserved  
cfg_deq_coeff_0_val_1  
RESERVED  
R/W  
R
0xFE  
0x0  
Equalization Force coefficient_0 Value for CabeLength < 75m  
Reserved  
7.6.64 DSP_CFG_4 Register (Offset = 0x313) [reset = 0x6F8]  
DSP_CFG_4 is shown in Table 76.  
Return to Summary Table.  
Table 76. DSP_CFG_4 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0x6  
0xF8  
Description  
15-8  
cfg_deq_coeff_0_val_4  
Equalization Force coefficient_0 Value for CabeLength >130m  
Equalization Force coefficient_1 Value for CabeLength < 75m  
7-0  
cfg_deq_coeff_1_val_1  
7.6.65 DSP_CFG_13 Register (Offset = 0x31C) [reset = 0x1101]  
DSP_CFG_13 is shown in Table 77.  
Return to Summary Table.  
Table 77. DSP_CFG_13 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
0x0  
Description  
15  
cfg_kp_force_en  
Enable forcing of timing loop prop arm gain  
Enable forcing of timing loop integral arm gain  
Value to force for timing loop prop arm gain  
Value to force for timing loop integral arm gain  
14  
cfg_kf_force_en  
cfg_kp_force_val  
cfg_kf_force_val  
R/W  
R/W  
R/W  
0x0  
0x2  
0x2  
13-11  
10-7  
Copyright © 2018–2019, Texas Instruments Incorporated  
75  
 
 
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 77. DSP_CFG_13 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
cfg_kp_freeze_en  
R/W  
0x0  
Enable to freeze prop arm  
5
cfg_kp_freeze_val  
R/W  
0x0  
Value to freeze prop arm.  
0x0 = unfreeze  
0x1 = freeze;  
4
3
cfg_kf_freeze_en  
cfg_kf_freeze_val  
R/W  
R/W  
0x0  
0x0  
Enable to freeze integral arm  
Value to freeze integral arm.  
0x0 = unfreeze  
0x1 = freeze  
2
1
cfg_pd_pol  
R/W  
R/W  
0x0  
0x0  
TED polarity inversion  
cfg_energy_det_in_sel  
Option to select input for Energy Calc.  
0x0 = Slicer inp (default)  
0x1 = ADC out (no DC)  
0
cfg_compute_pre_cursor_ R/W  
metric_en  
0x1  
Enable pre cursor metric calculation  
7.6.66 DSP_CFG_16 Register (Offset = 0x31F) [reset = 0xFC36]  
DSP_CFG_16 is shown in Table 78.  
Return to Summary Table.  
Table 78. DSP_CFG_16 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
0x1F  
Description  
15-11  
cfg_100m_frz_frz  
Freeze cmd at Seq State : LPI_FREEZE by groups: [4] FFE [3]  
Tloop_Kf [2] Tloop_Kp [1] dfe [0] Fagc,ffe,mse  
10-6  
5-1  
0
cfg_100m_wake_frz  
cfg_100m_flush_frz  
RESERVED  
R/W  
R/W  
R
0x10  
0x1B  
0x0  
Freeze cmd at Seq State : LPI_Wake, by groups: [4] FFE [3]  
Tloop_Kf [2] Tloop_Kp [1] dfe [0] Fagc,ffe,mse  
Freeze cmd at Seq State : LPI_Wake, by groups: [4] FFE [3]  
Tloop_Kf [2] Tloop_Kp [1] dfe [0] Fagc,ffe,mse  
Reserved  
7.6.67 DSP_CFG_25 Register (Offset = 0x33C) [reset = 0xEC00]  
DSP_CFG_25 is shown in Table 79.  
Return to Summary Table.  
Table 79. DSP_CFG_25 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
deq_coeff_1  
0xEC  
0x0  
Reserved  
7
RESERVED  
R
Reserved  
6-0  
cfg_deq_coeff_force  
R/W  
0x0  
EQUALIZATION_FRC_CTRL REGISTER  
76  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.6.68 DSP_CFG_27 Register (Offset = 0x33E) [reset = 0x261E]  
DSP_CFG_27 is shown in Table 80.  
Return to Summary Table.  
Table 80. DSP_CFG_27 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
0x0  
Description  
15  
cfg_wait_lpi_el_dis  
EEE_WAKE_CTRL register  
14-13  
12-8  
7
cfg_dfe_coeff_lim_sel  
cfg_dfe_coeff_lim_val  
cfg_wait_lpi_ed_dis  
R/W  
R/W  
0x1  
0x6  
0x0  
0x0  
0x0  
0x1E  
Enable limit on the max limit of dfe coefficient  
Limit value for dfe coefficeint  
EEE_WAKE_CTRL register  
6
cfg_mse_th_scaled_en  
cfg_dfe_th_scaled_en  
cfg_dfe_mse_th_offset  
R/W  
R/W  
R/W  
Enable scaling of mse threshold based on PGA gain for DEQ sweep  
Enable scaling of dfe threshold based on PGA gain for DEQ sweep  
5
4-0  
Offset to be added to PGA attenuation level used for scaling of mse  
and dfe thresholds  
7.6.69 ANA_LD_PROG_SL_Register Register (Offset = 0x404) [reset = 0x80]  
ANA_LD_PROG_SL_Register is shown in Table 81.  
Return to Summary Table.  
Table 81. ANA_LD_PROG_SL_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
ld_prog_sl  
R/W  
0x80  
<15:12> ld_bias <11:8> cm_control: debug mode for changing  
output common mode <7:5> iq_control: ld power consumption - 000-  
12.7mA;  
100:15.7mA;  
111:19.5mA  
<4:0>  
unused  
<0>ld_burnin_mode  
7.6.70 ANA_RX10BT_CTRL_Register Register (Offset = 0x40D) [reset = 0x0]  
ANA_RX10BT_CTRL_Register is shown in Table 82.  
Return to Summary Table.  
Table 82. ANA_RX10BT_CTRL_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-5  
RESERVED  
R
0x0  
Reserved  
4-0  
rx10bt_comp_sl  
R/W  
0x0  
10B-T current Gain, common for both POS and NEG, Starting from  
200mV to 575mV, step size of 25mV PG1.1 change : Bit 3 is  
internally inverted  
7.6.71 Register_416 Register (Offset = 0x416) [reset = 0x830]  
Register_416 is shown in Table 83.  
Return to Summary Table.  
Table 83. Register_416 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-13  
RESERVED  
R
Reserved  
12  
11-8  
7
hpf_cal_force_ctrl  
hpf_cal_sl  
R/W  
R/W  
R/W  
0x0  
0x8  
0x0  
ANA RX PATH CTRL REGISTER  
Reserved  
hpf_gain_force_ctrl  
ANA RX PATH CTRL REGISTER  
Copyright © 2018–2019, Texas Instruments Incorporated  
77  
 
 
 
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 83. Register_416 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
RESERVED  
R
0x0  
Reserved  
5-4  
3-2  
1
hpf_gain_sl  
R/W  
R
0x3  
0x0  
0x0  
0x0  
ANA RX PATH CTRL REGISTER  
Reserved  
RESERVED  
hpf_en_force_ctrl  
hpf_en_sl  
R/W  
R/W  
ANA RX PATH CTRL REGISTER  
ANA RX PATH CTRL REGISTER  
0
7.6.72 Register_429 Register (Offset = 0x429) [reset = 0x0]  
Register_429 is shown in Table 84.  
Return to Summary Table.  
Table 84. Register_429 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
top_prog_vbgbyr_control  
R/W  
0x0  
IVBGR_CTRL register  
Reserved  
7-0  
RESERVED  
R
0x0  
7.6.73 GENCFG_Register Register (Offset = 0x456) [reset = 0x8]  
GENCFG_Register is shown in Table 85.  
Return to Summary Table.  
Table 85. GENCFG_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
Reserved  
15-4  
RESERVED  
R
3
Min_IPG_Enable  
R/W  
0x1  
Min IPG Enable:  
0x0 = IPG set to 0.20µs  
0x1 = Enable Minimum Interpacket Gap (IPG is set to 120ns  
instead of 0.20µs)  
2-0  
RESERVED  
R
0x0  
Reserved  
7.6.74 LEDCFG_Register Register (Offset = 0x460) [reset = 0x10]  
LEDCFG_Register is shown in Table 86.  
Return to Summary Table.  
Table 86. LEDCFG_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
0x0  
Description  
Reserved  
Reserved  
15-12  
RESERVED  
R
11-8  
RESERVED  
R
78  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Table 86. LEDCFG_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LED_2_Control  
R/W  
0x1  
LED_2 Control:Selects the source for LED_1.  
0x0 = LINK OK  
0x1 = RX/TX Activity  
0x2 = TX Activity  
0x3 = RX Activity  
0x4 = Collision  
0x5 = Speed, High for 100BASE-TX  
0x6 = Speed, High for 10BASE-T  
0x7 = Full-Duplex  
0x8 = LINK OK / BLINK on TX/RX Activity  
0x9 = Active Stretch Signal  
0xA = MII LINK (100BT+FD)  
0xB = LPI Mode (Energy Efficient Ethernet)  
0xC = TX/RX MII Error  
0xD = Link Lost (remains on until register 0x0001 is read)  
0xE = Blink for PRBS error (remains ON for single error,  
remains until counter is cleared)  
0xF = Reserved  
Reserved  
3-0  
RESERVED  
R
0x0  
7.6.75 IOCTRL_Register Register (Offset = 0x461) [reset = 0x0]  
IOCTRL_Register is shown in Table 87.  
Return to Summary Table.  
Table 87. IOCTRL_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
15  
RESERVED  
R
14  
13-12  
11  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
R
R
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
10-7  
6-5  
4-0  
7.6.76 SOR1_Register Register (Offset = 0x467) [reset = 0x101]  
SOR1_Register is shown in Table 88.  
Return to Summary Table.  
Table 88. SOR1_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15  
RESERVED  
R
Reserved  
14  
13  
CRS_DV/RX_DV  
CFG_PHY_AD_1  
0x0  
0x0  
Reserved  
Latched Value of PhyAddress[1]  
Copyright © 2018–2019, Texas Instruments Incorporated  
79  
 
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 88. SOR1_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
12  
CFG_PHY_AD_0  
0x0  
Latched Value of PhyAddress[0]  
Reserved  
11  
10  
9
RESERVED  
R
R
R
0x0  
0x0  
0x0  
0x1  
0x0  
0x0  
0x0  
0x0  
0x0  
RESERVED  
Reserved  
RESERVED  
Reserved  
8
CFG_AMDIX  
RESERVED  
1 = Auto MDI 0 = Manual MDI  
Reserved  
7
R
R
R
R
6
RESERVED  
Reserved  
5
RESERVED  
Reserved  
4
RESERVED  
Reserved  
3
CFG_RMII_Master/Slave  
0 = RMII Master : 25MHz clock reference at XI 1 = RMII Slave :  
50MHz clock reference at XI  
2
1
0
RESERVED  
R
R
0x0  
0x0  
0x1  
Reserved  
RESERVED  
Reserved  
Autonegotiation_enable  
1: Auto Neg Enable 0: Auto Neg Disable  
7.6.77 SOR2_Register Register (Offset = 0x468) [reset = 0x80]  
SOR2_Register is shown in Table 89.  
Return to Summary Table.  
Table 89. SOR2_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
Reserved  
Reserved  
15-13  
RESERVED  
R
12  
RESERVED  
R
0x0  
11  
10  
CRS_DV_vs_RX_DV  
RESERVED  
0x0  
0x0  
R
R
R
Reserved  
9
8
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
CFG_LED_LINK_POL  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0x0  
0x0  
0x1  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Reserved  
Reserved  
1 = LED_LINK is active high 0 = LED_LINK is active low  
R
R
R
R
R
R
R
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
80  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.6.78 Register_0x469_Register Register (Offset = 0x469) [reset = 0x40]  
Register_0x469_Register is shown in Table 90.  
Return to Summary Table.  
Table 90. Register_0x469_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
led 2 polarity  
15-11  
RESERVED  
R
0x0  
10  
9
RESERVED  
RESERVED  
RESERVED  
RESERVED  
led_2_polarity  
R
0x0  
0x0  
0x0  
0x0  
0x1  
R
8
R
7
R
6
R/W  
0x0 = active low,  
0x1 = active high  
led 2 drive value  
led 2 drive enable  
0x0 = Normal operation  
0x1 = drive LED polarity,  
Reserved  
led 1 polarity  
0x0 = active low,  
0x1 = active high  
led1 drive value  
led 1 drive enable  
0x0 = Normal operation  
0x1 = drive LED polarity,  
5
4
led_2_drv_val  
led_2_drv_en  
R/W  
R/W  
0x0  
0x0  
3
2
RESERVED  
R
0x0  
led_1_polarity  
R/W,STRA 0x0  
P
1
0
led_1_drv_val  
led_1_drv_en  
R/W  
R/W  
0x0  
0x0  
7.6.79 RXFCFG_Register Register (Offset = 0x4A0) [reset = 0x1081]  
RXFCFG_Register is shown in Table 91.  
Return to Summary Table.  
Table 91. RXFCFG_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
15-14  
RESERVED  
R
0x0  
13  
12  
RESERVED  
CRC_Gate  
R
0x0  
0x1  
R/W  
CRC Gate: If Magic Packet has Bad CRC there will be no indication  
(status, interrupt, GPIO) when enabled.  
0x0 = Bad CRC does not gate Magic Packet or Pattern  
Indications  
0x1 = Bad CRC gates Magic Packet and Pattern Indications  
11  
WoL_Level_Change_Indic W,SC  
ation_Clear  
0x0  
WoL Level Change Indication Clear: If WoL Indication is set for Level  
change mode, this bit clears the level upon a write.  
0x0 = Clear  
Copyright © 2018–2019, Texas Instruments Incorporated  
81  
 
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 91. RXFCFG_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
10-9  
WoL_Pulse_Indication_Se R/W  
lect  
0x0  
WoL Pulse Indication Select: Only valid when WoL Indication is set  
for Pulse mode.  
0x0 = 8 clock cycles (of 125MHz clock)  
0x1 = 16 clock cycles  
0x2 = 32 clock cycles  
0x3 = 64 clock cycles  
8
7
WoL_Indication_Select  
WoL_Enable  
R/W  
R/W  
0x0  
0x1  
WoL Indication Select:  
0x0 = Pulse mode  
0x1 = Level change mode  
WoL Enable:  
0x0 = normal operation  
0x1 = Enable Wake-on-LAN (WoL)  
6
5
4
3
2
1
0
Bit_Mask_Flag  
Secure-ON_Enable  
RESERVED  
R/W  
R/W  
R
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Bit Mask Flag  
Enable Secure-ON password for Magic Packets  
Reserved  
RESERVED  
R
Reserved  
RESERVED  
R
Reserved  
RESERVED  
R
Reserved  
WoL_Magic_Packet_Enab R/W,STRA 0x1  
le  
Enable Interrupt upon reception of Magic Packet  
P
7.6.80 RXFS_Register Register (Offset = 0x4A1) [reset = 0x1000]  
RXFS_Register is shown in Table 92.  
Return to Summary Table.  
Table 92. RXFS_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15-13  
RESERVED  
R
Reserved  
12  
WoL_Interrupt_Source  
R/W  
0x1  
WoL Interrupt Source: Source of Interrupt for bit [1] of register  
0x0013. When enabling WoL, this bit is automatically set to WoL  
Interrupt.  
0x0 = Data Polarity Interrupt  
0x1 = WoL Interrupt  
11-8  
7
RESERVED  
SFD_Error  
R
H
0x0  
0x0  
Reserved  
SFD Error:  
0x0 = No SFD error  
0x1 = Packet with SFD error (without the SFD byte indicated in  
bit [13] register 0x04A0)  
6
5
Bad_CRC  
H
H
0x0  
0x0  
Bad CRC:  
0x0 = No bad CRC received  
0x1 = Bad CRC was received  
Secure-On_Hack_Flag  
Secure-ON Hack Flag:  
0x0 = Valid Secure-ON Password  
0x1 = Invalid Password detected in Magic Packet  
82  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Table 92. RXFS_Register Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
4
RESERVED  
R
0x0  
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
R
R
R
H
0x0  
0x0  
0x0  
0x0  
WoL_Magic_Packet_Statu  
s
WoL Magic Packet Status:  
7.6.81 RXFPMD1_Register Register (Offset = 0x4A2) [reset = 0x0]  
RXFPMD1_Register is shown in Table 93.  
Return to Summary Table.  
Table 93. RXFPMD1_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
MAC_Destination_Addres R/W  
s_Byte_4  
0x0  
Perfect Match Data: Configured for MAC Destination Address  
Perfect Match Data: Configured for MAC Destination Address  
7-0  
MAC_Destination_Addres R/W  
s_Byte_5__MSB  
0x0  
7.6.82 RXFPMD2_Register Register (Offset = 0x4A3) [reset = 0x0]  
RXFPMD2_Register is shown in Table 94.  
Return to Summary Table.  
Table 94. RXFPMD2_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
MAC_Destination_Addres R/W  
s_Byte_2  
0x0  
Perfect Match Data: Configured for MAC Destination Address  
Perfect Match Data: Configured for MAC Destination Address  
7-0  
MAC_Destination_Addres R/W  
s_Byte_3  
0x0  
7.6.83 RXFPMD3_Register Register (Offset = 0x4A4) [reset = 0x0]  
RXFPMD3_Register is shown in Table 95.  
Return to Summary Table.  
Table 95. RXFPMD3_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
MAC_Destination_Addres R/W  
s_Byte_0  
0x0  
Perfect Match Data: Configured for MAC Destination Address  
Perfect Match Data: Configured for MAC Destination Address  
7-0  
MAC_Destination_Addres R/W  
s_Byte_1  
0x0  
7.6.84 Register_0x4cd Register (Offset = 0x4CD) [reset = 0x408]  
Register_0x4cd is shown in Table 96.  
Return to Summary Table.  
Table 96. Register_0x4cd Register Field Descriptions  
Bit  
Field  
cfg_lpi_energy_lost_th  
Type  
R/W  
Reset  
0x4  
Description  
15-8  
CFG_EEE_ENERGY_CTRL register  
Copyright © 2018–2019, Texas Instruments Incorporated  
83  
 
 
 
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 96. Register_0x4cd Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
7-0  
cfg_lpi_energy_on_th  
R/W  
0x8  
CFG_EEE_ENERGY_CTRL register  
7.6.85 Register_0x4ce Register (Offset = 0x4CE) [reset = 0x12]  
Register_0x4ce is shown in Table 97.  
Return to Summary Table.  
Table 97. Register_0x4ce Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
0x12  
Description  
15-8  
RESERVED  
R
Reserved  
7-0  
cfg_lpi_energy_window_le R/W  
n
CFG_EEE_ENERGY_CTRL register  
7.6.86 Register_0x4cf Register (Offset = 0x4CF) [reset = 0x261D]  
Register_0x4cf is shown in Table 98.  
Return to Summary Table.  
Table 98. Register_0x4cf Register Field Descriptions  
Bit  
Field  
Type  
R/W  
Reset  
0x2  
Description  
15-12  
cfg_sd_on_win_len  
EEE_WAKE_CTRL register  
DSP100M_TLOOP_CTRL register  
11-8  
cfg_100m_tloop_kf_step_ R/W  
ss  
0x6  
7-4  
3
cfg_sd_on_thr_100m  
cfg_100m_use_sd_en  
cfg_sd_cnt_level  
cfg_en_zc_cnt  
R/W  
R/W  
R/W  
R/W  
R/W  
0x1  
0x1  
0x1  
0x0  
0x1  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2
1
0
cfg_en_cmp_cnt  
7.6.87 EEECFG2_Register Register (Offset = 0x4D0) [reset = 0x0]  
EEECFG2_Register is shown in Table 99.  
Return to Summary Table.  
Table 99. EEECFG2_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
15  
RESERVED  
R
14  
13-7  
6-5  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
0x0  
0x0  
0x0  
0x0  
4-0  
84  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.6.88 EEECFG3_Register Register (Offset = 0x4D1) [reset = 0x18B]  
EEECFG3_Register is shown in Table 100.  
Return to Summary Table.  
Table 100. EEECFG3_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
RESERVED  
R
0x0  
Reserved  
14-13  
Force_EEE_Enable  
R/W  
0x0  
Force EEE: Note: Both Link Partners need to be configured to Force  
EEE.  
0x0 = EEE Force Mode OFF  
0x1 = Reserved0  
0x2 = Reserved1  
0x3 = EEE Forced LPI Enabled  
12  
Force_LPI_Request_TX  
RESERVED  
R/W  
R
0x0  
Force LPI Request TX: This bit shall be set after setting bits [14:13]  
to EEE Force LPI Enabled.  
0x0 = normal operation  
0x1 = Force LPI request on transmit enabled  
11  
10  
0x0  
0x0  
Reserved  
cfg_dis_lpi_bypass_rvrs_l R/W  
oop  
Energy Efficient Ethernet Configuration Register #3  
9
8
cfg_dis_lpi_bypass_fifo  
R/W  
0x0  
0x1  
Energy Efficient Ethernet Configuration Register #3  
Energy Efficient Ethernet Configuration Register #3  
cfg_100m_en_lpi_wake_f R/W  
allback  
7-4  
3
cfg_lpi_mse_timer_tc_val R/W  
EEE_Capabilities_Bypass R/W  
0x8  
0x1  
Energy Efficient Ethernet Configuration Register #3  
EEE Advertise Option: Allow for EEE Advertisment during Auto-  
Negotiation to be determined by bit [0] in register 0x04D1 rather than  
the Next Page Registers (Register 0x003C and Register 0x003D in  
MMD7).  
0x0 = Registers in MMD3 and MMD7 determine EEE Auto-  
Negotiation Abilities  
0x1 = Bit [0] determines EEE Auto-Negotiation Abilities  
2
1
0
EEE_Next_Page_Disable R/W  
EEE_RX_Path_Shutdown R/W  
EEE_Capabilities_Enable  
0x0  
0x1  
0x1  
EEE Next Page Disable:  
0x0 = Reception of EEE Next Pages is enabled  
0x1 = Reception of EEE Next Pages is disabled  
EEE RX Path Shutdown:  
0x0 = Analog RX path is active during LPI_Quiet  
0x1 = Enable shutdown of Analog RX path at LPI_Quiet  
EEE Capabilities Disable  
0x0 = PHY does not support EEE (Register 0x0014 in MMD3,  
Register 0x003C and Register 0x003D in MMD7 are ignored)  
0x1  
= PHY support EEE capability, Auto-Negotiation will  
negotiate to EEE as defined by Register 0x003C and Register  
0x003D in MMD7.  
Copyright © 2018–2019, Texas Instruments Incorporated  
85  
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
7.6.89 Register_0x4d2 Register (Offset = 0x4D2) [reset = 0x354A]  
Register_0x4d2 is shown in Table 101.  
Return to Summary Table.  
Table 101. Register_0x4d2 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0x0  
Description  
15-14  
cfg_flush_ph_shift_updn  
cfg_ph_shift_toggle_en  
PI_CTRL Register  
13  
12  
0x1  
0x1  
0x0  
0x1  
0xA  
0xA  
PI_CTRL Register  
cfg_fast_slave_wake_100 R/W  
DSP_100M_EEE_LINK CTRL register  
DSP_100M_EEE_LINK CTRL register  
DSP_EEE_SEQ CTRL register  
DSP_100M_EEE_LINK CTRL register  
DSP_100M_EEE_LINK CTRL register  
11  
cfg_dis_dscr_100_tout  
cfg_lpi_pre_flush_en  
R/W  
R/W  
10  
9-5  
4-0  
cfg_100m_rx_lpi_ts_timer R/W  
cfg_100m_rx_lpi_link_fail R/W  
7.6.90 Register_0x4d4 Register (Offset = 0x4D4) [reset = 0x6633]  
Register_0x4d4 is shown in Table 102.  
Return to Summary Table.  
Table 102. Register_0x4d4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
Description  
15  
RESERVED  
R
Reserved  
14-12  
cfg_100m_tloop_kp_step_ R/W  
1
0x6  
DSP_100M_STEP_1_Register  
11  
RESERVED  
R
0x0  
0x6  
Reserved  
10-8  
cfg_100m_tloop_kp_step_ R/W  
0
DSP_100M_STEP_0_Register  
7
RESERVED  
R
0x0  
0x3  
Reserved  
6-4  
cfg_100m_tloop_kf_step_ R/W  
1
DSP_100M_STEP_1_Register  
3
RESERVED  
R
0x0  
0x3  
Reserved  
2-0  
cfg_100m_tloop_kf_step_ R/W  
0
DSP_100M_STEP_0_Register  
7.6.91 DSP_100M_STEP_2_Register Register (Offset = 0x4D5) [reset = 0x2F1]  
DSP_100M_STEP_2_Register is shown in Table 103.  
Return to Summary Table.  
Table 103. DSP_100M_STEP_2_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-10  
RESERVED  
R
0x0  
Reserved  
9-7  
6-4  
cfg_100m_tloop_kp_step_ R/W  
2
0x5  
0x7  
DSP_100M_STEP_2 Register  
cfg_100m_tloop_kf_step_ R/W  
2
DSP_100M_STEP_2 Register  
3-2  
1
cfg_100m_mse_step_2  
cfg_100m_dfe_step_2  
cfg_100m_fagc_step_2  
R/W  
R/W  
R/W  
0x0  
0x0  
0x1  
DSP_100M_STEP_2 Register  
DSP_100M_STEP_2 Register  
DSP_100M_STEP_2 Register  
0
86  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.6.92 DSP_100M_STEP_3_Register Register (Offset = 0x4D6) [reset = 0x171]  
DSP_100M_STEP_3_Register is shown in Table 104.  
Return to Summary Table.  
Table 104. DSP_100M_STEP_3_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-10  
RESERVED  
R
0x0  
Reserved  
9-7  
6-4  
cfg_100m_tloop_kp_step_ R/W  
3
0x2  
0x7  
DSP_100M_STEP_3 Register  
cfg_100m_tloop_kf_step_ R/W  
3
DSP_100M_STEP_3 Register  
3-2  
1
cfg_100m_mse_step_3  
cfg_100m_dfe_step_3  
cfg_100m_fagc_step_3  
R/W  
R/W  
R/W  
0x0  
0x0  
0x1  
DSP_100M_STEP_3 Register  
DSP_100M_STEP_3 Register  
DSP_100M_STEP_3 Register  
0
7.6.93 DSP_100M_STEP_4_Register Register (Offset = 0x4D7) [reset = 0x171]  
DSP_100M_STEP_4_Register is shown in Table 105.  
Return to Summary Table.  
Table 105. DSP_100M_STEP_4_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-10  
RESERVED  
R
0x0  
Reserved  
9-7  
6-4  
cfg_100m_tloop_kp_step_ R/W  
4
0x2  
0x7  
DSP_100M_STEP_4 Register  
cfg_100m_tloop_kf_step_ R/W  
4
DSP_100M_STEP_4 Register  
3-2  
1
cfg_100m_mse_step_4  
cfg_100m_dfe_step_4  
cfg_100m_fagc_step_4  
R/W  
R/W  
R/W  
0x0  
0x0  
0x1  
DSP_100M_STEP_4 Register  
DSP_100M_STEP_4 Register  
DSP_100M_STEP_4 Register  
0
7.6.94 MMD3_PCS_CTRL_1_Register Register (Offset = 0x1000) [reset = 0x0]  
MMD3_PCS_CTRL_1_Register is shown in Table 106.  
Return to Summary Table.  
Table 106. MMD3_PCS_CTRL_1_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
PCS_Reset  
R/W,SC  
0x0  
PCS Reset: Reset clears MMD3, MMD7 and PCS registers. Reset  
does not clear Vendor Specific Registers (DEVAD = 31).  
0x0 = Normal operation  
0x1 = Soft Reset of MMD3, MMD7 and PCS registers  
14-11  
10  
RESERVED  
R
0x0  
0x0  
Reserved  
RX_Clock_Stoppable  
R/W  
RX Clock Stoppable:  
0x0 = Receive Clock not stoppable  
0x1 = Receive Clock stoppable during LPI  
9-0  
RESERVED  
R
0x0  
Reserved  
Copyright © 2018–2019, Texas Instruments Incorporated  
87  
 
 
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
7.6.95 MMD3_PCS_STATUS_1 Register (Offset = 0x1001) [reset = 0x40]  
MMD3_PCS_STATUS_1 is shown in Table 107.  
Return to Summary Table.  
Table 107. MMD3_PCS_STATUS_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
15-12  
RESERVED  
R
0x0  
11  
10  
9
TX_LPI_Received  
RX_LPI_Received  
TX_LPI_Indication  
RX_LPI_Indication  
0x0  
0x0  
0x0  
0x0  
TX LPI Received:  
0x0 = LPI not received  
0x1 = TX PCS has received LPI  
RX LPI Received:  
0x0 = LPI not received  
0x1 = RX PCS has received LPI  
TX LPI Indication:  
0x0 = TX PCS is not currently receiving LPI  
0x1 = TX PCS is currently receiving LPI  
8
RX LPI Indication:  
0x0 = RX PCS is not currenly receiving LPI  
0x1 = RX PCS is currently receiving LPI  
7
6
RESERVED  
R
R
0x0  
0x1  
Reserved  
TX_Clock_Stoppable  
TX Clock Stoppable:  
0x0 = TX Clock is not stoppable  
0x1 = MAC may stop clock during LPI  
5-0  
RESERVED  
0x0  
Reserved  
7.6.96 MMD3_EEE_CAPABILITY_Register Register (Offset = 0x1014) [reset = 0x2]  
MMD3_EEE_CAPABILITY_Register is shown in Table 108.  
Return to Summary Table.  
Table 108. MMD3_EEE_CAPABILITY_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-3  
RESERVED  
R
0x0  
Reserved  
2
1
0
EEE_1Gbps_Enable  
EEE_100Mbps_Enable  
RESERVED  
0x0  
0x1  
0x0  
EEE 1Gbps Enable:  
0x0 = EEE is not supported for 1000Base-T  
0x1 = EEE is supported for 1000Base-T  
EEE 100Mbps Enable:  
0x0 = EEE is not supported for 100Base-TX  
0x1 = EEE is supported for 100Base-TX  
R
Reserved  
88  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
7.6.97 MMD3_WAKE_ERR_CNT_Register Register (Offset = 0x1016) [reset = 0x0]  
MMD3_WAKE_ERR_CNT_Register is shown in Table 109.  
Return to Summary Table.  
Table 109. MMD3_WAKE_ERR_CNT_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
EEE_Wake_Error_Counte  
r
0x0  
EEE Wake Error Counter: This register counts the wake time faults  
where the PHY fails to complete its normal wake sequence within  
the time requiered for the specific PHY type. This counter is cleared  
after a read and holds at all ones in the case of overflow. PCS Reset  
also clears this register  
7.6.98 MMD7_EEE_ADVERTISEMENT_Register Register (Offset = 0x203C) [reset = 0x0]  
MMD7_EEE_ADVERTISEMENT_Register is shown in Table 110.  
Return to Summary Table.  
Table 110. MMD7_EEE_ADVERTISEMENT_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-2  
RESERVED  
R
0x0  
Reserved  
1
Advertise_100Base-  
TX_EEE  
R/W  
R
0x0  
0x0  
Advertise 100Base-TX EEE:  
0x0 = Energy Efficient Ethernet is not advertised  
0x1 = Energy Efficient Ethernet is advertised for 100Base-TX  
0
RESERVED  
Reserved  
7.6.99 MMD7_EEE_LP_ABILITY_Register Register (Offset = 0x203D) [reset = 0x0]  
MMD7_EEE_LP_ABILITY_Register is shown in Table 111.  
Return to Summary Table.  
Table 111. MMD7_EEE_LP_ABILITY_Register Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-2  
RESERVED  
R
0x0  
Reserved  
1
Link_Partner_EEE_Capab  
ility  
0x0  
Link Partner EEE Capability:  
0x0  
= Link Partner is not advertising EEE capability for  
100Base-TX  
0x1 = Link Partner is advertising EEE capability for 100Base-TX  
0
RESERVED  
R
0x0  
Reserved  
版权 © 2018–2019, Texas Instruments Incorporated  
89  
 
 
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DP83825I is a single-port, 10/100-Mbps Ethernet PHY. It supports connections to an Ethernet MAC through  
RMII. Connections to the Ethernet media are made through the IEEE 802.3-defined Media Dependent Interface.  
When using the device for Ethernet applications, it is necessary to meet certain requirements for normal  
operation. The following subsections are intended to assist in appropriate component selection and required  
circuit connections.  
8.2 Typical Applications  
17 shows a typical application for the DP83825I.  
VDDA3V3: 3.3V  
VDDIO: 3.3/1.8V  
10BASE-Te  
100BASE-TX  
RMII  
DP83825  
MAC  
10/100 Mbps  
Ethernet PHY  
RJ-45  
MDIO/  
MDC  
25-MHz / 50-MHz  
Clock Source  
Status  
LEDs  
17. Typical DP83825I Application  
8.2.1 Design Requirements  
The design requirements for the DP83825I in TPI operation (100BASE-TX or 10BASE-Te) are:  
1. AVD Supply = 3.3 V  
2. VDDIO Supply = 3.3 V or 1.8 V  
3. Reference Clock Input = 25-MHz or 50-MHz (RMII Slave)  
8.2.1.1 Clock Requirements  
The DP83825I supports an external CMOS-level oscillator source or an internal oscillator with an external crystal.  
8.2.1.1.1 Oscillator  
If an external clock source is used, XI should be tied to the clock source and XO should be left floating. The  
amplitude of the oscillator should be a nominal voltage of VDDIO.  
90  
版权 © 2018–2019, Texas Instruments Incorporated  
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Typical Applications (接下页)  
8.2.1.1.2 Crystal  
The use of a 25-MHz, parallel resonant, 20-pF load crystal is recommended if operating with a crystal. A typical  
connection diagram is shown below for a crystal resonator circuit. Note that the load capacitor values will vary  
with the crystal vendors. Check with the vendor for the recommended loads. Series resistance value shall be  
adjusted to meet the crystal drive level. For more details, refer to the Selection and Specification of Crystals for  
Texas Instruments Ethernet Physical Layer Transceivers application report (SNLA290).  
XI  
(pin 23)  
XO  
(pin 22)  
R
1
C
L1  
C
L2  
18. Crystal Oscillator Circuit  
112. 25-MHz Crystal Specification  
PARAMETER  
Frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
25  
MHz  
Frequency Tolerance  
Including Operational Temperature, aging and  
other factors  
–50  
50  
ppm  
Load Capacitance  
ESR  
15  
40  
50  
pF  
Ω
8.2.2 Detailed Design Procedure  
The Media Independent Interface RMII connects the DP83825I to the Media Access Controller (MAC). The MAC  
may in fact be a discrete device or integrated into a microprocessor, CPU, FPGA, or ASIC. The Media  
Dependent Interface (MDI) connects the DP83825I to the transformer of the Ethernet network or to AC isolation  
capacitors when interfacing with a fiber transceiver.  
8.2.2.1 RMII Layout Guidelines  
1. Remember that RMII signals as single-ended signals.  
2. Traces should be routed with 50-Ω impedance to ground.  
3. Keep trace lengths as short as possible. TI recommends to keep the trace lengths between two to six inches  
long.  
版权 © 2018–2019, Texas Instruments Incorporated  
91  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
8.2.2.2 MDI Layout Guidelines  
1. Remember that MDI signals are differential.  
2. Traces should be routed with 50-Ω impedance to ground and 100-Ω differential controlled impedance.  
3. Route MDI traces to the transformer on the same layer.  
4. Use a metal-shielded RJ-45 connector and electrically connect the shield to chassis ground.  
5. Avoid supplies and ground beneath the magnetics.  
6. Do not overlap the circuit ground and chassis ground planes. Keep chassis ground and circuit ground  
isolated by turning chassis ground into an isolated island by leaving a gap between the planes. Connecting a  
1206 (size) capacitor between chassis ground and circuit ground is recommended to avoid floating metal.  
Capacitors less than 805 (size) can create an arching path for ESD due to a small air-gap.  
92  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
8.2.2.3 TPI Network Circuit  
19 shows the recommended twisted-pair interface network circuit for 10/100 Mbps. Variations with PCB and  
component characteristics require that the application be tested to verify that the circuit meets the requirements  
of the intended application.  
19. TPI Network Circuit  
版权 © 2018–2019, Texas Instruments Incorporated  
93  
 
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
The DP83825I is capable of operating with a 3.3-V or 1.8-V of I/O supply voltages along with analog supply of  
3.3 V. DP83825I needs VDDA3V3 after VDDIO is fully ramped. Details are captured in the Timing Diagrams. If  
power sequencing is not feasible on the customer board, then an external Reset (RST_N) is needed on pin 5  
when both power VDDA3V3 and VDDIO supplies are ramped.  
20 shows the recommended power supply de-coupling network.  
3.3-V or 1.8-V  
Supply  
Ferrite Bead for  
improved EMC  
(Optional)  
VDDIO  
100 nF  
10 nF  
1 F  
10 F  
Ferrite Bead for  
improved EMC  
(Optional)  
3.3-V Supply  
AVDD3V3  
10 F 1 F  
100 nF 10 nF  
20. DP83825I Power Supply Decoupling Recommendation  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Signal Traces  
PCB traces are lossy, and long traces can degrade signal quality. Traces should be kept short as possible.  
Unless mentioned otherwise, all signal traces should be 50-Ω single-ended impedance. Differential traces should  
be 100-Ω differential. Take care to ensure impedance is controlled throughout. Impedance discontinuities will  
cause reflections, leading to emissions and signal integrity issues. Stubs should be avoided on all signal traces,  
especially differential signal pairs.  
94  
版权 © 2018–2019, Texas Instruments Incorporated  
 
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Layout Guidelines (接下页)  
21. Differential Signal Traces  
Within the differential pairs, trace lengths should be run parallel to each other and matched in length. Matched  
lengths minimize delay differences, avoiding an increase in common-mode noise and emissions. Length  
matching is also important for MAC interface connections. All RMII transmit signal trace lengths should match  
each other, and all RMII receive signal trace lengths should match each other, too.  
Ideally, there should be no crossover or vias on signal path traces. Vias present impedance discontinuities and  
should be minimized when possible. Route trace pairs on the same layer. Signals on different layers should not  
cross each other without at least one return path plane between them. Differential pairs should always have a  
constant coupling distance between them. For convenience and efficiency, TI recommends routing critical signals  
first (that is, MDI differential pairs, reference clock, and MAC IF traces).  
版权 © 2018–2019, Texas Instruments Incorporated  
95  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Layout Guidelines (接下页)  
10.1.2 Return Path  
A general best practice is to have a solid return path beneath all MDI signal traces. This return path can be a  
continuous ground or DC power plane. Reducing the width of the return path can potentially affect the impedance  
of the signal trace. This effect is more prominent when the width of the return path is comparable to the width of  
the signal trace. Breaks in return path between the signal traces should be avoided at all cost. A signal crossing  
a split plane may cause unpredictable return path currents and could impact signal quality and result in  
emissions issues.  
22. Differential Signal Pair and Plane Crossing  
96  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
Layout Guidelines (接下页)  
10.1.3 Transformer Layout  
Make sure there is no metal layer running beneath the transformer. Transformers can inject noise into the metal  
beneath them, which can affect the performance of the system. See 19.  
10.1.3.1 Transformer Recommendations  
The following magnetics have been tested with the DP83825I using the DP83825IEVM.  
113. Recommended Transformers  
MANUFACTURER  
PART NUMBER  
HX1188NL  
Pulse Electronics  
HX1198FNL  
HX1188FNL  
114. Transformer Electrical Specifications  
PARAMETER  
TEST CONDITIONS  
±2%  
TYP  
1:1  
UNIT  
-
Turn Ratio  
Insertion Loss  
1 - 100 MHz  
1 - 30 MHz  
30 - 60 MHz  
60 - 80 MHz  
1
–1  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Vrms  
–16  
–10  
–7.5  
-61  
Return Loss  
Differential to Common Rejection Ratio  
50 MHz  
–33  
–25  
–45  
–39  
1500  
150 MHz  
30 MHz  
Crosstalk  
Isolation  
60 MHz  
HPOT  
版权 © 2018–2019, Texas Instruments Incorporated  
97  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
10.1.4 Metal Pour  
All metal pours that are not signals or power must be tied to ground. There must be no floating metal in the  
system, and there must be no metal between differential traces.  
10.1.5 PCB Layer Stacking  
To meet signal integrity and performance requirements, a minimum four-layer PCB is recommended. However, a  
six-layer PCB should be used when possible.  
23. Recommended Layer Stack-Up  
10.2 Layout Example  
See the DP83825EVM for more information regarding layout.  
Transfo  
rmer  
( if not  
integrat  
ed in  
Plan Coupling  
Components  
RJ-45  
PHY  
RJ-45)  
System Power/ Ground Planes  
Chasis Ground Plane  
GND  
GND  
24. Layout Example  
98  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2018–2019, Texas Instruments Incorporated  
99  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
100  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
25. DP83825I 封装图  
版权 © 2018–2019, Texas Instruments Incorporated  
101  
DP83825I  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
26. DP83825I 封装图  
102  
版权 © 2018–2019, Texas Instruments Incorporated  
DP83825I  
www.ti.com.cn  
ZHCSJ67A DECEMBER 2018REVISED AUGUST 2019  
27. DP83825I 封装图  
版权 © 2018–2019, Texas Instruments Incorporated  
103  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DP83825IRMQR  
DP83825IRMQT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RMQ  
RMQ  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
825I  
825I  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DP83825IRMQT  
WQFN  
RMQ  
24  
250  
180.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WQFN RMQ 24  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
DP83825IRMQT  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
RMQ0024A  
A
3.1  
2.9  
B
PIN 1 INDEX AREA  
3.1  
2.9  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
8X 0.4  
8X 0.5  
(0.1) TYP  
4X (0.05) TYP  
6
12  
EXPOSED  
THERMAL PAD  
+0.05  
-0.10  
24X 0.25  
25  
SYMM  
1.9±0.1  
0.45  
4X  
0.35  
1
PIN 1 ID  
18  
(OPTIONAL)  
24  
4X (0.05) TYP  
SYMM  
0.1  
C A B  
0.25  
0.15  
16X  
0.05  
C
4221088 / B 10/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
RMQ0024A  
PLASTIC QUAD FLATPACK - NO LEAD  
1.9)  
SYMM  
(0.7)  
TYP  
4X ( 0.25)  
20X (0.45)  
24  
18  
1
16X (0.2)  
(0.7)  
TYP  
25  
SYMM  
(2.65)  
(2.95)  
8X (0.5)  
8X (0.4)  
(Ø0.2) TYP  
VIA  
12  
(R0.05)  
TYP  
6
4X (0.4)  
(2.65)  
(2.95)  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221088 / B 10/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their  
locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
RMQ0024A  
PLASTIC QUAD FLATPACK - NO LEAD  
1.71)  
SYMM  
4X ( 0.25)  
20X (0.45)  
24  
18  
1
16X (0.2)  
SYMM  
(2.65)  
(2.95)  
8X (0.5)  
8X (0.4)  
METAL  
TYP  
25  
12  
(R0.05)  
TYP  
6
4X (0.4)  
(2.65)  
(2.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
81% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4221088 / B 10/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY