DRV10970 [TI]

12V 标称电压、3A 峰值含传感器正弦或梯形控制三相 BLDC 电机驱动器;
DRV10970
型号: DRV10970
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12V 标称电压、3A 峰值含传感器正弦或梯形控制三相 BLDC 电机驱动器

电机 驱动 传感器 驱动器
文件: 总42页 (文件大小:2105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DRV10970  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
DRV10970 三相无刷直流电机驱动器  
1 特性  
3 说明  
1
宽电源电压范围:5V 18V  
DRV10970 是一款集成式三相 BLDC 电机驱动器,适  
用于家用电器、冷却风扇以及其他通用电机控制 应  
用。该器件内置智能特性,并且拥有小巧外形和简单的  
引脚分布结构,不仅降低了设计复杂度、节省了电路板  
空间,而且还降低了系统成本。集成的保护功能提高了  
系统的稳健性和可靠性。  
集成场效应晶体管 (FET)1A 均方根 (RMS)、  
1.5A 峰值输出相位/绕组电流  
总驱动器 H + L RDSON400mΩ  
内置 180° 正弦波形和梯形换向  
休眠模式下的功耗超低  
(35µA)  
DRV10970 的输出级包含三个 RDSON 400 mΩ (H +  
L) 的半桥。每个半桥都能够驱动高达 1A RMS 1.5A  
峰值的输出电流。当器件进入休眠模式时,电流消耗典  
型值为 35µA。  
自适应驱动角度调整  
三霍尔传感器或单霍尔传感器两个选项,最大程度  
地降低系统成本  
电机旋转方向控制  
可配置为以 30° 放置霍尔传感器  
可调节的重试时间(电机锁定后)  
可通过编程设定的电流限制功能  
转速计 在开漏 FG 引脚上提供电机转速信息  
在开漏 RD 引脚上提供电机锁定报告  
保护 特性  
该器件内置有高级的 180° 正弦波形换向算法,可实现  
高效率、低转矩纹波和出色的声学性能。自适应驱动角  
度调整功能可确保器件在任何电机参数和负载条件下获  
得最优效率。  
DRV10970 针对基于差分或单端霍尔传感器的应用而  
设计。差分霍尔信号输入由集成的比较器检测。该器件  
支持基于三个霍尔传感器和单个霍尔传感器的 应用;  
单霍尔传感器模式通过减少两个霍尔传感器来降低系统  
成本。  
电源 (VM) 欠压锁定  
逐周期电流限制  
过流保护 (OCP)  
热关断  
器件信息(1)  
电机锁定检测和报告  
器件型号  
DRV10970  
封装  
封装尺寸(标称值)  
2 应用  
TSSOP (24)  
7.80mm × 6.40mm  
冷却风扇  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
小型家用电器  
应用电路  
通用无刷直流 (BLDC) 电机驱动器  
VCC VCC  
RFG  
RRD  
CSW  
FG RD  
CPP CPN  
U
VCP  
CVCP  
VM  
M
V
CVM  
VINT  
CVINT  
VINT/VCC  
RHALL  
GND  
W
GND/VINT  
GND/VINT/FLOATING  
GND/VINT/FLOATING  
GND/VINT  
BRKMOD  
DAA  
U_HP  
U_HN  
V_HP  
V_HN  
W_HN  
W_HP  
CMTMOD  
FR  
U_HALL  
RETRY  
V_HALL  
W_HALL  
CRETRY  
PWM  
CS  
RCS  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCU7  
 
 
 
DRV10970  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 13  
8.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 21  
9.1 Application Information............................................ 21  
9.2 Typical Application ................................................. 28  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 6  
7.6 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagram ....................................... 12  
9
10 Power Supply Recommendations ..................... 30  
11 Layout................................................................... 30  
11.1 Layout Guidelines ................................................. 30  
11.2 Layout Example .................................................... 30  
12 器件和文档支持 ..................................................... 31  
12.1 社区资源................................................................ 31  
12.2 ....................................................................... 31  
12.3 静电放电警告......................................................... 31  
12.4 Glossary................................................................ 31  
13 机械、封装和可订购信息....................................... 32  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (February 2016) to Revision A  
Page  
已更改 器件状态至量产数据且已发布完整数据表................................................................................................................. 1  
2
版权 © 2016, Texas Instruments Incorporated  
 
DRV10970  
www.ti.com.cn  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
5 说明 (续)  
该器件实现了一个标准控制接口,其中包含脉宽调制 (PWM) 输入(速度命令)、FG 输出(速度反馈)、FR 输入  
(正向和反向控制)以及 RD 输出(电机锁定指示)。  
DRV10970 器件支持以 30° 放置霍尔传感器(相对于对应相的 BEMF)。该器件实现了梯形驱动模式来满足  
更高的功率需求。  
DRV10970 器件根据霍尔传感器输入是否切换开关状态来确定转子锁定情况。该器件会在经过一段可调节的自动重  
试时间(可通过连接至 RETRY 引脚的电容来配置)后重试旋转电机。  
该器件包含多种保护 功能来提高系统稳健性:过流保护、欠压保护、过热保护以及转子锁定检测与报告。  
DRV10970 采用耐热增强型 24 引脚薄型小外形尺寸 (TSSOP) 封装(环境友好型:符合 RoHS 标准并且无  
Sb/Br)。  
6 Pin Configuration and Functions  
PWP Package  
24-Pin TSSOP with PowerPAD™  
Top View  
1
2
3
4
5
6
7
8
9
DAA  
FG 24  
FR 23  
U_HP  
U_HN  
V_HP  
V_HN  
W_HP  
W_HN  
VCP  
RETRY 22  
BRKMOD 21  
CMTMOD 20  
PWM 19  
RD 18  
PowerPAD  
CS 17  
CPP  
VINT 16  
VM 15  
10 CPN  
11  
W
U
V
14  
13  
12 GND  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
POWER AND GROUND  
CPN  
CPP  
GND  
VCP  
10  
9
Connect a 0.1-µF X7R capacitor rated for VM between CPN  
and CPP  
Charge pump switching node  
12  
8
PWR  
Device ground  
Must be connected to board ground  
Charge pump output  
Connect a 16-V, 1-µF ceramic capacitor to VM  
Integrated regulator (typical voltage 5 V) mainly for internal  
circuits; Provide external power for less than 20 mA. Bypass  
to GND with a 10-V, 2.2-µF ceramic capacitor  
VINT  
VM  
16  
15  
PWR  
PWR  
Integrated regulator output  
Power supply  
Connect to motor supply voltage; bypass to GND with a 10-µF  
ceramic capacitor rated for VM  
Copyright © 2016, Texas Instruments Incorporated  
3
DRV10970  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
CONTROL  
CS  
NO.  
17  
1
I
Current limit setting pin  
Connect a resistor to adjust the current limit.  
Low: 10° drive angle adjustment  
High: 5° drive angle adjustment  
Floating: adaptive drive angle adjustment  
Drive angle adjustment  
configuration pin  
DAA  
FG  
Open drain Electrical Frequency Output pin. One toggle per  
electrical cycle. Requires an external pull-up of 3.3-kΩ.  
24  
23  
O
I
Frequency indication pin  
Motor direction control  
Brake mode setting  
Direction Control Input.  
When low, phase driving sequence is U V W ( U phase  
is leading V phase by 120°).  
FR  
When high, the phase driving sequence is U W V.  
Low: Coasting mode (phases are tri-stated)  
High: Brake mode (phases are driven low)  
BRKMOD  
PWM  
21  
19  
I
I
Variable duty cycle PWM input for  
speed control  
Connect to PWM signal.  
Pulled logic low with lock condition; open-drain output requires  
an external pull-up of 3.3-kΩ  
RD  
18  
22  
O
I
Lock indication pin  
RETRY  
Auto retry timing configure  
Timing adjustable by capacitor  
Low: Sinusoidal operation mode with 0° Hall placement  
High: Sinusoidal operation mode with 30° Hall placement  
Floating: Trapezoidal operation mode with 30° Hall placement  
CMTMOD  
U_HN  
20  
3
I
I
Commutation mode setting  
U-phase negative Hall input  
Differential Hall Sensor negative input for U-phase. Connect to  
hall sensor negative output. When logic level hall IC is used,  
tie this pin to VINT/2 level. In single Hall mode, the device  
uses U-phase hall inputs to drive the motor.  
Differential Hall Sensor positive input for U-phase. Connect to  
hall sensor positive output. When logic level hall IC is used,  
connect this to hall IC output. In single Hall mode, the device  
uses U-phase hall inputs to drive the motor.  
U_HP  
V_HN  
V_HP  
W_HN  
W_HP  
2
5
4
7
6
I
I
I
I
I
U-phase positive Hall input  
V-phase negative Hall input  
V-phase positive Hall input  
W-phase negative Hall input  
W-phase positive Hall input  
Differential Hall Sensor negative input for V-phase. Connect to  
hall sensor negative output. When logic level hall sensor is  
used, tie this pin to VINT/2 level. In single hall mode, ground  
this pin.  
Differential Hall Sensor positive input for V-phase. Connect to  
hall sensor positive output. When logic level hall IC is used,  
connect this to hall IC output. Leave this pin floating to enable  
single Hall operation.  
Differential Hall Sensor negative input for W-phase. Connect  
to hall sensor negative output. When logic level hall sensor is  
used, tie this pin to VINT/2 level. In single hall mode, ground  
this pin.  
Differential Hall Sensor positive input for W-phase. Connect to  
hall sensor positive output. When logic level hall IC is used,  
connect this to hall IC output. In single hall mode, ground this  
pin.  
OUTPUT STAGE  
U
V
14  
13  
11  
O
O
O
U phase output  
V phase output  
W phase output  
Connect to motor terminal U  
Connect to motor terminal V  
Connect to motor terminal W  
W
External Components  
COMPONENT  
PIN 1  
PIN 2  
RECOMMENDED  
10-µF ceramic capacitor rated for VM (if VM = 12 V, 25-V capacitor is suggested, if  
VM = 18 V, 35-V capacitor is suggested)  
CVM  
VM  
GND  
CVCP  
CSW  
VCP  
CPP  
VM  
16-V, 1-µF ceramic capacitor  
CPN  
0.1-µF X7R capacitor rated for VM  
4
Copyright © 2016, Texas Instruments Incorporated  
DRV10970  
www.ti.com.cn  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
External Components (continued)  
COMPONENT  
PIN 1  
VINT  
PIN 2  
RECOMMENDED  
CVINT  
CRETRY  
RCS  
GND  
GND  
GND  
RD  
10-V, 2.2-µF ceramic capacitor Rotor Lock Detection and Retry  
See 公式 2 for capacitor value  
RETRY  
CS  
VCC(1)  
VCC(1)  
See Current Limit and OCP for resistor value  
RRD  
>1 k, RD is open-drain output. This component must be pulled up externally.  
>1 k, FG is open-drain output. This component must be pulled up externally.  
RFG  
FG  
(1) VCC is not a pin on the DRV10970. It can be VINT or any other system voltage (for example the 3.3-V or 5-V supply voltage powering  
the microcontroller). A VCC supply voltage pull-up is required for open-drain outputs RD and FG  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1) (2)  
MIN  
MAX  
UNIT  
V
Power supply voltage (VM)  
–0.3  
20  
Power supply voltage ramp rate (VM)  
Charge pump voltage (VCP, CPP)  
2
V/µs  
V
–0.3  
–0.3  
–0.3  
–0.3  
0
25  
Charge pump negative switching pin (CPN)  
Internal logic regulator voltage (VINT)  
Control pin voltage (PWM, FR, RETRY, CMTMOD, BRKMOD, DAA)  
Open drain output current (RD, FG)  
Open drain output voltage (RD, FG)  
Output voltage (U,V,W)  
20  
V
5.5  
V
VINT + 0.3  
V
10  
20  
20  
2
mA  
V
–0.3  
–1  
V
Output current (U,V,W)  
0
A
Hall input voltage (U_HP, U_HN, V_HP, V_HN, W_HP, W_HN)  
Current limit adjust pin voltage (CS)  
Operating junction temperature, TJMAX  
Storage temperature, Tstg  
0
6
V
–0.3  
–40  
–65  
3.6  
150  
150  
V
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Referenced with respect to GND.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
Power supply voltage  
VM  
5
0
0
0
0
18  
V
PWM, FR, CMTMOD, BRKMOD,  
DAA, RETRY  
Logic level input voltage  
VINT  
18  
V
V
V
A
Open drain output pullup voltage FG, RD  
U_HP, U_HN, V_HP, V_HN, W_HP,  
W_HN  
Hall input  
5
IOUT  
Output current  
1.5  
Copyright © 2016, Texas Instruments Incorporated  
5
DRV10970  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
100  
20(1)  
UNIT  
kHz  
mA  
ƒPWM  
IVINT  
Applied PWM signal  
15  
VINT external load current  
Operating junction temperature  
TJOPR  
–40  
125  
°C  
(1) VINT is mainly for internal use. For external, it is only suggested to provide bias current for hall circuit.  
7.4 Thermal Information  
DRV10970  
PWP (TSSOP)  
24 PINS  
36.1  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
17.4  
14.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
14.5  
RθJC(bot)  
1.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Electrical Characteristics  
TA = 25°C, over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (VM, VINT)  
VM  
VM operating voltage  
5
18  
5
V
VM = 12 V, no external load on  
VINT  
IVM  
VM operating supply current  
3
mA  
VM supply current during  
sleep mode  
IVM_SLEEP  
VM = 5 and 12 V  
35  
50  
µA  
VM = 12 V, 0-mA external load  
VM = 12 V, 20-mA external load  
VM = 5 V, 0-mA external load  
VM = 5 V, 20-mA external load  
4.5  
4.5  
4.5  
4.5  
5
5
5.5  
5.5  
5
V
V
V
V
VINT  
Integrated regulator voltage  
4.8  
4.8  
5
Ground potential difference  
between GND pin to PCB  
ground  
VGND-BGND  
300  
mV  
CHARGE PUMP (VCP, CPP, CPN)  
VM = 5 V, less than 1-mA load  
VM = 12 V, less than 1-mA load  
VM = 18 V, less than 1-mA load  
9
16  
22  
10  
18  
24  
11  
19.5  
25.5  
V
V
V
VCP  
VCP operating voltage  
CONTROL INPUTS (PWM)  
VIL-PWM  
PWM Input logic low voltage  
VM = 5 V and VM = 12 V  
0
2.4  
400  
70  
0.8  
5.3  
V
V
VIH-PWM  
VHYS-PWM  
RPU-PWM  
PWM Input logic high voltage VM = 5 V and VM = 12 V  
PWM Input logic hysteresis  
Internal pullup resistance  
VM = 5 V and VM = 12 V  
VM = 5 V and VM = 12 V  
mV  
kΩ  
100  
2
120  
2.5  
Internal pullup resistance in  
sleep mode  
VM = 5 V and VM = 12 V, sleep  
mode  
RPU-PWM-SL  
1
MΩ  
CONTROL INPUTS (RETRY)  
Retry timing set sinking  
current  
IRETRY-SINK  
VM = 5 V and 12 V  
9
10  
11  
µA  
6
Copyright © 2016, Texas Instruments Incorporated  
DRV10970  
www.ti.com.cn  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
Electrical Characteristics (continued)  
TA = 25°C, over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IRETRY-  
SOURCE  
Retry timing set sourcing  
current  
VM = 5 V and 12 V  
9
10  
11  
µA  
Retry comparator high  
threshold  
VRETRY_H  
VRETRY_L  
VM = 5 V and 12 V  
VM = 5 V and 12 V  
1.1  
1.2  
0.6  
1.3  
V
V
Retry comparator low  
threshold  
0.55  
0.65  
CONTROL INPUTS (FR, DAA, CMTMOD, BRKMOD)  
VIL  
Digital input logic low voltage VM = 5 V and 12 V  
Digital input logic high voltage VM = 5 V and 12 V  
0
2.2  
0.8  
5.3  
V
V
V
VIH  
VIFLOATING  
Digital input floating voltage  
VM = 5 V and 12 V  
24% × VINT  
36% × VINT  
FR pin Internal pulldown  
resistance  
RPD-FR  
VM = 5 V and 12 V  
160  
160  
200  
200  
240  
240  
kΩ  
kΩ  
BRKMOD pin Internal  
pulldown resistance  
RPD-BRKMOD  
VM = 5 V and 12 V  
CONTROL OUTPUTS (RD, FG)  
IOSINK  
OD output pin sink current  
VO = 0.3 V  
VO = 12 V  
3.5  
mA  
mA  
OD output pin short current  
limit  
IOSHORT  
10  
25  
HALL INPUT COMPARATOR  
Zero to positive peak including  
offset. TA = –40°C, 25°C, 125°C  
VHR  
Hall input rising  
0
–10  
5
5
10  
0
mV  
mV  
mV  
Zero to negative peak including  
offset TA = –40°C, 25°C, 125°C  
VHF  
Hall input falling  
Hall input hysteresis  
–5  
VHP-VHN TA = –40°C, 25°C,  
125°C  
VHALL_HYS  
12  
VM = 5.5 V – 18 V  
VM = 5 V – 5.5 V  
0.3  
0.3  
0
4.3  
3.8  
V
V
Vcom  
Common mode voltage  
Input frequency range  
Finput  
1000  
Hz  
UVLO  
UVLO threshold voltage on  
VM, rising  
VUVLO-VM-THR  
VUVLO-VM-THF  
VUVLO-VM-HYS  
3.8  
3.6  
40  
4
4.5  
4.25  
200  
4.5  
V
V
UVLO threshold voltage on  
VM, falling  
3.8  
VM UVLO comparator  
hysteresis  
mV  
V
VUVLO-VINT-  
THR  
VINT UVLO rise threshold  
VINT UVLO fall threshold  
4.1  
3.8  
100  
4.2  
4
VUVLO-VINT-  
THF  
4.2  
V
VUVLO-VINT-  
HYS  
VINT UVLO comparator  
hysteresis  
300  
mV  
INTEGRATED MOSFET  
RDSON Series resistance (H + L)  
VM = 12 V, VCP = 19 V, IOUT  
1.5 A  
=
0.4  
0.6  
Ω
CURRENT LIMIT AND OVER CURRENT PROTECTION (OCP)  
ILIM  
Current limit threshold  
VM = 12 V, Rcs = 20 kΩ  
1.3  
1.15  
1.5  
1.2  
1.7  
1.25  
A
Current limit circuit  
comparator threshold  
VILIM_THR  
ACL  
VM = 12 V  
V
Current limit attenuation factor VM = 12 V  
22000  
25000  
28000  
A/A  
Copyright © 2016, Texas Instruments Incorporated  
7
DRV10970  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
TA = 25°C, over recommended operating conditions unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Over current protection  
threshold. Magnitude of phase  
current at which driver stage  
is disabled to protect the  
device.  
IOCP  
VM = 5 V and 12 V  
3
5
A
SLEEP MODE TIMING  
Minimum PWM low time to  
recognize a sleep command.  
TSLEEP_EN  
TSLEEP_EX  
VM = 12 V  
VM = 12 V  
1.2  
2
ms  
µs  
Minimum PWM high to exit  
from sleep mode.  
THERMAL SHUTDOWN  
Shut down temperature  
threshold  
TSDN_TR  
TSDN_RS  
TSDN_HYS  
Shut down triggering temperature  
Shut down resume temperature  
Shut down temperature hysteresis  
150  
140  
5
160  
150  
10  
170  
160  
15  
°C  
°C  
°C  
Shut down resume  
temperature  
Shut down temperature  
hysteresis  
LOCK DETECT  
tLOCK_EN  
Lock detect time  
Lock release time  
0.6  
4
0.7  
5
0.8  
6
s
s
tLOCK_EX  
Retry capacitor = 0.33 uF  
8
版权 © 2016, Texas Instruments Incorporated  
DRV10970  
www.ti.com.cn  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
7.6 Typical Characteristics  
600  
500  
400  
300  
200  
100  
0
430  
420  
410  
400  
390  
380  
370  
360  
350  
340  
-40  
25  
85  
4.5  
5
12  
18  
Temperature (èC)  
Supply Voltage (VM)  
D001  
D002  
D004  
D006  
RDSON  
VM = 12 V  
RDSON  
Temperature = 25°C  
1. RDSON Across Temperature at 12 V  
2. RDSON Across Voltage at 25°C  
60  
50  
40  
30  
20  
10  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
-40  
25  
85  
125  
4.5  
4.8  
5
12  
18  
20  
Temperature (èC)  
Supply Voltage (VM)  
D003  
Sleep Current  
VM = 12 V  
Sleep Current  
Temperature = 25°C  
3. Sleep Current Across Temperature at 12 V  
4. Sleep Current Across Voltage at 25°C  
4.9  
4.89  
4.88  
4.87  
4.86  
4.85  
4.84  
4.83  
4.82  
4.76  
4.74  
4.72  
4.7  
4.68  
4.66  
4.64  
4.62  
4.6  
4.58  
4.56  
4.54  
4.52  
-40  
25  
85  
125  
-40  
25  
85  
125  
Temperature (èC)  
Temperature (èC)  
D005  
5-V Regulator  
VM = 12 V  
IL = 20 mA  
5-V Regulator  
VM = 5 V  
IL = 20 mA  
5. VINT LDO Output Voltage Across Temperature,  
6. VINT LDO Output Voltage Across Temperature,  
VM = 12 V  
VM = 5 V  
版权 © 2016, Texas Instruments Incorporated  
9
DRV10970  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
10.2  
10.1  
10  
10.1  
10  
9.9  
9.8  
9.7  
9.6  
9.5  
9.4  
9.3  
9.9  
9.8  
9.7  
9.6  
9.5  
-40  
25  
85  
125  
-40  
25  
85  
125  
Temperature (èC)  
Temperature (èC)  
D007  
D008  
RETRY Sink Current  
VM = 12 V  
RETRY Source Current  
VM = 12 V  
7. Retry Sink Current at 12 V  
8. Retry Source Current at 12 V  
10  
版权 © 2016, Texas Instruments Incorporated  
DRV10970  
www.ti.com.cn  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
8 Detailed Description  
8.1 Overview  
The DRV10970 device controls three-phase brushless DC motors using a speed command (PWM) and direction  
(FR) interface and Hall signals from the motor. The device is capable of driving up to 1-A RMS and 1.5-A peak  
current per phase.  
When the DRV10970 powers up, it starts to drive the motor in trapezoidal communication mode based on the  
Hall sensor information. If all three Hall sensors are connected, commutation logic relies on all three Hall  
sensors. If only the U phase Hall sensor is connected (V_HP is floating), DRV10970 starts to drive the motor in  
single Hall sensor mode.  
After 6 electrical cycles, the device switches to sinusoidal drive mode if the CMTMOD pin is not floating. If the  
motor has Hall sensor 0° placement (set on the CMTMOD pin accordingly), the DRV10970 device automatically  
adjusts the driving angle based on the feedback from the motor; it optimizes the efficiency regardless of the  
motor parameters and the load conditions.  
The adaptive driving angle adjustment function can be disabled by the DAA pin, in which case, fixed driving  
angle is available for user to optimize the motor drive efficiency.  
The steady-state motor speed is commanded by the PWM input duty cycle, which converts to an average output  
voltage of VM multiplied by the duty cycle. Floating PWM pin is considered as 100% speed command. Motor  
rotating direction can be controlled by FR input. Rotational direction can be changed while motor is spinning. The  
device takes tLOCK_EX time before reversing the direction.  
The FG output is aligned with U phase Hall sensor signal which indicates the motor speed. And if the motor is  
locked by external force for tLOCK_EN, RD output will be asserted to indicate the rotor lock condition, and  
DRV10970 retries after tLOCK_EX period which is determined by the capacitor on the RETRY pin.  
When the motor is stopped, either in lock condition or PWM equals zero, the state of the phases is selected by  
BRKMOD pin; coasting (phases are floating) or braking (phases are pulled down to GND).  
DRV10970 enters sleep mode when PWM is driven low for tSLEEP time and motor comes to a standstill (no FG),  
internal circuits including regulators are turned off and the power consumption is less than IVM_SLEEP  
.
Overcurrent, current limit, thermal shutdown and undervoltage protection circuits prevent the system components  
from being damaged during extreme conditions.  
版权 © 2016, Texas Instruments Incorporated  
11  
DRV10970  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.2 Functional Block Diagram  
VM  
CPN  
CPP  
VCP  
VM  
VCP  
Charge Pump  
U
Phase U  
pre-driver  
Linear  
VM  
Reg  
VINT  
VINT  
VM  
VCP  
PWM  
V
Phase V  
pre-driver  
FR  
DAA  
VM  
BRKMOD  
CMTMOD  
VCP  
Core  
W
Logic  
Phase W  
pre-driver  
RETRY  
VINT  
VREF  
+
FG  
RD  
I Limit  
CS  
Current  
Sense  
œ
U_HP  
U
Hall  
+
HALL_U  
HALL_V  
Hall  
Com  
U_HN  
œ
OSC  
V_HP  
V_HN  
W_HP  
V
Hall  
+
Hall  
Com  
Reset  
UVLO  
œ
+
œ
W
Hall  
Thermal  
Shutdown  
HALL_W  
Hall  
Com  
W_HN  
GND  
12  
版权 © 2016, Texas Instruments Incorporated  
DRV10970  
www.ti.com.cn  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
8.3 Feature Description  
8.3.1 Current Limit and OCP  
DRV10970 provides two stages of current control, cycle-by-cycle current limit and OCP.  
The current limit function limits the motor phase current during the motor operation: during startup, acceleration,  
sudden load change, and rotor lock condition while spinning. The application specific threshold is achieved by  
choosing the value of the external resistor connected to the CS pin. 9 shows the simplified circuitry of the  
current limit circuit using the CS pin. The voltage generated on the CS pin is proportional to the value of the  
external resistor, RCS. The external resistor value is chosen based on the current limit to be achieved (see 公式  
1).  
VM  
1
2
5
3
6
V
W
U
4
Current  
Current  
Sense U  
Sense V  
Current  
Sense  
W
GND  
ACL  
+
/
ILIMIT  
ILIMIT = (VILIM_THR × ACL) / RCS  
ICS = ILIMIT  
ACL  
/
VILIM_THR  
VCS = ILIMIT × RCS / ACL  
Digital  
VCS  
CS  
CL Comparator  
RCS  
GND  
DRV10970  
9. Current Limit Function Simplified Circuitry  
Current limit threshold is set by 公式 1.  
ILIMIT = (VILIM_THR × ACL) / RCS  
(1)  
In trapezoidal operation mode, motor phase current is restricted by means of cycle-by-cycle limit, as shown in 图  
10. If the current limit is triggered, one of the conducting MOSFETs is disabled and the complementary side  
MOSFET is activated until the beginning of the next PWM cycle. In the example shown in 10, MOSFET 1 and  
MOSFET 5 are conducting MOSFETs, MOSFET 1 is disabled, and the complementary MOSFET 4 is activated  
when the current limit is triggered.  
版权 © 2016, Texas Instruments Incorporated  
13  
 
 
 
DRV10970  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Feature Description (接下页)  
VM  
1
2
5
3
6
U
M
V
W
4
GND  
VM  
Voltage on phase U  
without current limit  
GND  
VM  
Voltage on phase V  
GND  
Current limit  
threshold  
Current on phase U and  
V without current limit  
Current limit  
threshold  
Current on phase U and  
V with current limit  
VM  
Voltage on phase U  
with current limit  
GND  
10. Cycle-by-Cycle Current Limit in Trapezoidal Mode  
If the current limit is triggered in sinusoidal operation mode, DRV10970 device switches to trapezoidal mode of  
operation to exercise cycle-by-cycle current limiting. If the current limit condition does not show up for 2 electrical  
cycles, the device will switch back to sinusoidal mode (shown in 11). The current limit threshold in sinusoidal  
mode is 1.5 times the current limit value in the trapezoidal mode. The current limit function can be disabled by  
connecting CS pin to GND.  
1.5 × threshold  
Current limit  
threshold  
0
Current limit  
threshold  
Cycle 1 without Cycle 2 without  
current limit current limit  
Cycle-by-Cycle Limit  
1.5 × threshold  
11. Current Limit in Sinusoidal Mode  
OCP has a fixed threshold IOCP, it can protect the device in catastrophic short-circuit conditions such as phase  
short to GND, phase short to VM and phase short to another phase. The IOCP limit is similar to the current limit,  
except that when phase current crosses IOCP threshold (positively or negatively), the device shuts down all the  
MOSFETs immediately. The device will wait for 2 ms before it starts driving the motor again. If the high current  
still exists, the device will shut down the MOSFETs and again wait for 2 ms. This process of checking  
overcurrent will continue until the OC event goes away. The device is capable of handling an OC event  
continuously for its lifetime. The OC protection feature cannot be disabled.  
14  
版权 © 2016, Texas Instruments Incorporated  
 
DRV10970  
www.ti.com.cn  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
Feature Description (接下页)  
8.3.2 Thermal Shutdown  
If the junction temperature exceeds safe limits, the DRV10970 device places its outputs (U, V, W) in high-  
impedance mode. After the junction temperature has fallen to a safe level, operation automatically resumes.  
8.3.3 Rotor Lock Detection and Retry  
A locked rotor condition is detected if the Hall signal stops toggling for tLOCK_EN. The device enters a motor  
parking state: coasting (if BRKMOD = 0) or braking state (if BRKMOD = 1). In the coasting state, the device  
places its outputs (U, V, W) in a high-impedance state. In the braking state, it keeps the low-side MOSFETs ON  
and high-side MOSFETs OFF. The RD pin is asserted to indicate the rotor lock condition. Operation resumes  
after tLOCK_EX time at the same time RD is deasserted. This process repeats until the locked rotor condition is  
cleared. RD will be deasserted in sleep mode.  
The tLOCK_EX time is determined by the capacitor value connected to the RETRY pin. The accuracy of the  
capacitor and ground potential difference between the device ground and CRETRY capacitor ground affects the  
accuracy of the time setting. After the DRV10970 device enters rotor locked state, IRETRY, sourcing current starts  
to charge the capacitor, CRETRY, until the voltage of the capacitor reaches VRETRY_H, then IRETRY sinking current  
starts to discharge the capacitor, CRETRY, until the voltage of the capacitor falls below VRETRY_L. This process  
repeats 128 times which determines the tLOCK_EX, then DRV10970 retry starting the motor.  
tLOCK_EX = 15.36 × 106 × CRETRY (in seconds)  
(2)  
DRV10970  
VINT  
To digital  
Counter  
&
IRETRY  
RETRY  
Motor  
Lock  
IRETRY  
GND  
12. Lock Release Timing Circuit  
VRETRY_H  
VRETRY_L  
GND  
128 times  
RD  
Motor Spinning  
Motor Locked  
Motor Spinning  
13. Lock Release Timing Waveform  
8.3.4 Supply Undervoltage Condition (UVLO)  
When the supply voltage (VM) level falls below the undervoltage lockout threshold voltage (VUVLO-Th-f), the  
DRV10970 will keep phases (U, V, W) in high-impedance mode. Operation resumes when VM rises above the  
VUVLO-Th-r threshold.  
版权 © 2016, Texas Instruments Incorporated  
15  
DRV10970  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Feature Description (接下页)  
8.3.5 Sleep Mode  
The DRV10970 provides a sleep mode function to save power when the motor is not spinning. The device can  
be commanded to enter sleep mode by driving logic low on PWM pin for at least tSLEEP_EN seconds. Before  
entering low-power state, the speed will be ramped down (by brake condition or by coasting) where rotor lock  
condition is detected. This sequence to bring the motor to a halt condition may take several seconds based on  
the motor. The device then enters sleep state where reset is asserted and supply is driven to low. Only a small  
portion of the logic is kept alive to detect the PWM pin high. The device will wake up after PWM goes high (PWM  
high signal needs to be longer than tSLEEP_EX) and starts to drive the motor again.  
PWM  
SS  
tSLEEP_EN  
tSLEEP_EX >2 µs wide  
>1.2 ms low  
SLEEP_FLAG  
SS  
WAKE_UP  
SS  
MOTOR_STATE  
SS  
BRAKE/COAST  
WAIT FOR MOTOR TO STOP  
SPINNING  
SLEEP  
INITIAL  
SS  
Rotor Lock detected  
MOTOR SPEED  
SS  
5 V  
VINT  
OFF, Low Power State  
ON State  
ON State  
SS  
14. Sleep Mode Sequence and Timing  
The current consumption during sleep mode is less than IVM_SLEEP  
.
In sleep mode, internal regulator VINT is shut down; if the Hall sensors are powered by VINT, the Hall sensors  
are also put into power off condition to further save power. The U, V, and W phase outputs are tri-stated, FG and  
RD pins are de-asserted while in the sleep mode. The device will not be able to perform OCP while in sleep  
mode.  
8.4 Device Functional Modes  
8.4.1 Operation in Trapezoidal Mode and Sinusoidal Mode  
The DRV10970 device can operate in either trapezoidal mode or sinusoidal mode depending on the setting of  
CMTMOD pin. Sinusoidal operation mode provides better acoustic performance, which is more suitable for  
applications like refrigerator fans, HVAC fans, pumps, and other home appliances. Trapezoidal mode provides  
higher driving torque, which is more suitable for systems with heavy and unpredictable load conditions, such as  
power tools and actuators.  
16  
版权 © 2016, Texas Instruments Incorporated  
DRV10970  
www.ti.com.cn  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
Device Functional Modes (接下页)  
8.4.1.1 Trapezoidal Control Mode  
Trapezoidal control is also called 120° control or 6-step control. In the trapezoidal control mode, the DRV10970  
device drives standard six step commutation sequence based on the Hall input states and FR (direction) pin  
value. Trapezoidal (30° Hall placement) commutation is in accordance with 1. The startup scheme of  
sinusoidal control mode is also based on trapezoidal commutation. Trapezoidal mode does not support single  
Hall sensor operation; it may cause unpredictable motor operation.  
1. Trapezoidal Commutation With 30° Hall Placement  
PHASE OUTPUT(2)  
STATE  
HALL SIGNAL(1)  
FR = 1  
V
FR = 0  
V
U
1
1
1
0
0
0
0
1
V
1
0
0
0
1
1
0
1
W
0
0
1
1
1
0
0
1
U
W
U
W
1
2
High  
High  
Hi-Z  
Low  
Low  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Low  
Low  
Hi-Z  
High  
High  
Hi-Z  
Hi-Z  
Low  
Hi-Z  
High  
High  
Hi-Z  
Low  
Hi-Z  
Hi-Z  
Low  
Low  
Hi-Z  
High  
High  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
High  
High  
Hi-Z  
Low  
Low  
Hi-Z  
Hi-Z  
High  
Hi-Z  
Low  
Low  
Hi-Z  
High  
Hi-Z  
Hi-Z  
3
4
5
6
1x(3)  
2x(3)  
(1) Hall signal XHALL = 1 if the positive input terminal voltage (x_HP) is higher than the negative input  
terminal voltage (x_HN)  
(2) Phase output = Hi-Z which means both the high-side and low-side MOSFETs are turned off.  
(3) State 1x and 2x are invalid states, DRV10970 will output high impedance for all three phases in this  
condition. Hall sensor placement or connection needs to be changed.  
2. Trapezoidal Commutation With 0° Hall Placement  
8.4.1.2 Sinusoidal Pulse Wide Modulation (SPWM) Control Mode  
If the sinusoidal operation mode is selected, the device will start the motor with trapezoidal operation (based on  
the commutation table shown in 1) and switch to sinusoidal after 6 electrical cycles. If current limit is triggered  
during trapezoidal startup, the transition will be delayed until current limit is cleared. If current limit is triggered in  
sinusoidal operation, the device will switch back to trapezoidal mode and will remain until the current limit event  
goes away (refer to Current Limit and OCP).  
In sinusoidal control mode, the commutation will only rely on phase U Hall sensor input and ignore the phase V  
and W Hall sensor input.  
The DRV10970 provides sinusoidal voltage shaping in the SPWM mode. The device generates 25-kHz PWM  
outputs on each phase, which have an average value of sinusoidal waveform on phase to phase. If the phase  
voltage is measured with respect to ground, the waveform is sinusoidal coupled with third-order harmonics. At  
any time among the three phases, one phase output equals to zero, as shown in 16.  
PWM output  
Average value  
15. PWM Output and the Average Value  
版权 © 2016, Texas Instruments Incorporated  
17  
 
 
DRV10970  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
U - V  
V - W  
U
V
W - U  
W
LEFT: Sinusoidal voltage from phase to phase.  
RIGHT: Sinusoidal voltage with third-order harmonics from phase to GND  
16. Sinusoidal Voltage With Third-Order Harmonics Output  
The output amplitude is determined by the VM and the maximum PWM duty cycle among one electrical cycle. If  
VM is used to control the motor speed, the output maximum PWM duty cycle is 100%. The output amplitude is  
proportional to the VM amplitude.  
VM = 12 V  
VM = 6 V  
17. Adjust VM to Control the Motor Speed  
The PWM is used for controlling the motor speed. System calculates the duty cycle of the PWM input as DutyIN,  
which is converted into sinusoidal PWM output.  
The maximum amplitude is when PWM input is 100% and maximum PWM output duty cycle is 100%, the output  
amplitude will be VM. A lower value such as VM / 2 could be achieved by driving the PWM duty to 50%. When  
the input duty cycle is less than 10% and greater than 0% DRV10970 keeps the input command at a 10% duty  
cycle (see 18).  
Output Duty  
10%  
0
10%  
Input Duty  
Minimum Duty Cycle = 10%  
18. Duty Cycle Profile  
18  
版权 © 2016, Texas Instruments Incorporated  
 
DRV10970  
www.ti.com.cn  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
100% PWM input  
100% peak output  
VM  
50% PWM input  
50% peak output  
VM / 2  
19. Adjust PWM Input Duty Cycle to Control the Motor Speed  
Note that the speed control PWM input frequency does not reflect to PWM output frequency on the phase  
outputs. The device supports input PWM frequency in the range of 15 to 100 kHz, the PWM output frequency on  
the phase is always 25 kHz.  
8.4.2 Single Hall Sensor Operation  
The DRV10970 device supports single Hall sensor operation to reduce system cost.  
If only U phase Hall sensor is connected to the device and V and W phase Hall sensors are not installed in the  
system, the device automatically drives the motor in single Hall sensor mode. Single Hall sensor operation does  
not support trapezoidal operation, which may cause unpredictable motor behavior.  
In single hall sensor mode, rotor is aligned to a known position for about 700 ms first and then motor is driven  
with 2-step DC current into the coil, which means instead of 6-step control, the device only outputs 2 steps based  
on the U phase Hall sensor signal. The direction of driving current is based on the FR input and the commutation  
mode setting. 3 shows the startup logic. For example, if 0° Hall placement is selected (CMTMOD pin equals to  
High), FR equals to high, and U phase Hall sensor signal is high, DRV10970 will drive U phase PWM and both V  
and W phase low.  
3. Single Hall Startup Commutation Table  
PHASE OUTPUT  
HALL  
PLACEMENT  
HALL SIGNAL  
FR = 1  
V
FR = 0  
V
U
W
U
W
0°  
0°  
1
0
1
0
PWM  
LOW  
PWM  
LOW  
Hi-Z  
LOW  
PWM  
LOW  
PWM  
LOW  
LOW  
PWM  
Hi-Z  
LOW  
PWM  
LOW  
PWM  
Hi-Z  
PWM  
LOW  
PWM  
LOW  
LOW  
PWM  
LOW  
Hi-Z  
30°  
30°  
Hi-Z  
Hi-Z  
Single Hall Align  
PWM  
PWM  
Cycle-by-cycle current limit is effective during single Hall sensor startup. After 6 electrical cycles of startup, the  
device will switch to sinusoidal mode of operation. If current limit is triggered, sinusoidal control will transit back  
to 2-step drive mode, same as startup sequence. Refer to Current Limit and OCP.  
Note that single Hall sensor operation mode may exhibit slight reverse spin of the rotor during startup. The  
reverse movement will be less than 180 electrical degrees.  
The rotor locked condition is detected when no U-phase hall switching for about 700ms. For certain low inertia  
motors or no load condition, the rotor may continue to vibrate when the rotor is locked which may result in a hall  
signal switching. This condition is not detected by the device as the hall period may look like a normal motor  
spinning condition. In this scenario, the device may continue to drive the motor. Lowering the OC limit may help  
resolve this condition.  
版权 © 2016, Texas Instruments Incorporated  
19  
 
DRV10970  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
8.4.3 Adaptive Drive Angle Adjustment (ADAA) Mode  
In sinusoidal mode, the phase voltage vector is driven such that phase current and BEMF voltages are aligned  
(in-phase) in order to achieve the maximum motor efficiency possible. When Hall sensor is placed at 0°, the  
BEMF voltage will be in-phase with respective Hall signals. The ADAA logic takes advantage of this fact and  
aligns the U-phase current to the U-Hall sensor input.  
If DAA pin is floating, the DRV10970 device will operate in the ADAA mode, in which case, the device  
continuously monitors the phase difference between the U-phase current and U-phase Hall signal while adjusting  
the phase voltage driving angle Δθ (with respect to the U-Hall sensor signal, same as U-BEMF zero crossing) to  
align the current and Hall signal (shown in 20). ADAA mode is the recommended mode of operation where the  
motor efficiency is maximized irrespective of motor parameters, load conditions, and motor speeds. ADAA mode  
is only available in sinusoidal mode and 0° Hall sensor placement. The motors with 30° Hall placement may use  
the fixed drive angle feature to achieve maximum system efficiency for a given application.  
U phase voltage  
U phase current  
U phase Hall signal  
U phase BEMF  
û§  
20. Adaptive Drive Angle Adjustment  
For sinusoidal mode and 0° Hall sensor placement, if DAA pin is connected to GND, voltage driving angle will be  
fixed at 10°. If DAA pin is connected to VINT, voltage driving angle will be fixed at 5°.  
For sinusoidal mode and 30° Hall sensor placement, if DAA is floating, voltage drive angle will be fixed at 0°.  
DAA pin is connected to GND, voltage driving angle will be fixed at 10°. If the DAA pin is connected to VINT,  
voltage driving angle will be fixed at 5°.  
In trapezoidal operation mode, DAA input is ignored and always control the output based on 2.  
4 shows the DRV10970 operation modes with DAA and CMT_MOD configurations.  
4. DAA and CMT_MOD Configurations  
MOTOR  
TYPE  
HALL  
PLACEMENT  
MODE  
DAA = FLOATING  
DAA = GND  
DAA = VINT  
COMMENTS  
The Trapezoidal motor with 0° Hall placement  
may use 30 degree Hall delay (OTP setting) to  
achieve optimum driving.  
CMT_MOD =  
floating  
Trapezoidal  
30°  
0°  
Trapezoidal mode, DAA signal is ignored.  
CMT_MOD =  
GND  
BEMF zero crossing and Hall crossing will be  
in-sync.  
ADAA  
10° drive angle  
10° drive angle  
5° drive angle  
5° drive angle  
Sinusoidal  
The drive angle is specified with respect to  
BEMF zero crossing. When measured with  
respect to Hall-U signal, add 30°.  
CMT_MOD =  
VINT  
30°  
0° drive angle  
20  
版权 © 2016, Texas Instruments Incorporated  
 
 
DRV10970  
www.ti.com.cn  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Hall Sensor Configuration and Connections  
Hall sensors must be connected to the DRV10970 to provide the feedback of the motor position. The DRV10970  
Hall sensor input circuit is capable of interfacing with a variety of Hall sensors, and with two different ways of Hall  
sensor placement, which are 0° placement and 30° placement.  
Typically, a Hall element is used, which outputs a differential signal on the order of 100 mV or higher. The VINT  
regulator can be used for powering the Hall sensors, which eliminates the need for an external regulator. The  
Hall elements can be connected in serial or parallel as shown in 21 and 22.  
VINT  
VINT  
U
Hall  
U_HP  
CH  
U_HN  
V
Hall  
DRV10970  
V_HP  
CH  
V_HN  
W
Hall  
W_HP  
CH  
W_HN  
21. Serial Hall Element Connection  
版权 © 2016, Texas Instruments Incorporated  
21  
 
 
DRV10970  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Application Information (接下页)  
VINT  
VINT  
U
Hall  
U_HP  
U_HN  
VINT  
CH  
VINT  
V
Hall  
DRV10970  
V_HP  
V_HN  
CH  
W
Hall  
W_HP  
W_HN  
CH  
22. Parallel Hall Element Connection  
Noise on the Hall signal degrades the commutation performance of the device. Therefore, take utmost care to  
minimize the noise while routing the Hall signals to the device inputs. The device internally has fixed time hall  
filtering of about 320 µs. To further minimize the high-frequency noise, a noise filtering capacitor may be  
connected across x_HP and x_HN pins as shown in 21 and22. The value of the capacitor can be selected  
such that the RC time constant is in the range of 0.1 to 2 µs. For example, Hall sensor with internal impedance  
(between Hall output to ground) of 1 kΩ, CH value is 1 µF for 1-µs time constant.  
Some motors integrate Hall sensors that provide logic outputs with open-drain type. These sensors can also be  
used with the DRV10970, with circuits shown in 23. The negative (x_HN) inputs are biased to 2.5 V by a pair  
of resistors between VINT and ground. For open-drain type Hall sensors, an additional pullup resistor to supply is  
needed on the positive (x_HP) input, where VINT is used again. The VINT output may be used to supply power  
to the Hall sensors as well.  
22  
版权 © 2016, Texas Instruments Incorporated  
 
DRV10970  
www.ti.com.cn  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
Application Information (接下页)  
VINT  
VINT  
VINT  
U
VINT / 2  
U_HP  
U_HN  
Hall IC  
VINT  
VINT / 2  
V
DRV10970  
V_HP  
V_HN  
Hall IC  
VINT  
VINT / 2  
W
Hall  
W_HP  
W_HN  
VINT / 2  
23. Hall IC Connection  
The correspondence between the phase U, V, W and the Hall signal U, V, W needs to follow the DRV10970  
definition, which is:  
1. Phase U is leading phase W by 120°, phase W is leading phase V by 120°. The Hall signal positive output is  
aligned with respective phase BEMF. Choose FR = 1 and 0° placement option (see 24).  
2. Phase U is leading phase V by 120°, phase V is leading phase W by 120°. The Hall signal positive output is  
aligned with respective phase BEMF in the opposite direction. Choose FR = 0 and 0° placement option (see  
25).  
3. Phase U is leading phase W by 120°, phase W is leading phase V by 120°. The Hall signal positive output is  
30° lagging of respective phase BEMF. Choose FR = 1 and 30° placement option (see 26).  
4. Phase U is leading phase V by 120°, phase V is leading phase W by 120°. The Hall signal positive output is  
30° leading of respective phase BEMF. Choose FR = 0 and 30° placement option (see 2 and 29).  
The correspondence and sequency is also applied to applications using open-drain output Hall ICs. 28 is an  
example of FR = 0, and 30° placement condition.  
版权 © 2016, Texas Instruments Incorporated  
23  
DRV10970  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Application Information (接下页)  
U
W
V
Phase BEMF  
U_HP  
Hall element output  
(U)  
U_HN  
V_HP  
Hall element output  
(V)  
V_HN  
W_HN  
Hall element output  
(W)  
W_HP  
FR = 1  
Hall placement = 0 degree  
Differential output Hall element  
24. Correspondence Between Motor BEMF and Hall Signal  
(FR = 1, 0° Placement)  
U
V
W
Phase BEMF  
U_HN  
U_HP  
Hall element output  
(U)  
V_HP  
Hall element output  
(V)  
V_HN  
W_HN  
Hall element output  
(W)  
W_HP  
FR = 0  
Hall placement = 0 degree  
Differential output Hall element  
25. Correspondence Between Motor BEMF and Hall Signal  
(FR = 0, 0° Placement)  
24  
版权 © 2016, Texas Instruments Incorporated  
 
 
DRV10970  
www.ti.com.cn  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
Application Information (接下页)  
Ü
í
ë
ꢀhase .9ꢁC  
30ö  
30ö  
Ü_Iꢀ  
Ü_Ib  
30ö  
Iall element output  
(Ü)  
ë_Iꢀ  
Iall element output  
(ë)  
ë_Ib  
í_Ib  
í_Iꢀ  
Iall element output  
(í)  
Cw = 1  
Iall placement = 30 degree  
5ifferential output Iall element  
26. Correspondence Between Motor BEMF and Hall Signal  
(FR = 1, 30° Placement)  
U
V
W
Phase BEMF  
30|  
30|  
30|  
U_HN  
U_HP  
Hall element output  
(U)  
V_HP  
V_HN  
W_HN  
Hall element output  
(V)  
Hall element output  
(W)  
W_HP  
FR = 0  
Hall placement = 30°  
Differential output Hall element  
27. Correspondence Between Motor BEMF and Hall Signal  
(FR = 0, 30° Placement)  
版权 © 2016, Texas Instruments Incorporated  
25  
 
DRV10970  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
Application Information (接下页)  
U
W
V
Phase BEMF  
30|  
30|  
30|  
Hall IC output (U)  
Hall IC output (V)  
Hall IC output (W)  
FR = 1  
Hall placement = 30 degree  
OC output Hall IC  
28. Correspondence Between Motor BEMF and Hall Signal  
(FR = 1, 30° Placement, Hall IC)  
U
V
W
Phase BEMF  
30|  
30|  
30|  
Hall IC output (U)  
Hall IC output (V)  
Hall IC output (W)  
FR = 0  
Hall placement = 30°  
OC output Hall IC  
29. Correspondence Between Motor BEMF and Hall Signal  
(FR = 0, 30° Placement, Hall IC)  
If the motor terminal definition is different from the previous description, rename the motor phase U, V, W, or the  
Hall U, V, W, or swap the positive and negative of the Hall sensor output to make it match.  
Use these tips to find the correct U, V, and W phases and the respective Hall sensors:  
1. Assume motor phases and Hall outputs do not have labels. If named, remove them.  
2. Label A, B, C to the motor terminals (phases). Label Da and Db, Ea and Eb, Fa and Fb to the Hall output  
pairs. If Hall ICs are used, just label the digital outputs as D, E, F.  
3. Use three 10-kΩ resistors, connect them to motor terminals - A, B, C with star connection. The center is  
called COM.  
4. Provide power to the Hall sensors.  
26  
版权 © 2016, Texas Instruments Incorporated  
DRV10970  
www.ti.com.cn  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
Application Information (接下页)  
5. Use 4 channel Scope to observe signals. Connect probe -1, 2, 3 to A, B, C terminals of the motor (phases),  
probe-4 connects to Hall Da (or D). Name the probe 1 (terminal-A) as U-phase. (see 30)  
6. Turn the rotor manually in clock-wise direction. If the waveform on probe-1 (U-phase) is leading probe-2  
(terminal-B) by 120°, name the terminal-B as phase W and terminal-C as phase V. Else if waveform on the  
probe-2 is leading probe 1 (U) by 120°, terminal-B as V, terminal-C as W. At this stage all three phases of  
the motor are identified.  
7. Motor manufacturers have two popular Hall placement options. The first is 0° Hall placement (BEMF and Hall  
signals are in-phase) and the second is 30° Hall placement (BEMF leads Hall signal by 30°). If the probe-4 is  
in-phase (or lagging 30°) with phase-U, name Da as Hall U positive (U_HP), Db as Hall U negative (U_HN).  
If probe-4 is in-phase with phase U (or lagging 30°), but inverted polarity, name Da as U_HN, Db as U_HP. If  
the probe-4 is not in-phase (or lagging 30°) with respect to U but aligns with phase-V or W, name accordingly  
as V_HP/V_HN or W_HP/W_HN. Repeat this step to map Ea/Eb and Fa/Fb in the same way. By end of this  
step, all three sets of Hall signals are mapped to respective phase signals - phase U & Hall U_HP/HN, phase  
V & Hall V_HP/V_HN and phase W and W_HP/W_HN. Care should be taken while judging 30° Hall  
placement, sometimes 30° and 60° look alike. If U phase is leading Hall Da by 60°, there will be another  
phase (V or W) with in-phase or lagging by 30° relationship. Hence it's important to check all three phases  
before concluding.  
8. When Hall ICs are used, if the Hall D is in-phase or lagging 30° with respect to phase U but inverted polarity,  
name the Hall D output as U_HN, and 2.5-V reference voltage to U_HP. If Hall D is leading 30°, then turn the  
rotor in counter clock-wise direction and map remaining E & F Hall outputs.  
9. After phase UVW and Hall UVW positive negative are identified, manually rotate the motor again, check if  
the result matches 24 and 25 (0° placement) or 26 and 25 (30° placement).  
10. Connect U,V,W and Hall U,V,W to the DRV10970, with the FR = 1, it should rotate with direction you  
manually spun it. Connect FR = 0, the motor will spin in the other direction.  
Scope  
Ea  
Hall Eb  
B
A
Da Hall  
Db  
Fa  
Hall Fb  
C
30. Motor Measurement  
版权 © 2016, Texas Instruments Incorporated  
27  
 
DRV10970  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
9.2 Typical Application  
VCC VCC  
RFG  
RRD  
CSW  
FG RD  
CPP CPN  
U
VCP  
CVCP  
VM  
M
V
CVM  
VINT  
GND  
CVINT  
VINT/VCC  
RHALL  
W
GND/VINT  
GND/VINT/FLOATING  
GND/VINT/FLOATING  
GND/VINT  
BRKMOD  
DAA  
U_HP  
U_HN  
V_HP  
V_HN  
W_HN  
W_HP  
CMTMOD  
FR  
U_HALL  
RETRY  
V_HALL  
W_HALL  
CRETRY  
PWM  
CS  
RCS  
31. Typical Application Schematic  
9.2.1 Design Requirements  
5 gives design input parameters for system design.  
5. Design Parameters  
DESIGN PARAMETER  
Supply voltage  
EXAMPLE VALUE  
5 to 18 V  
Continuous operation current  
Peak current  
0 to 1 A  
1.5 A  
Hall sensor differential output peak >40 mV  
PWM input frequency  
PWM duty cycle  
15 to 100 kHz  
0% to 100%  
9.2.2 Detailed Design Procedure  
Refer to Design Requirements and make sure the system meets the recommended application range.  
Refer to Hall Sensor Configuration and Connections and make sure correct phases and corresponding hall  
signals are identified.  
Refer to Hall Sensor Configuration and Connections and make sure hall signals are connected accurately.  
Build your hardware based on Layout Guidelines.  
Connect the device into system and validate your system.  
28  
版权 © 2016, Texas Instruments Incorporated  
 
 
DRV10970  
www.ti.com.cn  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
9.2.3 Application Curves  
U-Phase  
U-Phase  
FG  
FG  
V-Phase Current  
6 cycles Trapezoidal Commutation  
2-steps  
Commutation  
Align State  
Sinusoidal Commutation  
U-Phase  
Current  
U-Phase Current  
32. Three Hall Start-up Sequence  
33. Single Hall Start-up Sequence  
版权 © 2016, Texas Instruments Incorporated  
29  
DRV10970  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
10 Power Supply Recommendations  
The DRV10970 is designed to operate from an input voltage supply (VM) range between 5 and 18 V. Place a 10-  
µF ceramic capacitor rated for VM as close as possible to the DRV10970.  
11 Layout  
11.1 Layout Guidelines  
The VM terminal should be bypassed to GND using a low-ESR ceramic bypass capacitor with a recommended  
value of 10-µF rated for VM. Place this capacitor as close as possible to the VM pin with a thick trace or ground  
plane connection to the device GND pin.  
The CRETRY capacitor should be placed as close to the RETRY pin as possible with a thick trace or ground plane  
connection to the device GND pin.  
A low-ESR ceramic capacitor must be placed in between the CPN and CPP pins. TI recommends a value of 0.1-  
µF rated for VM. Place this component as close as possible to the pins.  
A low-ESR ceramic capacitor must be placed in between the VM and VCP pins. TI recommends a value of 1-µF  
rated for 16 V. Place this component as close as possible to the pins.  
Bypass VINT to ground with 2.2-µF ceramic capacitors rated for 10 V. Place these bypassing capacitors as close  
to the pins as possible.  
Because the GND pin carries motor current, take utmost care while planning grounding scheme, keep the ground  
potential difference between any two points less than 100 mV.  
11.2 Layout Example  
Logic High  
3.3 k  
DAA  
U_HP  
U_HN  
V_HP  
V_HN  
W_HP  
W_HN  
VCP  
FG  
FR  
1
RETRY  
BRKMOD  
CMTMOD  
PWM  
RD  
GND  
3.3 kΩ  
GND  
CS  
2. 2µF  
1µF  
CPP  
VINT  
VM  
VM  
0. 1µF  
CPN  
HS  
LS  
Motor  
Phase W  
Motor  
Phase U  
W
U
Motor  
Phase V  
GND  
V
34. Layout Schematic  
30  
版权 © 2016, Texas Instruments Incorporated  
DRV10970  
www.ti.com.cn  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
12 器件和文档支持  
12.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.2 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2016, Texas Instruments Incorporated  
31  
DRV10970  
ZHCSES6A FEBRUARY 2016REVISED MARCH 2016  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
32  
版权 © 2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV10970PWP  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
PWP  
PWP  
24  
24  
60  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
DRV10970  
DRV10970  
DRV10970PWPR  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV10970PWPR  
HTSSOP PWP  
24  
2000  
330.0  
16.4  
6.95  
8.3  
1.6  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 24  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
DRV10970PWPR  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
PWP HTSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DRV10970PWP  
24  
60  
530  
10.2  
3600  
3.5  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
PWP 24  
4.4 x 7.6, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224742/B  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY