DRV10975 [TI]

12V 标称电压、2A 峰值无传感器正弦控制三相 BLDC 电机驱动器;
DRV10975
型号: DRV10975
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12V 标称电压、2A 峰值无传感器正弦控制三相 BLDC 电机驱动器

电机 驱动 传感器 驱动器
文件: 总66页 (文件大小:2500K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
DRV1097512V 三相无传感器 BLDC 电机驱动器  
1 特性  
3 说明  
1
输入电压范围:6.5 18 V  
DRV10975 器件是一款具有集成功率 MOSFET 的三相  
无传感器电机驱动器,可提供高达 1.5A 的持续驱动电  
流。该器件专为成本敏感型、低噪声、低外部组件数量  
应用而设计。  
总驱动器 H + L rDS(on)250mΩ  
驱动电流:1.5A 持续绕组电流(峰值 2A)  
无传感器专有反电动势 (BEMF) 控制方案  
连续正弦 180° 换向  
DRV10975 器件采用专有无传感器控制方案来提供持  
续正弦驱动,可大幅降低换向过程中通常会产生的纯  
音。该器件的接口设计简单而灵活。可直接通过  
PWM、模拟、或 I2C 输入控制电机。可通过 FG 引脚  
I2C 提供电机速度反馈。  
无需外部感应电阻  
用户可通过添加外部感应电阻以灵活监视为电机提  
供的功率  
灵活的用户接口选项:  
I2C 接口:访问命令和反馈寄存器  
专用的 SPEED 引脚:接受模拟或 PWM 输入  
专用的 FG 引脚:提供 TACH 反馈  
可通过 EEPROM 定制旋转曲线  
DRV10975 器件 采用了 一个集成降压稳压器,可高效  
地将电源电压降至 5V 3.3V,从而为内外部电路供  
电。该器件提供睡眠模式和待机模式两种型号,可在电  
机停止运转时实现节能。待机模式 (4.5mA) 型号会使  
稳压器保持运行,而休眠模式 (80μA) 型号会使稳压器  
停止工作。在使用稳压器为外部微控制器供电的 应用  
中使用待机模式型号。  
使用 DIR 引脚进行正向/反向控制  
集成了降压稳压器,可高效地为内部和外部电路提  
供电压 (5V 3.3V)  
待机版本 (DRV10975) 电源电流为 4.5mA  
睡眠版本 (DRV10975Z) 电源电流为 80μA  
过流保护  
器件信息(1)  
器件型号  
DRV10975  
封装  
HTSSOP (24)  
VQFN (24)  
封装尺寸(标称值)  
7.80mm × 6.40mm  
5.00mm × 4.00mm  
锁定检测  
电压浪涌保护  
欠压闭锁 (UVLO) 保护  
热关断保护  
散热薄型小外形尺寸封  
(HTSSOP) (24)  
7.80mm × 6.40mm  
5.00mm × 4.00mm  
DRV10975Z  
VQFN (24)  
耐热增强型 24 引脚散热薄型小外形尺寸  
(1) 要了解所有可用封装,请参阅产品说明书末尾的可订购产品附  
录。  
(HTSSOP)  
2 应用  
应用原理图  
设备风扇  
制热、通风与空调控制 (HVAC)  
VCC  
10 µF  
0.1 µF  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VCP  
CPP  
CPN  
SW  
VCC  
VCC  
W
0.1 µF  
3
10 µF  
3.3 V or 5 V  
4
W
39 W  
5
SWGND  
VREG  
V1P8  
GND  
V3P3  
SCL  
V
M
6
V
1 µF  
7
U
8
U
1 µF  
9
PGND  
PGND  
DIR  
SPEED  
10  
11  
12  
SDA  
FG  
Interface to  
Microcontroller  
Copyright © 2016, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。 TI 不保证翻译的准确性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSCP2  
 
 
 
 
 
 
 
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
目录  
8.5 Register Maps......................................................... 42  
Application and Implementation ........................ 48  
9.1 Application Information............................................ 48  
9.2 Typical Application .................................................. 48  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics........................................... 8  
7.6 Typical Characteristics............................................ 11  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 13  
8.3 Feature Description................................................. 14  
8.4 Device Functional Modes........................................ 17  
9
10 Power Supply Recommendations ..................... 50  
11 Layout................................................................... 50  
11.1 Layout Guidelines ................................................. 50  
11.2 Layout Example .................................................... 51  
12 器件和文档支持 ..................................................... 53  
12.1 器件支持 ............................................................... 53  
12.2 文档支持................................................................ 53  
12.3 ....................................................................... 53  
12.4 静电放电警告......................................................... 53  
12.5 接收文档更新通知 ................................................. 53  
12.6 社区资源................................................................ 53  
12.7 术语表 ................................................................... 53  
13 机械、封装和可订购信息....................................... 53  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (March 2018) to Revision E  
Page  
删除了器件信息 表中两个器件的 VFQN 封装的预告信息”..................................................................................................... 1  
Deleted the ADVANCE INFORMATION notation from the pinout drawing of the RHF package........................................... 5  
Deleted the ADVANCE INFORMATION table note from the Pin Functions table ................................................................. 5  
Changed ESD rating for RHF (VQFN) to match PWP (HTSSOP) package .......................................................................... 6  
Deleted "Advance Info." from the RHF (VQFN) column of the Thermal Information table .................................................... 7  
Changed time taken to drive motor after exiting from sleep mode from microseconds to milliseconds ................................ 9  
Changed text from BRKDontThr[2:0] to BRKDoneThr[2:0] to match actual register name ................................................. 23  
Changed the caption for 42 ............................................................................................................................................. 51  
Added a layout diagram for the VQFN package .................................................................................................................. 52  
Changes from Revision C (February 2018) to Revision D  
Page  
器件信息 表中添加了新的封装 ............................................................................................................................................ 1  
Added pin configuration diagram for RHF package ............................................................................................................... 5  
Added pin number information for RHF package to the Pin Functions table ........................................................................ 5  
Added ESD ratings for the RHF (VQFN) package ................................................................................................................ 6  
Added a column to the Thermal Information table for the RHF package............................................................................... 7  
Added timing information for entering and exiting sleep mode and standby mode ............................................................... 9  
Changes from Revision B (December 2017) to Revision C  
Page  
Added BEMF COMPARATOR hysteresis specification ....................................................................................................... 10  
Updated Start the Motor Under Different Initial Conditions figure........................................................................................ 21  
Changed the default value for register address 0x27 from 0xFC to 0xF4 in the Default EEPROM Value table ................. 43  
Deleted the "TI recommends..." sentence from the description for address 0x27, bit 3 ...................................................... 46  
2
版权 © 2015–2018, Texas Instruments Incorporated  
 
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
已添加 constraints to recommended external inductor......................................................................................................... 49  
Changes from Revision A (March 2017) to Revision B  
Page  
特性中指定驱动电流为持续绕组电流................................................................................................................................... 1  
Changed the rDS(on) maximum value from 1 Ω to 0.4 Ω and added typical value in the Electrical Characteristics table ....... 8  
Added the internal SPEED pin pulldown resistance to ground parameter to the Electrical Characteristics table ................. 9  
Changed the Step-Down Regulator section ......................................................................................................................... 14  
Updated the Motor Phase Resistance section ..................................................................................................................... 17  
已删除 the Inductive AVS Function section.......................................................................................................................... 37  
Changed the default value for register address 0x29 from 0xB7 to 0xB8 in the Default EEPROM Value table ................. 43  
已添加 application information for the sleep mode device .................................................................................................. 48  
Changes from Original (January 2015) to Revision A  
Page  
已添加 在产品说明书标题和器件信息 表中添加了 DRV10975Z 部件号 ................................................................................. 1  
Corrected the link to the DRV10983 and DRV10975 Tuning Guide .................................................................................... 17  
Added text to the PWM Output section ................................................................................................................................ 37  
Changed 36 ..................................................................................................................................................................... 38  
Changed "FGOLSet[1:0]" to "FGOLsel[1:0]" in Register Map address 0x2B....................................................................... 42  
Changed Supply Voltage regiser description ....................................................................................................................... 44  
Added recommended minimum dead time to SysOpt7 register........................................................................................... 47  
Added External Components table ...................................................................................................................................... 49  
Changed the link to the DRV10983 and DRV10975 Tuning Guide ..................................................................................... 49  
Changed the layout example................................................................................................................................................ 51  
版权 © 2015–2018, Texas Instruments Incorporated  
3
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
5 说明 (续)  
用户可通过 I2C 接口对寄存器中的特定电机参数进行重新编程并可对 EEPROM 进行编程,以帮助优化既定应用的  
性能。DRV10975 器件采用带有外露散热焊盘的高效散热型 HTSSOP 24 引脚封装。额定工作温度为 –40°C 至  
125°C。  
6 Pin Configuration and Functions  
PWP PowerPAD™ Package  
24-Pin HTSSOP With Exposed Thermal Pad  
Top View  
VCP  
CPP  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VCC  
VCC  
W
2
CPN  
3
SW  
4
W
SWGND  
VREG  
V1P8  
GND  
V3P3  
SCL  
5
V
6
V
Thermal pad (GND)  
7
U
8
U
9
PGND  
PGND  
DIR  
SPEED  
10  
11  
12  
SDA  
FG  
Not to scale  
4
Copyright © 2015–2018, Texas Instruments Incorporated  
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
RHF Package  
24-Pin VQFN With Exposed Thermal Pad  
Top View  
SW  
SWGND  
VREG  
V1P8  
1
2
3
4
5
6
7
19  
18  
17  
16  
15  
14  
13  
W
W
V
Thermal  
Pad  
V
GND  
U
V3P3  
U
SCL  
PGND  
Not to scale  
Pin Functions  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
HTSSOP  
VQFN  
CPN  
CPP  
DIR  
3
2
24  
P
P
I
Charge pump pin 1, use a ceramic capacitor between CPN and CPP.  
23  
Charge pump pin 2, use a ceramic capacitor between CPN and CPP.  
14  
11  
Direction  
FG  
12  
9
O
P
I
FG signal output  
GND  
PGND  
SCL  
SDA  
SPEED  
SW  
8
5
Digital and analog ground  
Power ground  
I2C clock signal  
15, 16  
10  
12, 13  
7
11  
8
10  
I/O  
I
I2C data signal  
13  
Speed control signal for PWM or analog input speed command  
Step-down regulator switching node output  
Step-down regulator ground  
Motor U phase  
4
1
O
P
O
O
SWGND  
U
5
2
17, 18  
19, 20  
14, 15  
16, 17  
V
Motor V phase  
Internal 1.8-V digital core voltage. V1P8 capacitor must connect to GND. This is an output,  
but not specified to drive external loads.  
V1P8  
V3P3  
7
9
4
6
P
P
Internal 3.3-V supply voltage. V3P3 capacitor must connect to GND. This is an output and  
may drive external loads not to exceed IV3P3_MAX  
.
VCC  
VCP  
VREG  
W
23, 24  
20, 21  
22  
P
P
P
O
Device power supply  
1
6
Charge pump output  
3
Step-down regulator output and feedback point  
Motor W phase  
21, 22  
18, 19  
(1) I = Input, O = Output, I/O = Input/output, P = Power  
Copyright © 2015–2018, Texas Instruments Incorporated  
5
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
NO.  
HTSSOP  
TYPE(1)  
DESCRIPTION  
NAME  
VQFN  
The exposed thermal pad must be electrically connected to ground plane through soldering  
to PCB for proper operation and connected to bottom side of PCB through vias for better  
thermal spreading.  
Thermal  
pad (GND)  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating ambient temperature (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–1  
MAX  
UNIT  
VCC  
23  
SPEED  
4
Input voltage(2)  
GND  
SCL, SDA  
DIR  
0.3  
V
4
4
U, V, W  
SW  
23  
–1  
23  
VREG  
FG  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
–55  
7
4
V(VCC) + 6  
23  
Output voltage(2)  
VCP  
V
CPN  
CPP  
V(VCC) + 6  
4
V3P3  
V1P8  
2.5  
Maximum junction temperature, TJ_MAX  
Storage temperature, Tstg  
150  
°C  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal unless otherwise noted.  
7.2 ESD Ratings  
VALUE  
±2500  
±1500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6
Copyright © 2015–2018, Texas Instruments Incorporated  
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
6.5  
NOM  
MAX  
18  
UNIT  
Supply voltage  
Voltage  
VCC  
12  
V
U, V, W  
–0.7  
–0.1  
–0.1  
19  
SCL, SDA, FG, SPEED, DIR  
PGND, GND  
3.3  
3.6  
0.1  
100  
0
V
Step-down regulator output current (buck mode)  
Step-down regulator output current (linear mode)  
V3P3 LDO output current  
Current  
mA  
°C  
5
Operating junction temperature, TJ  
–40  
125  
7.4 Thermal Information  
DRV10975, DRV10975Z  
THERMAL METRIC  
RHF (VQFN)  
24 PINS  
30.9  
PWP (HTSSOP)  
UNIT  
24 PINS  
36.1  
17.4  
14.8  
0.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
22.6  
10.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
10.4  
14.5  
1.1  
RθJC(bot)  
1.8  
Copyright © 2015–2018, Texas Instruments Incorporated  
7
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
MAX UNIT  
7.5 Electrical Characteristics  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
SUPPLY CURRENT (DRV10975)  
TA = 25°C; sleepDis = 1; SPEED = 0 V;  
V(VCC) = 12 V; buck regulator  
5
11  
4.5  
9
7
IVcc  
Supply current  
Standby current  
mA  
TA = 25°C; sleepDis = 1; SPEED = 0 V;  
V(VCC) = 12 V; linear regulator  
TA = 25°C; SPEED = 0 V; V(VCC) = 12 V;  
standby mode device; buck regulator  
6
IVccSTBY  
mA  
TA = 25°C; SPEED = 0 V; V(VCC) = 12 V;  
standby mode device; linear regulator  
SUPPLY CURRENT (DRV10975Z)  
TA = 25°C; sleepDis = 1; SPEED = 0 V;  
Vcc = 12 V; buck regulator  
5
11  
80  
7
IVcc  
Supply current  
Sleep current  
mA  
TA = 25°C; sleepDis = 1; SPEED = 0 V;  
Vcc = 12 V; linear regulator  
TA = 25°C; SPEED = 0 V; V(VCC) = 12 V;  
sleep mode device  
IVccSLEEP  
150  
µA  
UVLO  
VUVLO_R  
VUVLO_F  
UVLO threshold voltage  
UVLO threshold voltage  
Rise threshold, TA = 25°C  
Fall threshold, TA = 25°C  
5.2  
5
5.6  
5.5  
6.5  
5.8  
V
V
UVLO threshold voltage  
hysteresis  
VUVLO_HYS  
TA = 25°C  
100  
200  
400 mV  
LDO OUTPUT  
V(VCC) = 12 V, TA = 25°C, VregSel = 0,  
5-mA load  
3
3.3  
3.6  
V(VCC) = 12 V, TA = 25°C, VregSel = 1,  
V(VREG) < 3.3 V, 5-mA load  
V3P3  
V(VREG) – 0.3 V(VREG) – 0.1 V(VREG)  
V
V(VCC) = 12 V, TA = 25°C, VregSel = 1,  
V(VREG) 3.3 V, 5-mA load  
3
3.3  
3.6  
IV3P3_MAX  
V1P8  
Maximum load from V3P3  
V(VCC) = 12 V, TA = 25°C  
5
1.78  
1.78  
mA  
V
V(VCC) = 12 V, TA = 25°C, VregSel = 0  
V(VCC) = 12 V, TA = 25°C, VregSel = 1  
1.6  
1.6  
2
2
STEP-DOWN REGULATOR  
TA = 25˚C; VregSel = 0, LSW = 47 µH,  
CSW = 10 µF, Iload = 50 mA  
4.5  
5
3.4  
5
5.5  
3.6  
VREG  
Regulator output voltage  
V
TA = 25˚C; VregSel = 1, LSW = 47 µH,  
CSW = 10 µF, Iload = 50 mA  
3.06  
TA = 25°C, VregSel = 0, RSW = 39 ,  
CSW = 10 µF  
Regulator output voltage  
(linear mode)  
VREG_L  
V
TA = 25°C, VregSel = 1, RSW = 39 ,  
CSW = 10 µF  
3.4  
IREG_MAX  
Maximum load from VREG  
TA = 25°C, LSW = 47 µH, CSW = 10 µF  
100  
mA  
INTEGRATED MOSFET  
TA = 25˚C; V(VCC) = 12 V; V(VCP) = 17 V;  
Iout = 1 A  
rDS(on)  
Series resistance (H + L)  
0.25  
0.4  
Ω
SPEED – ANALOG MODE  
VAN/A_FS  
VAN/A_ZS  
tSAM  
Analog full-speed voltage  
V(V3P3) × 0.9  
V
Analog zero-speed voltage  
Analog speed sample period  
Analog voltage resolution  
100  
320  
5.8  
mV  
µs  
VAN/A_RES  
mV  
SPEED – PWM DIGITAL MODE  
VDIG_IH PWM input high voltage  
2.2  
V
8
Copyright © 2015–2018, Texas Instruments Incorporated  
 
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
Electrical Characteristics (continued)  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
0.6  
VDIG_IL  
ƒPWM  
PWM input low voltage  
PWM input frequency  
V
1
100 kHz  
STANDBY MODE (DRV10975)  
Analog voltage-to-enter  
standby mode  
VEN_SB  
SpdCtrlMd = 0 (analog mode)  
SpdCtrlMd = 0 (analog mode)  
30  
mV  
mV  
Analog voltage-to-exit  
standby  
VEX_SB  
120  
Time-to-exit from standby  
mode  
SpdCtrlMd = 0 (analog mode)  
SPEED > VEX_SB  
tEX_SB_ANA  
700  
1
ms  
µs  
Time taken to drive motor  
tEX_SB_DR_ANA after exiting from standby  
mode  
SpdCtrlMd = 0 (analog mode)  
SPEED > VEX_SB; ISDen = 0;  
BrkDoneThr[2:0] = 0  
Time-to-exit from standby  
mode  
SpdCtrlMd = 1 (PWM mode)  
SPEED > VDIG_IH  
tEX_SB_PWM  
1
µs  
Time taken to drive motor  
tEX_SB_DR_PWM after exiting from standby  
mode  
SpdCtrlMd = 1 (PWM mode)  
SPEED > VDIG_IH; ISDen = 0; BrkDoneThr[2:0] = 0  
55  
ms  
SpdCtrlMd = 0 (analog mode)  
SPEED < VEN_SB; AvSIndEn = 0  
tEN_SB_ANA  
tEN_SB_PWM  
Time-to-enter standby mode  
Time-to-enter standby mode  
5
ms  
ms  
SpdCtrlMd = 1 (PMW mode)  
SPEED < VDIG_IL; AvSIndEn = 0  
60  
SLEEP MODE (DRV10975Z)  
Analog voltage-to-enter  
sleep  
VEN_SL  
SpdCtrlMd = 0 (analog mode)  
30  
mV  
V
VEX_SL  
Analog voltage-to-exit sleep SpdCtrlMd = 0 (analog mode)  
2.2  
3.3  
1
Time-to-exit from sleep  
mode  
SpdCtrlMd = 0 (analog mode)  
SPEED > VEX_SL  
tEX_SL_ANA  
µs  
Time taken to drive motor  
tEX_SL_DR_ANA after exiting from sleep  
mode  
SpdCtrlMd = 0 (analog mode)  
SPEED > VEX_SL; ISDen = 0;  
BrkDoneThr[2:0] = 0  
350  
1
ms  
µs  
Time-to-exit from sleep  
mode  
SpdCtrlMd = 1 (PWM mode)  
SPEED > VDIG_IH  
tEX_SL_PWM  
Time taken to drive motor  
tEX_SL_DR_PWM after exiting from sleep  
mode  
SpdCtrlMd = 1 (PWM mode)  
SPEED > VDIG_IH; ISDen = 0; BrkDoneThr[2:0] = 0  
350  
ms  
SpdCtrlMd = 0 (analog mode)  
SPEED < VEN_SL; AvSIndEn = 0  
tEN_SL_ANA  
Time-to-enter sleep mode  
Time-to-enter sleep mode  
5.2  
58  
ms  
ms  
kΩ  
SpdCtrlMd = 1 (PMW mode)  
SPEED < VDIG_IL; AvSIndEn = 0  
tEN_SL_PWM  
RPD_SPEED_SL  
Internal SPEED pin pulldown  
resistance to ground  
VSPEED = 0 (sleep mode)  
55  
DIGITAL I/O (DIR INPUT AND FG OUTPUT)  
VDIR_H  
VDIR_L  
IFG_SINK  
Input high  
2.2  
5
V
Input low  
0.6  
0.6  
V
Output sink current  
Vout = 0.3 V  
mA  
I2C SERIAL INTERFACE  
VI2C_H  
VI2C_L  
Input high  
Input low  
2.2  
V
V
LOCK DETECTION RELEASE TIME  
tLOCK_OFF  
tLCK_ETR  
Lock release time  
Lock enter time  
5
s
s
0.3  
OVERCURRENT PROTECTION  
Copyright © 2015–2018, Texas Instruments Incorporated  
9
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IOC_limit  
Overcurrent protection  
TA = 25˚C; phase to phase  
2
4
A
THERMAL SHUTDOWN  
Shutdown temperature  
threshold  
TSDN  
Shutdown temperature  
Hysteresis  
150  
10  
°C  
°C  
Shutdown temperature  
threshold  
TSDN_HYS  
BEMF COMPARATOR  
BEMFHYS BEMF comparator hysteresis bemfHsyEn = 1  
50  
mV  
10  
版权 © 2015–2018, Texas Instruments Incorporated  
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
7.6 Typical Characteristics  
12  
10  
8
6
5
4
3
2
1
0
6
4
2
IVCC (linear regulator)  
IVCC (buck regulator)  
Vreg (VregSel = 0)  
Vreg (VregSel = 1)  
0
0
5
10  
15  
20  
0
5
10  
15  
20  
Power Supply (V)  
Power Supply (V)  
D001  
D002  
1. Supply Current vs Power Supply  
2. Step-down Regulator Output vs Power Supply  
版权 © 2015–2018, Texas Instruments Incorporated  
11  
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The DRV10975 is a three-phase sensorless motor driver with integrated power MOSFETs, which provide drive  
current capability up to 1.5 A continuous. The device is specifically designed for low-noise, low external  
component count, 12-V motor drive applications. The device is configurable through a simple I2C interface to  
accommodate different motor parameters and spin-up profiles for different customer applications.  
A 180° sensorless control scheme provides continuous sinusoidal output voltages to the motor phases to enable  
ultra-quiet motor operation by keeping the electrically induced torque ripple small.  
The DRV10975 features extensive protection and fault detect mechanisms to ensure reliable operation. Voltage  
surge protection prevents the input Vcc capacitor from overcharging, which is typical during motor deceleration.  
The devices provides overcurrent protection without the need for an external current sense resistor. Rotor lock  
detect is available through several methods. These methods can be configured with register settings to ensure  
reliable operation. The device provides additional protection for undervoltage lockout (UVLO) and for thermal  
shutdown.  
The commutation control algorithm continuously measures the motor phase current and periodically measures  
the VCC supply voltage. The device uses this information for BEMF estimation, and the information is also  
provided through the I2C register interface for debug and diagnostic use in the system, if desired.  
A buck step-down regulator efficiently steps down the supply voltage. The output of this regulator provides power  
for the internal circuits and can also be used to provide power for an external circuit such as a microcontroller. If  
providing power for an external circuit is not necessary (and to reduce system cost), configure the buck step-  
down regulator as a linear regulator by replacing the inductor with resistor.  
TI designed the interfacing to the DRV10975 to be flexible. In addition to the I2C interface, the system can use  
the discrete FG pin, DIR pin, and SPEED pin. SPEED is the speed command input pin. It controls the output  
voltage amplitude. DIR is the direction control input pin. FG is the speed indicator output, which shows the  
frequency of the motor commutation.  
EEPROM is integrated in the DRV10975 as memory for the motor parameter and operation settings. EEPROM  
data transfers to the register after power on and exit from sleep mode.  
The DRV10975 device can also operate in register mode. If the system includes a microcontroller communicating  
through the I2C interface, the device can dynamically update the motor parameter and operation settings by  
writing to the registers. In this configuration, the EEPROM data is bypassed by the register settings.  
12  
版权 © 2015–2018, Texas Instruments Incorporated  
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
8.2 Functional Block Diagram  
SDA  
I2C  
Register  
EEPROM  
Communication  
SCL  
SW  
3.3-/5-V Step-  
Down Regulator  
SWGND  
FG  
VREG  
VCC  
VCP  
Charge  
Pump  
3.3-V LDO  
1.8-V LDO  
V3P3  
V1P8  
GND  
CPP  
CPN  
VCC  
VCP  
Oscillator  
U
Pre-  
Driver  
Bandgap  
PGND  
VCC  
U
V
W
V/I  
sensor  
Logic  
Core  
ADC  
VCP  
V
Pre-  
Driver  
PWM and Analog  
Speed Control  
SPEED  
DIR  
PGND  
VCC  
Lock  
VCP  
Over Current  
W
Pre-  
Driver  
Thermal  
UVLO  
GND  
PGND  
版权 © 2015–2018, Texas Instruments Incorporated  
13  
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Regulators  
8.3.1.1 Step-Down Regulator  
The DRV10975 includes a hysteretic step-down voltage regulator that can be operated as either a switching buck  
regulator using an external inductor or as a linear regulator using an external resistor (see 3). The best  
efficiency is achieved when the step-down regulator is in buck mode. However, the DRV10975Z device (sleep  
mode version) only operates with the step-down regulator in linear mode and with a Zener diode as described in  
the Typical Application section. The regulator output voltage can be configured by register bit VregSel. When  
VregSel = 0, the regulator output voltage is 5 V, and when VregSel = 1, the regulator output voltage is 3.3 V.  
When the regulated voltage drops by the hysteresis level, the high-side FET turns on to increase the regulated  
voltage back to the target of 3.3 V or 5 V. The switching frequency of the hysteretic regulator is not constant and  
changes with the load.  
If the step-down regulator is configured in buck mode, see IREG_MAX in the Electrical Characteristics to determine  
the amount of current provided for external load. If the step-down regulator is configured as linear mode, it is  
used for the device internal circuit only.  
The DRV10975Z step-down regulator only operates in linear mode (using an external  
resistor) and with a Zener diode as described in the Typical Application section. The  
DRV10975Z device does not support buck mode (using an external inductor) as shown in  
3.  
VREG  
VREG  
VCC  
VCC  
IC  
IC  
SW  
SW  
47 µH  
10 µF  
39 Ω  
3.3 V/5 V  
10 µF  
3.3 V/5 V  
Load  
SWGND  
SWGND  
Step-Down Regulator With External Inductor (Buck  
Mode)  
Step-Down Regulator With External Resistor (Linear  
Mode)  
3. Step-Down Regulator Configurations  
8.3.1.2 3.3-V and 1.8-V LDO  
The DRV10975 includes a 3.3-V LDO and an 1.8-V LDO. The 1.8-V LDO is for internal circuit only. The 3.3-V  
LDO is mainly for internal circuits, but can also drive external loads not to exceed IV3P3_MAX listed in the Electrical  
Characteristics. For example, it can work as a pullup voltage for the FG, DIR, SDA, and SCL interface.  
Both V1P8 and V3P3 capacitor must be connected to GND.  
8.3.2 Protection Circuits  
8.3.2.1 Thermal Shutdown  
The DRV10975 has a built-in thermal shutdown function, which shuts down the device when junction  
temperature is more than TSDN ˚C and recovers operating conditions when junction temperature falls to TSDN  
SDN_HYS˚C.  
T
The OverTemp status bit (address 0x10 bit 7) is set during thermal shutdown.  
14  
版权 © 2015–2018, Texas Instruments Incorporated  
 
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
Feature Description (接下页)  
8.3.2.2 Undervoltage Lockout (UVLO)  
The DRV10975 has a built-in UVLO function block. The hysteresis of UVLO threshold is VUVLO-HYS. The device is  
locked out when VCC is down to VUVLO_F and woke up at VUVLO_R  
.
8.3.2.3 Overcurrent Protection (OCP)  
The overcurrent protection function acts to protect the device if the current, as measured from the FETs, exceeds  
the IOC-limit threshold. It protects the device in the short-circuit condition if by accident a phase shorts to GND, or  
to another phase; the DRV10975 places the output drivers into a high-impedance state and maintains this  
condition until the overcurrent is no longer present. The OverCurr status bit (address 0x10 bit 5) is set.  
The DRV10975 also provides acceleration current limit and lock detection current limit functions to protect the  
device and motor (see Current Limit and Lock Detect and Fault Handling).  
8.3.2.4 Lock  
When the motor is blocked or stopped by an external force, the lock protection is triggered, and the device stops  
driving the motor immediately. After the lock release time tLOCK_OFF, the DRV10975 resumes driving the motor  
again. If the lock condition is still present, it enters the next lock protection cycle until the lock condition is  
removed. With this lock protection, the motor and device does not get overheated or damaged due to the motor  
being locked (see Lock Detect and Fault Handling).  
During lock condition, the MtrLck Status bit (address 0x10, bit 4) is set. To further diagnose, check the register  
FaultCode.  
8.3.3 Motor Speed Control  
The DRV10975 offers four methods for indirectly controlling the speed of the motor by adjusting the output  
voltage amplitude. This can be accomplished by varying the supply voltage (VCC) or by controlling the Speed  
Command. The Speed Command can be controlled in one of three ways. The user can set the Speed Command  
on the SPEED pin by adjusting either the PWM input (SPEED pin configured for PWM mode) or the analog input  
(SPEED pin configured for analog mode), or by writing the Speed Command directly through the I2C serial port  
to SpdCtrl[8:0]. The Speed Command is used to determine the PWM duty cycle output (PWM_DCO) (see 4).  
The Speed Command may not always be equal to the PWM_DCO because DRV10975 has implemented the  
AVS function (see AVS Function), the acceleration current limit function (see Acceleration Current Limit), and the  
closed loop accelerate function (see Closed Loop Accelerate) to optimize the control performance. These  
functions can limit the PWM_DCO, which affects the output amplitude.  
PWM Duty  
ADC  
PWM In  
Analog  
AVS,  
Acceleration Current Limit  
Closed Loop Accelerate  
SPEED Pin  
Speed  
Command  
I2C  
PWM_  
DCO  
Output  
Amplitude  
VCC  
X
Motor  
Copyright © 2017, Texas Instruments Incorporated  
4. Multiplexing the Speed Command to the Output Amplitude Applied to the Motor  
The output voltage amplitude applied to the motor is accomplished through sine wave modulation so that the  
phase-to-phase voltage is sinusoidal.  
版权 © 2015–2018, Texas Instruments Incorporated  
15  
 
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
Feature Description (接下页)  
When any phase is measured with respect to ground, the waveform is sinusoidally coupled with third-order  
harmonics. This encoding technique permits one phase to be held at ground while the other two phases are  
pulse-width modulated. 5 and 6 show the sinusoidal encoding technique used in the DRV10975.  
PWM Output  
Average Value  
5. PWM Output and the Average Value  
U-V  
U
V-W  
W-U  
V
W
Sinusoidal voltage from phase to phase  
Sinusoidal voltage with third order harmonics  
from phase to GND  
6. Representing Sinusoidal Voltages With Third-Order Harmonic Output  
The output amplitude is determined by the magnitude of VCC and the PWM duty cycle output (PWM_DCO). The  
PWM_DCO represents the peak duty cycle that is applied in one electrical cycle. The maximum amplitude is  
reached when PWM_DCO is at 100%. The peak output amplitude is VCC. When the PWM_DCO is at 50%, the  
peak amplitude is VCC / 2 (see 7).  
VCC  
100% PWM DCO  
VCC / 2  
50% PWM DC0  
7. Output Voltage Amplitude Adjustment  
8.3.4 Sleep or Standby Condition  
The DRV10975 is available in either a sleep mode or standby mode version. The DRV10975 enters either sleep  
or standby to conserve energy. When the device enters either sleep or standby, the motor stops driving. The  
step-down regulator is disabled in the sleep mode version to conserve more energy. The I2C interface is disabled  
and any register data not stored in EEPROM will be reset. The step-down regulator remains active in the standby  
mode version. The register data is maintained, and the I2C interface remains active.  
Setting sleepDis = 1 prevents the device from entering into the sleep or standby condition. If the device has  
already entered into sleep or standby condition, setting sleepDis = 1 will not take it out of the sleep or standby  
condition. During a sleep or standby condition, the Slp_Stdby status bit (address 0x10, bit 6) will be set.  
16  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
 
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
Feature Description (接下页)  
For different speed command modes, 1 shows the timing and command to enter the sleep or standby  
condition.  
1. Conditions to Enter or Exit Sleep or Standby Condition  
SPEED COMMAND  
MODE  
ENTER STANDBY  
CONDITION  
ENTER SLEEP  
CONDITION  
EXIT FROM STANDBY  
CONDITION  
EXIT FROM SLEEP  
CONDITION  
SPEED pin voltage < VEN_SB SPEED pin voltage < SPEED pin voltage > VEX_SB SPEED pin voltage > VEX_SL  
Analog  
for tEN_SB_ANA  
VEN_SL for tEN_SL_ANA for tEX_ SB_ANA  
for tEX_ SL_ANA  
SPEED pin low (V <  
VDIG_IL) for  
tEN_SL_PWM  
SPEED pin low (V < VDIG_IL  
for tEN_SB_PWM  
)
SPEED pin high (V >  
VDIG_IH) for tEX_SB_PWM  
SPEED pin high (V >  
VDIG_IH) for tEX_SL_PWM  
PWM  
SPEED pin high (V >  
SpdCtrl[8:0] is  
programmed as 0 for  
tEN_SL_PWM  
VDIG_IH) for tEX_SL_PWM(PWM  
mode) or SPEED pin voltage  
> VEX_SL for tEX_ SL_ANA  
(Analog mode)  
SpdCtrl[8:0] is programmed  
as 0 for tEN_SB_PWM  
SpdCtrl[8:0] is programmed  
as non-zero for tEX_SB_PWM  
I2C  
Note that using the analog speed command, a higher voltage is required to exit from the sleep condition than the  
standby condition. The I2C speed command cannot take the device out of the sleep condition because I2C  
communication is disabled during the sleep condition.  
8.3.5 Non-Volatile Memory  
The DRV10975 has 96-bits of EEPROM data, which are used to program the motor parameters as described in  
the I2C Serial Interface.  
The procedure for programming the EEPROM is as follows. TI recommends to perform the EEPROM  
programming without the motor spinning, power cycle after the EEPROM write, and read back the EEPROM to  
verify the programming is successful.  
1. Set SIdata = 1.  
2. Write the desired motor parameters into the corresponding registers (address 0x20:0x2B) (see I2C Serial  
Interface).  
3. Write 1011 0110 (0xB6) to enProgKey in the DevCtrl register.  
4. Ensure that VCC is at or above 22 V.  
5. Write eeWrite = 1 in EECtrl register to start the EEPROM programming.  
The programming time is about 24 ms, and eeWrite bit is reset to 0 when programming is done.  
8.4 Device Functional Modes  
This section includes the logic required to be able to reliably start and drive the motor. It describes the processes  
used in the logic core and provides the information needed to effectively configure the parameters to work over a  
wide range of applications.  
8.4.1 Motor Parameters  
For the motor parameter measurement, see the DRV10983 and DRV10975 Tuning Guide.  
The motor phase resistance and the BEMF constant (Kt) are two important parameters used to characterize a  
BLDC motor. The DRV10975 requires these parameters to be configured in the register. The motor phase  
resistance is programmed by writing the values for Rm[6:0] in the MotorParam1 register. The BEMF constant is  
programmed by writing the values for Kt[6:0] in the MotorParam2 register.  
8.4.1.1 Motor Phase Resistance  
For a wye-connected motor, the motor phase resistance refers to the resistance from the phase output to the  
center tap, RPH_CT (see 8).  
版权 © 2015–2018, Texas Instruments Incorporated  
17  
 
 
 
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
Device Functional Modes (接下页)  
Phase U  
RPH_CT  
RPH_CT  
RPH_CT  
Center  
Tap  
Phase V  
Phase W  
8. Wye-Connected Motor Phase Resistance  
For a delta-connected motor, the motor phase resistance refers to the equivalent phase to center tap in the wye  
configuration, which is represented as RY. RPH_CT = RY (see 9).  
For both the delta-connected motor and the wye-connected motor, calculating the equivalent RPH_CT is easy by  
measuring the resistance between two phase terminals (RPH_PH), and then dividing this value by two as shown in  
公式 1.  
RPH_CT = ½RPH_PH  
(1)  
Phase U  
RY  
R
R
PH_PH  
PH_PH  
RY  
RY  
Center  
Tap  
Phase V  
R
Phase W  
PH_PH  
9. Delta-Connected Motor and the Equivalent Wye Connections  
The motor phase resistance (RPH_CT) must be converted to a 7-bit digital register value Rm[6:0] to program the  
motor phase resistance value. The digital register value can be determined as follows:  
1. Convert the motor phase resistance (RPH_CT) to a digital value where the LSB is weighted to represent 7.35  
mΩ: Rmdig = RPH_CT / 0.00735.  
2. Encode the digital value such that Rmdig = Rm[3:0] << Rm[6:4].  
The maximum resistor value, RPH_CT, that can be programmed for the DRV10975 is 14.1 Ω, which represents  
Rmdig = 1920 and an encoded Rm[6:0] value of 0x7Fh. The minimum resistor the DRV10975 supports is  
0.0294 Ω, RPH_CT, which represents Rmdig = 4.  
18  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
Device Functional Modes (接下页)  
For convenience, the encoded value for Rm[6:0] can also be obtained from 2.  
2. Motor Phase Resistance Look-Up Table  
RPH_CT (Ω)  
0
RM[6:0]  
000 0000  
000 0001  
000 0010  
000 0011  
000 0100  
000 0101  
000 0110  
000 0111  
000 1000  
000 1001  
000 1010  
000 1011  
000 1100  
000 1101  
000 1110  
000 1111  
001 1000  
001 1001  
001 1010  
001 1011  
001 1100  
001 1101  
001 1110  
001 1111  
HEX  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
RPH_CT (Ω)  
0.235  
0.264  
0.294  
0.323  
0.352  
0.382  
0.411  
0.441  
0.47  
RM[6:0]  
010 1000  
010 1001  
010 1010  
010 1011  
010 1100  
010 1101  
010 1110  
010 1111  
011 1000  
011 1001  
011 1010  
011 1011  
011 1100  
011 1101  
011 1110  
011 1111  
100 1000  
100 1001  
100 1010  
100 1011  
100 1100  
100 1101  
100 1110  
100 1111  
HEX  
28  
RPH_CT (Ω)  
1.88  
2.11  
2.35  
2.58  
2.82  
3.05  
3.29  
3.52  
3.76  
4.23  
4.7  
RM[6:0]  
101 1000  
101 1001  
101 1010  
101 1011  
101 1100  
101 1101  
101 1110  
101 1111  
110 1000  
110 1001  
110 1010  
110 1011  
110 1100  
110 1101  
110 1110  
110 1111  
111 1000  
111 1001  
111 1010  
111 1011  
111 1100  
111 1101  
111 1110  
111 1111  
HEX  
58  
0.0073  
0.0147  
0.0220  
0.0294  
0.0367  
0.0441  
0.0514  
0.0588  
0.0661  
0.0735  
0.0808  
0.0882  
0.0955  
0.102  
29  
59  
2A  
2B  
2C  
2D  
2E  
2F  
38  
5A  
5B  
5C  
5D  
5E  
5F  
68  
0.529  
0.588  
0.646  
0.705  
0.764  
0.823  
0.882  
0.94  
39  
69  
3A  
3B  
3C  
3D  
3E  
3F  
48  
6A  
6B  
6C  
6D  
6E  
6F  
78  
5.17  
5.64  
6.11  
6.58  
7.05  
7.52  
8.46  
9.4  
0.110  
0.117  
0.132  
1.05  
49  
79  
0.147  
1.17  
4A  
4B  
4C  
4D  
4E  
4F  
7A  
7B  
7C  
7D  
7E  
7F  
0.161  
1.29  
10.3  
11.2  
12.2  
13.1  
14.1  
0.176  
1.41  
0.191  
1.52  
0.205  
1.64  
0.22  
1.76  
8.4.1.2 BEMF Constant  
The BEMF constant, Kt[6:0] describes the motors phase-to-phase BEMF voltage as a function of the motor  
velocity.  
The measured BEMF constant (Kt) needs to be converted to a 7-bit digital register value Kt[6:0] to program the  
BEMF constant value. The digital register value can be determined as follows:  
1. Convert the measured Kt to a weighted digital value: Ktph_dig = 1442 × Kt  
2. Encode the digital value such that Ktph_dig = Kt[3:0] << Kt[4:6].  
The maximum Kt that can be programmed is 1330 mV/Hz. This represents a digital value of 1920 and an  
encoded Kt[6:0] value of 0x7Fh. The minimum Kt that can be programmed is 0.7 mV/Hz, which represents a  
digital value of 1 and an encoded Kt[6:0] value of 0x01h.  
版权 © 2015–2018, Texas Instruments Incorporated  
19  
 
 
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
For convenience, the encoded value of Kt[6:0] may also be obtained from 3.  
3. BEMF Constant Look-Up Table  
Kt (mV/Hz)  
0
Kt[6:0]  
HEX  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
Kt (mV/Hz)  
22.3  
25.1  
27.8  
30.6  
33.4  
36.2  
39  
Kt [6:0]  
010 1000  
010 1001  
010 1010  
010 1011  
010 1100  
010 1101  
010 1110  
010 1111  
011 1000  
011 1001  
011 1010  
011 1011  
011 1100  
011 1101  
011 1110  
011 1111  
100 1000  
100 1001  
100 1010  
100 1011  
100 1100  
100 1101  
100 1110  
100 1111  
HEX  
28  
Kt (mV/Hz)  
178  
Kt [6:0]  
101 1000  
101 1001  
101 1010  
101 1011  
101 1100  
101 1101  
101 1110  
101 1111  
110 1000  
110 1001  
110 1010  
110 1011  
110 1100  
110 1101  
110 1110  
110 1111  
111 1000  
111 1001  
111 1010  
111 1011  
111 1100  
111 1101  
111 1110  
111 1111  
HEX  
58  
000 0000  
000 0001  
000 0010  
000 0011  
000 0100  
000 0101  
000 0110  
000 0111  
000 1000  
000 1001  
000 1010  
000 1011  
000 1100  
000 1101  
000 1110  
000 1111  
001 1000  
001 1001  
001 1010  
001 1011  
001 1100  
001 1101  
001 1110  
001 1111  
0.7  
29  
200  
59  
1.39  
2.09  
2.78  
3.48  
4.18  
4.88  
5.57  
6.27  
6.97  
7.66  
8.36  
9.06  
9.76  
10.4  
11.1  
12.5  
13.9  
15.3  
16.7  
18.1  
19.5  
20.9  
2A  
2B  
2C  
2D  
2E  
2F  
38  
223  
5A  
5B  
5C  
5D  
5E  
5F  
68  
245  
267  
290  
312  
41.8  
44.6  
50.2  
55.7  
61.3  
66.9  
72.5  
78  
334  
356  
39  
401  
69  
3A  
3B  
3C  
3D  
3E  
3F  
48  
446  
6A  
6B  
6C  
6D  
6E  
6F  
78  
490  
535  
580  
624  
83.6  
89.2  
100  
669  
713  
49  
803  
79  
111  
4A  
4B  
4C  
4D  
4E  
4F  
892  
7A  
7B  
7C  
7D  
7E  
7F  
122  
981  
133  
1070  
1160  
1240  
1330  
145  
156  
167  
8.4.2 Starting the Motor Under Different Initial Conditions  
The motor can be in one of three states when the DRV10975 attempts to begin the start-up process. The motor  
may be stationary, or spinning in the forward or reverse directions. The DRV10975 includes a number of features  
to allow for reliable motor start under all of these conditions. 10 shows the motor start-up flow for each of the  
three initial motor states.  
8.4.2.1 Case 1 – Motor Is Stationary  
If the motor is stationary, the commutation logic must be initialized to be in phase with the position of the motor.  
The DRV10975 provides for two options to initialize the commutation logic to the motor position. Initial position  
detect (IPD) determines the position of the motor based on the deterministic inductance variation, which is often  
present in BLDC motors. The Align and Go technique forces the motor into alignment by applying a voltage  
across a particular motor phase to force the motor to rotate in alignment with this phase. The following sections  
explain how to configure these techniques for use in the designer's system.  
8.4.2.2 Case 2 – Motor Is Spinning in the Forward Direction  
If the motor is spinning forward with enough velocity, the DRV10975 may be configured to go directly into closed  
loop. By resynchronizing to the spinning motor, the user achieves the fastest possible start-up time for this initial  
condition.  
20  
版权 © 2015–2018, Texas Instruments Incorporated  
 
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
8.4.2.3 Case 3 – Motor Is Spinning in the Reverse Direction  
If the motor is spinning in the reverse direction, the DRV10975 provides several methods to convert it back to  
forward direction.  
One method, reverse drive, allows the motor to be driven so that it accelerates through zero velocity. The motor  
achieves the shortest possible spin-up time in systems where the motor is spinning in the reverse direction.  
If this feature is not selected, then the DRV10975 may be configured to either wait for the motor to stop spinning  
or brake the motor. After the motor has stopped spinning, the motor start-up sequence proceeds as it would for a  
motor which is stationary.  
Take care when using the feature reverse drive or brake to ensure that the current is limited to an acceptable  
level and that the supply voltage does not surge as a result of energy being returned to the power supply.  
IPD  
Stationary  
Align and Go  
Spinning forward  
Spinning reversely  
Direct closed loop  
Wait  
Brake  
Reverse drive  
10. Start the Motor Under Different Initial Conditions  
版权 © 2015–2018, Texas Instruments Incorporated  
21  
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
8.4.3 Motor Start Sequence  
11 shows the motor start sequence implemented in the DRV10975.  
Power on  
DIR pin  
change  
N
ISDen  
Y
ISD  
Speed <  
ISDThr  
Y
N
Forward  
N
Y
Speed >  
RvsDrThr  
Y
N
BrkEn  
N
Y
Brake  
N
RvsDrEn  
Y
IPDEn  
Y
Time >  
BrkDoneThr  
N
Y
N
Align  
IPD  
RvsDr  
Accelerate  
Speed >  
Op2CIsThr  
N
Y
ClosedLoop  
11. Motor Starting-Up Flow  
Power-On State This is the initial power-on state of the motor start sequencer (MSS). The MSS starts in this  
state on initial power-up or whenever the DRV10975 comes out of either standby or sleep modes.  
ISDen Judgment After power on, the DRV10975 MSS enters the ISDen Judgment where it checks to see if the  
Initial Speed Detect (ISD) function is enabled (ISDen = 1). If ISD is disabled, the MSS proceeds  
directly to the BrkEn Judgment. If ISD is enabled, the motor start sequence advances to the ISD  
state.  
ISD State  
The MSS determines the initial condition of the motor (see ISD).  
Speed<ISDThr Judgment If the motor speed is lower than the threshold defined by ISDThr[1:0], then the motor  
is considered to be stationary and the MSS proceeds to the BrkEn judgment. If the speed is greater  
than the threshold defined by ISDThr[1:0], the start sequence proceeds to the Forward judgment.  
Forward Judgment The MSS determines whether the motor is spinning in the forward or the reverse direction.  
If the motor is spinning in the forward direction, the DRV10975 executes the resynchronization (see  
Motor Resynchronization) process by transitioning directly into the ClosedLoop state. If the motor is  
spinning in the reverse direction, the MSS proceeds to the Speed>RvsDrThr.  
Speed>RvsDrThr Judgment The motor start sequencer checks to see if the reverse speed is greater than the  
threshold defined by RvsDrThr[2:0]. If it is, then the MSS returns to the ISD state to allow the motor  
to decelerate. This prevents the DRV10975 from attempting to reverse drive or brake a motor that  
is spinning too quickly. If the reverse speed of the motor is less than the threshold defined by  
RvsDrThr[2:0], then the MSS advances to the RvsDrEn judgment.  
RvsDrEn Judgment The MSS checks to see if the reverse drive function is enabled (RvsDrEn = 1). If it is, the  
MSS transitions into the RvsDr state. If the reverse drive function is not enabled, the MSS  
22  
版权 © 2015–2018, Texas Instruments Incorporated  
 
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
advances to the BrkEn judgment.  
RvsDr State The DRV10975 drives the motor in the forward direction to force it to rapidly decelerate (see  
Reverse Drive). When it reaches zero velocity, the MSS transitions to the Accelerate state.  
BrkEn Judgment The MSS checks to determine whether the brake function is enabled (BrkDoneThr[2:0] 000).  
If the brake function is enabled, the MSS advances to the Brake state.  
Brake State The device performs the brake function (see Motor Brake).  
Time>BrkDoneThr Judgment The MSS applies brake for time configured by BRKDoneThr[2:0]. After brake  
state, the MSS advances to the IPDEn judgment.  
IPDEn Judgment The MSS checks to see if IPD has been enabled (IPDCurrThr[3:0] 0000). If the IPD is  
enabled, the MSS transitions to the IPD state. Otherwise, it transitions to the align state.  
Align State The DRV10975 performs align function (see Align). After the align completes, the MSS transitions  
to the Accelerate state.  
IPD State  
The DRV10975 performs the IPD function. The IPD function is described in Initial Position Detect  
(IPD) . After the IPD completes, the MSS transitions to the Accelerate state.  
Accelerate State The DRV10975 accelerates the motor according to the setting StAccel and StAccel2. After  
applying the accelerate settings, the MSS advances to the Speed > Op2ClsThr judgment.  
Speed>Op2ClsThr Judgment The motor accelerates until the drive rate exceeds the threshold configured by  
the Op2ClsThr[4:0] settings. When this threshold is reached, the DRV10975 enters into the  
ClosedLoop state.  
ClosedLoop State In this state, the DRV10975 drives the motor based on feedback from the commutation  
control algorithm.  
DIR Pin Change Judgment If DIR pin get changed during any of above states, DRV10975 stops driving the  
motor and restarts from the beginning.  
8.4.3.1 ISD  
The ISD function is used to identify the initial condition of the motor. If the function is disabled, the DRV10975  
does not perform the initial speed detect function and treats the motor as if it is stationary.  
Phase-to-phase comparators are used to detect the zero crossings of the BEMF voltage of the motor while it is  
coasting (motor phase outputs are in high-impedance state). 12 shows the configuration of the comparators.  
degrees  
60  
V
+
+
U
W
12. Initial Speed Detect Function  
If the UW comparator output is lagging the UV comparator by 60°, the motor is spinning forward. If the UW  
comparator output is leading the UV comparator by 60°, the motor is spinning in reverse.  
The motor speed is determined by measuring the time between two rising edges of either of the comparators.  
If neither of the comparator outputs toggle for a given amount of time, the condition is defined as stationary. The  
amount of time can be programmed by setting the register bits ISDThr[1:0].  
版权 © 2015–2018, Texas Instruments Incorporated  
23  
 
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
8.4.3.2 Motor Resynchronization  
The resynchronize function works when the ISD function is enabled and determines that the initial state of the  
motor is spinning in the forward direction. The speed and position information measured during ISD are used to  
initialize the drive state of the DRV10975, which can transition directly into the closed loop running state without  
needing to stop the motor.  
8.4.3.3 Reverse Drive  
The ISD function measures the initial speed and the initial position; the DRV10975 reverse drive function acts to  
reverse accelerate the motor through zero speed and to continue accelerating until the closed loop threshold is  
reached (see 13). If the reverse speed is greater than the threshold configured in RvsDrThr[1:0], then the  
DRV10975 waits until the motor coasts to a speed that is less than the threshold before driving the motor to  
reverse accelerate.  
Speed  
Closed loop  
Op2ClsThr  
Open loop  
Time  
RevDrThr  
Reverse Drive  
Coasting  
13. Reverse Drive Function  
Reverse drive is suitable for applications where the load condition is light at low speed and relatively constant  
and where the reverse speed is low (that is, a fan motor with little friction). For other load conditions, the motor  
brake function provides a method for helping force a motor which is spinning in the reverse direction to stop  
spinning before a normal start-up sequence.  
8.4.3.4 Motor Brake  
The motor brake function can be used to stop the spinning motor before attempting to start the motor. The brake  
is applied by turning on all three of the low-side driver FETs.  
If the motor is spinning at a speed that is greater than the braking threshold (configured by BrkDoneThr[2:0]),  
then dynamic braking acts to stop the spinning (whether forward or reverse). After the motor is stopped (that is,  
the motor speed is less than the BrkDoneThr[2:0]), the motor position is unknown. To proceed with restarting in  
the correct direction, the IPD or Align and Go algorithm needs to be implemented. The motor start sequence is  
the same as it would be for a motor starting in the stationary condition.  
The motor brake function can be disabled. The motor skips the brake state and attempts to spin the motor as if it  
were stationary. If this happens while the motor is spinning in either direction, the start-up sequence may not be  
successful.  
8.4.3.5 Motor Initialization  
8.4.3.5.1 Align  
The DRV10975 aligns a motor by injecting dc current through a particular phase pattern which is current flowing  
into phase V, flowing out from phase W for a certain time (configured by AlignTime[2:0]). The current magnitude  
is determined by OpenLCurr[1:0]. The motor should be aligned at the known position.  
24  
版权 © 2015–2018, Texas Instruments Incorporated  
 
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
The time of align affects the start-up timing (see Start-Up Timing). A bigger inertial motor requires longer align  
time.  
8.4.3.5.2 Initial Position Detect (IPD)  
The inductive sense method is used to determine the initial position of the motor when IPD is enabled. IPD is  
enabled by selecting IPDCurrThr[3:0] to any value other than 0000.  
IPD can be used in applications where reverse rotation of the motor is unacceptable. Because IPD does not  
need to wait for the motor to align with the commutation, it can allow for a faster motor start sequence. IPD works  
well when the inductance of the motor varies as a function of position. Because it works by pulsing current to the  
motor, it can generate acoustics which must be taken into account when determining the best start method for a  
particular application.  
8.4.3.5.2.1 IPD Operation  
The IPD operates by sequentially applying voltage across two of the three motor phases according to the  
following sequence: VW WV UV VU WU UW (see 14). When the current reaches the threshold configured in  
IPDCurrThr[3:0], the voltage across the motor is stopped. The DRV10975 measures the time it takes from when  
the voltage is applied until the current threshold is reached. The time varies as a function of the inductance in the  
motor windings. The state with the shortest time represents the state with the minimum inductance. The  
minimum inductance is because of the alignment of the north pole of the motor with this particular driving state.  
U
V
N
IPDclk  
Clock  
Drive  
S
W
V W  
W V  
U V  
V U  
W U  
U W  
IPDCurrThr  
Current  
Search the Minimum Time  
Permanent  
Magnet Position  
Saturation Position of the  
Magnetic Field  
Smallest  
Inductance  
Minimum  
Time  
14. IPD Function  
8.4.3.5.2.2 IPD Release Mode  
Two options are available for stopping the voltage applied to the motor when the current threshold is reached. If  
IPDRlsMd = 0, the recirculate mode is selected. The low-side (S6) MOSFET remains on to allow the current to  
recirculate between the MOSFET (S6) and body diode (S2) (see 15). If IPDRlsMd = 1, the high-impedance  
(Hi-Z) mode is selected. Both the high-side (S1) and low-side (S6) MOSFETs are turned off and the current flies  
back across the body diodes into the power supply (see 16).  
The high-impedance mode has a faster settle-down time, but could result in a surge on VCC. Manage this with  
appropriate selection of either a clamp circuit or by providing sufficient capacitance between VCC and GND. If the  
voltage surge cannot be contained and if it is unacceptable for the application, then select the recirculate mode.  
When selecting the recirculate mode, select the IPDClk[1:0] bits to give the current in the motor windings enough  
time to decay to 0.  
版权 © 2015–2018, Texas Instruments Incorporated  
25  
 
 
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
S3  
S5  
S1  
S3  
S4  
S5  
M
M
U1  
U1  
S2  
S2  
S4  
Driving  
Brake (Recirculate)  
15. IPD Release Mode 0  
S3  
S4  
S5  
S1  
S3  
S4  
S5  
S6  
M
M
U1  
S2  
U1  
S2  
Driving  
Hi-Z (Tri-State)  
16. IPD Release Mode 1  
8.4.3.5.2.3 IPD Advance Angle  
After the initial position is detected, the DRV10975 begins driving the motor at an angle specified by  
IPDAdvcAgl[1:0].  
Advancing the drive angle anywhere from 0° to 180° results in positive torque. Advancing the drive angle by 90°  
results in maximum initial torque. Applying maximum initial torque could result in uneven acceleration to the rotor.  
Select the IPDAdvcAgl[1:0] to allow for smooth acceleration in the application (see 17).  
Motor spinning direction  
U
V
N
S
W
U
V
U
V
U
V
U
V
N
N
N
N
S
S
S
S
W
W
W
W
30˘ advance  
60˘ advance  
90˘ advance  
120˘ advance  
17. IPD Advance Angle  
8.4.3.5.3 Motor Start  
After it is determined that the motor is stationary and after completing the motor initialization with either align or  
IPD, the DRV10975 begins to accelerate the motor. This acceleration is accomplished by applying a voltage  
determined by the open loop current setting (OpenLCurr[1:0]) to the appropriate drive state and by increasing the  
rate of commutation without regard to the real position of the motor (referred to as open loop operation). The  
function of the open loop operation is to drive the motor to a minimum speed so that the motor generates  
sufficient BEMF to allow the commutation control logic to accurately drive the motor.  
4 lists the configuration options that can be set in register to optimize the initial motor acceleration stage for  
different applications.  
26  
版权 © 2015–2018, Texas Instruments Incorporated  
 
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
4. Configuration Options for Controlling Open Loop Motor Start  
Description  
Reg Name  
SysOpt4  
SysOpt4  
SysOpt3  
SysOpt3  
SysOpt2  
SysOpt2  
ConfigBits  
Op2ClsThr[4:0]  
AlignTime[2:0]  
StAccel[2:0]  
Min Value  
0.8 Hz  
Max Value  
204.8 Hz  
5.3 s  
Open to closed loop threshold  
Align time  
40 ms  
First order accelerate  
Second order accelerate  
Open loop current setting  
Open loop current ramping  
0.3 Hz/s  
0.22 Hz/s2  
200 mA  
76 Hz/s  
57 Hz/s2  
1.6 A  
StAccel2[2:0]  
OpenLCurr[1:0]  
OpLCurrRt[2:0]  
0.23 VCC/s  
6 VCC/s  
8.4.3.6 Start-Up Timing  
Start-up timing is determined by the align and accelerate time. The align time can be set by AlignTime[2:0], as  
described in Register Definition . The accelerate time is defined by the open-to-closed loop threshold  
Op2ClsThr[4:0] along with the first order StAccel[2:0](A1) and second order StAccel2[2:0](A2) acceleration  
coefficient. 18 shows the motor start-up process.  
Speed  
Speed =  
Close loop  
A1 ´ t + 0.5 A2 ´ t2  
Op2ClsThr  
AlignTime  
Accelerate Time is determined by  
Op2ClsThr and A1, A2.  
Time  
Accelerate Time  
18. Motor Start-Up Process  
Select the first order and second order acceleration coefficient to allow the motor to reliably accelerate from zero  
velocity up to the closed loop threshold in the shortest time possible. Using a slow acceleration coefficient during  
the first order accelerate stage can help improve reliability in applications where it is difficult to accurately  
initialize the motor with either align or IPD.  
Select the open-to-closed loop threshold to allow the motor to accelerate to a speed that generates sufficient  
BEMF for closed loop control. This is determined by the velocity constant of the motor based on the relationship  
described in 公式 2.  
BEMF = Kt × speed (Hz)  
(2)  
8.4.4 Start-Up Current Setting  
The start-up current setting is to control the peak start-up during open loop. During open loop operation, it is  
desirable to control the magnitude of drive current applied to the motor. This is helpful in controlling and  
optimizing the rate of acceleration. The limit takes effect during reverse drive, align, and acceleration.  
The start current is set by programming the OpenLCurr[1:0] bits. The current should be selected to allow the  
motor to reliably accelerate to the handoff threshold. Heavier loads may require a higher current setting, but it  
should be noted that the rate of acceleration will be limited by the acceleration rate (StAccel[2:0], StAccel2[2:0]).  
If the motor is started with more current than necessary to reliably reach the handoff threshold, it results in higher  
power consumption.  
The start current is controlled based on the relationship shown in 公式 3 and 19. The duty cycle applied to the  
motor is derived from the calculated value for ULimit and the magnitude of the supply voltage, VCC, as well as the  
drive state of the motor.  
ULimit = ILimit ì Rm + Speed Hz ì Kt  
(
)
where  
ILimit is configured by OpenLCurr[1:0]  
版权 © 2015–2018, Texas Instruments Incorporated  
27  
 
 
 
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
Rm is configured by Rm[6:0]  
Speed is variable based open-loop acceleration profile of the motor  
Kt is configured by Kt[6:0]  
(3)  
Rm  
BEMF = Kt × speed  
M
VU = BEMF + I× Rm  
Copyright © 2017, Texas Instruments Incorporated  
19. Motor Start-Up Current  
8.4.4.1 Start-Up Current Ramp-Up  
A fast change in the applied drive current may result in a sudden change in the driving torque. In some  
applications, this could result in acoustic noise. To avoid this, the DRV10975 allows the option of limiting the rate  
at which the current is applied to the motor. OpLCurrRt[2:0] sets the maximum voltage ramp up rate that will be  
applied to the motor. The waveforms in 20 show how this feature can be used to gradually ramp the current  
applied to the motor.  
Start driving with fast current ramp  
Start driving with slow current ramp  
20. Motor Startup Current Ramp  
8.4.5 Closed Loop  
In closed loop operation, the DRV10975 continuously samples the current in the U phase of the motor and uses  
this information to estimate the BEMF voltage that is present. The drive state of the motor is controlled based on  
the estimated BEMF voltage.  
8.4.5.1 Half Cycle Control and Full Cycle Control  
The estimated BEMF used to control the drive state of the motor has two zero-crosses every electrical cycle. The  
DRV10975 can be configured to update the drive state either once every electrical cycle or twice for every  
electrical cycle. When AdjMode is programmed to 1, half cycle adjustment is applied. The control logic is  
triggered at both rising edge and falling edge. When AdjMode is programmed to 0, full cycle adjustment is  
applied. The control logic is triggered only at the rising edge (see 21).  
Half cycle adjustment provides a faster response when compared with full cycle adjustment. Use half cycle  
adjustment whenever the application requires operation over large dynamic loading conditions. Use the full cycle  
adjustment for low current (<1 A) applications because it offers more tolerance for current measurement offset  
errors.  
28  
版权 © 2015–2018, Texas Instruments Incorporated  
 
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
Zero cross signal  
Zero cross signal  
Estimated Position  
Real Driving Voltage  
Real Position  
Ideal Driving Voltage  
Estimated Position  
Real Driving Voltage  
Real Position  
Ideal Driving Voltage  
Adjustment (full cycle)  
Adjustment (half cycle)  
21. Closed Loop Control Commutation Adjustment Mode  
8.4.5.2 Analog Mode Speed Control  
The SPEED input pin can be configured to operate as an analog input (SpdCtrlMd = 0).  
When configured for analog mode, the voltage range on the SPEED pin can be varied from 0 to V3P3. If  
SPEED > VANA_FS, the speed command is maximum. If VANA_ZS SPEED < VANA_FS the speed command  
changes linearly according to the magnitude of the voltage applied at the SPEED pin. If SPEED < VANA_ZS the  
speed command is to stop the motor. 22 shows the speed command when operating in analog mode.  
Speed  
Command  
Maximum  
Speed  
Command  
Analog Input  
VANA-ZS  
VANA-FS  
22. Analog Mode Speed Command  
8.4.5.3 Digital PWM Input Mode Speed Control  
If SpdCtrlMd = 1, the SPEED input pin is configured to operate as a PWM-encoded digital input. The PWM duty  
cycle applied to the SPEED pin can be varied from 0 to 100%. The speed command is proportional to the PWM  
input duty cycle. The speed command stops the motor when the PWM input keeps at 0 for tEN_SL_PWM (see 图  
23).  
The frequency of the PWM input signal applied to the SPEED pin is defined as ƒPWM. This is the frequency the  
device can accept to control motor speed. It does not correspond to the PWM output frequency that is applied to  
the motor phase. The PWM output frequency can be configured to be either 25 kHz when the DoubleFreq bit is  
set to 0 or to 50 kHz when DoubleFreq bit is set to 1.  
版权 © 2015–2018, Texas Instruments Incorporated  
29  
 
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
Speed  
Command  
Maximum  
Speed  
Command  
PWM duty  
0
100%  
23. PWM Mode Speed Command  
8.4.5.4 I2C Mode Speed Control  
The DRV10975 can also command the speed through the I2C serial interface. To enable this feature, the  
OverRide bit is set to 1. When the DRV10975 is configured to operate in I2C mode, it ignores the signal applied  
to the SPEED pin.  
The speed command can be set by writing the SpdCtrl[8] and SpdCtrl[7:0] bits. The 9-bit SpdCtrl [8:0] located in  
the SpeedCtrl1 and SpeedCntrl2 registers are used to set the peak amplitude voltage applied to the motor. The  
maximum speed command is set when SpdCtrl [8:0] is set to 0x1FF (511).  
When SpdCtrl [8] is written to the SpeedCtrl2 register, the data is stored, but the output is not changed. When  
SpdCtrl [7:0] is written to the SpeedCtrl1 register, the speed command is updated (see 24).  
Write to  
SpeedCtrl2  
SpdCtrl[8]  
Write to  
SpeedCtrl1  
Buffer of  
SpdCtrl[8]  
SpdCtrl [7:0]  
Speed Command  
24. I2C Mode Speed Control  
8.4.5.5 Closed Loop Accelerate  
To prevent sudden changes in the torque applied to the motor which could result in acoustic noise, the  
DRV10975 provides the option of limiting the maximum rate at which the speed command changes.  
ClsLpAccel[2:0] can be programmed to set the maximum rate at which the speed command changes (shown in  
25).  
30  
版权 © 2015–2018, Texas Instruments Incorporated  
 
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
y%  
Speed command  
input  
x%  
y%  
Speed command  
after closed loop  
accelerate buffer  
x%  
Closed loop  
accelerate settings  
25. Closed-Loop Accelerate  
8.4.5.6 Control Coefficient  
The DRV10975 continuously measures the motor current and uses this information to control the drive state of  
the motor when operating in closed loop mode. In applications where noise makes it difficult to control the  
commutation optimally, the CtrlCoef[1:0] can be used to attenuate the feedback used for closed loop control. The  
loop will be less reactive to the noise on the feedback and provide for a smoother output.  
8.4.5.7 Commutation Control Advance Angle  
To achieve the best efficiency, it is often desirable to control the drive state of the motor so that the phase  
current of the motor is aligned with the BEMF voltage of the motor.  
To align the phase current of the motor with the BEMF voltage of the motor, consider the inductive effect of the  
motor. The voltage applied to the motor should be applied in advance of the BEMF voltage of the motor (see 图  
26). The DRV10975 provides configuration bits for controlling the time (tadv) between the driving voltage and  
BEMF.  
For motors with salient pole structures, aligning the motor BEMF voltage with the motor current may not achieve  
the best efficiency. In these applications, the timing advance should be adjusted accordingly. Accomplish this by  
operating the system at constant speed and load conditions and by adjusting the tadv until the minimum current is  
achieved.  
Phase  
Voltage  
Phase  
BEMF  
Phase  
Current  
tadv  
26. Advance Time (tadv) Definition  
The DRV10975 has two options for adjusting the motor commutate advance time. When CtrlAdvMd = 0, mode 0  
is selected. When CtrlAdvMd = 1, mode 1 is selected.  
Mode 0: tadv is maintained to be a fixed time relative to the estimated BEMF zero cross as determined by 公式 4.  
tadv = tSETTING  
(4)  
Mode 1: tadv is maintained to be a variable time relative to the estimated BEMF zero cross as determined by 公式  
5.  
tadv = tSETTING × (U-BEMF)/U.  
where  
U is the phase voltage amplitude  
BEMF is phase BEMF amplitude  
(5)  
31  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
 
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
tSETTING (in µs) is determined by the configuration of the TCtrlAdv [6:4] and TCtrlAdv [3:0] bits as defined in 公式  
6. For convenience, the available tSETTING values are provided in 5.  
tSETTING = 2.5 µs × [TCtrlAdv[3:0]] << TCtrlAdv[6:4]  
(6)  
5. Configuring Commutation Advance Timing by Adjusting tSETTING  
TCtrlAdv  
[6:0]  
TCtrlAdv  
[6:0]  
TCtrlAdv  
[6:0]  
tSETTING (µs)  
HEX  
tSETTING (µs)  
HEX  
tSETTING (µs)  
HEX  
0
2.5  
5
000 0000  
000 0001  
000 0010  
000 0011  
000 0100  
000 0101  
000 0110  
000 0111  
000 1000  
000 1001  
000 1010  
000 1011  
000 1100  
000 1101  
000 1110  
000 1111  
001 1000  
001 1001  
001 1010  
001 1011  
001 1100  
001 1101  
001 1110  
001 1111  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
80  
010 1000  
010 1001  
010 1010  
010 1011  
010 1100  
010 1101  
010 1110  
010 1111  
011 1000  
011 1001  
011 1010  
011 1011  
011 1100  
011 1101  
011 1110  
011 1111  
100 1000  
100 1001  
100 1010  
100 1011  
100 1100  
100 1101  
100 1110  
100 1111  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
640  
720  
101 1000  
101 1001  
101 1010  
101 1011  
101 1100  
101 1101  
101 1110  
101 1111  
110 1000  
110 1001  
110 1010  
110 1011  
110 1100  
110 1101  
110 1110  
110 1111  
111 1000  
111 1001  
111 1010  
111 1011  
111 1100  
111 1101  
111 1110  
111 1111  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
90  
100  
110  
120  
130  
140  
150  
160  
180  
200  
220  
240  
260  
280  
300  
320  
360  
400  
440  
480  
520  
560  
600  
800  
7.5  
10  
880  
960  
12.5  
15  
1040  
1120  
1200  
1280  
1440  
1600  
1760  
1920  
2080  
2240  
2400  
2560  
2880  
3200  
3520  
3840  
4160  
4480  
4800  
17.5  
20  
22.5  
25  
27.5  
30  
32.5  
35  
37.5  
40  
45  
50  
55  
60  
65  
70  
75  
8.4.6 Current Limit  
The DRV10975 has several current limit modes to help ensure optimal control of the motor and to ensure safe  
operation. The various current limit modes are listed in 6. Acceleration current limit is used to provide a means  
of controlling the amount of current delivered to the motor. This is useful when the system needs to limit the  
amount of current pulled from the power supply during motor start-up. The lock detection current limit is a  
configurable threshold that can be used to limit the current applied to the motor. Overcurrent protection is used to  
protect the device; therefore, it cannot be disabled or configured to a different threshold. The current limit modes  
are described in the following sections.  
6. DRV10975 Current Limit Modes  
Current Limit Mode  
Acceleration current limit  
Lock detection current limit  
Situation  
Motor start  
Motor locked  
Action  
Fault Diagnose  
No fault  
Limit the output voltage amplitude  
Stop driving the motor and enter lock state  
Stop driving and recover when OC signal disappeared  
Mechanical rotation error  
Circuit connection  
Overcurrent protection (OCP) Short circuit  
32  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
 
 
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
8.4.6.1 Acceleration Current Limit  
The acceleration current limit limits the voltage applied to the motor to prevent the current from exceeding the  
programmed threshold. The acceleration current limit threshold is configured by writing the SWiLimitThr[3:0] bits  
to select ILIMIT. The acceleration current limit does not use a direct measurement of current. It uses the  
programmed motor phase resistance, RPH_CT, and programmed BEMF constant, Kt, to limit the voltage applied to  
the motor, U, as shown in 27 and 公式 7.  
When the acceleration current limit is active, it does not stop the motor from spinning nor does it trigger a fault.  
The acceleration current limit function is only available in closed loop control.  
Rm  
ILIMIT  
BEMF = Kt ´ Speed  
M
VU_LIMIT  
Copyright © 2017, Texas Instruments Incorporated  
27. Acceleration Current Limit  
ULIMIT = ILIMIT × RPH_CT + Speed × Kt  
(7)  
8.4.7 Lock Detect and Fault Handling  
The DRV10975 provides several options for determining if the motor becomes locked as a result of some  
external torque. Five lock detect schemes work together to ensure the lock condition is detected quickly and  
reliably. 28 shows the logic which integrates the various lock detect schemes. When a lock condition is  
detected, the DRV10975 device takes action to prevent continuously driving the motor in order to prevent  
damage to the system or the motor.  
In addition to detecting if there is a locked motor condition, the DRV10975 also identifies and takes action if there  
is no motor connected to the system.  
Each of the five lock-detect schemes and the no motor detection can be disabled by respective register bits  
LockEn[5:0].  
When a lock condition is detected, the MtrLck in the Status register is set. The FaultCode register provides an  
indication of which of the six different conditions was detected on Lock5 to Lock0. These bits are reset when the  
motor restarts. The bits in the FaultCode register are set even if the lock detect scheme is disabled.  
The DRV10975 reacts to either locked rotor or no motor connected conditions by putting the output drivers into a  
high-impedance state. To prevent the energy in the motor from pumping the supply voltage, the DRV10975  
incorporates an anti-voltage-surge (AVS) process whenever the output stages transition into the high-impedance  
state. The AVS function is described in AVS Function. After entering the high-impedance state as a result of a  
fault condition, the system tries to restart after tLOCK_OFF  
.
版权 © 2015–2018, Texas Instruments Incorporated  
33  
 
 
 
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
LockEn(0, 1, 2, 3, 4, 5)  
Lock-Detection Current Limit  
Speed Abnormal  
BEMF Abnormal  
No-Motor Fault  
Hi-Z  
and Restart  
Logic  
OR  
Open-Loop Stuck  
Closed-Loop Stuck  
Register  
Status[4]  
Reset  
Register:  
FaultCode[5:0]  
Set  
Copyright © 2017, Texas Instruments Incorporated  
28. Lock Detect and Fault Diagnose  
8.4.7.1 Lock0: Lock Detection Current Limit Triggered  
The lock detection current limit function provides a configurable threshold for limiting the current to prevent  
damage to the system. This is often tripped in the event of a sudden locked rotor condition. The DRV10975  
continuously monitors the current in the low-side drivers as shown in 29. If the current goes higher than the  
threshold configured by the HWiLimitThr[2:0] bits, then the DRV10975 stops driving the motor by placing the  
output phases into a high-impedance state. The MtrLck bit is set and a lock condition is reported. It retries after  
tLOCK_OFF  
.
Set the lock detection current limit to a higher value than the acceleration current limit.  
+
DigitalCore  
DAC  
29. Lock Detection Current Limit  
8.4.7.2 Lock1: Abnormal Speed  
If motor is operating normally, the motor BEMF should always be less than output amplitude. The DRV10975  
uses two methods of monitoring the BEMF in the system. The U phase current is monitored to maintain an  
estimate of BEMF based on the setting for Rm[6:0]. In addition, the BEMF is estimated based on the operation  
speed of the motor and the setting for Kt[6:0]. 30 shows the method for using this information to detect a lock  
condition. If motor BEMF is much higher than output amplitude for a certain period of time, tLCK_ETR, it means the  
estimated speed is wrong, and the motor has gotten out of phase.  
34  
版权 © 2015–2018, Texas Instruments Incorporated  
 
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
Rm  
I
BEMF1 = VU I× Rm  
BEMF2 =Kt × Speed  
M
VU  
Lock Detected If BEMF2 > VU  
Copyright © 2017, Texas Instruments Incorporated  
30. Lock Detection 1  
8.4.7.3 Lock2: Abnormal Kt  
For any given motor, the integrated value of BEMF during half of an electrical cycle is constant. It is determined  
by BEMF constant (Kt) (see 31). It is true regardless of whether the motor is running fast or slow. This  
constant value is continuously monitored by calculation and used as criteria to determine the motor lock  
condition. It is referred to as Ktc.  
Based on the Kt value programmed, create a range from Kt_low to Kt_high, if the Ktc goes beyond the range for  
a certain period of time, tLCK_ETR, lock is detected. Kt_low and Kt_high are determined by KtLckThr[1:0] (see 图  
32).  
31. BEMF Integration  
Kt_high  
Ktc  
Kt  
Kt_low  
Lock detect  
32. Abnormal Kt Lock Detect  
8.4.7.4 Lock3 (Fault3): No Motor Fault  
The phase U current is checked after transitioning from open loop to closed loop. If phase U current is not  
greater than 140 mA then the motor is not connected as shown in 33. This condition is treated and reported  
as a fault.  
版权 © 2015–2018, Texas Instruments Incorporated  
35  
 
 
 
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
DRV10975  
M
33. No Motor Error  
8.4.7.5 Lock4: Open Loop Motor Stuck Lock  
Lock4 is used to detect locked motor conditions while the motor start sequence is in open loop.  
For a successful startup, motor speed should equal to open to closed loop handoff threshold when the motor is  
transitioning into closed loop. However, if the motor is locked, the motor speed is not able to match the open loop  
drive rate.  
If the motor BEMF is not detected for one electrical cycle after the open loop drive rate exceeds the threshold,  
then the open loop was unsuccessful as a result of a locked rotor condition.  
8.4.7.6 Lock5: Closed Loop Motor Stuck Lock  
If the motor suddenly becomes locked, motor speed and Ktc are not able to be refreshed because motor BEMF  
zero cross may not appear after the lock. In this condition, lock can also be detected by the following scheme: if  
the current commutation period is 2× longer than the previous period.  
8.4.8 AVS Function  
When a motor is driven, energy is transferred from the power supply into it. Some of this energy is stored in the  
form of inductive energy or as mechanical energy. The DRV10975 includes circuits to prevent this energy from  
being returned to the power supply which could result in pumping up the VCC voltage. This function is referred to  
as the AVS and acts to protect the DRV10975 as well as other circuits that share the same VCC connection. Two  
forms of AVS protection are used to prevent both the mechanical energy or the inductive energy from being  
returned to the supply. Each of these modes can be independently disabled through the register configuration  
bits AVSMEn and AVSIndEn.  
8.4.8.1 Mechanical AVS Function  
If the speed command suddenly drops such that the BEMF voltage generated by the motor is greater than the  
voltage that is applied to the motor, then the mechanical energy of the motor is returned to the power supply and  
the VCC voltage surges. The mechanical AVS function works to prevent this from happening. The DRV10975  
buffers the speed command value and limits the resulting output voltage, UMIN, so that it is not less than the  
BEMF voltage of the motor. The BEMF voltage in the mechanical AVS function is determined using the  
programmed value for the Kt of the motor (Kt[6:0]) along with the speed. 34 shows the criteria used by the  
mechanical AVS function.  
Rm  
IMIN = 0  
BEMF  
M
VU  
VU_MIN = BEMF + IMIN ´ Rm = BEMF  
Copyright © 2017, Texas Instruments Incorporated  
34. Mechanical AVS  
The mechanical AVS function can operate in one of two modes, which can be configured by the register bit  
AVSMMd:  
AVSMMd = 0 – AVS mode is always active to prevent the applied voltage from being less than the BEMF  
voltage.  
36  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
AVSMMd = 1 – AVS mode becomes active when VCC reaches 24 V. The motor acts as a generator and  
returns energy into the power supply until VCC reaches 24 V. This mode can be used to enable faster  
deceleration of the motor in applications where returning energy to the power supply is allowed.  
8.4.9 PWM Output  
The DRV10975 has 16 options for PWM dead time which can be used to configure the time between one of the  
bridge FETs turning off and the complementary FET turning on. Deadtime[3:0] can be used to configure dead  
times between 40 ns and 640 ns. Take care that the dead time is long enough to prevent the bridge FETs from  
shooting through. The recommend minimum dead time is 400 ns for 24-V VCC and 360 ns for 12-V VCC.  
The DRV10975 offers two options for PWM switching frequency. When the configuration bit DoubleFreq is set to  
0, the output PWM frequency will be 25 kHz and when DoubleFreq is set to 1, the output PWM frequency will be  
50 kHz.  
8.4.10 FG Customized Configuration  
The DRV10975 provides information about the motor speed through the frequency generate (FG) pin. FG also  
provides information about the driving state of the DRV10975.  
8.4.10.1 FG Output Frequency  
The FG output frequency can be configured by FGcycle[1:0]. The default FG toggles once every electrical cycle  
(FGcycle = 00). Many applications configure the FG output so that it provides two pulses for every mechanical  
rotation of the motor. The configuration bits provided in DRV10975 can accomplish this for 4-pole, 6-pole, 8-pole,  
and 12-pole motors, as shown in 35.  
35 shows the DRV10975 has been configured to provide FG pulses once every electrical cycle (4 pole), twice  
every three electrical cycle (6 pole), once every two electrical cycles (8 pole), and once every three electrical  
cycles (12 pole).  
Note that when it is set to 2 FG pulses every three electrical cycles, the FG output is not 50% duty cycle. Motor  
speed is able to be measured by monitoring the rising edge of the FG output.  
Motor phase  
driving voltage  
Fgcycle '00'  
4 pole  
Fgcycle '01'  
6 pole  
Fgcycle '10'  
8 pole  
Fgcycle '11'  
12 pole  
35. FG Frequency Divider  
版权 © 2015–2018, Texas Instruments Incorporated  
37  
 
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
8.4.10.2 FG Open-Loop and Lock Behavior  
Note that the FG output reflects the driving state of the motor. During normal closed loop behavior, the driving  
state and the actual state of the motor are synchronized. During open loop acceleration, however, this may not  
reflect the actual motor speed. During a locked motor condition, the FG output is driven high.  
The DRV10975 provides three options for controlling the FG output during open loop as shown in 36. The  
selection of these options is determined by the FGOLsel[1:0] setting.  
Option0: Open loop output FG based on driving frequency  
Option1: Open loop no FG output (keep high)  
Option2: FG output based on driving frequency at the first power-on start-up, and no FG output (keep high)  
for any subsequent restarts  
Open loop  
Closed loop  
Motor phase  
driving voltage  
FGOLsel = 00  
FGOLsel =01  
Open loop  
Closed loop  
Open loop  
Closed loop  
Motor phase  
driving voltage  
FGOLsel =10  
Start-up after power on or wakeup  
from sleep or standby mode  
Rest of the startups  
36. FG Behavior During Open Loop  
8.4.11 Diagnostics and Visibility  
The DRV10975 offers extensive visibility into the motor system operation conditions stored in internal registers.  
This information can be monitored through the I2C interface. Information can be monitored relating to the device  
status, motor speed, supply voltage, speed command, motor phase voltage amplitude, fault status, and others.  
The data is updated on the fly.  
8.4.11.1 Motor Status Readback  
The motor status register provides information on overtemperature (OverTemp), sleep or standby state  
(Slp_Stdby), over current (OverCurr), and locked rotor (MtrLck).  
38  
版权 © 2015–2018, Texas Instruments Incorporated  
 
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
8.4.11.2 Motor Speed Readback  
The motor operation speed is automatically updated in register MotorSpeed1 and MotorSpeed2 while the motor  
is spinning. MotorSpeed1 contains the 8 most significant bits and MotorSpeed2 contains the 8 least significant  
bits. The value is determined by the period for calculated BEMF zero crossings on phase U. The electrical speed  
of the motor is denoted as Velocity (Hz) and is calculated as shown in 公式 8.  
Velocity (Hz) = {MotorSpeed1:MotorSpeed2} / 10  
(8)  
As an example consider the following:  
MotorSpeed1 = 0x01;  
MotorSpeed2 = 0xFF;  
Velocity = 512 (0x01FF) / 10 = 51 Hz  
ecycles 1 mechcycle  
second  
minute  
51  
ì
ì 60  
= 1530 RPM  
second  
2
ecycle  
For a 4-pole motor, this translates to:  
8.4.11.2.1 Two-Byte Register Readback  
Several of the registers such as MotorSpeed report data that is contained in two registers.  
To make sure that the data does not change between the reading of the first and second register reads, the  
DRV10975 implements a special scheme to synchronize the reading of MSB and LSB data. To ensure valid data  
is read when reading a two register value, use the following sequence.  
1. Read the MSB.  
2. Read the LSB.  
37 shows the two-register readback circuit. When the MSB is read, the controller takes a snapshot of the LSB.  
The LSB data is stored in one extra register byte, which is shown as MotorSpeedBuffer[7:0]. When the LSB is  
read, the value of MotorSpeedBuffer[7:0] is sent.  
MotorSpeed[15:8]  
MotorSpeed[7:0]  
Read  
MotorSpeed[15:8]  
MotorSpeed  
Buffer[7:0]  
Read  
MotorSpeed[7:0]  
I2C send out motor speed.  
Motor Speed Read Back  
37. Two-Byte Register Readback  
8.4.11.3 Motor Electrical Period Readback  
The motor operation electrical period is automatically updated in register MotorPeriod1 and MotorPeriod2 while  
the motor is spinning. MotorPeriod1 is the MSB and MotorPeriod2 is the LSB. The electrical period is measured  
as the time between calculated BEMF zero crossings for phase U. The electrical period of the motor is denoted  
as d as tELE_PERIOD (µs) and is calculated as shown in 公式 9.  
tELE_PERIOD (µs) = {MotorPeriod1:MotorPeriod2} × 10  
(9)  
As an example consider the following:  
MotorPeriod1 = 0x01;  
MotorPeriod2 = 0xFF;  
tELE_PERIOD = 512 (0x01FF) × 10 = 5120 µs  
The motor electrical period and motor speed satisfies the condition of 公式 10.  
tELE_PERIOD (s) × Velocity (Hz) = 1  
(10)  
39  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
 
 
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
8.4.11.4 BEMF Constant Readback  
For any given motor, the integrated value of BEMF during half of an electronic cycle will be constant, Ktc (see  
Lock2: Abnormal Kt).  
The integration of the motor BEMF is processed periodically (updated every electrical cycle) while the motor is  
spinning. The result is stored in register MotorKt1 and MotorKt2.  
The relationship is shown in 公式 11.  
Ktc (V/Hz)= {MotorKt1:MotorKt2} / 2 /1442  
(11)  
8.4.11.5 Motor Estimated Position by IPD  
After inductive sense is executed the rotor position is detected within 60 electrical degrees of resolution. The  
position is stored in register IPDPosition.  
The value stored in IPD Position corresponds to one of the six motor positions plus the IPD Advance Angle as  
shown in 7. For more about information about IPD, see Initial Position Detect (IPD).  
7. IPD Position Readback  
S
U
V
U
V
U
V
U
V
U
V
U
V
N
N
S
W
W
W
W
W
W
Rotor position (°)  
Data1  
0
0
60  
43  
120  
85  
180  
128  
240  
171  
300  
213  
IPD Advance  
Angle  
30  
22  
60  
44  
90  
63  
120  
85  
Data2  
Register date  
(Data1 + Data2) mod (256)  
8.4.11.6 Supply Voltage Readback  
The power supply is monitored periodically during motor operation. This information is available in register  
SupplyVoltage. The power supply voltage is recorded as shown in 公式 12.  
VPOWERSUPPLY (V) = Supply Voltage × 22.8 V / 256  
(12)  
8.4.11.7 Speed Command Readback  
The DRV10975 converts the various types of speed command into a speed command value (SpeedCmd) as  
shown in 38. By reading SpeedCmd, the user can observe PWM input duty (PWM digital mode), analog  
voltage (analog mode), or I2C data (I2C mode). This value is calculated as shown in 公式 13.  
公式 13 shows how the speed command as a percentage can be calculated and set in SpeedCmd.  
DutySPEED (%) = SpeedCmd × 100% / 255  
where  
DutySPEED = Speed command as a percentage  
SpeedCmd = Register value  
(13)  
8.4.11.8 Speed Command Buffer Readback  
If acceleration current limit and AVS are enabled, the PWM duty cycle output (read back at spdCmdBuffer) may  
not always match the input command (read back at SpeedCmd) shown in 38. See AVS Function and Current  
Limit.  
By reading the value of spdCmdBuffer, the user can observe buffered speed command (output PWM duty cycle)  
to the motor.  
40  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
 
 
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
公式 14 shows how the buffered speed is calculated.  
DutyOUTPUT (%) = spdCmdBuffer × 100% / 255  
where  
DutyOUTPUT = The maximum duty cycle of the output PWM, which represents the output amplitude in  
percentage.  
spdCmdBuffer = Register value  
(14)  
PWM in  
Analog  
PWM duty  
ADC  
AVS,  
Acceleration Current Limit  
Closed Loop Accelerate  
Speed  
Command  
I2C  
SpeedCmd  
PWM_DCO  
spdCmdBuffer  
38. SpeedCmd and spdCmdBuffer Register  
8.4.11.9 Fault Diagnostics  
See Lock Detect and Fault Handling.  
版权 © 2015–2018, Texas Instruments Incorporated  
41  
 
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
8.5 Register Maps  
8.5.1 I2C Serial Interface  
The DRV10975 provides an I2C slave interface with slave address 101 0010. TI recommends a pullup resistor  
4.7 kΩ to 3.3 V for I2C interface port SCL and SDA.  
Four read/write registers (0x00:0x03) are used to set motor speed and control device registers and EEPROM.  
Device operation status can be read back through 12 read-only registers (0x10:0x1E). Another 12 EEPROM  
registers (0x20:0x2B) can be accessed to program motor parameters and optimize the spin-up profile for the  
application.  
8.5.2 Register Map  
Register Name Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SpeedCtrl1(1)  
SpeedCtrl2(1)  
DevCtrl(1)  
EECtrl(1)  
Status(2)  
MotorSpeed1(2)  
MotorSpeed2(2)  
MotorPeriod1(2)  
MotorPeriod2(2)  
MotorKt1(2)  
0x00  
0x01  
0x02  
0x03  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x19  
0x1A  
0x1B  
0x1C  
0x1E  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
SpdCtrl[7:0]  
OverRide  
SpdCtrl[8]  
enProgKey[7:0]  
eeWrite  
sleepDis  
SIdata  
eeRefresh  
OverCurr  
OverTemp  
Slp_Stdby  
MtrLck  
MotorSpeed[15:8]  
MotorSpeed[7:0]  
MotorPeriod[15:8]  
MotorPeriod[7:0]  
MotorKt[15:8]  
MotorKt2(2)  
MotorKt[7:0]  
IPDPosition(2)  
SupplyVoltage(2)  
SpeedCmd(2)  
spdCmdBuffer(2)  
FaultCode(2)  
MotorParam1(3)  
MotorParam2(3)  
MotorParam3(3)  
SysOpt1(3)  
IPDPosition[7:0]  
SupplyVoltage [7:0]  
SpeedCmd [7:0]  
spdCmdBuffer[7:0]  
Lock5  
Lock4  
Fault3  
Rm[6:0]  
Lock2  
Lock1  
Lock0  
DoubleFreq  
AdjMode  
Kt[6:0]  
CtrlAdvMd  
TCtrlAdv[6:0]  
ISDen  
ISDThr[1:0]  
IPDAdvcAgl[1:0]  
RvsDrEn  
AVSMEn  
RvsDrThr[1:0]  
SysOpt2(3)  
SysOpt3(3)  
SysOpt4(3)  
SysOpt5(3)  
SysOpt6(3)  
SysOpt7(3)  
SysOpt8(3)  
SysOpt9(3)  
OpenLCurr[1:0]  
CtrlCoef[1:0]  
OpLCurrRt[2:0]  
StAccel2[2:0]  
BrkDoneThr[2:0]  
StAccel[2:0]  
AlignTime[2:0]  
AVSMMd  
Op2ClsThr[4:0]  
LockEn[3:0]  
SWiLimitThr[3:0]  
ClsLpAccel[2:0]  
IPDCurrThr[3:0]  
FGOLsel[1:0] FGcycle[1:0]  
AVSIndEn  
IPDRlsMd  
HWiLimitThr[2:0]  
Deadtime[3:0]  
VregSel  
KtLckThr[1:0]  
LockEn5  
LockEn4  
IPDClk[1:0]  
SpdCtrlMd CLoopDis  
(1) R/W  
(2) Read only  
(3) EEPROM  
42  
版权 © 2015–2018, Texas Instruments Incorporated  
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
8. Default EEPROM Value  
Address  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
Default Value  
0x4A  
0x4E  
0x2A  
0x00  
0x98  
0xE4  
0x7A  
0xF4  
0x69  
0xB8  
0xAD  
0x0C  
8.5.3 Register Definition  
9. Register Description  
Register  
Data  
Description  
Name  
Address Bits  
8 LSB of a 9-bit value used for the motor speed.  
If OverRide = 1, the user can directly control the motor speed by writing to the  
register through I2C.  
SpeedCtrl1(1)  
0x00  
7:0 SpdCtrl[7:0]  
Use to control the SpdCtrl [8:0] bits. If OverRide = 1, the user can write the speed  
command through I2C.  
7
OverRide  
6:1 N/A  
N/A  
SpeedCtrl2(1)  
0x01  
MSB of a 9-bit value used for the motor speed.  
If OverRide = 1, user can directly control the motor speed by writing to the  
register through I2C.  
0
SpdCtrl [8]  
The MSB should be written first. Digital takes a snapshot of the MSB when LSB  
is written.  
8-bit byte use to enable programming in the EEPROM.  
To program the EEPROM, enProgKey = 1011 0110 (0xB6), followed immediately  
by eeWrite = 1. Otherwise, enProgKey value is reset.  
DevCtrl(1)  
EECtrl(1)  
0x02  
0x03  
7:0 enProgKey[7:0]  
7
6
5
4
sleepDis  
SIdata  
Set to 1 to disable entering into sleep or standby mode.  
Set to 1 to enable the writing to the configuration registers.  
Copy EEPROM data to register.  
eeRefresh  
eeWrite  
Bit used to program (write) to the EEPROM.  
N/A  
3:0 N/A  
7
6
OverTemp  
Bit to indicate device temperature is over its limits.  
Bit to indicate that device went into sleep or standby mode.  
Slp_Stdby  
Bit to indicate that an overcurrent event happened. This is a sticky bit, once  
written, it stays high even if overcurrent signal goes low. This bit is cleared on  
Read.  
5
OverCurr  
Status(2)  
0x10  
4
3
2
1
0
MtrLck  
N/A  
Bit to indicate that the motor is locked.  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Motor Speed1(2)  
Motor Speed2(2)  
0x11  
0x12  
7:0 MotorSpeed [15:8] 16-bit value indicating the motor speed. Always read the MotorSpeed1 first.  
Velocity (Hz) = {MotorSpeed1:MotorSpeed2} / 10  
For example: MotorSpeed1 = 0x01, MotorSpeed2 = 0xFF,  
7:0 MotorSpeed [7:0]  
Motor Speed = 0x01FF (511) / 10 = 51 Hz  
(1) R/W  
(2) Read only  
版权 © 2015–2018, Texas Instruments Incorporated  
43  
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
9. Register Description (接下页)  
Register  
Data  
Description  
Name  
Address Bits  
Motor Period1(2)  
0x13  
0x14  
0x15  
0x16  
7:0 MotorPeriod [15:8] 16-bit value indicating the motor period. Always read the MotorPeriod1 first.  
tELE_PERIOD (µs) = {MotorPeriod1:MotorPeriod2} × 10  
Motor Period2(2)  
MotorKt1(2)  
7:0 MotorPeriod [7:0]  
For example: MotorPeriod1 = 0x01, MotorPeriod2 = 0xFF,  
Motor Period = 0x01FF (511) × 10 = 5.1 ms  
7:0 MotorKt[15:8]  
7:0 MotorKt[7:0]  
16-bit value indicating the motor measured velocity constant. Always read the  
MotorKt1 first.  
Ktc (V/Hz)= {MotorKt1:MotorKt2} / 2 /1090  
{MotorKt1:MotorKt2} corresponding to 2 × Ktph_dig  
MotorKt2(2)  
8-bit value indicating the estimated motor position during IPD plus the IPD  
advance angle (see 7)  
IPDPosition(2)  
0x19  
0x1A  
7:0 IPDPosition [7:0]  
7:0 SupplyVoltage [7:0]  
7:0 SpeedCmd[7:0]  
8-bit value indicating the supply voltage  
VPOWERSUPPLY (V) = SupplyVoltage[7:0] × 22.8 V / 256  
For example, SupplyVoltage[7:0] = 0x87,  
VPOWERSUPPLY (V) = 0x87 (135) × 22.8 / 256 = 12 V  
8-bit value indicating the speed command based on analog or PWMin or I2C.  
FF indicates 100% speed command.  
Supply  
Voltage(2)  
SpeedCmd(2)  
0x1B  
0x1C  
spdCmd  
Buffer(2)  
8-bit value indicating the speed command after buffer output.  
FF indicates 100% speed command.  
7:0 spdCmdBuffer [8:1]  
7:6 N/A  
N/A  
5
4
3
2
1
0
Lock5  
Lock4  
Fault3  
Lock2  
Lock1  
Lock0  
Stuck in closed loop  
Stuck in open loop  
No motor  
FaultCode(2)  
0x1E  
Kt abnormal  
Speed abnormal  
Lock detection current limit  
0 = Set driver output frequency to 25 kHz  
1 = Set driver output frequency to 50 kHz  
7
DoubleFreq  
Motor Param1(3)  
Motor Param2(3)  
Motor Param3(3)  
0x20  
0x21  
0x22  
Rm[6:4] : Number of the Shift bits of the motor phase resistance  
Rm[3:0] : Significant value of the motor phase resistance  
Rmdig = R_(ph_ct) / 0.00735  
6:0 Rm[6:0]  
Rmdig = Rm[3:0] Rm[6:4] See Motor Phase Resistance and 2  
Closed loop adjustment mode setting  
0 = Full cycle adjustment  
1 = Half cycle adjustment  
7
AdjMode  
Kt[6:4] = Number of the Shift bits of BEMF constant  
Kt[3:0] = Significant value of the BEMF constant  
Kt_(ph_dig) = 1442×Kt_ph  
Kt_(ph_dig) = Kt[3:0] Kt[4:6]  
See BEMF Constant and 3 .  
6:0 Kt[6:0]  
Motor commutate control advance  
0 = Fixed time  
1 = Variable time relative to the motor speed and VCC  
7
CtrlAdvMd  
tdelay [6:4] = Number of the Shift bits of LRTIME  
tdelay [3:0] = Significant value of LRTIME  
6:0 Tdelay[6:0]  
tSETTING = 2.5 µs × {TCtrlAdv[3:0] << TCtrlAdv[6:4]}  
(3) EEPROM  
44  
版权 © 2015–2018, Texas Instruments Incorporated  
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
9. Register Description (接下页)  
Register  
Address Bits  
Data  
Description  
Name  
ISD stationary judgment threshold  
00 = 6 Hz (80 ms, no zero cross)  
01 = 3 Hz (160 ms, no zero cross)  
10 = 1.6 Hz (320 ms, no zero cross)  
11 = 0.8 Hz (640 ms, no zero cross)  
7:6 ISDThr[1:0]  
Advancing angle after inductive sense  
00 = 30°  
01 = 60°  
10 = 90°  
11 = 120°  
5:4 IPDAdvcAgl [1:0]  
SysOpt1(3)  
0x23  
0 = Initial speed detect (ISD) disable  
1 = ISD enable  
3
2
ISDen  
0 = Reverse drive disable  
1 = Reverse drive enable  
RvsDrEn  
The threshold where device starts to process reverse drive (RvsDr) or brake.  
00 = 6.3 Hz  
01 = 13 Hz  
10 = 26 Hz  
11 = 51 Hz  
1:0 RvsDrThr[1:0]  
7:6 OpenLCurr[1:0]  
Open loop current setting.  
00 = 0.2 A  
01 = 0.4 A  
10 = 0.8 A  
11 = 1.6 A  
Open-loop current ramp-up rate setting  
000 = 6 VCC/s  
001 = 3 VCC/s  
010 = 1.5 VCC/s  
5:3 OpLCurrRt:[2:0]  
011 = 0.7 VCC/s  
100 = 0.34 VCC/s  
101 = 0.16 VCC/s  
110 = 0.07 VCC/s  
111 = 0.023 VCC/s  
SysOpt2(3)  
0x24  
Braking mode setting  
000 = No brake (BrkEn = 0)  
001 = 2.7 s  
010 = 1.3 s  
2:0 BrkDoneThr [2:0]  
011 = 0.67 s  
100 = 0.33 s  
101 = 0.16 s  
110 = 0.08 s  
111 = 0.04 s  
版权 © 2015–2018, Texas Instruments Incorporated  
45  
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
9. Register Description (接下页)  
Register  
Data  
Description  
Name  
Address Bits  
Control coefficient  
00 = 0.25  
01 = 0.5  
7:6 CtrlCoef[1:0]  
10 = 0.75  
11 = 1  
Open loop start-up accelerate (second order)  
000 = 57 Hz/s2  
001 = 29 Hz/s2  
010 = 14 Hz/s2  
5:3 StAccel2[2:0]  
011 = 6.9 Hz/s2  
100 = 3.3 Hz/s2  
SysOpt3(3)  
0x25  
101 = 1.6 Hz/s2  
110 = 0.66 Hz/s2  
111 = 0.22 Hz/s2  
Open loop start-up accelerate (first order)  
000 = 76 Hz/s  
001 = 38 Hz/s  
010 = 19 Hz/s  
2:0 StAccel[2:0]  
011 = 9.2 Hz/s  
100 = 4.5 Hz/s  
101 = 2.1 Hz/s  
110 = 0.9 Hz/s  
111 = 0.3 Hz/s  
Open to closed loop threshold  
0xxxx = Range 0: n × 0.8 Hz  
00000 = N/A  
00001 = 0.8 Hz  
00111 = 5.6 Hz  
7:3 Op2ClsThr[4:0]  
01111 = 12 Hz  
1xxxx = Range 1: (n + 1) × 12.8 Hz  
10000 = 12.8 Hz  
10001 = 25.6 Hz  
10111 = 192 Hz  
11111 = 204.8 Hz  
SysOpt4(3)  
0x26  
Align time.  
000 = 5.3 s  
001 = 2.7 s  
010 = 1.3 s  
011 = 0.67 s  
100 = 0.33 s  
101 = 0.16 s  
110 = 0.08 s  
111 = 0.04 s  
2:0 AlignTime[2:0]  
FaultEn3  
7
No motor fault. Enabled when high  
(LockEn[3])  
6
5
4
3
2
LockEn[2]  
LockEn[1]  
LockEn[0]  
AVSIndEn  
AVSMEn  
Abnormal Kt. Enabled when high  
Abnormal speed. Enabled when high  
Lock detection current limit. Enabled when high  
Inductive AVS enable. Enabled when high.  
Mechanical AVS enable. Enabled when high  
SysOpt5(3)  
0x27  
Mechanical AVS mode  
0 = AVS to VCC  
1 = AVS to 24 V  
1
0
AVSMMd  
IPDRlsMd  
IPD release mode  
0 = Brake when inductive release  
1 = Hi-z when inductive release  
46  
版权 © 2015–2018, Texas Instruments Incorporated  
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
9. Register Description (接下页)  
Register  
Address Bits  
Data  
Description  
Name  
Acceleration current limit threshold  
0000 = No acceleration current limit  
0001 = 0.2-A current limit  
7:4 SWiLimitThr [3:0]  
xxxx = n × 0.2 A current limit  
SysOpt6(3)  
0x28  
Lock detection current limit threshold  
(n + 1) × 0.4 A  
3:1 HWiLimitThr [2:0]  
0
7
N/A  
N/A  
LockEn[5]  
Stuck in closed loop (no zero cross detected). Enabled when high  
Closed loop accelerate  
000 = Inf fast  
001 = 48 VCC/s  
010 = 48 VCC/s  
6:4 ClsLpAccel[2:0]  
011 = 0.77 VCC/s  
100 = 0.37 VCC/s  
101 = 0.19 VCC/s  
110 = 0.091 VCC/s  
111 = 0.045 VCC/s  
SysOpt7(3)  
0x29  
Dead time between HS and LS gate drive for motor phases  
0000 = 40 ns  
xxxx = (n + 1) × 40 ns. Recommended minimum dead time is 400 ns for 24-V  
VCC and 360 ns for 12-V VCC.  
3:0 Deadtime[3:0]  
7:4 IPDCurrThr[3:0]  
IPD (inductive sense) current threshold  
0000 = No IPD function. Align and Go  
0001 = 0.4-A current threshold.  
xxxx = 0.2 A × (n + 1) current threshold.  
3
2
LockEn[4]  
VregSel  
Open loop stuck (no zero cross detected). Enabled when high  
Buck regulator voltage select  
0: Vreg = 5 V  
SysOpt8(3)  
0x2A  
1: Vreg = 3.3 V  
Inductive sense clock  
00 = 12 Hz;  
1:0 IPDClk[1:0]  
7:6 FGOLsel[1:0]  
5:4 FGcycle[1:0]  
3:2 KtLckThr[1:0]  
01 = 24 Hz;  
10 = 47 Hz;  
11 = 95 Hz  
FG open loop output select  
00 = FG outputs in both open loop and closed loop  
01 = FG outputs only in closed loop  
10 = FG outputs closed loop and the first open loop  
11 = Reserved  
FG cycle select  
00 = 1 pulse output per electrical cycle  
01 = 2 pulses output per 3 electrical cycles  
10 = 1 pulse output per 2 electrical cycles  
11 = 1 pulse output per 3 electrical cycles  
SysOpt9(3)  
0x2B  
Abnormal Kt lock detect threshold  
00 = Kt_high = 3/2Kt. Kt_low = 3/4Kt  
01 = Kt_high = 2Kt. Kt_low = 3/4Kt  
10 = Kt_high = 3/2Kt. Kt_low = 1/2Kt  
11 = Kt_high = 2Kt. Kt_low = 1/2Kt  
Speed input mode  
1
0
SpdCtrlMd  
CLoopDis  
0 = Analog input expected at SPEED pin  
1 = PWM input expected at SPEED pin  
0 = Transfer to closed loop at Op2ClsThr speed  
1 = No transfer to closed loop. Keep in open loop  
版权 © 2015–2018, Texas Instruments Incorporated  
47  
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI's customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DRV10975 is used in sensorless 3-phase BLDC motor control. The driver provides a high performance, high  
reliability, flexible and simple solution for appliance fan, pump, and HVAC applications. The following design in 图  
39 shows a common application of the DRV10975. For the DRV10975Z sleep mode device, a Zener diode must  
be placed in parallel with the 10-µF VREG capacitor as shown in 39. The Zener diode must meet the  
requirements listed in 11  
9.2 Typical Application  
VCC  
10 µF  
0.1 µF  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VCP  
CPP  
CPN  
SW  
VCC  
VCC  
W
0.1 µF  
3
10 µF  
3.3 V or 5 V  
4
W
47 µH  
5
SWGND  
VREG  
V1P8  
GND  
V3P3  
SCL  
V
M
6
V
1 µF  
7
U
8
U
1 µF  
9
PGND  
PGND  
DIR  
SPEED  
10  
11  
12  
SDA  
FG  
Interface to  
Microcontroller  
VCC  
10 µF  
0.1 µF  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VCP  
CPP  
CPN  
SW  
VCC  
VCC  
W
0.1 µF  
3
10 µF  
3.3 V or 5 V  
4
W
39 W  
5
SWGND  
VREG  
V1P8  
GND  
V3P3  
SCL  
V
M
6
V
1 µF  
7
U
8
U
1 µF  
9
PGND  
PGND  
DIR  
SPEED  
10  
11  
12  
SDA  
FG  
Interface to  
Microcontroller  
Copyright © 2016, Texas Instruments Incorporated  
39. Typical Application Schematics for DRV10975 (Top Image) and DRV10975Z (Bottom Image)  
48  
版权 © 2015–2018, Texas Instruments Incorporated  
 
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
Typical Application (接下页)  
9.2.1 Design Requirements  
10 provides design input parameters and motor parameters for system design.  
10. Recommended Application Range  
MIN  
6.5  
TYP  
MAX  
18  
UNIT  
V
Motor voltage  
12  
BEMF constant  
Phase to phase, measured while motor is coasting  
1 phase, measured ph-ph and divide by 2  
0.001  
0.3  
1.4  
12  
V/Hz  
Ω
Motor phase resistance  
1 phase; inductance divided by resistance, measured ph-ph is  
equal to 1 ph  
Motor electrical constant  
100  
5000  
µs  
Operating closed loop speed Electrical frequency  
1
1000  
1.5  
2
Hz  
A
Operating current  
PGND, GND  
0.1  
Absolute maximum current  
During start-up or lock condition  
A
11. External Components  
COMPONENT  
CVCC  
PIN 1  
PIN 2  
GND  
VCC  
RECOMMENDED  
10-µF ceramic capacitor rated for VCC  
VCC  
VCP  
CPP  
CVCP  
CCP  
0.1-µF ceramic capacitor rated for 10 V  
0.1-µF ceramic capacitor rated for VCC × 2  
CPN  
47-µH ferrite inductor with 1.15-A current rating, 1.15-A saturation current, and < 1 Ω DC  
resistance (buck mode)  
LSW-VREG  
SW  
VREG  
RSW-VREG  
CVREG  
CV1P8  
CV3P3  
RSCL  
SW  
VREG  
V1P8  
V3P3  
SCL  
VREG 39-Ω series resistor rated for ¼ W (linear mode)  
GND  
GND  
GND  
V3P3  
V3P3  
V3P3  
10-µF ceramic capacitor rated for 10 V  
1-µF ceramic capacitor rated for 5 V  
1-µF ceramic capacitor rated for 5 V  
4.75-kΩ pullup to V3P3  
RSDA  
SDA  
FG  
4.75-kΩ pullup to V3P3  
RFG  
4.75-kΩ pullup to V3P3  
DZener (For 3.3-V Vreg  
mode)  
Only for DRV10975Z, Zener Voltage (Vz) = 4 V (±5%). Peak Power > 2.5 W, Leakage  
Current <100 µA  
GND  
GND  
VREG  
VREG  
DZener (For 5-V Vreg  
mode)  
Only for DRV10975Z, Zener Voltage(Vz) = 6 V (±5%). Peak Power > 2.5 W, Leakage  
Current <100 µA  
9.2.2 Detailed Design Procedure  
1. See the Design Requirements section and make sure your system meets the recommended application  
range.  
2. See the DRV10983 and DRV10975 Tuning Guide and measure the motor parameters.  
3. See the DRV10983 and DRV10975 Tuning Guide. Configure the parameters using DRV10975 GUI, and  
optimize the motor operation. The Tuning Guide takes the user through all the configurations step by step,  
including: start-up operation, closed-loop operation, current control, initial positioning, lock detection, and  
anti-voltage surge.  
4. See the Programming Guide for the DRV10983 and Non-Volatile Memory section for burning tuned settings  
into EEPROM.  
5. Build your hardware based on Layout Guidelines.  
6. Connect the device into system and validate your system solution.  
版权 © 2015–2018, Texas Instruments Incorporated  
49  
 
 
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
9.2.3 Application Curves  
FG  
Phase  
current  
Phase  
voltage  
40. DRV10975 Start-Up Waveform  
41. DRV10975 Operation Current Waveform  
10 Power Supply Recommendations  
The DRV10975 is designed to operate from an input voltage supply, V(VCC), range between 6.5 V and 18 V. The  
user must place a 10-µF ceramic capacitor rated for VCC as close as possible to the VCC and GND pins.  
If the power supply ripple is more than 200 mV, in addition to the local decoupling capacitors, a bulk capacitance  
is required and must be sized according to the application requirements. If the bulk capacitance is implemented  
in the application, the user can reduce the value of the local ceramic capacitor to 1 µF.  
11 Layout  
11.1 Layout Guidelines  
Place VCC, GND, U, V, and W pins with thick traces because high current passes through these traces.  
Place the 10-µF capacitor between VCC and GND, and as close to the VCC and GND pins as possible.  
Place the capacitor between CPP and CPN, and as close to the CPP and CPN pins as possible.  
Connect the GND, PGND, and SWGND under the thermal pad.  
Keep the thermal pad connection as large as possible, both on the bottom side and top side. It should be one  
piece of copper without any gaps.  
50  
版权 © 2015–2018, Texas Instruments Incorporated  
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
11.2 Layout Example  
CVCC(10 uF)  
CVCP(0.1 uF)  
VCC  
VCC  
W
VCP  
CPP  
CCPP(0.1 µF)  
CPN  
RSW_VREG(39 W)  
SW  
W
CVREG(10 µF)  
SWGND  
VREG  
V1P8  
GND  
V
V
CV1P8(1 µF)  
U
U
CV3P3(1 µF)  
V3P3  
PGND  
PGND  
DIR  
SPEED  
RSCL(4.75 kW)  
SCL  
RSDA(4.75 kW)  
SDA  
RFG(4.75 kW)  
FG  
42. Example Layout Diagram for HTSSOP Package  
版权 © 2015–2018, Texas Instruments Incorporated  
51  
DRV10975, DRV10975Z  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
www.ti.com.cn  
Layout Example (接下页)  
CVCC (10 uF)  
CVCP (0.1 uF)  
CCPP (0.1 uF)  
RSW_VREG (39 )  
SW  
W
GND (PPAD)  
SWGND  
VREG  
V1P8  
GND  
V3P3  
SCL  
W
CVREG (10 uF)  
V
V
U
CV1P8 (1 uF)  
CV3P3 (1 uF)  
U
RSCL  
(4.75 k)  
PGND  
RSDA  
(4.75 k)  
43. Example Layout Diagram for VQFN Package  
52  
版权 © 2015–2018, Texas Instruments Incorporated  
DRV10975, DRV10975Z  
www.ti.com.cn  
ZHCSDA8E JANUARY 2015REVISED MAY 2018  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 文档支持  
12.2.1 相关文档  
如需相关文档,请参阅:  
德州仪器 (TI)DRV10983 DRV10975 评估模块用户指南  
德州仪器 (TI)DRV10983 DRV10975调优指南  
德州仪器 (TI)如何设计高效散热型集成 BLDC 电机驱动 PCB 应用报告  
德州仪器 (TI)DRV10983 编程指南  
12.3 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.6 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是适用于指定器件的最新数据。数据如有变更,恕不另行通知,  
且不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查看左侧的导航面板。  
版权 © 2015–2018, Texas Instruments Incorporated  
53  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV10975PWP  
DRV10975PWPR  
DRV10975RHFR  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
VQFN  
PWP  
PWP  
RHF  
24  
24  
24  
60  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
DRV10975  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
DRV10975  
DRV  
10975  
DRV10975ZPWP  
DRV10975ZPWPR  
DRV10975ZRHFR  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
VQFN  
PWP  
PWP  
RHF  
24  
24  
24  
60  
RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
DRV10975Z  
2000 RoHS & Green  
3000 RoHS & Green  
DRV10975Z  
DRV  
10975Z  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV10975PWPR  
DRV10975RHFR  
DRV10975ZPWPR  
DRV10975ZRHFR  
HTSSOP PWP  
VQFN RHF  
HTSSOP PWP  
VQFN RHF  
24  
24  
24  
24  
2000  
3000  
2000  
3000  
330.0  
330.0  
330.0  
330.0  
16.4  
12.4  
16.4  
12.4  
6.95  
4.3  
8.3  
5.3  
8.3  
5.3  
1.6  
1.3  
1.6  
1.3  
8.0  
8.0  
8.0  
8.0  
16.0  
12.0  
16.0  
12.0  
Q1  
Q1  
Q1  
Q1  
6.95  
4.3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV10975PWPR  
DRV10975RHFR  
DRV10975ZPWPR  
DRV10975ZRHFR  
HTSSOP  
VQFN  
PWP  
RHF  
PWP  
RHF  
24  
24  
24  
24  
2000  
3000  
2000  
3000  
350.0  
367.0  
350.0  
367.0  
350.0  
367.0  
350.0  
367.0  
43.0  
35.0  
43.0  
35.0  
HTSSOP  
VQFN  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DRV10975PWP  
DRV10975ZPWP  
PWP  
PWP  
HTSSOP  
HTSSOP  
24  
24  
60  
60  
530  
530  
10.2  
10.2  
3600  
3600  
3.5  
3.5  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
PWP 24  
4.4 x 7.6, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224742/B  
www.ti.com  
PACKAGE OUTLINE  
PWP0024B  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC SMALL OUTLINE  
6.6  
6.2  
SEATING PLANE  
C
TYP  
PIN 1 ID  
A
0.1 C  
AREA  
22X 0.65  
24  
1
2X  
7.9  
7.7  
NOTE 3  
7.15  
12  
13  
0.30  
24X  
4.5  
4.3  
0.19  
B
0.1  
C A  
B
(0.15) TYP  
SEE DETAIL A  
4X (0.2) MAX  
NOTE 5  
2X (0.95) MAX  
NOTE 5  
EXPOSED  
THERMAL PAD  
0.25  
GAGE PLANE  
5.16  
4.12  
1.2 MAX  
0.15  
0.05  
0 - 8  
0.75  
0.50  
DETAIL A  
TYPICAL  
(1)  
2.40  
1.65  
4222709/A 02/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may not be present and may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0024B  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(2.4)  
24X (1.5)  
SYMM  
SEE DETAILS  
1
24  
24X (0.45)  
(R0.05)  
TYP  
(7.8)  
NOTE 9  
(1.1)  
TYP  
SYMM  
(5.16)  
22X (0.65)  
(
0.2) TYP  
VIA  
12  
13  
(1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-24  
4222709/A 02/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0024B  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(2.4)  
BASED ON  
0.125 THICK  
STENCIL  
24X (1.5)  
(R0.05) TYP  
1
24  
24X (0.45)  
(5.16)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
22X (0.65)  
13  
12  
SYMM  
(5.8)  
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.68 X 5.77  
2.4 X 5.16 (SHOWN)  
2.19 X 4.71  
0.125  
0.15  
0.175  
2.03 X 4.36  
4222709/A 02/2016  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
RHF0024A  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
0.5  
0.3  
5.1  
4.9  
0.30  
0.18  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.65 0.1  
2X 2  
(0.1) TYP  
12  
EXPOSED  
8
THERMAL PAD  
20X 0.5  
7
13  
3.65 0.1  
2X  
3
25  
SYMM  
SEE TERMINAL  
DETAIL  
19  
1
0.30  
0.18  
24X  
0.1  
C B A  
PIN 1 ID  
(OPTIONAL)  
24  
20  
SYMM  
0.05  
0.5  
0.3  
24X  
4219064 /A 04/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHF0024A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.65)  
SYMM  
20  
24  
24X (0.6)  
1
19  
24X (0.24)  
(3.65)  
(1.575)  
20X (0.5)  
25  
SYMM  
(4.8)  
(0.62)  
TYP  
(R0.05)  
TYP  
13  
7
(
0.2) TYP  
VIA  
8
12  
(1.025)  
TYP  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
EXPOSED  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219064 /A 04/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHF0024A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
6X (1.17)  
(0.685) TYP  
20  
24  
24X (0.6)  
1
19  
24X (0.24)  
(1.24)  
TYP  
20X (0.5)  
SYMM  
(4.8)  
25  
6X (1.04)  
13  
(R0.05) TYP  
7
METAL  
TYP  
12  
8
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219064 /A 04/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY