DP83TD510E [TI]

DP83TD510E Ultra Low Power 802.3cg 10Base-T1L 10M Single Pair Ethernet PHY;
DP83TD510E
型号: DP83TD510E
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DP83TD510E Ultra Low Power 802.3cg 10Base-T1L 10M Single Pair Ethernet PHY

文件: 总45页 (文件大小:1895K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DP83TD510L
SNLS656 – AUGUST 2020  
DP83TD510E Ultra Low Power 802.3cg 10Base-T1L 10M Single Pair Ethernet PHY  
1 Features  
2 Applications  
Long cable reach  
Process automation  
– 1200 meters+ with 1-V p2p  
– 1200 meters+ with 2.4-V p2p  
Ultra-low power  
– Field transmitters and switches  
Building automation  
– HVAC controllers  
– 45 mW for 1-V p2p mode  
– 99 mW for 2.4-V p2p mode  
Compliant to IEEE 802.3cg 10Base-T1L  
IEC 61000-4-4 EFT ±4 KV at 5 KHz, 100 KHz  
CISPR22 radiated emission class B  
External MDI terminations for intrinsic safety  
MAC interface:  
– MII mode  
– RMII master/slave mode  
– RGMII mode  
– RMII master low-power 5-MHz mode  
– RMII back-2-back mode for range extender  
Power supply  
– single supply operations from 3.3 V  
– dual supply operations for lowest power  
dissipation  
– Elevators and escalators  
– Fire safety  
Factory automation and control  
3 Description  
The DP83TD510E is an ultra-low power Ethernet  
physical layer transceiver compliant with the IEEE  
802.3cg 10Base-T1L specification. The PHY has very  
low noise coupled receiver architecture enabling long  
cable reach and very low power dissipation. The  
DP83TD510E has external MDI termination to support  
intrinsic safety requirements. It interfaces with MAC  
layer through MII, Reduced MII (RMII) , RGMII, and  
RMII low power 5-MHz master mode. It also supports  
RMII back-to-back mode for applications that require  
cable reach extension beyond 1200 meters. It  
supports a 25MHz reference clock output to clock  
other modules on the system. The DP83TD510E  
offers integrated cable diagnostic tools; built-in self-  
test, and loopback capabilities for ease of design or  
debug.  
I/O voltages: 1.8 V, 2.5 V or 3.3 V  
Diagnostics tool kit  
– cable open and short detection  
– receiver SQI to measure cable degradation  
– active link cable diagnostics  
Device Information  
PART NUMBER(1)  
PACKAGE  
BODY SIZE (NOM)  
Clock output: 25 MHz, 50 MHz (RMII master)  
±6-kV HBM ESD protection on MDI pins  
Operating temperature range: –40°C to 105°C  
Package: 5 mm x 5 mm, 32 pin with 0.5 mm pitch  
DP83TD510E  
QFN (32)  
5.00 mm × 5.00 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
25 MHz XTAL/Ref Clock  
25/50 MHz  
Interrupt  
Tx+  
Rx+  
DP83TD510  
M
A
C
IEEE802.3cg  
10Base-T1L  
RMII/MII  
Rx-  
Tx-  
MDC,MDIO  
VDDA :3V3 or 1V8  
DVDD :1V0 ( Optional)  
VDDIO:3V3/2V5/1V8  
DP83TD510E Application Diagram  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. ADVANCE INFORMATION for preproduction products; subject to change  
without notice.  
 
 
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 4  
6 Specifications.................................................................. 7  
6.1 Absolute Maximum Ratings ....................................... 7  
6.2 ESD Ratings .............................................................. 7  
6.3 Recommended Operating Conditions ........................7  
6.4 Thermal Information ...................................................9  
6.5 Electrical Characteristics ..........................................10  
6.6 Timing Requirements ...............................................13  
6.7 Timing Diagrams.......................................................15  
7 Detailed Description......................................................18  
7.1 Overview...................................................................18  
7.2 Functional Block Diagram.........................................19  
7.3 Feature Description...................................................19  
7.4 Device Functional Modes..........................................25  
7.5 Programming............................................................ 27  
7.6 Register Maps...........................................................28  
8 Application and Implementation..................................29  
8.1 Application Information............................................. 29  
8.2 Typical Applications.................................................. 29  
9 Power Supply Recommendations................................33  
10 Layout...........................................................................35  
10.1 Layout Guidelines................................................... 35  
10.2 Layout Example...................................................... 37  
11 Device and Documentation Support..........................38  
11.1 Device Support........................................................38  
11.2 Support Resources................................................. 38  
11.3 Trademarks............................................................. 38  
11.4 Electrostatic Discharge Caution..............................38  
11.5 Glossary..................................................................38  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 39  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
REVISION  
NOTES  
August 2020  
*
Advance Information Release  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DP83TD510L  
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
5 Pin Configuration and Functions  
27  
31  
30  
28  
26  
32  
25  
29  
DVDD  
CEXT  
1
2
TX_D0  
24  
TX_EN  
23  
22  
DP83TD510E  
3
VDDA  
TX+  
TX_CLK  
TOP VIEW  
(not to scale)  
4
5
6
21  
20  
PWDN/INT_N  
RX_ER/Strap6  
RX+  
RX-  
32-pin QFN Package  
5mmx5mm  
DAP = GND  
RX_CLK/50MHz_RMII_M  
RX_DV/CRS_DV/Strap5  
19  
18  
TX-  
7
VDDIO  
17  
8
GPIO2/Strap10  
11  
12  
13  
14  
15  
16  
9
10  
Copyright © 2020, Texas Instruments Incorporated  
Figure 5-1. RMQ Package 32-Pin VQFN Top View  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DP83TD510L  
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO  
DVDD  
1
2
3
A
Digital supply 1.0 V  
For single-supply operation: Short this pin with CEXT (Pin 2)  
Optional (dual-supply operation): Connect external 1.0 V to achieve lowest power  
Refer to Power Connection Diagram in Application section  
External capacitor for internal LDO  
CEXT  
VDDA  
A
A
For single-supply operation: Connect 0.01- μF capacitor and short it with pin 1  
For dual-supply operation, leave unconnected  
Refer to Power Connection Diagram in Application section  
Supply 3.3 V to support both long reach and short reach.  
Supply 1.8 V to support only short reach.  
Supplied voltage will be reflected in bit 13 of auto negotiation base page as capability to  
support 2.4-V p2p or 1-V p2p.  
0x20E, bit 13 = 1 when 3.3 V is selected.  
0x20E, bit 13 = 0 when 1.8 V is selected.  
Ensure the Strap7 "Reach Selection" strap is selected appropriately to request the output  
voltage level in the auto negotiation page.  
TX+  
4
A
TX+, TX- : Differential Transmit Output (PMD): These differential outputs are configured to  
2.4-V p2p or 1-V p2p signaling mode based on configuration chosen for PHY and auto  
negotiation with Link Partner.  
RX+  
RX-  
TX-  
5
6
7
A
A
A
RX+, RX- : These differential inputs are automatically configured to accept 2.4-V p2p or 1-V  
p2p signaling mode based on configuration chosen for PHY.  
TX+, TX- : Differential Transmit Output (PMD): These differential outputs are configured to  
2.4-V p2p or 1-V p2p signaling mode based on configuration chosen for PHY and auto  
negotiation with Link Partner.  
GPIO2  
XO  
8
9
Strap  
GPIO: This pin can be configured for multiple configuration thru register configuration. It has  
mandatory PU or PD strap. Refer to Straps sections for details.  
A
A
Crystal Output: Reference Clock output. XO pin is used for crystal only. This pin should be left  
floating when a CMOS-level oscillator is connected to XI.  
XI/50MHzIn  
10  
Crystal / Oscillator Input Clock  
MII, RMII master mode: 25-MHz ±50 ppm-tolerance crystal or oscillator clock  
RMII slave mode: 50-MHz ±50 ppm-tolerance CMOS-level oscillator clock  
MDIO  
MDC  
11  
12  
Management Data I/O: Bi-directional management data signal that may be source by the  
management station or the PHY. This pin requires an external pull of 2.2kΩ - 4.0 kΩ.  
Management Data Clock: Synchronous clock to the MDIO serial management input/output  
data. This clock may be asynchronous to the MAC transmit and receive clocks. The  
maximum clock rate is 1.75 MHz.  
RX_D3  
RX_D2  
RX_D1  
RX_D0  
13  
14  
15  
16  
Strap  
Strap  
Strap  
Strap  
Receive Data: Symbols received on the cable are decoded and presented on these pins  
synchronous to the rising edge of RX_CLK. They contain valid data when RX_DV is asserted.  
A nibble RX_D[3:0] is received in MII modes. 2-bits RX_D[1:0] is received in RMII mode.  
I/O Supply : 3.3 V/2.5 V/1.8 V. For decoupling capacitor requirements, refer to Application  
section of data sheet.  
VDDIO  
17  
Power  
Receive Data Valid: This pin indicates valid data is present on the RX_D[3:0] for MII mode  
and on RX_D[1:0] for RMII mode. In RMII mode, this pin acts as CRS_DV and combines the  
RMII arrier and Receive Data Valid indications. This pin can be configured to RX_DV to  
enable RMII repeater mode using strap or register configuration.  
RX_DV/  
CRS_DV  
18  
Strap  
RGMII mode: RGMII Receive Control: RX_CTRL combines receive data valid and receive  
error signals. RX_DV is presented on the rising edge of RX_CLK and RX_ER on the falling  
edge of RX_CLK.  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DP83TD510L  
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO  
MII Receive Clock: MII Receive Clock provides a 25-MHz reference clock for 100-Mbps  
speed and a 2.5-MHz reference clock for 10-Mbps speed, which is derived from the received  
data stream.  
RX_CLK/  
50MHz_RMII  
_M  
19  
In RMII master mode, this provides 50-MHz reference clock. In RMII slave mode, this pin is  
not used and remains Input/PD.  
RGMII Receive Clock: RGMII Receive Clock provides a 2.5-MHz reference clock for 10-Mbps  
speed, which is derived from the receive data stream.  
Receive Error: This pin indicates that an error symbol has been detected within a received  
packet in both MII and RMII mode. In MII mode, RX_ER is asserted high synchronously to the  
rising edge of RX_CLK. In RMII mode, RX_ER is asserted high synchronously to the rising  
edge of the reference clock. RX_ERR is asserted high for every reception error, including  
errors during Idle.  
RX_ER  
20  
21  
22  
Strap  
Unused in RGMII mode.  
Power Down(Default)/Interrupt: The default function of this pin is power down. Register  
access is required to configure this pin as an interrupt. In power down function, an active low  
signal on this pin places the device in power down mode. When this pin is configured as an  
interrupt pin, this pin is asserted low when an interrupt condition occurs. The pin has an open-  
drain output with a weak internal pullup (9.5 kΩ). Some applications may require an external  
PU resistor.  
PWDN/INT  
TX_CLK  
MII Transmit Clock: MII Transmit Clock provides a 25-MHz reference clock for 100-Mbps  
speed and a 2.5-MHz reference clock for 10-Mbps speed. Note that in MII mode, this clock  
has constant phase referenced to the reference clock. Applications requiring such constant  
phase may use this feature. Unused in RMII mode.  
RGMII Transmit Clock: The clock is sourced from the MAC layer to the PHY. When operating  
at 10-Mbps speed, this clock must be 2.5-MHz.  
Transmit Enable: TX_EN is presented on the rising edge of the TX_CLK. TX_EN indicates the  
presence of valid data inputs on TX_D[3:0] in MII mode and on TX_D[1:0] in RMII mode.  
TX_EN is an active high signal.  
TX_EN  
23  
RGMII Transmit Control: TX_CTRL combines transmit enable and transmit error signals.  
TX_EN is presented on the rising edge of TX_CLK and TX_ER on the falling edge of  
TX_CLK.  
TX_D0  
TX_D1  
TX_D2  
TX_D3  
24  
25  
26  
27  
Transmit Data: In MII mode, the transmit data nibble received from the MAC is synchronous  
to the rising edge of TX_CLK. In RMII mode, TX_D[1:0] received from the MAC is  
synchronous to the rising edge of the reference clock.  
LED_2/  
TX_ER  
This pin acts as LED_2 by default. It can be configured as GPIO or TX_ER as well. The LED  
is ON when link is negotiated for 10M (short reach). LED remains OFF otherwise.  
28  
29  
Strap  
Strap  
LED : Activity Indication LED indicates transmit and receive activity in addition to the status of  
the link. The LED is ON when link is good. The LED blinks when the transmitter or receiver is  
active. This pin can also act as GPIO using register configuration.  
LED_0  
This pin provides Reference CLKOUT of 25 MHz as default to clock other module on the  
board. The pin can be configured to act as LED_1 using strap or register configuration. The  
LED is ON when link is negotiated for 10M (long reach). The LED remains OFF otherwise.  
When configured for CLK_OUT, reference clock is not affected by reset and switches off only  
at IEEE Power Down.  
CLKOUT/  
LED_1  
30  
RST_N: This pin is an active low reset input. Asserting this pin low for at least 25μs will force  
a reset process to occur. Initiation of reset causes strap pins to be re-scanned and resets all  
the internal registers of the PHY to default value.  
RST_N  
GPIO1  
31  
32  
Strap  
General Purpose Input or Output.  
Table 5-1. Internal PU/PD in various states  
Active State  
( MII Mode)  
Active State ( RMII  
Master Mode)  
Active State ( RMII Slave  
Mode)  
Pin #  
Reset State  
Active State (RGMII Mode)  
1
A
A
A
A
A
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DP83TD510L  
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
Table 5-1. Internal PU/PD in various states (continued)  
Active State  
( MII Mode)  
Active State ( RMII  
Master Mode)  
Active State ( RMII Slave  
Mode)  
Pin #  
Reset State  
Active State (RGMII Mode)  
2
3
4
5
6
7
8
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
9
A
A
A
A
A
A
A
A
A
A
10  
11  
12  
13  
IO  
I
IO  
I
IO  
I
IO  
I
IO  
I
I,PD  
O,Hi-Z  
I,PD  
I,PD  
O,Hi-Z  
14  
I,PD  
O,Hi-Z  
I,PD  
I,PD  
O,Hi-Z  
15  
16  
17  
18  
19  
20  
I,PD  
I,PD  
A
O,Hi-Z  
O,Hi-Z  
A
O,Hi-Z  
O,Hi-Z  
A
O,Hi-Z  
O,Hi-Z  
A
O,Hi-Z  
O,Hi-Z  
A
I,PD  
I,PD  
I,PD  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
I,PD  
I,PU-9.5KΩ/  
OPEN  
DRAIN  
I,PU-9.5KΩ/  
OPEN DRAIN  
I,PU-9.5KΩ/OPEN  
DRAIN  
21  
I,PU-9.5KΩ/OPEN DRAIN  
I,PU-9.5KΩ/OPEN DRAIN  
22  
23  
24  
25  
26  
27  
28  
29  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
O,Hi-Z  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
I,PD  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
I,PD(Only at  
POR)  
30  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
31  
32  
I,PU  
I,PD  
I,PU  
I,PU  
I,PU  
I,PU  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
O,Hi-Z  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DP83TD510L  
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
MAX  
1.4  
4
UNIT  
V
DVDD 1.0  
VDDA 1.8  
V
VDDA 3.3  
4
V
Supply voltage  
VDDIO (3.3)  
4
V
VDDIO (2.5)  
VDDIO (1.8)  
3
V
2.1  
4
V
Pins  
Pins  
MDI (Tx+, Tx-, Rx+, Rx-)  
V
VDDIO +  
0.3  
MAC Interface, MDIO, MDC, GPIO, LED  
-0.3  
-0.3  
V
VDDIO +  
0.3  
Pins  
Pins  
INT/PWDN, RESET  
XI Oscillator Input  
V
V
-0.3 VDDIO+0.3  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
Parameter  
VALUE UNIT  
Human-body model (HBM),  
V(ESD) V(ESD) Electrostatic discharge  
V(ESD) V(ESD) Electrostatic discharge  
All pins except MDI  
MDI pins  
+/-2000  
+/-6000  
V
V
perANSI/ESDA/JEDEC JS-001(1)  
Human-body model (HBM),  
perANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per  
JEDEC specification JESD22-  
C101(2)  
V(ESD) V(ESD) Electrostatic discharge  
All Pins  
+/-500  
V
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process. Manufacturing  
withless than 500 V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process. Manufacturing  
withless than 250 V CDM is possible with the necessary precautions. Pins listed as ±500 V may actually have higher performance.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
Parameter  
MIN  
0.90  
1.62  
3.0  
NOM  
1.0  
1.8  
3.3  
1.8  
2.5  
3.3  
MAX  
1.1  
UNIT  
DVDD 1.0 Digital Supply  
VDDA 1.8 Analog Supply  
VDDA 3.3 Analog Supply  
V
V
V
1.98  
3.6  
Digital Supply Voltage, 1.8V operation  
Digital Supply Voltage, 2.5V operation  
Digital Supply Voltage, 3.3V operation  
Operating Ambient Temperature  
1.62  
2.25  
3.0  
1.98  
2.75  
3.6  
VDDIO  
V
TA  
-40  
105  
TX_D[0:3],RX_D[0:3], TX_CLK, RX_CLK, TX_EN, RX_DV, RX_ER, MDIO, VDDIO-10  
VDDIO  
+10%  
Pins  
VDDIO  
VDDIO  
VDDIO  
V
MDC, LED0, LED1, LED2  
%
VDDIO-10  
%
VDDIO  
+10%  
Pins  
Pins  
INT/PWDN, RESET_N  
V
V
VDDIO-10  
%
VDDIO  
+10%  
XI Osclliator Input  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DP83TD510L  
 
 
 
 
 
 
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
over operating free-air temperature range (unless otherwise noted)  
Parameter  
MIN  
NOM  
MAX  
UNIT  
VDDIO-10  
%
VDDIO  
+10%  
Pins  
GPIO  
VDDIO  
V
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DP83TD510L  
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
6.4 Thermal Information  
THERMAL METRIC(1)  
32PIN QFN  
52  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-case (bottom) thermal resistance  
Junction-to-board thermal resistance  
RθJC(top)  
RθJC(bot)  
RθJB  
42  
31.5  
2.1  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
31.4  
11.9  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DP83TD510L  
 
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IEEE Tx CONFORMANCE (10BaseT1L External Terminations)  
1V p2p  
Vod : Output Differential Voltage  
Vod : Output Differential Voltage  
0.85  
2.04  
1.0  
2.4  
1.05  
2.56  
V
V
2.4-V  
p2p  
POWER CONSUMPTION (Dual Analog Supply, 1-V p2p mode)  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
DVDD1.0  
AVDD1.8  
5
mA  
mA  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
18  
DVDD1.0  
AVDD1.8  
Reset  
Reset  
3
5
mA  
mA  
POWER CONSUMPTION (Dual Analog Supply, 2.4V p2p mode)  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
DVDD1.0  
5
mA  
mA  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
AVDD3.3  
26.5  
Power Consumption VDDIO (MII Interface)  
VDDIO1.8  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
4
5
6
mA  
mA  
mA  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
VDDIO2.5  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
VDDIO3.3  
Power Consumption VDDIO (RMII Master Interface)  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
VDDIO1.8  
8.5  
12  
16  
mA  
mA  
mA  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
VDDIO2.5  
VDDIO3.3  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DP83TD510L  
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power Consumption VDDIO (RMII Slave Interface)  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
VDDIO1.8  
VDDIO2.5  
4
5
6
mA  
mA  
mA  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
VDDIO3.3  
Power Consumption VDDIO ( RMII Master 5 MHz)  
VDDIO1.8  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
4
5
6
mA  
mA  
mA  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
VDDIO2.5  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
VDDIO3.3  
Power Consumption VDDIO (RGMII Interface)  
VDDIO1.8  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
4
5
6
mA  
mA  
mA  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
VDDIO2.5  
100% Traffic, Random Size : 64 to 1512  
Bytes, Random Content  
VDDIO3.3  
BOOTSTRAP DC CHARACTERISTICS (2 Level)  
VIH_3v3  
VIL_3v3  
VIH_2v5  
VIL_2v5  
VIH_1v8  
VIL_1v8  
High Level Bootstrap Threshold : 3V3  
Low Level Bootstrap Threshold : 3V3  
High Level Bootstrap Threshold: 2V5  
Low Level Bootstrap Threshold : 2V5  
High Level Bootstrap Threshold:1V8  
Low Level Bootstrap Threshold :1V8  
1.3  
1.3  
1.3  
V
V
V
V
V
V
0.6  
0.6  
0.6  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DP83TD510L  
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2
TYP  
MAX  
UNIT  
IO CHARACTERISTICS  
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
VDDIO = 3.3V ±10%  
V
V
V
V
V
V
V
V
VDDIO = 3.3V ±10%  
0.8  
0.4  
0.7  
0.4  
VOH  
VOL  
VIH  
VIL  
IOH = -2mA, VDDIO = 3.3V ±10%  
IOL = 2mA, VDDIO = 3.3V ±10%  
VDDIO = 2.5V ±10%  
2.4  
1.7  
2
VDDIO = 2.5V ±10%  
VOH  
VOL  
IOH = -2mA, VDDIO = 2.5V ±10%  
IOL = 2mA, VDDIO = 2.5V ±10%  
0.65*VD  
DIO  
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
VDDIO = 1.8V ±10%  
V
V
V
0.35*VD  
DIO  
VDDIO = 1.8V ±10%  
VDDIO-0  
.45  
VOH  
IOH = -2mA, VDDIO = 1.8V ±10%  
VOL  
Low Level Output Voltage  
Input High Current  
IOL = 2mA, VDDIO = 1.8V ±10%  
TA = -40to 105, VIN=VDDIO  
TA = -40to 105, VIN=GND  
0.45  
V
µA  
µA  
kΩ  
kΩ  
V
IIH  
15  
15  
9
IIL  
Input Low Current  
Rpulldn  
Rpullup  
XI VIH  
XI VIL  
CIN  
Internal Pull Down Resistor  
Internal Pull Up Resistor  
High Level Input Voltage  
Low Level Input Voltage  
Input Capacitance XI  
9
1.2  
0.6  
V
1
5
pF  
Input Capacitance INPUT PINS  
(TX_D[3:0], TX_EN, TX_CLK, MDC)  
CIN  
pF  
COUT  
COUT  
Output Capacitance XO  
1
5
pF  
pF  
Output Capacitance OUTPUT PINS  
Integrated MAC Series Termination  
Resistor  
Rseries  
RX_D[3:0], RX_ER, RX_DV, RX_CLK  
50  
8
LED drive strength  
mA  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DP83TD510L  
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
6.6 Timing Requirements  
TEST  
CONDITIONS  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
POWER-UP TIMING (Single and Dual supply mode)  
Supply ramp rate: For all supplies (DVDD, VDDA, VDDIO)  
(20% to 80%)  
0.2  
40  
200  
60  
ms  
ms  
ms  
ms  
Supply ramp delay offset: For all supplies (DVDD, VDDA,  
VDDIO)  
First Supply ramp to  
last supply ramp  
T1  
T2  
Last Supply power up to RESET_N High  
Powerup to SMI ready: Post power-up stabilization time prior to  
MDC preamble for register access  
60  
Powerup to Strap latchin: Hardware configuration pins  
transition to output drivers  
T3  
60  
ms  
V
Pedestal Voltage on DVDD, VDDA, VDDIO before Power  
Ramp  
0.3  
RESET TIMING  
Reset to SMI ready: Post reset stabilization time prior to MDC  
preamble for register access  
T1  
30  
10  
us  
RESET PULSE Width: Miminum Reset pulse width to be able  
to reset  
T3  
T5  
us  
us  
Reset to MAC clock (MII RX_CLK)  
995  
200  
MII 10M Timings  
10M TX_CLK High / Low Time  
190  
25  
210  
ns  
ns  
ns  
ns  
ns  
TX_D[3:0], TX_ER, TX_EN Setup to TX_CLK  
TX_D[3:0], TX_ER, TX_EN Hold from TX_CLK  
RX_CLK High / Low Time  
0
160  
100  
200  
240  
300  
RX_D[3:0], RX_ER, RX_DV Delay from RX_CLK rising  
RGMII OUTPUT TIMING (10M)  
TskewT  
TskewR  
TskewR  
Tcyc  
Data to Clock Output Skew (Non-Delay Mode)  
5 pF Load  
-2  
30  
2
ns  
ns  
ns  
ns  
%
Data to Clock Output Setup (Integrated Delay)  
Data to Clock Output Hold \((Integrated Delay)  
Clock Cycle Duration  
30  
-360  
45  
400  
50  
440  
55  
3
Duty Cycle  
Rise / Fall Time ( 20% to 80%)  
ns  
RGMII INPUT TIMING (10M)  
TskewR  
TsetupR  
TholdR  
TX data to clock input skew (Integrated Delay Mode)  
-4  
40  
40  
4
ns  
ns  
ns  
TX data to clock input setup (Non-Delay Mode)  
TX clock to data input hold (Non-Delay Mode)  
RMII MASTER TIMING  
RMII Master Clock Period  
20  
ns  
%
RMII Master Clock Duty Cycle  
35  
4
65  
14  
TX_D[1:0], TX_ER, TX_EN Setup to RMII Master Clock  
TX_D[1:0], TX_ER, TX_EN Hold from RMII Master Clock  
25 pF Load  
25 pF Load  
ns  
ns  
2
RX_D[1:0], RX_ER, CRS_DV Delay from RMII Master Clock  
rising edge  
25 pF Load  
4
10  
20  
ns  
RMII SLAVE TIMING  
Input Reference Clock Period  
ns  
%
Reference Clock Duty Cycle  
35  
4
65  
14  
TX_D[1:0], TX_ER, TX_EN Setup to XI Clock rising  
TX_D[1:0], TX_ER, TX_EN Hold from XI Clock rising  
RX_D[1:0], RX_ER, CRS_DV Delay from XI Clock rising  
ns  
ns  
ns  
2
4
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DP83TD510L  
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
TEST  
CONDITIONS  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
RMII Master Timing ( 5 MHz)  
Frequency  
5
MHz  
%
Duty Cycle  
40  
10  
10  
50  
60  
TX_D[3:0], TX_ER, TX_EN setup to Master Clock  
TX_D[3:0], TX_ER, TX_EN from Master Clock  
RX_D[3:0], RX_ER, RX_DV Delay from 5 MHz Clock  
ns  
ns  
100  
150  
10  
ns  
SMI TIMING  
T1  
T2  
T3  
T4  
MDC to MDIO (Output) Delay Time  
MDIO (Input) to MDC Setup Time  
MDIO (Input) to MDC Hold Time  
MDC Frequency  
0
10  
10  
ns  
ns  
ns  
1
1.75  
MHz  
OUTPUT CLOCK TIMING (25MHz clockout)  
Frequency (PPM)  
Duty Cycle  
-100  
40  
100  
60  
-
%
Rise Time  
5000  
5000  
ps  
Fall Time  
ps  
Frequency  
25  
MHz  
Output Clock 50 MHz timing  
Frequency (PPM)  
Duty Cycle  
-50  
35  
50  
65  
ppm  
%
Rise time  
5000  
5000  
ps  
Fall Time  
ps  
25MHz INPUT CLOCK tolerance  
Frequency Tolerance  
Rise / Fall Time (10%-90%)  
Duty Cycle  
-100  
40  
+100  
8
ppm  
ns  
60  
%
50MHz Input Clock Tolerance  
Frequency Tolerance  
Rise / Fall Time (10%-90%)  
Duty Cycle  
-100  
40  
+100  
8
ppm  
ns  
60  
%
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DP83TD510L  
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
6.7 Timing Diagrams  
T4  
VVDDIO  
0.3V  
0V  
T4  
T1  
VVDDA  
0.3V  
0V  
T4  
T1  
VDVDD (Optional)  
0.3V  
0V  
XI  
Clock shall be available at Power  
Ramp  
Hardware  
RESET_N  
tT2t  
MDC  
`
Figure 6-1. Power-Up Timing  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DP83TD510L  
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
VVDD  
XI  
tT1  
Hardware  
RESET_N  
32 Clocks  
tT2  
MDC  
DME  
Figure 6-2. Reset Timing  
MDC  
tT4t  
tT1t  
MDIO  
(output)  
MDC  
tT2t  
tT3t  
MDIO  
(input)  
Valid Data  
Figure 6-3. Serial Management Timing  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DP83TD510L  
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
tT1t  
tT1t  
TX_CLK  
tT2t  
tT3t  
TX_D [3:0]  
TX_EN  
Valid Data  
Figure 6-4. 10-Mbps MII Transmit Timing  
tT1t  
tT1t  
RX_CLK  
tT2t  
RX_D [3:0]  
RX_DV  
RX_ER  
Valid Data  
Figure 6-5. 10-Mbps MII Receive Timing  
tT1t  
XI  
Master Clock  
tT2t  
tT3t  
TX_D[1:0]  
TX_EN  
Valid Data  
Figure 6-6. RMII Transmit Timing  
tT1t  
XI  
RX_CLK  
Master Clock  
T4  
RX_D[1:0]  
CRS_DV  
RX_DV  
Valid Data  
RX_ER  
Figure 6-7. RMII Receive Timing  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DP83TD510L  
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The DP83TD510E is a physical-layer transceiver compliant to IEEE 802.3cg 10BaseT1L standards. The PHY  
use low noise coupled signal processing reciever architecture to offer longer cable reach along with ultra-low  
power consumption. The device supports both 2.4-V p2p and 1-V p2p out put voltage as defined by IEEE  
802.3cg 10Base-T1L specfications. It supports mulitple MAC interface (MII, Reduced Media Independent  
Interface (RMII), RGMII and low power Reduced MII) for direct connection to Media Access Controller (MAC).  
The device also supports back-to-back RMII mode in unmanaged mode to provide range extension and repeater  
functionality.  
The device is designed to operate from a single 3.3-V power supply and has integrated LDO to provide the  
voltage rails required for internal blocks. The device has an option to feed digital power externally to achieve  
lowest power consumption. The device allows I/O voltage interfaces for 3.3 V, 2.5 V or 1.8 V. Automatic supply  
configuration within the DP83TD510E allows for any combination of VDDIO supply without the need for  
additional configuration settings.  
The DP83TD510E Diagonstic Tool includes TDR (Time Domain Reflectometry), ALCD (Active Link Cable  
Diagnostics), SQI (Signal Quality Indicator), mulitple Loopbacks and Integrated PRBS Packet Generator to ease  
debugging during development and detecting faulty conditions in field.  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DP83TD510L  
 
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
7.2 Functional Block Diagram  
RMII Option  
Combined MII/RGMII  
Serial  
Management  
MII / RMII Interface  
TX  
Data  
RX  
Data  
TX_CLK  
RX_CLK  
MII  
Registers  
Auto-Negotiation  
Transmit Block  
Receive Block  
Clock  
Generation  
DAC  
ADC  
BIST  
LED  
Driver  
Cable Diagnostics  
Reference  
Clock  
TX+  
LEDs  
RX+ TX- RX-  
Copyright © 2020, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Auto-Negotiation (Speed Selection)  
Auto-Negotiation provides a mechanism for exchanging configuration information between the two ends of a link  
segment. The DP83TD510E supports auto-negotiation for Low Speed Modes (LSM) as defined in IEEE 802.3cg  
specification for 10BaseT1L. Auto-negotiation ensures that the highest common speed is selected based on the  
advertised abilities of the link partner and the local device.  
7.3.2 RMII Repeater Mode  
The DP83TD510E provides an option to enable repeater mode functionality to extend the cable reach. Two  
DP83TD510E can be connected in back to back mode without any external configuration. A hardware strap is  
provided to configure the CRS_DV pin of RMII interface to RX_DV pin for back to back operation. Refer to  
Figure 7-1 for the RMII pin connection to enable repeater mode on the DP83TD510E.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DP83TD510L  
 
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
( RMII Slave Mode)  
( RMII Slave Mode)  
RX_DV  
TX_EN  
RX_D1  
RX_D0  
TX_D1  
TX_D0  
TX_EN  
RX_DV  
RX_D0  
RX_D1  
TX_D0  
TX_D1  
XI  
XI  
XI 50 MHz  
Figure 7-1. RMII Repeater Mode  
7.3.3 Clock Output  
The DP83TD510E has several clock output configuration options. An external crystal or CMOS-level oscillator  
provides the stimulus for the internal PHY reference clock. The local reference clock acts as the central source  
for all clocking within the device.  
All clock configuration options are enabled using the IO MUX GPIO Control Register TBD  
Clock options supported by the DP83TD510E include:  
MAC IF clock  
XI clock  
Free-running clock  
Recovered clock  
7.3.4 Media Independent Interface (MII)  
The Media Independent Interface is a synchronous 4-bit wide nibble data interface that connects the PHY to the  
MAC. The MII is fully compliant with IEEE 802.3-2002 clause 22.  
The MII signals are summarized in Table 7-1.  
Table 7-1. MII Signals  
FUNCTION  
PINS  
TX_D[3:0]  
RX_D[3:0]  
TX_EN  
Data Signals  
Transmit and Receive Signals  
RX_DV  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DP83TD510L  
 
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
TX_CLK  
TX_EN  
TX_D[3:0]  
RX_CLK  
RX_DV  
PHY  
MAC  
RX_ER  
RX_D[3:0]  
Figure 7-2. MII Signaling  
Additionally, the MII interface includes the carrier sense signal (CRS), as well as a collision detect signal (COL).  
The CRS signal asserts to indicate the reception or transmission of data. The COL signal asserts as an  
indication of a collision which can occur during half-duplex mode when both transmit and receive operations  
occur simultaneously.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DP83TD510L  
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
7.3.5 Reduced Media Independent Interface (RMII)  
The DP83TD510E incorporates the Reduced Media Independent Interface (RMII) as specified in the RMII  
specification v1.2. The purpose of this interface is to provide a reduced pin count alternative to the IEEE 802.3  
MII as specified in Clause 22. Architecturally, the RMII specification provides an additional reconciliation layer on  
either side of the MII, but can be implemented in the absence of an MII. The DP83TD510E offers two types of  
RMII operations: RMII Slave and RMII Master. In RMII Master operation, the DP83TD510E operates off of either  
a 25-MHz CMOS-level oscillator connected to XI pin or a 25-MHz crystal connected across XI and XO pins. A  
50-MHz output clock referenced from DP83TD510E can be connected to the MAC. In RMII Slave operation, the  
DP83TD510E operates off of a 50-MHz CMOS-level oscillator connected to the XI pin and shares the same  
clock as the MAC. Alternatively, in RMII Slave mode, the PHY can run from a 50-MHz clock provided by the Host  
MAC.  
The RMII specification has the following characteristics:  
Single clock reference sourced from the MAC to PHY (or from an external source)  
Independent 2-bit wide transmit and receive data paths  
Usage of CMOS signal levels, the same levels as the MII interface  
In this mode, data transfers are two bits for every clock cycle using the internal 50-MHz reference clock for both  
transmit and receive paths.  
The RMII signals are summarized inTable 7-2.  
Table 7-2. RMII Signals  
FUNCTION  
Receive Data Lines  
PINS  
TX_D[1:0]  
RX_D[1:0]  
TX_EN  
Transmit Data Lines  
Receive Control Signal  
Transmit Control Signal  
CRS_DV  
TX_EN  
TX_D[1:0]  
RX_CLK (optional)  
RX_DV (optional)  
RX_ER (optional)  
RX_D[1:0]  
PHY  
MAC  
CRS_DV  
XI  
(pin 23)  
50-MHz Reference  
Clock  
Figure 7-3. RMII Slave Signaling  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DP83TD510L  
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
TX_EN  
TX_D[1:0]  
RX_CLK (optional)  
RX_DV (optional)  
RX_ER (optional)  
RX_D[1:0]  
PHY  
MAC  
CRS_DV  
50-MHz Reference Clock  
RX_D3  
(pin 1)  
25-MHz Reference  
Clock  
Figure 7-4. RMII Master Signaling  
Data on TX_D[1:0] are latched at the PHY with reference to the clock edges on the XI pin. Data on RX_D[1:0]  
are latched at the MAC with reference to the same clock edges on the XI pin.  
In addition, CRX_DV can be configured as RX_DV signal. It allows a simpler method of recovering receive data  
without the need to separate RX_DV from the CRS_DV indication.  
7.3.6 RMII Low Power 5-MHz Mode  
DP83TD510E supports a new MAC Mode called RMII Master Low Power Mode. The interface is similar to the  
RMII master mode but runs at 5 MHz resulting in power dissipation savings. DP83TD510E offers 5-MHz clock  
output and data is aligned to this clock. An application can use the same pin map as RMII for this mode.  
7.3.7 RGMI Interface  
DP83TD510E offers RGMII mode which runs at 2.5 MHz. The timing specifications are relaxed compared to  
RGMII at 125 MHz. Refer to timing sections on timing specifications for this mode.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DP83TD510L  
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
7.3.8 Serial Management Interface  
The Serial Management Interface provides access to the DP83TD510E internal register space for status  
information and configuration. The SMI is compatible with IEEE 802.3 clause 22 and clause 45. The  
implemented register set consists of the registers required by IEEE 802.3 plus several others to provide  
additional visibility and controllability of the DP83TD510E.  
The SMI includes the management clock (MDC) and the management input/output data pin (MDIO). MDC is  
sourced by the external management entity, also called Station (STA), and can run at a maximum clock rate of  
25 MHz. MDC is not expected to be continuous and can be turned off by the external management entity when  
the bus is idle.  
MDIO is sourced by the external management entity and by the PHY. The data on the MDIO pin is latched on the  
rising edge of the MDC. The MDIO pin requires a pullup resistor (2.2 kΩ) which pulls MDIO high during IDLE and  
turnaround.  
Up to 16 PHYs can share a common SMI bus. To distinguish between the PHYs, during power up or hardware  
reset, the DP83TD510E latches the Phy_Address[3:0] configuration pins to determine its address.  
The management entity must not start an SMI transaction in the first cycle after power up or hardware reset. To  
maintain valid operation, the SMI bus must remain inactive at least one MDC cycle after reset is de-asserted. In  
normal MDIO transactions, the register address is taken directly from the management-frame reg_addr field,  
thus allowing direct access to 32 16-bit registers (including those defined in IEEE 802.3 and vendor specific).  
The data field is used for both reading and writing. The Start code is indicated by a <01> pattern. This pattern  
ensures that the MDIO line transitions from the default idle line state. Turnaround is defined as an idle bit time  
inserted between the Register Address field and the Data field. To avoid contention during a read transaction, no  
device may actively drive the MDIO signal during the first bit of turnaround. The addressed DP83TD510E drives  
the MDIO with a zero for the second bit of turnaround and follows this with the required data.  
For write transactions, the station-management entity writes data to the addressed DP83TD510E, thus  
eliminating the requirement for MDIO Turnaround. The turnaround time is filled by the management entity by  
inserting <10>.  
Table 7-3. SMI Protocol  
SMI PROTOCOL  
Read Operation  
Write Operation  
<idle><start><op code><PHY address><reg addr><turnaround><data><idle>  
<idle><01><10><AAAAA><RRRRR><Z0><XXXX XXXX XXXX XXXX><idle>  
<idle><01><01><AAAAA><RRRRR><10><XXXX XXXX XXXX XXXX><idle>  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DP83TD510L  
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
7.3.9 Loopback Modes  
There are several loopback options within the DP83TD510E that test and verify various functional blocks within  
the PHY. Enabling loopback modes allow for in-circuit testing of the digital and analog data paths. The  
DP83TD510E may be configured to any one of the Near-End Loopback modes or to the Far-End (reverse)  
Loopback mode. MII Loopback is configured using the Control Register (BMCR, address TBD). All other  
loopback modes are enabled using the BIST Control Register (BISCR, address TBD).  
Reverse  
Loopback  
PCS  
Loopback  
Analog  
Loopback  
MAC  
MII  
Loopback  
Digital  
Loopback  
Figure 7-5. Loopback Test Modes  
7.3.9.1 MII Loopback  
MII Loopback is the shallowest loop through the PHY. It is a useful test mode to validate communications  
between the MAC and the PHY. When in MII Loopback, data transmitted from a connected MAC on the TX path  
is internally looped back in the DP83TD510E to the RX pins where it can be checked by the MAC.  
7.3.9.2 PCS Loopback  
PCS Loopback occurs in the PCS layer of the PHY. No signal processing is performed when using PCS  
Loopback.  
7.3.9.3 Digital Loopback  
Digital Loopback includes the entire digital transmit and receive paths. Data is looped back prior to the analog  
circuitry.  
Digital Loopback is enabled by setting bit[2] in the BISCR.  
7.3.9.4 Analog Loopback  
Analog Signals can be looped back after the analog front-end. Detials: TBD.  
7.3.9.5 Far-End (Reverse) Loopback  
Far-End (Reverse) loopback is a special test mode to allow PHY testing with a link partner. In this mode, data  
that is received from the link partner passes through the PHY’s receiver, is looped back at the MAC interface and  
then transmitted back to the link partner. While in Reverse Loopback mode, all data signals that come from the  
MAC are ignored.  
7.3.10 BIST Configurations  
The DP83TD510E incorporates an internal PRBS Built-in Self-Test (BIST) circuit to accommodate in-circuit  
testing and diagnostics. The BIST circuit can be used to test the integrity of transmit and receive data paths. The  
BIST can be performed using both internal loopbacks (digital or analog) or external loopback using a cable  
fixture. The BIST simulates pseudo-random data transfer scenarios in format of real packets and Inter-Packet  
Gap (IPG) on the lines. The BIST allows full control of the packet lengths and the IPG.  
7.4 Device Functional Modes  
DP83TD510E can be used in MII Mode, RMII Master Mode and Slave Mode. Refer to RMII section for  
connection diagram.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DP83TD510L  
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
7.4.1 Straps Configuration  
The DP83TD510E uses many of the functional pins as strap options to place the device into specific modes of  
operation. The values of these pins are sampled at power up or hard reset. During software resets, the strap  
options are internally reloaded from the values sampled at power up or hard reset. The strap option pin  
assignments are defined below. Configuration of the device may be done through the strap pins or through the  
management register interface. A pullup resistor or a pulldown resistor of suggested values may be used to set  
the voltage ratio of the strap pin input and the supply to select one of the possible selected modes. The MAC  
interface pins must support I/O voltages of 3.3 V, 2.5 V, and 1.8 V. As the strap inputs are implemented on these  
pins, the straps must also support operation at 3.3-V, 2.5-V, and 1.8-V supplies depending on what voltage was  
selected for I/O. All strap pins have two levels.  
Internal PU pins  
Internal PD pins  
VDDIO  
VDDIO  
Rhi  
10 kΩ  
25%  
10 kΩ  
25%  
Rlo  
Figure 7-6. Strap Circuit  
Table 7-4. 2-Level Strap Resistor Ratio  
IDEAL RESISTORS  
MODE  
Rhi (kΩ)  
OPEN  
2.49  
Rlo (kΩ)  
2.49  
0
1
OPEN  
7.4.1.1 Straps for PHY Address  
Table 7-5. PHY Address Strap Table  
PIN NAME  
STRAP NAME  
PIN #  
DEFAULT  
PHY_ADD0  
GPIO1  
Strap9  
32  
0
MODE 0  
0
MODE 1  
1
PHY_ADD1  
RX_ERR  
RX_D0  
RX_D3  
Strap6  
Strap4  
Strap1  
20  
16  
13  
0
0
0
MODE 0  
MODE 1  
0
1
PHY_ADD2  
MODE 0  
MODE 1  
0
1
PHY_ADD3  
MODE 0  
MODE 1  
0
1
PHY Address strap is 4 bit strap on pin 13, 16, 20 and 32. It shall be read as [3:2:1:0] respectively. Default PHY Address is 0000.  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DP83TD510L  
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
Table 7-6. Reach Selection Strap  
PIN NAME  
STRAP NAME  
PIN #  
DEFAULT  
This Strap defines the voltage level  
requested by PHY during auto  
negotiation. It is reflected in bit 12 of  
0x20E. While using Force mode for  
Linkup, the strap controls the output  
voltage and reflects in bit 12 of 0x18F6  
0
1
LED_2  
Strap7  
28  
0
0 : 1-V p2p  
1: 2.4-V p2p  
Table 7-7. MAC Mode Strap Table  
Strap  
3
PIN NAME  
STRAP NAME  
PIN #  
DEFAULT  
Strap8  
0
0
1
1
0
1
0
1
MII (default)  
RMII Master  
Reserved  
RX_D1  
Strap3  
Strap8  
15  
0
LED_0  
29  
0
RMII Slave  
Table 7-8. RMII MAC Mode Strap Table  
PIN NAME  
STRAP NAME  
PIN #  
DEFAULT  
CRS_DV/RX_DV Pin 18 is configured as  
CRS_DV (default)  
0
1
RX_D2  
Strap2  
14  
0
CRS_DV/RX_DV Pin 18 is configured as  
RX_DV (For RMII Repeater Mode)  
Table 7-9. Terminations Selection  
PIN NAME  
STRAP NAME  
PIN #  
DEFAULT  
Receiver with tapping at 50 Ω  
(Recommended)  
0
1
GPIO2  
Strap10  
8
Mandatory PU/PD  
Receiver tapping at < 40 Ω  
Table 7-10. Clockout/LED_1  
PIN NAME  
STRAP NAME  
PIN #  
DEFAULT  
0
1
Clockout 25 M( default)  
LED1  
RX_DV/CRS_DV  
Strap5  
18  
0
7.5 Programming  
DP83TD510E provides an IEEE defined register set for programming and status. It also provides an additional  
register set to configure other features not supported thru IEEE registers.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DP83TD510L  
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
7.6 Register Maps  
7.6.1 MMD Register Address Map  
Table 7-11. MMD Register Map Address Table  
Register Address Range  
0x1000 to 0x18F8  
MMD  
Example Usage  
0x1  
MMD=0x1, Address=0x08F8  
MMD=0x3, Address=0x08E7  
MMD=07, Address=0x20F  
MMD=0x1F, Address=0x0000  
0x3000 to 0x38E7  
0x3  
0x200 to 0x20F  
0x7  
0x0000 to 0x0130, 0x0300-0x0E01  
0x1F  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DP83TD510L  
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
When using the device for Ethernet applications, it is necessary to meet certain requirements for normal  
operation. The following subsections are intended to assist in appropriate component selection and required  
circuit connections.  
8.2 Typical Applications  
Figure 8-1 shows a typical application for the DP83TD510E.  
Vin 3V3/1V8  
10Base-T1L  
DP83TD510  
MII/RMII  
IEEE 802.3cg Single Pair  
Ethernet  
PHY  
MAC  
Connector  
25-MHz / 50-MHz  
Clock Source  
Status  
LEDs  
Figure 8-1. Typical DP83TD510E Application  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DP83TD510L  
 
 
 
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
8.2.1 Termination Circuit  
DP83TD510E is expected to be used in Intrinsic Safe and non Intrinsic Safe Applications. Please refer to  
appropriate termination circuit based on the application needs, see Figure 8-2 .  
Note  
Termination circuit and passive values are initial estimates and subject to change  
8.2.1.1 Termination Circuit for Intrinsic Safe Applications  
TRD_P  
RTX2  
CMC  
C3 nF  
C1 nF  
C5  
RTX1  
RRX1  
Optional for Improved EMC  
Tx+  
Rx+  
Rt1  
DP83TD510  
RRX2  
RTX3  
Rd1  
Rx-  
Rd2  
Rt2  
Tx-  
C4 nF  
C2 nF  
Cd  
Rd3  
TRD_N  
CMC  
C6  
RTX4  
Copyright © 2020, Texas Instruments Incorporated  
Figure 8-2. Termination Circuit for Intrinsic Safe Applications  
Table 8-1. Termination Circuit Component Value for Intrinsic Safe Applications  
Applications  
1v p2p Intrinsic Safe Config 1  
1v p2p Intrinsic Safe Config 2  
1
2
RTX1, RTX3  
26.5  
50  
RTX2, RTX4 (Ω)  
23.5  
0
3
RRX1, RRX2 (Ω)  
2K  
2K  
4
Rt1(Ω)  
Rt2(Ω)  
Rd1(Ω)  
Rd2(Ω)  
Rd3(Ω)  
C1  
NC  
0
5
NC  
0
6
1K  
1K  
7
1K  
1K  
8
160K  
160K  
9
230 nF  
230 nF  
10  
11  
12  
13  
14  
15  
C2  
230 nF  
230 nF  
C3  
5 nF  
5 nF  
NC  
NC  
C4  
C5  
100 pF < C < 400 pF ( default: 100 pF  
100 pF < C < 400 pF ( default: 100 pF  
0.01 uF  
100 pF < C < 400 pF ( default: 100 pF  
100 pF < C < 400 pF ( default: 100 pF  
0.01 uF  
C6  
Cd  
Please ensure over all impedance on the Transmitter shall be 50Ω. If additional components on path adding the  
impedance, it shall be compensated by reducing Rtx1/Rtx3.  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DP83TD510L  
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
8.2.1.2 Components Range for Power Coupling/Decoupling  
Below table provides recommended component ranges for Power/Data decoupling network  
Table 8-2. Recommended Components Range for Power Coupling/Decoupling  
Components  
Range  
1
2
3
Cap of ESD diode between MDI lines (Surge protection)  
Cap of TVS Diode (MDI line to ground)*  
< 100 pF ( Differential Cap)  
< 75 pF  
Cap of Clamping Diodes (parallel to power coupling inductor)  
< 50 pF  
Inductance 500 uH < L <1.5  
mH,  
4
5
Power coupling inductor  
Cap of Rectifier Diodes  
DC Resistance < 200 mΩ  
<50 pF  
8.2.1.3 Termination Circuit for Non-Intrinsic Safe Applications  
Following termination circuit is recommended for application in non intrinsic safe application like in Building  
Automation, Factory Automation etc  
230 nF  
50Q  
TRD_P  
CMC  
CMC  
Tx+  
Rx+  
Optional for  
Improved EMC  
2KQ  
C5  
DP83TD510  
2KQ  
50Q  
Rd1  
Rd2  
Rx-  
230 nF  
TRD_N  
Cd  
Tx-  
Rd3  
C6  
Copyright © 2020, Texas Instruments Incorporated  
Figure 8-3. Termination Circuit for Non-Intrinsic Safe Applications  
8.2.1.4 CMC Specifications  
Table 8-3. CMC Specifications  
Parameters  
Inductance  
Range  
450 uH  
< 500 nH  
< 200 mΩ  
Leakage Inductance  
DC Resistance  
8.2.2 Design Requirements  
The design requirements for the DP83TD510E are:  
1. AVD Supply = 3.3 V  
2. VDDIO Supply = 3.3 V or 1.8 V  
3. Reference Clock Input = 25 MHz or 50 MHz (RMII Slave)  
8.2.2.1 Clock Requirements  
The DP83TD510E supports an external CMOS-level oscillator source or an internal oscillator with an external  
crystal.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DP83TD510L  
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
8.2.2.1.1 Oscillator  
If an external clock source is used, XI should be tied to the clock source and XO should be left floating. The  
amplitude of the oscillator should be a nominal voltage of VDDIO.  
8.2.2.1.2 Crystal  
The use of a 25-MHz, parallel resonant, 20-pF load crystal is recommended if operating with a crystal. A typical  
connection diagram is shown below for a crystal resonator circuit. The load capacitor values will vary with the  
crystal vendors; check with the vendor for the recommended loads.  
XI  
(pin 23)  
XO  
(pin 22)  
R
1
C
L1  
C
L2  
Figure 8-4. Crystal Oscillator Circuit  
Table 8-4. 25-MHz Crystal Specification  
PARAMETER  
Frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
25  
MHz  
Frequency Tolerance  
Including all parameters  
(Temperature, aging etc)  
-100  
100 ppm  
Load Capacitance  
ESR  
15  
50  
30  
pF  
150  
Ohm  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DP83TD510L  
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
9 Power Supply Recommendations  
The DP83TD510E is capable of operating from Single Supply 3V3. It supports single supply operations from 1V8  
for Short Reach ( 1v p2p) mode. It also supports Dual Supply Operations for Lowest Power Dissipation. It also  
supports VDDIO to work at 3.3-V, 2.5-V or 1.8-V supply voltages PHY has capability to detect the power supply  
levels automatically for both AVDD and VDDIO..  
Single Power Supply Operations : Analog supply shall be powered by 3.3 V or 1.8 V. AVDD of 3V3 can support  
both Long Reach ( 2.4-v p2p) and Short Reach( 1-v p2p).  
Please note with AVDD 1.8 V, only Short Cable mode of 1-V p2p will be supported.  
Appropriate straps shall be configured to ensure Auto Negotiation transmits the correct capabilities of the PHY.  
The recommended power supply de-coupling network is shown below:  
3.3-V or 2.5-V or  
1.8-V Supply  
VDDIO  
Ferrite Bead  
(Optional)  
100 nF  
10 nF  
1 F  
10 F  
Ferrite Bead  
(Optional)  
3.3-V Supply or  
1.8-V Supply  
VDDA  
10 F 1 F  
100 nF 10 nF  
CEXT  
DVDD  
0.01µF  
Figure 9-1. DP83TD510E Single Power Supply Decoupling Recommendation  
For Dual Supply Operations, digital voltage rail of 1.0 V externally shall be supplied seperately. This help reduce  
the power consumption further of the DP83TD510E. See below connections for Dual Power Supply.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DP83TD510L  
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
3.3-V or 2.5-V or 1.8-V  
Supply  
VDDIO  
Ferrite Bead  
(Optional)  
100 nF  
10 nF  
1 F  
10 F  
Ferrite Bead  
(Optional)  
3.3-V Supply or 1.8-V  
Supply  
VDDA  
10 F  
1 F  
100 nF  
10 nF  
NC  
CEXT  
DVDD  
Ferrite Bead  
(Optional)  
1.0V Supply  
10 F  
1 F  
100 nF  
10 nF  
Figure 9-2. DP83TD510E Dual Supply Power Supply Decoupling Recommendation  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DP83TD510L  
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Signal Traces  
PCB traces are lossy and long traces can degrade signal quality. Keep traces as short as possible. Unless  
mentioned otherwise, all signal traces must be 50-Ω single-ended impedance. Differential traces must 100-Ω  
differential. Take care to ensure impedance is controlled throughout. Impedance discontinuities cause reflections  
leading to emissions and signal integrity issues. Stubs should be avoided on all signal traces, especially  
differential signal pairs.  
Figure 10-1. Differential Signal Traces  
Within the differential pairs, trace lengths should be run parallel to each other and matched in length. Matched  
lengths minimize delay differences, avoiding an increase in common mode noise and emissions. Length  
matching is also important for MAC interface connections. All RMII transmit signal traces should be length  
matched to each other and all RMII receive signal traces should be length matched to each other.  
Ideally, there should be no crossover or vias on signal path traces. Vias present impedance discontinuities and  
should be minimized when possible. Route trace pairs on the same layer. Signals on different layers should not  
cross each other without at least one return path plane between them. Differential pairs should always have a  
constant coupling distance between them. For convenience and efficiency, TI recommends routing critical  
signals first (that is, MDI differential pairs, reference clock, and MAC IF traces).  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DP83TD510L  
 
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
10.1.2 Return Path  
A general best practice is to have a solid return path beneath all MDI signal traces. This return path can be a  
continuous ground or DC power plane. Reducing the width of the return path can potentially affect the  
impedance of the signal trace. This effect is more prominent when the width of the return path is comparable to  
the width of the signal trace. Breaks in return path between the signal traces should be avoided at all cost. A  
signal crossing a split plane may cause unpredictable return path currents and could impact signal quality and  
result in emissions issues.  
Figure 10-2. Differential Signal Pair and Plane Crossing  
Copyright © 2020 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DP83TD510L  
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
10.1.3 Metal Pour  
All metal pours that are not signals or power must be tied to ground. There must be no floating metal in the  
system, and there must be no metal between differential traces.  
10.1.4 PCB Layer Stacking  
To meet signal integrity and performance requirements, a minimum four-layer PCB is recommended. However, a  
six-layer PCB should be used when possible.  
Figure 10-3. Recommended Layer Stack-Up  
10.2 Layout Example  
Please refer DP83TD510E EVM for information regarding layout.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DP83TD510L  
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
11 Device and Documentation Support  
11.1 Device Support  
11.2 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.5 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DP83TD510L  
 
 
 
 
 
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Figure 12-1. DP83TD510E Package Drawing  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DP83TD510L  
 
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
Figure 12-2. DP83TD510E Package Drawing  
Copyright © 2020 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DP83TD510L  
DP83TD510L  
SNLS656 – AUGUST 2020  
www.ti.com  
Figure 12-3. DP83TD510E Package Drawing  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DP83TD510L  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Sep-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DP83TD510ERHBR  
DP83TD510ERHBT  
PDP83TD510ERHBR  
PREVIEW  
PREVIEW  
ACTIVE  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
32  
32  
32  
3000  
250  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 105  
-40 to 105  
-40 to 105  
3000  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Sep-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY