DRV10983-Q1 [TI]

汽车类 12V 电池、3.5A 峰值无传感器正弦控制三相 BLDC 电机驱动器;
DRV10983-Q1
型号: DRV10983-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 12V 电池、3.5A 峰值无传感器正弦控制三相 BLDC 电机驱动器

电池 电机 驱动 传感器 驱动器
文件: 总77页 (文件大小:2502K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
DRV10983-Q1 Automotive, Three-Phase, Sensorless BLDC Motor Driver  
1 Features  
Thermal shutdown protection  
Thermally enhanced package  
1
Qualified for automotive applications  
AEC-Q100 qualified with the following results:  
2 Applications  
Device temperature grade 1: –40°C to 125°C  
ambient operating temperature range  
Small automotive pumps and fans  
Seat ventilation fans  
Device HBM ESD classification level 1C  
Device CDM ESD classification level C4A  
Motorcycle fuel pumps  
HEV battery cooling fans  
Operation voltage range:  
Motor operation, 6.2 V to 28 V  
3 Description  
Register setting preserved, 4.5 V to 45 V  
The DRV10983-Q1 device is a 3-phase sensorless  
motor driver with integrated power MOSFETs, which  
can provide continuous drive current up to 2 A. The  
device is specifically designed for cost-sensitive, low-  
noise, low-external-component-count fan and pump  
applications.  
Supports load dump voltage up to 45 V  
Total driver H + L rDS(on)  
250 mΩ at TA = 25°C  
325 mΩ at TA = 125°C  
Drive current: 2-A continuous winding current (3-A  
Peak)  
The DRV10983-Q1 device preserves register setting  
down to 4.5 V and delivers current to the motor with  
supply voltage as low as 6.2 V. If the power supply  
voltage is higher than 28 V, the device stops driving  
the motor and protects the DRV10983-Q1 circuitry.  
This function is able to handle a load dump condition  
up to 45 V.  
Configurable output PWM slew rate and frequency  
for EMI management  
Sensorless proprietary Back Electromotive Force  
(BEMF) control scheme (no need of hall sensors)  
Continuous sinusoidal 180° commutation  
TI provides DRV10983-Q1 tuning Guide for quick  
setup and tuning of the device for optimal  
performance.  
Initial position-detect algorithm to avoid back spin  
during start-up  
No external sense resistor required  
Flexible user interface options:  
Device Options:  
DRV10983Q: Sleep Version  
DRV10983SQ: Standby Version  
I2C interface: access registers for command  
and feedback  
(1)  
Device Information  
Dedicated SPEED pin: accepts either analog  
or PWM input  
PART NUMBER  
DRV10983-Q1  
PACKAGE  
BODY SIZE (NOM)  
HTSSOP (24)  
7.80 mm × 6.40 mm  
Dedicated FG pin: provides TACH feedback  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Spin-up profile can be customized with  
EEPROM  
Forward-reverse control with DIR pin  
Application Schematic  
Integrated buck converter to efficiently provide 5V  
and 3.3-V LDOs for internal and external circuits  
VCC  
0.1 µF  
1
2
3
4
5
6
7
8
9
VCP  
VCC 24  
VCC 23  
10 µF  
CPP  
Supply current 8.5 mA with standby version  
(DRV10983SQ)  
10 nF  
CPN  
W
W
V
22  
21  
20  
19  
18  
17  
10 µF  
5 V  
SW  
47 µH  
SWGND  
VREG  
V1P8  
GND  
V3P3  
Supply current of 48 μA with sleep version  
(DRV10983Q)  
M
V
1 µF  
U
U
Protection features  
1 µF  
PGND 16  
PGND 15  
DIR 14  
4.75 kW  
4.75 kW  
Overcurrent protection (protection for phase-to-  
phase, phase-to-GND and phase-to-vCC shorts  
10 SCL  
11 SDA  
12 FG  
SPEED 13  
Lock detection  
Interface to  
Microcontroller  
Anti-Voltage Surge (AVS) protection  
UVLO protection  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
Table of Contents  
8.4 Device Functional Modes........................................ 21  
8.5 Register Maps......................................................... 47  
Application and Implementation ........................ 64  
9.1 Application Information............................................ 64  
9.2 Typical Application ................................................. 64  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Description (Continued)........................................ 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Typical Characteristics............................................ 12  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 14  
8.3 Feature Description................................................. 14  
9
10 Power Supply Recommendations ..................... 67  
11 Layout................................................................... 67  
11.1 Layout Guidelines ................................................. 67  
11.2 Layout Example .................................................... 67  
12 Device and Documentation Support ................. 68  
12.1 Trademarks........................................................... 68  
12.2 Electrostatic Discharge Caution............................ 68  
12.3 Receiving Notification of Documentation Updates 68  
12.4 Community Resources.......................................... 68  
12.5 Glossary................................................................ 68  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 68  
4 Revision History  
Changes from Original (June 2017) to Revision A  
Page  
Updated timing information for entering and exiting sleep mode and standby mode ............................................................ 8  
Added Analog and PWM mode timing diagrams.................................................................................................................. 10  
Updated naming convention in Step-Down Regulator subsection ....................................................................................... 14  
Changed the Conditions to Enter or Exit Sleep or Standby Condition table to reflect Electrical Characteristics  
parameter names.................................................................................................................................................................. 18  
Added Speed pin note to Table 1 ........................................................................................................................................ 19  
Added subsection, Required Sequence to Enter Sleep Mode ............................................................................................. 19  
Changed Figure 13 and Figure 14 ....................................................................................................................................... 21  
Changed Table 4 ................................................................................................................................................................. 24  
Updated Inductive AVS Function subsection ....................................................................................................................... 41  
Changed eeWRnEn field description to properly reflect actual function .............................................................................. 55  
Changed BEMF comparator hysteresis to reflect Electrical Characteristics specifications ................................................. 58  
Changed Table 36 ............................................................................................................................................................... 65  
Added EEprom note to Layout Guidelines ........................................................................................................................... 67  
2
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
 
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
5 Description (Continued)  
The DRV10983-Q1 device uses a proprietary sensorless control scheme to provide continuous sinusoidal drive,  
which significantly reduces the pure tone acoustics that typically occur as a result of commutation. The interface  
to the device is designed to be simple and flexible. The motor can be controlled directly through PWM, analog, or  
I2C inputs. Motor speed feedback is available through both the FG pin and the I2C interface simultaneously.  
The DRV10983-Q1 device features an integrated buck regulator to step down the supply voltage efficiently to 5 V  
for powering both internal and external circuits. The 3.3-V LDO also may be used to provide power for external  
circuits. The device is available in either a sleep mode or a standby mode version to conserve power when the  
motor is not running. The standby mode (8.5 mA) version (DRV10983SQ) leaves the regulator running and the  
sleep mode (48 μA) version (DRV10983Q) shuts the regulator off. Use the standby mode version in applications  
where the regulator is used to power an external microcontroller. Throughout this data sheet, the DRV10983-Q1  
part number is used for both devices for example DRV10983Q (sleep version) and DRV10983SQ (standby  
version), except for specific discussions of sleep vs standby functionality.  
An I2C interface allows the user to reprogram specific motor parameters in registers and to program the  
EEPROM to help optimize the performance for a given application. The DRV10983-Q1 device is available in a  
thermally-efficient HTSSOP, 24-pin package with an exposed thermal pad. The operating ambient temperature is  
specified from –40°C to 125°C.  
6 Pin Configuration and Functions  
PWP PowerPAD™ Package  
24-Pin HTSSOP With Exposed Thermal Pad  
Top View  
VCP  
CPP  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VCC  
VCC  
W
2
CPN  
3
SW  
4
W
SWGND  
VREG  
V1P8  
GND  
V3P3  
SCL  
5
V
6
V
Thermal  
Pad  
7
U
8
U
9
PGND  
PGND  
DIR  
SPEED  
10  
11  
12  
SDA  
FG  
Not to scale  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
(1)  
N/AME  
CPN  
HTSSOP  
3
2
P
P
Charge pump pin 1, use a ceramic capacitor between CPN and CPP  
Charge pump pin 2, use a ceramic capacitor between CPN and CPP  
CPP  
Direction;  
DIR  
14  
I
When low, phase driving sequence is U V W  
When high, phase driving sequence is U W V  
FG  
12  
8
O
P
P
I
FG signal output indicates speed of motor  
Digital and analog ground  
Power ground  
I2C clock signal  
I2C data signal  
GND  
PGND  
SCL  
SDA  
SPEED  
SW  
15, 16  
10  
11  
I/O  
I
13  
Speed control signal for PWM or analog input speed command  
Step-down regulator switching node output  
Step-down regulator ground  
Motor U phase  
4
O
P
O
O
SWGND  
U
5
17, 18  
19, 20  
V
Motor V phase  
Internal 1.8-V digital core voltage. V1P8 capacitor must connect to GND. This is an output, but is not  
specified to drive external loads.  
V1P8  
V3P3  
7
9
P
P
Internal 3.3-V supply voltage. V3P3 capacitor must connect to GND. This is an output and may drive  
external loads not to exceed IV3P3_MAX  
.
VCC  
VCP  
VREG  
W
23, 24  
P
P
P
O
Device power supply  
1
6
Charge pump output, use a ceramic capacitor between VCP and VCC  
Step-down regulator output and feedback point  
Motor W phase  
21, 22  
The exposed thermal pad must be electrically connected to the ground plane by soldering to the PCB  
for proper operation, and connected to the bottom side of the PCB through vias for better thermal  
spreading.  
Thermal pad  
(GND)  
P
(1) I = Input, O = Output, I/O = Input/output, NC = No connect, P = Power  
4
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating ambient temperature range  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–1  
MAX  
UNIT  
VCC  
28  
VCC during load dump (VCC slew rate < 1 V/µs)  
45  
SPEED  
4
Input voltage(2)  
V
PGND, SWGND  
0.3  
SCL, SDA  
4
4
DIR  
U, V, W  
30  
SW  
–1  
30  
VREG  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
–55  
7
FG  
4
(2)  
Output voltage  
VCP  
VCC + 6  
30  
V
CPN  
CPP  
VCC + 6  
4
V3P3  
V1P8  
2.5  
150  
150  
TJ_MAX  
Tstg  
Maximum junction temperature  
Storage temperature  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the ground terminal (GND) unless otherwise noted.  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
(1)  
Human body model (HBM), per AEC Q100-002, all pins  
Charged device model (CDM), per AEC Q100-011, all pins  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
7.3 Recommended Operating Conditions  
MIN  
4.5  
NOM  
12  
MAX  
45  
UNIT  
VCC, register contents preserved  
Supply voltage  
V
VCC, motor operational  
6.2  
12  
28  
U, V, W  
–0.7  
–0.1  
–0.1  
–0.1  
–0.1  
–0.7  
29  
SCL, SDA, FG, SPEED, DIR  
3.3  
3.6  
PGND, GND, SWGND  
Voltage range  
0.1  
V
VCP, CPP  
VCC + 5  
VCC  
VCC  
100  
5
CPN  
SW  
Step-down regulator output current (buck mode)  
Step-down regulator output current (resistive mode)  
Current range  
mA  
°C  
V3P3 LDO output current (no load on VREG and V3P3 in  
resitive mode)  
5
TA  
Operating ambient temperature  
–40  
125  
7.4 Thermal Information  
DRV10983Q  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
24 PINS  
36.1  
17.4  
14.8  
0.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
14.5  
1.1  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
7.5 Electrical Characteristics  
over operating voltage and ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT (DRV10983Q)  
VSPEED = 0 V; VCC = 12 V; TA  
25  
=
48  
54  
IVccSLEEP1  
Sleep current  
Active current  
µA  
81  
VSPEED = 0 V; VCC = 12 V; across  
temperature  
VSPEED > 0 V; buck regulator with  
inductor; no motor load  
10  
13  
15  
IVcc  
mA  
16  
VSPEED > 0 V; buck regulator with  
resistor; no motor load  
SUPPLY CURRENT (DRV10983SQ)  
VSPEED = 0 V; buck regulator with  
inductor  
8.5  
11  
10  
13  
14  
IVccSTBY  
Standby current  
Active current  
mA  
15  
VSPEED = 0 V; buck regulator with  
resistor  
VSPEED > 0 V; buck regulator with  
inductor; no motor load  
15  
IVcc  
mA  
16  
VSPEED > 0 V; buck regulator with  
resistor; no motor load  
UVLO  
UVLO rising threshold  
voltage  
VUVLO_R  
5.8  
5.6  
6
5.8  
6.2  
6
V
V
UVLO falling threshold  
voltage  
VUVLO_F  
UVLO threshold voltage  
hysteresis  
VUVLO_HYS  
170  
195  
220  
mV  
VV1P8_UVLO_R  
VV1P8_UVLO_F  
VV3P3_UVLO_R  
VV3P3_UVLO_F  
V1P8 UVLO rising threshold  
V1P8 UVLO falling threshold  
V3P3 UVLO rising threshold  
V3P3 UVLO falling threshold  
1.5  
1.4  
2.7  
2.5  
4
1.6  
1.55  
2.85  
2.7  
1.7  
1.65  
2.95  
2.8  
V
V
V
V
V
VVREG_UVLO_R VREG UVLO rising threshold  
4.2  
4.3  
VVREG_UVLO_F VREG UVLO falling  
threshold  
3.9  
4.2  
V
LDO OUTPUT  
Buck regulator with inductor, 20-mA  
load  
V3P3  
Output voltage  
3.1  
3.3  
3.5  
V
Buck regulator with resistor, no load  
Only with inductor mode of buck  
operation, with resistor mode no  
load  
IV3P3_MAX  
V1P8  
Maximum load from V3P3  
Output voltage  
20  
mA  
V
No load  
1.7  
4.5  
1.8  
5
1.9  
STEP-DOWN REGULATOR  
LSW = 47 µH, CSW = 10 µF  
Iload = 100 mA  
VREG  
Regulator output voltage  
5.5  
V
RSW = 39 Ω, CSW = 10 µF  
Iload = 5 mA  
Maximum load from VREG in  
switching mode  
IREG_MAX_L  
IREG_MAX_R  
LSW = 47 µH, CSW = 10 µF  
100  
5
mA  
mA  
Maximum load from VREG in  
linear mode  
RSW = 39 Ω, CSW = 10 µF  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: DRV10983-Q1  
 
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
Electrical Characteristics (continued)  
over operating voltage and ambient temperature range (unless otherwise noted)  
PARAMETER  
INTEGRATED MOSFET  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TA = 25˚C; V(VCC) > 6.5 V; Io = 1 A  
TA = 125˚C; V(VCC) > 6.5V; Io = 1 A  
250  
325  
400  
mΩ  
550  
rDS(ON)  
Series resistance (H + L)  
SPEED – ANALOG MODE  
VAN/A_FS Analog full-speed voltage  
VAN/A_ZS  
V(V3P3) × 0.9  
0
V(V3P3)  
100  
V
Analog zero-speed voltage  
mV  
Sampling period for analog  
voltage on SPEED pin  
tSAM  
320  
6.5  
µs  
VAN/A_RES  
Analog voltage resolution  
mV  
SPEED – PWM DIGITAL MODE  
VDIG_IH  
VDIG_IL  
ƒPWM  
PWM input high voltage  
2.2  
0.1  
V
V
PWM input low voltage  
PWM input frequency  
0.6  
100 kHz  
STANDBY MODE (DRV10983SQ)  
Analog voltage to enter  
standby mode  
VEN_SB  
SpdCtrlMd = 0 (analog mode)  
SpdCtrlMd = 0 (analog mode)  
100  
700  
mV  
V
Analog voltage to exit  
standby mode  
VEX_SB  
0.17  
1
SpdCtrlMd = 0 (analog mode)  
VSPEED > VEX_SB  
Time needed to exit from  
tEX_SB_ANA  
ms  
standby mode  
SpdCtrlMd = 0 (analog mode)  
VSPEED > VEX_SB; ISDen = 0;  
BrkDoneThr[2:0] = 0  
Time taken to drive motor  
tEX_SB_DR_ANA  
350  
2
ms  
µs  
after exiting standby mode  
SpdCtrlMd = 1 (PWM mode)  
VSPEED > VDIG_IH  
Time needed to exit from  
tEX_SB_PWM  
standby mode  
SpdCtrlMd = 1 (PWM mode)  
VSPEED_DUTY > 0; ISDen = 0;  
BrkDoneThr[2:0] = 0  
Time taken to drive motor  
tEX_SB_DR_PWM  
350  
ms  
after exiting standby mode  
SpdCtrlMd = 0 (analog mode)  
VSPEED < VEN_SB; AvSIndEn = 0  
Time needed to enter  
tEN_SB_ANA  
6
ms  
ms  
standby mode  
SpdCtrlMd = 1 (PMW mode)  
VSPEED < VDIG_IL; AvSIndEn = 0  
Time needed to enter  
tEN_SB_PWM  
60  
standby mode  
8
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
Electrical Characteristics (continued)  
over operating voltage and ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SLEEP MODE (DRV10983Q)  
Analog voltage to enter sleep  
mode  
VEN_SL  
SpdCtrlMd = 0 (analog mode)  
SpdCtrlMd = 0 (analog mode)  
100  
mV  
V
Analog voltage to exit sleep  
mode  
VEX_SL  
2.2  
SpdCtrlMd = 0 (analog mode)  
VSPEED > VEX_SL  
Time needed to exit from  
sleep mode  
tEX_SL_ANA  
2
350  
2
µs  
SpdCtrlMd = 0 (analog mode)  
VSPEED > VEX_SL; ISDen = 0;  
BrkDoneThr[2:0] = 0  
Time taken to drive motor  
after exiting from sleep mode  
tEX_SL_DR_ANA  
ms  
µs  
SpdCtrlMd = 1 (PWM mode)  
VSPEED > VDIG_IH  
Time needed to exit from  
sleep mode  
tEX_SL_PWM  
SpdCtrlMd = 1 (PWM mode)  
VSPEED > VDIG_IH; ISDen = 0;  
BrkDoneThr[2:0] = 0  
Time taken to drive motor  
after exiting from sleep mode  
tEX_SL_DR_PWM  
350  
ms  
SpdCtrlMd = 0 (analog mode)  
VSPEED < VEN_SL; AvSIndEn = 0  
Time needed to enter sleep  
mode  
tEN_SL_ANA  
6
ms  
ms  
kΩ  
SpdCtrlMd = 1 (PMW mode)  
VSPEED < VDIG_IL; AvSIndEn = 0  
Time needed to enter sleep  
mode  
tEN_SL_PWM  
RPD_SPEED_SL  
60  
Internal SPEED pin pull  
down resistance to ground  
VSPEED = 0 (Sleep mode)  
55  
DIGITAL I/O (DIR INPUT, FG OUTPUT )  
VDIR_H  
VDIR_L  
Input high  
Input low  
2.2  
V
V
0.6  
0.6  
Output high voltage Io = 5  
mA  
VFG_OH  
VFG_OL  
3.3  
V
V
Output low voltage Io = 5 mA  
I2C SERIAL INTERFACE  
VI2C_H  
VI2C_L  
Input high  
2.2  
0
V
V
Input low  
I2C clock frequency  
0.6  
400 kHz  
fI2C  
LOCK DETECTION RELEASE TIME  
tLOCK_OFF  
tLCK_ETR  
Lock release time  
Lock enter time  
5
s
s
0.3  
OVERCURRENT PROTECTION  
IOC_limit_HS HS overcurrent protection  
IOC_limit_LS LS overcurrent protection  
THERMAL SHUTDOWN  
VCC < 28.5 V  
VCC < 28.5 V  
3.5  
3.5  
4.25  
4.25  
5.5  
5.5  
A
A
Junction temperature  
shutdown threshold  
TSDN  
150  
165  
180  
°C  
Junction temperature  
shutdown hysteresis  
TSDN_HYS  
TWARN  
15  
20  
25  
°C  
°C  
Junction temperature  
warning threshold  
115  
125  
140  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
Electrical Characteristics (continued)  
over operating voltage and ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PHASE DRIVER  
PHslew = 0; measure 20% to 80%;  
VCC = 12 V  
Phase slew rate switching  
low to high  
SLPH_LH0  
85  
60  
38  
27  
85  
59  
36  
25  
120  
80  
145 V/µs  
100 V/µs  
62 V/µs  
44 V/µs  
145 V/µs  
100 V/µs  
60 V/µs  
45 V/µs  
PHslew = 1; measure 20% to 80%;  
VCC = 12 V  
Phase slew rate switching  
low to high  
SLPH_LH1  
SLPH_LH2  
SLPH_LH3  
SLPH_HL0  
SLPH_HL1  
SLPH_HL2  
SLPH_HL3  
PHslew = 2; measure 20% to 80%;  
VCC = 12 V  
Phase slew rate switching  
low to high  
50  
PHslew = 3; measure 20% to 80%;  
VCC = 12 V  
Phase slew rate switching  
low to high  
35  
PHslew = 0; measure 80% to 20%;  
VCC = 12 V  
Phase slew rate switching  
high to low  
120  
80  
PHslew = 1; measure 80% to 20%;  
VCC = 12 V  
Phase slew rate switching  
high to low  
PHslew = 2; measure 80% to 20%;  
VCC = 12 V  
Phase slew rate switching  
high to low  
50  
PHslew = 3; measure 80% to 20%;  
VCC = 12 V  
Phase slew rate switching  
high to low  
35  
BEMF  
COMPARATOR  
BEMF_HYS = 0  
BEMF_HYS = 1  
7
20  
40  
30  
BEMFHYS  
BEMF comparator hysteresis  
mV  
51  
17  
LOAD DUMP PROTECTION  
Load dump protection mode  
entry on rising VCC threshold  
VOV_R  
28.5  
27.7  
0.73  
29.2  
28.2  
1
30  
28.8  
1.1  
V
V
V
Load dump protection mode  
exit on falling VCC threshold  
VOV_F  
Load dump protection mode  
hysteresis  
VOV_HYS  
Speed Pin  
VEX_SL  
VEN_SL  
tEX_SL_ANA  
tEN_SL_ANA  
V1P8  
tEX_SL_DR_ANA  
Phase Pin  
Motor Drive State  
Figure 1. DRV10983Q Analog Mode Timing  
10  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
VDIG_IH  
VDIG_IL  
Speed Pin  
tEX_SL_PWM  
tEN_SL_PWM  
V1P8  
tEX_SL_DR_PWM  
Phase Pin  
Motor Drive State  
Figure 2. DRV10983Q PWM Mode Timing  
Speed Pin  
VEX_SB  
VEN_SB  
tEX_SB_ANA  
tEN_SB_ANA  
Internal  
Signal  
(Digital  
Reset)  
tEX_SB_DR_ANA  
Phase Pin  
Motor Drive State  
Figure 3. DRV10983SQ Analog Mode Timing  
VDIG_IH  
VDIG_IL  
Speed Pin  
tEX_SB_PWM  
tEN_SB_PWM  
Internal  
Signal  
(Digital  
Reset)  
tEX_SB_DR_PWM  
Phase Pin  
Motor Drive State  
Figure 4. DRV10983SQ PWM Mode Timing  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
7.6 Typical Characteristics  
15  
5.2  
5.1  
5
IVCC  
12  
9
6
4.9  
4.8  
3
0
0
5
10  
15  
Power Supply (V)  
20  
25  
30  
0
5
10  
15  
Power Supply (V)  
20  
25  
30  
D001  
D002  
Figure 5. Supply Current vs Power Supply Voltage  
Figure 6. Step-Down Regulator Output vs Power Supply  
Voltage  
12  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
8 Detailed Description  
8.1 Overview  
The DRV10983-Q1 device is a three-phase sensorless motor driver with integrated power MOSFETs that  
provides drive-current capability up to 2 A continuously. The device is specifically designed for low-noise, low-  
external-component-count motor-drive applications. The device is configurable through a simple I2C interface to  
accommodate different motor parameters and spin-up profiles for different customer applications.  
A 180° sensorless control scheme provides continuous sinusoidal output voltages to the motor phases to enable  
ultra-quiet motor operation by keeping the electrically induced torque ripple small.  
The DRV10983-Q1 device features extensive protection and fault-detection mechanisms to ensure reliable  
operation. Voltage surge protection prevents the input VCC capacitor from overcharging, which is typical during  
motor deceleration. The device provides overcurrent protection without the need for an external current-sense  
resistor. Rotor-lock detection is available through several methods. These methods can be configured with  
register settings to ensure reliable operation. The device provides additional protection for undervoltage lockout  
(UVLO) and for thermal shutdown.  
The commutation control algorithm continuously measures the motor phase current and periodically measures  
the VCC supply voltage. The device uses this information for BEMF estimation, and the information is also  
provided through the I2C register interface for debug and diagnostic use in the system, if desired.  
A buck step-down regulator efficiently steps down the supply voltage. The output of this regulator provides power  
for the internal circuits and can also be used to provide power for an external circuit such as a microcontroller. If  
providing power for an external circuit is not necessary (and to reduce system cost), configure the buck step-  
down regulator as a linear regulator by replacing the inductor with a resistor.  
The DRV10983-Q1 device has a flexible interface, capable of supporting both analog and digital inputs. In  
addition to the I2C interface, the device has FG, DIR, and SPEED pins. SPEED is the speed command input pin.  
DIR is the direction control input pin. FG is the speed indicator output, which shows the frequency of the motor  
commutation.  
EEPROM is integrated in the DRV10983-Q1 device as memory for the motor parameter and operation settings.  
EEPROM data transfers to the registers after power-on and exit from sleep mode.  
The DRV10983-Q1 device can also operate in register mode. If the system includes a microcontroller  
communicating through the I2C interface, the device can dynamically update the motor parameters and operation  
settings by writing to the registers. In this configuration, the EEPROM data is bypassed by the register settings.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
8.2 Functional Block Diagram  
SDA  
I2C  
Communication  
Register  
EEPROM  
SCL  
VCC  
VCP  
CPP  
CPN  
SW  
Charge  
Pump  
5-V Step-Down  
Regulator  
VREG  
SWGND  
V3P3  
3.3-V LDO  
1.8-V LDO  
FG  
VCC  
VCC  
VCC  
V1P8  
GND  
VCP  
Oscillator  
Band Gap  
U
Pre-  
Driver  
U
V
Logic  
Core  
V / I  
Sensor  
ADC  
W
VCP  
PWM and Analog  
Speed Control  
SPEED  
DIR  
V
Pre-  
Driver  
Lock  
Overcurrent  
Thermal  
UVLO  
VCP  
W
Pre-  
Driver  
GND  
PGND  
Copyright © 2017, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 Regulators  
8.3.1.1 Step-Down Regulator  
The DRV10983-Q1 device includes a step-down hysteretic voltage regulator that can be operated as either a  
switching buck regulator using an external inductor or as a linear regulator using an external resistor. The best  
efficiency is achieved when the step-down regulator is in buck mode (see Figure 7). The regulator output voltage  
is 5 V. When the regulated voltage drops by the hysteresis level, the high-side FET turns on to raise the  
regulated voltage back to the target of 5 V. The switching frequency of the hysteretic regulator is not constant  
and changes with load.  
If the step-down regulator is configured in buck mode, see IREG_MAX_L in Electrical Characteristics to determine  
the amount of current provided for external load. If the step-down regulator is configured in linear mode, see  
IREG_MAX_R in Electrical Characteristics to determine the amount of current provided for external load. Active  
current ICC is higher in buck mode compared to linear mode.  
14  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
Feature Description (continued)  
IC  
IC  
VREG  
VREG  
VCC  
VCC  
47 µH  
39 Ω  
SW  
SW  
5 V  
5 V  
10 µF  
10 µF  
Load  
SWGND  
SWGND  
Buck Regulator with External Inductor  
Buck Regulator with External Resistor  
Figure 7. Step-Down Regulator Configurations  
8.3.1.2 3.3-V and 1.8-V LDO  
The DRV10983-Q1 device includes a 3.3-V LDO and a 1.8-V LDO. The 3.3-V LDO is powered by Vreg and 1.8-  
V LDO is powered by 3.3-V LDO. The 1.8-V LDO is for internal circuits only. The 3.3-V LDO is mainly for internal  
circuits, but can also drive external loads not to exceed IV3P3_MAX. For example, it can work as a pullup voltage  
for the FG, DIR, SDA, and SCL interface.  
Both the V1P8 and V3P3 capacitors must be connected to GND.  
8.3.2 Protection Circuits  
8.3.2.1 Thermal Shutdown  
The DRV10983-Q1 device has a built-in thermal shutdown function, which shuts down the device when the  
junction temperature is more than TSDN˚C and recovers operating conditions when the junction temperature falls  
to TSDN – TSDN_HYS˚C.  
The OverTemp status bit (address 0x00, bit 15) is set during thermal shutdown. In addition to the thermal  
shutdown function there is a warning bit that is set whenever the device exceeds TWARN and is indicated by the  
TempWarning bit of the FaultReg register (address 0x00, bit 14).  
8.3.2.2 Undervoltage Lockout (UVLO)  
The DRV10983-Q1 device has a built-in UVLO function block. The device is locked out when VCC is below  
VUVLO_F and is unlocked when VCC is above VUVLO_R. The hysteresis of the UVLO threshold is VUVLO_HYS. In  
addition to the main supply, the step-down regulator, charge pump, and 3.3-V LDO all have undervoltage lockout  
monitors.  
8.3.2.3 Overcurrent Protection  
The overcurrent protection function acts to protect the device if the current, as measured from the FETs, exceeds  
the IOC-limit threshold. It protects the device in the event of a short-circuit condition on the motor phases. This  
includes phase shorts to GND, phase shorts to phase, or phase shorts to VCC. The DRV10983-Q1 device places  
the output drivers into a high-impedance state until the lock time tLOCK_OFF has expired. The OverCurr status bit  
of the FaultReg register (address 0x00, bit 11) is set.  
The DRV10983-Q1 device also provides acceleration current-limit and lock-detection current-limit functions to  
protect the device and motor (see Current Limit and Lock Detect and Fault Handling ).  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
Feature Description (continued)  
8.3.2.4 Lock  
When the motor is blocked or stopped by an external force, lock protection is triggered, and the device stops  
driving the motor immediately. After the lock release time tLOCK_OFF, the DRV10983-Q1 device resumes driving  
the motor again. If the lock condition is still present, it enters the next lock protection cycle, and repeats until the  
lock condition is removed. With this lock protection, the motor and device do not overheat or become damaged  
due to the motor being locked (see Lock Detect and Fault Handling ).  
During a lock condition the Status register indicates which of the locks has occurred.  
8.3.3 Motor Speed Control  
The DRV10983-Q1 device offers four methods for indirectly controlling the speed of the motor by adjusting the  
output voltage amplitude. This can be accomplished by varying the supply voltage (VCC) or by controlling the  
speed command. The speed command can be controlled in one of three ways. The user can set the speed  
command by adjusting either the PWM input (PWM in) or the analog input (Analog) or by writing the speed  
command directly through the I2C serial port (I2C). The speed command is used to determine the PWM duty  
cycle output (PWM_DCO) (see Figure 9).  
The input PWM input (PWM in) can have a minimum duty cycle limit applied. DutyCycleLimit[1:0], accessible  
through the I2C interface, allows the user to configure the minimum duty cycle behavior. This behavior is  
illustrated in Figure 8.  
DutyCycleLimit[1:0], Reg0x95  
DutyCycleLimit[1:0], Reg0x95  
Output Duty  
Cycle (%)  
Output Duty  
Cycle (%)  
10 - linear down to 5%, then holds at 5% until  
duty command is 1.5 %; 100 % for duty command  
below 1.5 %.  
00 - linear down to 5%, then holds at 5% until  
duty command is 1.5 %; 0 % for duty command  
below 1.5 %.  
11 - linear down to 10%, then holds at 10% until  
duty command is 1.5 %; 100 % for duty command  
below 1.5 %.  
01 - linear down to 10%, then holds at 10% until  
duty command is 1.5 %; 0 % for duty command  
below 1.5 %.  
100  
10  
5
10  
5
0
Input Duty Cycle  
0
Input Duty Cycle (%)  
Input Duty Cycle (%)  
0 1.5  
5
10  
0 1.5  
5
10  
Figure 8. Duty Cycle Profile  
The speed command may not always be equal to the PWM_DCO because the DRV10983-Q1 device has the  
AVS function (see Anti Voltage Suppression Function), the acceleration current-limit function (see Acceleration  
Current Limit), and the closed-loop accelerate function (see Closed-Loop Accelerate) to optimize the control  
performance. These functions can limit the PWM_DCO, which affects the output amplitude (see Figure 9).  
16  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
 
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
Feature Description (continued)  
PWM Duty  
ADC  
PWM In  
AVS,  
Acceleration Current Limit  
Closed Loop Accelerate  
SPEED Pin  
Analog  
Speed  
Command  
I2C  
PWM_  
DCO  
Output  
Amplitude  
VCC  
X
Motor  
Copyright © 2017, Texas Instruments Incorporated  
Figure 9. Multiplexing the Speed Command to the Output Amplitude Applied to the Motor  
The output voltage amplitude applied to the motor is developed through sine wave modulation so that the phase-  
to-phase voltage is sinusoidal.  
When any phase is measured with respect to ground, the waveform is sinusoidally coupled with third-order  
harmonics. This encoding technique permits one phase to be held at ground while the other two phases are  
pulse-width modulated. Figure 10 and Figure 11 show the sinusoidal encoding technique used in the DRV10983-  
Q1 device.  
PWM Output  
Average Value  
Figure 10. PWM Output and the Average Value  
U-V  
U
V-W  
W-U  
V
W
Sinusoidal voltage from phase to phase  
Sinusoidal voltage with third-order harmonics  
from phase to GND  
Figure 11. Representing Sinusoidal Voltages With Third-Order Harmonic Output  
The output amplitude is determined by the magnitude of VCC and the PWM duty cycle output (PWM_DCO). The  
PWM_DCO represents the peak duty cycle that is applied in one electrical cycle. The maximum amplitude is  
reached when PWM_DCO is at 100%. The peak output amplitude is VCC. When the PWM_DCO is at 50%, the  
peak amplitude is VCC / 2 (see Figure 12).  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: DRV10983-Q1  
 
 
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
Feature Description (continued)  
VCC  
100% PWM DCO  
50% PWM DC0  
VCC / 2  
Figure 12. Output Voltage Amplitude Adjustment  
Motor speed is controlled indirectly by controlling the output amplitude, which is achieved by either controlling  
VCC, or controlling the PWM_DCO. The DRV10983-Q1 device provides different options for the user to control  
the PWM_DCO:  
Analog input (SPEED pin)  
PWM encoded digital input (SPEED pin)  
I2C serial interface.  
See the Closed Loop section for more information.  
8.3.4 Load Dump Handling  
The recommended operation voltage of the DRV10983-Q1 device is from 6.2 V to 28 V. The device is able to  
drive the motor within this VCC range.  
In the load dump condition, VCC can rise up to 45 V. Once the DRV10983-Q1 device detects that VCC is higher  
than VOV_R , it stops driving the motor and protects its own circuitry. When VCC drops below VOV_F, the  
DRV10983-Q1 device continues to operate the motor based on the user’s command.  
8.3.5 Sleep or Standby Condition  
The DRV10983-Q1 device is available in either a sleep mode (DRV10983Q) or standby mode version  
(DRV10983SQ). The DRV10983-Q1 device enters either sleep or standby to conserve energy. When the device  
enters either sleep or standby, the device stops driving the motor. The step-down regulator is disabled in the  
sleep mode version to conserve more energy. The I2C interface is disabled and any register data not stored in  
EEPROM is reset for the sleep mode version. The step-down regulator remains active in the standby mode  
version. The register data is maintained, and the I2C interface remains active for standby mode version.  
For different speed command modes, shows the timing and command to enter the sleep or standby condition.  
Table 1. Conditions to Enter or Exit Sleep or Standby Condition  
SPEED COMMAND  
MODE  
ENTER STANDBY  
CONDITION  
ENTER SLEEP  
CONDITION  
EXIT FROM STANDBY  
CONDITION  
EXIT FROM SLEEP  
CONDITION  
SPEED pin voltage <  
VEN_SB for tEN_SB_ANA  
SPEED pin voltage <  
VEN_SL for tEN_SL_ANA  
SPEED pin voltage >  
VEX_SB for tEX_ SB_ANA  
SPEED pin voltage >  
VEX_SL for tEX_SL_ANA  
Analog  
PWM  
SPEED pin low (V <  
VDIG_IL) for tEN_SB_PWM  
SPEED pin low (V <  
VDIG_IL) for tEN_SL_PWM  
SPEED pin high (V >  
VDIG_IH) for tEX_SB_PWM  
SPEED pin high (V >  
VDIG_IH) for tEX_SL_PWM  
SPEED pin high (V >  
VDIG_IH) for tEX_SL_PWM  
(PWM mode) or SPEED  
pin voltage > VEX_SL for  
tEX_SL_ANA (Analog mode)  
SpdCtrl[8:0] is  
programmed as 0 for  
tEN_SB_PWM  
See Required Sequence to  
Enter Sleep Mode  
SpdCtrl[8:0] is programmed  
as non-zero for tEX_SB_PWM  
I2C  
Changed Table 4  
18  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
Speed pin in DRV10983SQ (Standby version) and DRV10983Q (sleep version) should be in known state (pulled  
high or low) when the speed is controlled via I2C.  
Note that when using the analog speed command, a higher voltage is required to exit from the sleep condition  
than from the standby condition. The I2C speed command cannot take the device out of the sleep condition  
because I2C communication is disabled during the sleep condition.  
Table 2. Minimum PWM Duty Cycle Requirement for Different PWM Frequency to Exit Sleep Condition  
INPUT PWM FREQUENCY (kHz)  
PWM DUTY CYCLE (%)  
0.1 to 0.5  
0.5 to 1  
1 to 50  
50 to 100  
100  
14  
11  
9
4
3.5  
8.3.5.1 Required Sequence to Enter Sleep Mode  
In I2C speed command mode, either of two sequence options can be used to enter sleep mode.  
8.3.5.1.1 Option 1  
1. Provide a non-zero value to the speed control register. For example, write 100 to register 0x30,  
speedCtrl[8:0].  
2. Set the I2C OverRide bit to 1. That is, write 1 to register 0x30, speedCtrl[15].  
3. In analog mode, be sure SPEED pin voltage is less than VEN_SL for tEN_SL_ANA. In PWM mode, make sure  
SPEED pin is low (V < VDIG_IL) for tEN_SL_PWM  
.
4. Provide the value of zero to the speed control register to enter sleep mode. That is, write 0 to register 0x30,  
speedCtrl[8:0].  
8.3.5.1.2 Option 2  
1. Set the motor disable bit to 1. That is, write 1 to register 0x60, EECtrl[15].  
2. Set the I2C OverRide bit to 1. That is, write 1 to register 0x30, speedCtrl[15].  
3. Set the motor disable bit to 0. That is, write 0 to register 0x60, EECtrl[15].  
4. Provide the value of zero to the speed control register to enter sleep mode. That is, write 0 to register 0x30,  
speedCtrl[8:0].  
8.3.6 EEPROM Access  
The DRV10983-Q1 device has 112 bits (7 registers with 16-bit width) of EEPROM data, which are used to  
program the motor parameters as described in the I2C Serial Interface.  
The procedure for programming the EEPROM is as follows. TI recommends to perform the EEPROM  
programming without the motor spinning, cycle the power after the EEPROM write, and read back the EEPROM  
to verify the programming is successful.  
1. Power up with any voltage within operating voltage range (6.2 V to 28 V)  
2. (DRV10983Q only) Exit from sleep condition  
3. Wait 10 ms  
4. Write register 0x60 to set MTR_DIS = 1; this disables the motor driver.  
5. Write register 0x31 with 0x0000 to clear the EEPROM access code  
6. Write register 0x31 with 0xC0DE to enable access to EEPROM  
7. Read register 0x32 for eeReadyStatus = 1  
8. Case-A: Mass Write  
A. Write all individual shadow registers  
a. Write register 0x90 (CONFIG1) with CONFIG1 data  
b. ...  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
c. Write register 0x96 (CONFIG7) with CONFIG7 data  
B. Write the following to register 0x35  
a. ShadowRegEn = 0  
b. eeRefresh = 0  
c. eeWRnEn = 1  
d. EEPROM Access Mode = 10  
C. Wait for register 0x32 eeReadyStatus = 1 – EEPROM is now updated with the contents of the shadow  
registers.  
9. Case-B: Mass Read  
A. Write the following to register 0x35  
a. ShadowRegEn = 0  
b. eeRefresh = 0  
c. eeWRnEn = 0  
d. eeAccMode = 10  
B. Internally, the device starts reading the EEPROM and storing it in the shadow registers.  
C. Wait for register 0x32 eeReadyStatus = 1 – shadow registers now contain the EEPROM values  
10. Write register 0x60 to set MTR_DIS = 0; this re-enables the motor driver  
20  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
8.4 Device Functional Modes  
This section includes the logic required to be able to reliably start and drive the motor. It describes the processes  
used in the logic core and provides the information needed to configure the parameters effectively to work over a  
wide range of applications.  
8.4.1 Motor Parameters  
See the DRV10983-Q1 Tuning Guide for the motor parameter measurement.  
The motor phase resistance and BEMF constants are two important parameters used to characterize a BLDC  
motor. The DRV10983-Q1 device requires these parameters to be configured in the register. The motor phase  
resistance is programmed by writing the values for Rm[6:0] (combination of RMShift[2:0] and RMValue[3:0]) in  
the Config1 register. The BEMF constant is programmed by writing the values for Kt[6:0] (combination of  
KTShift[2:0] and KTValue[3:0]) in the Config2 register.  
8.4.1.1 Motor Phase Resistance  
For a wye-connected motor, the motor phase resistance refers to the resistance from the phase output to the  
center tap, RPH_CT (denoted as RPH_CT in Figure 13).  
Phase U  
RPH_CT  
RPH_CT  
RPH_CT  
Center  
Tap  
Phase V  
Phase W  
Figure 13. Wye-Connected Motor Phase Resistance  
For a delta-connected motor, the motor phase resistance refers to the equivalent phase to center tap in the wye  
configuration. In Figure 14, it is denoted as RY. RPH_CT = RY.  
For both the delta-connected motor and the wye-connected motor, the easy way to get the equivalent RPH_CT is  
to measure the resistance between two phase terminals (RPH_PH), and then divide this value by two, RPH_CT = ½  
RPH_PH  
.
Phase U  
RY  
R
R
PH_PH  
PH_PH  
RY  
RY  
Center  
Tap  
Phase V  
R
Phase W  
PH_PH  
Figure 14. Delta-Connected Motor and the Equivalent Wye Connections  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: DRV10983-Q1  
 
 
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
Device Functional Modes (continued)  
The motor phase resistance (RPH_CT) must be converted to a 7-bit digital register value Rm[6:0] to program the  
motor phase resistance value. The digital register value can be determined as follows:  
1. Convert the motor phase resistance (RPH_CT) to a digital value where the LSB is weighted to represent 9.67  
mΩ: Rmdig = RPH_CT / 0.00967.  
2. Encode the digital value such that Rmdig = RMValue[3:0] << RMShift[2:0].  
The maximum resistor value, RPH_CT, that can be programmed for the DRV10983-Q1 device is 18.5 Ω, which  
represents Rmdig = 1920 and an encoded Rm[6:0] value of 0x7Fh. The minimum resistor the DRV10983-Q1  
device supports is 0.029 Ω, RPH_CT, which represents Rmdig = 3.  
For convenience, the encoded value for Rm[6:0] can also be obtained from Table 3.  
Table 3. Motor Phase Resistance Look-Up Table  
RM[6:0] {RMShift[2:0],  
RMValue[3:0]}  
RM[6:0] {RMShift[2:0],  
RMValue[3:0]}  
RM[6:0] {RMShift[2:0],  
RMValue[3:0]}  
RPH_CT (Ω)  
RPH_CT (Ω)  
RPH_CT (Ω)  
BINARY  
000 0000  
000 0001  
000 0010  
000 0011  
000 0100  
000 0101  
000 0110  
000 0111  
000 1000  
000 1001  
000 1010  
000 1011  
000 1100  
000 1101  
000 1110  
000 1111  
001 1000  
001 1001  
001 1010  
001 1011  
001 1100  
001 1101  
001 1110  
001 1111  
HEX  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
BINARY  
0101000  
010 1001  
010 1010  
010 1011  
010 1100  
010 1101  
010 1110  
010 1111  
011 1000  
011 1001  
011 1010  
011 1011  
011 1100  
011 1101  
011 1110  
011 1111  
100 1000  
100 1001  
100 1010  
100 1011  
100 1100  
100 1101  
100 1110  
100 1111  
HEX  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
BINARY  
1011000  
101 1001  
101 1010  
101 1011  
101 1100  
101 1101  
101 1110  
101 1111  
110 1000  
110 1001  
110 1010  
110 1011  
110 1100  
110 1101  
110 1110  
110 1111  
111 1000  
111 1001  
111 1010  
111 1011  
111 1100  
111 1101  
111 1110  
111 1111  
HEX  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
0
0.3104  
0.3492  
0.388  
2.4832  
2.7936  
3.104  
0.0097  
0.0194  
0.0291  
0.0388  
0.0485  
0.0582  
0.0679  
0.0776  
0.0873  
0.097  
0.4268  
0.4656  
0.5044  
0.5432  
0.582  
3.4144  
3.7248  
4.0352  
4.3456  
4.656  
0.6208  
0.6984  
0.776  
4.9664  
5.5872  
6.208  
0.1067  
0.1164  
0.1261  
0.1358  
0.1455  
0.1552  
0.1746  
0.194  
0.8536  
0.9312  
1.0088  
1.0864  
1.164  
6.8288  
7.4496  
8.0704  
8.6912  
9.312  
1.2416  
1.3968  
1.552  
9.9328  
11.1744  
12.416  
13.6576  
14.8992  
16.1408  
17.3824  
18.624  
0.2134  
0.2328  
0.2522  
0.2716  
0.291  
1.7072  
1.8624  
2.0176  
2.1728  
2.328  
22  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
 
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
8.4.1.2 BEMF Constant  
The BEMF constant, Kt[6:0] describes the phase-to-phase BEMF voltage of the motor as a function of the motor  
velocity.  
Figure 15 shows the measurement technique for this constant as used in the DRV10983-Q1 device.  
PhU  
Rm  
Ep  
Lm  
Te  
Ep Ep  
=
Eu  
Kt =  
Ev  
1
fe  
Ew  
te  
Lm  
Lm  
Rm  
Rm  
PhV  
PhW  
Figure 15. KtPH Definition  
With the motor coasting, use an oscilloscope to capture the differential voltage waveform between any two  
phases. Derive the BEMF constant used by the DRV10983-Q1 device as shown in Equation 1.  
KtPH = Ep × te  
where  
Ep is ½ the peak-to-peak amplitude of the measured voltage  
te is the electrical period  
(1)  
The measured BEMF constant (KtPH) must be converted to a 7-bit digital register value Kt[6:0] (combination of  
KtShift[2:0] and KtValue[3:0]) to program the BEMF constant value. The digital register value can be determined  
as follows:  
1. Convert the measured KtPH to a weighted digital value: Ktph_dig = 1090 × KtPH  
2. Encode the digital value such that Ktph_dig = KtValue[3:0] << KtShift[2:0].  
The maximum KtPH that can be programmed is 1760 mV/Hz. This represents a digital value of 1920 and an  
encoded Kt[6:0] value of 0x7Fh. The minimum KtPH that can be programmed is 0.92 mV/Hz, which represents a  
digital value of 1 and an encoded Kt[6:0] value of 0x01h.  
For convenience, the encoded value of Kt[6:0] may also be obtained from Table 4.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: DRV10983-Q1  
 
 
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
Table 4. BEMF Constant Look-Up Table  
Kt[6:0] {KtShift[2:0],  
Kt [6:0] {KtShift[2:0],  
Kt [6:0] {KtShift[2:0],  
KtValue[3:0]}  
KtPH  
(mV/Hz)  
KtPH  
(mV/Hz)  
KtPH  
(mV/Hz)  
KtValue[3:0]}  
KtValue[3:0]}  
BINARY  
000 0000  
000 0001  
000 0010  
000 0011  
000 0100  
000 0101  
000 0110  
000 0111  
000 1000  
000 1001  
000 1010  
000 1011  
000 1100  
000 1101  
000 1110  
000 1111  
001 1000  
001 1001  
001 1010  
001 1011  
001 1100  
001 1101  
001 1110  
001 1111  
HEX  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
BINARY  
010 1000  
010 1001  
010 1010  
010 1011  
010 1100  
010 1101  
010 1110  
010 1111  
011 1000  
011 1001  
011 1010  
011 1011  
011 1100  
011 1101  
011 1110  
011 1111  
100 1000  
100 1001  
100 1010  
100 1011  
100 1100  
100 1101  
100 1110  
100 1111  
HEX  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
BINARY  
101 1000  
101 1001  
101 1010  
101 1011  
101 1100  
101 1101  
101 1110  
101 1111  
110 1000  
110 1001  
110 1010  
110 1011  
110 1100  
110 1101  
110 1110  
110 1111  
111 1000  
111 1001  
111 1010  
111 1011  
111 1100  
111 1101  
111 1110  
111 1111  
HEX  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
0
29.44  
33.12  
36.8  
235.52  
264.96  
294.4  
0.92  
1.84  
2.76  
3.68  
4.6  
40.48  
44.16  
47.84  
51.52  
55.2  
323.84  
353.28  
382.72  
412.16  
441.6  
5.52  
6.44  
7.36  
8.28  
9.2  
58.88  
66.24  
73.6  
471.04  
529.92  
588.8  
10.12  
11.04  
11.96  
12.88  
13.8  
14.72  
16.56  
18.4  
20.24  
22.08  
23.92  
25.76  
27.6  
80.96  
88.32  
95.68  
103.04  
110.4  
117.76  
132.48  
147.2  
161.92  
176.64  
191.36  
206.08  
220.8  
647.68  
706.56  
765.44  
824.32  
883.2  
942.08  
1059.84  
1177.6  
1295.36  
1413.12  
1530.88  
1648.64  
1766.4  
8.4.2 Starting the Motor Under Different Initial Conditions  
The motor can be in one of three states when the DRV10983-Q1 device attempts to begin the start-up process.  
The motor may be stationary, or spinning in the forward or reverse directions. The DRV10983-Q1 device  
includes a number of features to allow for reliable motor start under all of these conditions. Figure 16 shows the  
motor start-up flow for each of the three initial motor states.  
8.4.2.1 Case 1 – Motor is Stationary  
If the motor is stationary, the commutation logic must be initialized to be in phase with the position of the motor.  
The DRV10983-Q1 device provides for two options to initialize the commutation logic to the motor position. Initial  
position detect (IPD) determines the position of the motor based on the deterministic inductance variation, which  
is often present in BLDC motors. The align-and-go technique forces the motor into alignment by applying a  
voltage across a particular motor phase to force the motor to rotate in alignment with this phase.  
8.4.2.2 Case 2 – Motor is Spinning in the Forward Direction  
If the motor is spinning forward with enough velocity, the DRV10983-Q1 device may be configured to go directly  
into closed loop. By resynchronizing to the spinning motor, the user achieves the fastest possible start-up time  
for this initial condition.  
8.4.2.3 Case 3 – Motor is Spinning in the Reverse Direction  
If the motor is spinning in the reverse direction, the DRV10983-Q1 device provides several methods to convert it  
back to the forward direction.  
24  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
One method, reverse drive, allows the motor to be driven so that it accelerates through zero velocity. The motor  
achieves the shortest possible spin-up time in systems where the motor is spinning in the reverse direction.  
If this feature is not selected, then the DRV10983-Q1 device may be configured either to wait for the motor to  
stop spinning or to brake the motor. After the motor has stopped spinning, the motor start-up sequence proceeds  
as it would for a motor which is stationary.  
Take care when using the reverse-drive or brake feature to ensure that the current is limited to an acceptable  
level and that the supply voltage does not surge as a result of energy being returned to the power supply.  
IPD  
Stationary  
Align and Go  
Spinning forward  
Spinning reversely  
Direct closed loop  
Wait  
Brake  
Reverse drive  
Figure 16. Start the Motor Under Different Initial Conditions  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
8.4.3 Motor Start Sequence  
Figure 17 shows the motor-start sequence implemented in the DRV10983-Q1 device.  
Power on  
DIR pin  
change  
N
ISDen  
Y
ISD  
Speed <  
ISDThr  
Y
N
Forward  
N
Y
Speed >  
RvsDrThr  
Y
N
BrkEn  
Y
N
Brake  
N
RvsDrEn  
Y
IPDEn  
Y
Time >  
BrkDoneThr  
N
Y
N
Align  
IPD  
RvsDr  
Accelerate  
Speed >  
Op2CIsThr  
N
Y
ClosedLoop  
Figure 17. Motor Starting-Up Flow  
Power-On State This is the initial power-on state of the motor start sequencer (MSS). The MSS starts in this  
state on initial power-up or whenever the DRV10983-Q1 device comes out of either standby or  
sleep mode.  
ISDen Judgment After power-on, the DRV10983-Q1 MSS enters the ISDen judgment where it checks to see if  
the initial speed detect (ISD) function is enabled (ISDen = 1). If ISD is disabled, the MSS proceeds  
directly to the BrkEn Judgment. If ISD is enabled, the motor start sequence advances to the ISD  
state.  
ISD State  
The MSS determines the initial condition of the motor (see Initial Speed Detect).  
Speed<ISDThr Judgment If the motor speed is lower than the threshold defined by ISDThr[1:0], then the motor  
is considered to be stationary and the MSS proceeds to the BrkEn judgment. If the speed is greater  
than the threshold defined by ISDThr[1:0], the start sequence proceeds to the Forward judgment.  
Forward Judgment The MSS determines whether the motor is spinning in the forward or the reverse direction.  
If the motor is spinning in the forward direction, the DRV10983-Q1 device executes the  
resynchronization (see Motor Resynchronization) process by transitioning directly into the  
ClosedLoop state. If the motor is spinning in the reverse direction, the MSS proceeds to the  
26  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
 
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
Speed>RvsDrThr.  
Speed>RvsDrThr Judgment The motor start sequencer checks to see if the reverse speed is greater than the  
threshold defined by RvsDrThr[1:0]. If it is, then the MSS returns to the ISD state to allow the motor  
to decelerate. This prevents the DRV10983-Q1 device from attempting to reverse drive or brake a  
motor that is spinning too quickly. If the reverse speed of the motor is less than the threshold  
defined by RvsDrThr[1:0], then the MSS advances to the RvsDrEn judgment.  
RvsDrEn Judgment The MSS checks to see if the reverse drive function is enabled (RvsDrEn = 1). If it is, the  
MSS transitions into the RvsDr state. If the reverse drive function is not enabled, the MSS  
advances to the BrkEn judgment.  
RvsDr State The DRV10983-Q1 device drives the motor in the forward direction to force it to rapidly decelerate  
(see Reverse Drive). When it reaches zero velocity, the MSS transitions to the Accelerate state.  
BrkEn Judgment The MSS checks to determine whether the brake function is enabled (BrkDoneThr[2:0] 000).  
If the brake function is enabled, the MSS advances to the brake state.  
Brake State The device performs the brake function (see Motor Brake).  
Time>BrkDoneThr Judgment The MSS applies brake for a time configured by BRKDoneThr[2:0]. After brake  
state, the MSS advances to the IPDEn judgment.  
IPDEn Judgment The MSS checks to see if IPD has been enabled (IPDCurrThr[3:0] 0000). If the IPD is  
enabled, the MSS transitions to the IPD state. Otherwise, it transitions to the align state.  
Align State The DRV10983-Q1 device performs the align function (see Align). After the align completes, the  
MSS transitions to the Accelerate state.  
IPD State  
The DRV10983-Q1 device performs the IPD function. The IPD function is described in Initial  
Position Detect (IPD). After the IPD completes, the MSS transitions to the accelerate state.  
Accelerate State The DRV10983-Q1 device accelerates the motor according to the settings of StAccel and  
StAccel2. After applying the accelerate settings, the MSS advances to the Speed>Op2ClsThr  
judgment.  
Speed>Op2ClsThr Judgment The motor accelerates until the drive rate exceeds the threshold configured by  
the Op2ClsThr[4:0] settings. When this threshold is reached, the DRV10983-Q1 device enters into  
the ClosedLoop state.  
ClosedLoop State In this state, the DRV10983-Q1 device drives the motor based on feedback from the  
commutation control algorithm.  
DIR Pin Change Judgment If the DIR pin is changed during any of above states, DRV10983-Q1 device stops  
driving the motor and restarts from the beginning.  
8.4.3.1 Initial Speed Detect  
The ISD function is used to identify the initial condition of the motor. If the function is disabled, the DRV10983-Q1  
device does not perform the initial speed detect function and treats the motor as if it is stationary.  
Phase-to-phase comparators are used to detect the zero crossings of the motor’s BEMF voltage while it is  
coasting (motor phase outputs are in the high-impedance state). Figure 18 shows the configuration of the  
comparators.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
degrees  
60  
V
+
+
U
W
Figure 18. Initial Speed Detect Function  
If the UW comparator output is lagging the UV comparator by 60°, the motor is spinning forward. If the UW  
comparator output is leading the UV comparator by 60°, the motor is spinning in reverse.  
The motor speed is determined by measuring the time between two rising edges of either of the comparators.  
If neither of the comparator outputs toggles for a given amount of time, the condition is defined as stationary. The  
amount of time can be programmed by setting the register bits ISDThr[1:0].  
8.4.3.2 Motor Resynchronization  
The resynchronize function works when the ISD function is enabled and determines that the initial state of the  
motor is spinning in the forward direction. The speed and position information measured during ISD are used to  
initialize the drive state of the DRV10983-Q1 device, which can transition directly into the closed-loop running  
state without needing to stop the motor.  
8.4.3.3 Reverse Drive  
The ISD function measures the initial speed and the initial position; the DRV10983-Q1 reverse drive function acts  
to reverse accelerate the motor through zero speed and to continue accelerating until the closed loop threshold is  
reached (see Figure 19). If the reverse speed is greater than the threshold configured in RvsDrThr[1:0], then the  
DRV10983-Q1 device waits until the motor coasts to a speed that is less than the threshold before driving the  
motor to reverse accelerate.  
Speed  
Closed loop  
Op2ClsThr  
Open loop  
Time  
RevDrThr  
Reverse Drive  
Coasting  
Figure 19. Reverse Drive Function  
28  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
 
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
Reverse drive is suitable for applications where the load condition is light at low speed and relatively constant  
and where the reverse speed is low (that is, a fan motor with little friction). For other load conditions, the motor  
brake function provides a method for helping force a motor which is spinning in the reverse direction to stop  
spinning before a normal start-up sequence.  
8.4.3.4 Motor Brake  
The motor brake function can be used to stop the spinning motor before attempting to start the motor. The brake  
is applied by turning on all three of the low-side driver FETs.  
Brake is enabled by configuring a non-zero BrkDoneThr[2:0]. Brake is applied for a time configured by  
BrkDoneThr[2:0] (forward or reverse). After the motor is stopped, the motor position is unknown. To proceed with  
restarting in the correct direction, the IPD or align-and-go algorithm must be implemented. The motor start  
sequence is the same as it would be for a motor starting in the stationary condition.  
The motor brake function can be disabled. The motor skips the brake state and attempts to spin the motor as if it  
were stationary. If this happens while the motor is spinning in either direction, the start-up sequence may not be  
successful.  
8.4.3.5 Motor Initialization  
8.4.3.5.1 Align  
The DRV10983-Q1 device aligns a motor by injecting dc current through a particular phase pattern which is  
current flowing into phase V, flowing out from phase W for a certain time (configured by AlignTime[2:0]). The  
current magnitude is determined by OpenLCurr[1:0]. The motor should be aligned at the known position.  
The time of align affects the start-up timing (see Start-Up Timing). A bigger-inertia motor requires longer align  
time.  
8.4.3.5.2 Initial Position Detect (IPD)  
The inductive sense method is used to determine the initial position of the motor when IPD is enabled. IPD is  
enabled by selecting IPDCurrThr[3:0] to any value other than 0000.  
IPD can be used in applications where reverse rotation of the motor is unacceptable. Because IPD is not  
required to wait for the motor to align with the commutation, it can allow for a faster motor start sequence. IPD  
works well when the inductance of the motor varies as a function of position. Because it works by pulsing current  
to the motor, it can generate acoustics which must be taken into account when determining the best start method  
for a particular application.  
8.4.3.5.2.1 IPD Operation  
The IPD operates by sequentially applying voltage across two of the three motor phases according to the  
following sequence: VW WV UV VU WU UW (see Figure 20). When the current reaches the threshold configured  
in IPDCurrThr[3:0], the voltage across the motor is stopped. The DRV10983-Q1 device measures the time it  
takes from when the voltage is applied until the current threshold is reached. The time varies as a function of the  
inductance in the motor windings. The state with the shortest time represents the state with the minimum  
inductance. The minimum inductance is because of the alignment of the north pole of the motor with this  
particular driving state.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: DRV10983-Q1  
 
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
U
V
N
IPDclk  
Clock  
S
W
Drive  
V W  
W V  
U V  
V U  
W U  
U W  
IPDCurrThr  
Current  
Search the Minimum Time  
Permanent  
Magnet Position  
Saturation Position of the  
Magnetic Field  
Smallest  
Inductance  
Minimum  
Time  
Figure 20. IPD Function  
8.4.3.5.2.2 IPD Release Mode  
Two options are available for stopping the voltage applied to the motor when the current threshold is reached. If  
IPDRlsMd = 0, the recirculate mode is selected. The low-side (S6) MOSFET remains on to allow the current to  
recirculate between the MOSFET (S6) and body diode (S2) (see Figure 21). If IPDRlsMd = 1, the high-  
impedance (Hi-Z) mode is selected. Both the high-side (S1) and low-side (S6) MOSFETs are turned off and the  
current flies back across the body diodes into the power supply (see Figure 22).  
In the high-impedance state, the phase current has a faster settle-down time, but that could result in a surge on  
VCC. Manage this with appropriate selection of either a clamp circuit or by providing sufficient capacitance  
between VCC and GND. If the voltage surge cannot be contained and if it is unacceptable for the application, then  
select the recirculate mode. When selecting the recirculate mode, select the IPDClk[1:0] bits to give the current in  
the motor windings enough time to decay to 0.  
S3  
S5  
S1  
S3  
S5  
M
M
U1  
U1  
S2  
S2  
S4  
S4  
Driving  
Brake (Recirculate)  
Figure 21. IPD Release Mode 0  
30  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
 
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
S3  
S4  
S5  
S1  
S3  
S4  
S5  
S6  
M
M
U1  
U1  
S2  
S2  
Driving  
Hi-Z (Tri-State)  
Figure 22. IPD Release Mode 1  
8.4.3.5.2.3 IPD Advance Angle  
After the initial position is detected, the DRV10983-Q1 device begins driving the motor at an angle specified by  
IPDAdvcAgl[1:0].  
Advancing the drive angle anywhere from 0° to 180° results in positive torque. Advancing the drive angle by 90°  
results in maximum initial torque. Applying maximum initial torque could result in uneven acceleration to the rotor.  
Select the IPDAdvcAgl[1:0] to allow for smooth acceleration in the application (see Figure 23).  
Motor spinning direction  
U
V
N
S
W
U
V
U
V
U
V
U
V
N
N
N
N
S
S
S
S
W
W
W
W
30˘ advance  
60˘ advance  
90˘ advance  
120˘ advance  
Figure 23. IPD Advance Angle  
8.4.3.5.3 Motor Start  
After it is determined that the motor is stationary and after completing the motor initialization with either align or  
IPD, the DRV10983-Q1 device begins to accelerate the motor. This acceleration is accomplished by applying a  
voltage determined by the open-loop current setting (OpenLCurr[1:0]) to the appropriate drive state and by  
increasing the rate of commutation without regard to the real position of the motor (referred to as open-loop  
operation). The function of the open-loop operation is to drive the motor to a minimum speed so that the motor  
generates sufficient BEMF to allow the commutation control logic to accurately drive the motor.  
Table 5 lists the configuration options that can be set in register to optimize the initial motor acceleration stage  
for different applications.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: DRV10983-Q1  
 
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
Table 5. Configuration Options for Controlling Open-Loop Motor Start  
CONFIGURATION  
BITS  
DESCRIPTION  
REG. NAME  
MIN. VALUE  
MAX. VALUE  
Open- to closed-loop threshold  
Align time  
CONFIG4  
CONFIG4  
CONFIG4  
CONFIG4  
Op2ClsThr[4:0]  
AlignTime[2:0]  
StAccel[2:0]  
0.8 Hz  
40 ms  
204.8 Hz  
5.3 s  
First-order accelerate  
Second-order accelerate  
Open-loop current setting  
Align current setting  
0.019 Hz/s  
0.0026 Hz/s2  
200 mA  
76 Hz/s  
57 Hz/s2  
1.6 A  
StAccel2[2:0]  
CONFIG3  
CONFIG3  
OpenLCurr[1:0]  
OpLCurrRt[2:0]  
150 mA  
1.2 A  
Open-loop current ramping  
0.023 VCC/s  
6 VCC/s  
8.4.3.6 Start-Up Timing  
Start-up timing is determined by the align and accelerate time. The align time can be set by AlignTime[2:0]. The  
accelerate time is defined by the open-to-closed loop threshold Op2ClsThr[4:0] along with the first-order  
StAccel[2:0](A1) and second-order StAccel2[2:0](A2) acceleration coefficients. Figure 24 shows the motor start-  
up process.  
Speed  
Speed =  
Close loop  
A1 ´ t + 0.5 A2 ´ t2  
Op2ClsThr  
AlignTime  
Accelerate Time is determined by  
Op2ClsThr and A1, A2.  
Time  
Accelerate Time  
Figure 24. Motor Start-Up Process  
Select the first-order and second-order acceleration coefficients to allow the motor to reliably accelerate from  
zero velocity up to the closed-loop threshold in the shortest time possible. Using a slow acceleration coefficient  
during the first order accelerate stage can help improve reliability in applications where it is difficult to accurately  
initialize the motor with either align or IPD.  
Select the open-to-closed loop threshold to allow the motor to accelerate to a speed that generates sufficient  
BEMF for closed-loop control. This is determined by the velocity constant of the motor based on the relationship  
described in Equation 2.  
BEMF = KtPH × speed (Hz)  
(2)  
8.4.4 Align Current  
During the align state, the measured align current is dependent on actual motor phase resistance and rDS(on) of  
the internal FETs. The relationship between measured align current and configured align current is derived from  
actual motor phase resistance, configured motor phase resistance and rDS(on)  
.
é
ê
ë
ù
Rm  
AlignCurrent _Measured = AlignCurrent _Configured´  
ú
R
+ r  
ê
ú
DS(on) û  
motor  
where  
AlignCurrent_Measured is the actual align current measured during the align state  
AlignCurrent_Configured is the align current configured by OpenLCurr[1:0]  
Rmotor is the actual motor phase resistance  
rDS(on) is the resistance between the drain and source of the FETs during the on-state  
Rm is configured by Rm[6:0]  
(3)  
32  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
 
 
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
8.4.5 Start-Up Current Setting  
The start-up current setting is to control the peak start-up during open loop. During open-loop operation, it is  
desirable to control the magnitude of drive current applied to the motor. This is helpful in controlling and  
optimizing the rate of acceleration. The limit takes effect during reverse drive, align, and acceleration.  
The start current is set by programming the OpenLCurr[1:0] bits. The current should be selected to allow the  
motor to reliably accelerate to the handoff threshold. Heavier loads may require a higher current setting, but it  
should be noted that the rate of acceleration is limited by the acceleration rate (StAccel[2:0], StAccel2[2:0]). If the  
motor is started with more current than necessary to reliably reach the handoff threshold, it results in higher  
power consumption.  
The start current is controlled based on the relationship shown in Equation 4 and Figure 25. The duty cycle  
applied to the motor is derived from the calculated value for ULimit and the magnitude of the supply voltage, VCC  
as well as the drive state of the motor.  
,
ULimit = ILimit ì Rm + Speed Hz ì Kt  
(
)
where  
ILimit is configured by OpenLCurr[1:0]  
Rm is configured by Rm[6:0]  
Speed is variable based motor’s open loop acceleration profile  
Kt is configured by Kt[6:0]  
(4)  
Rm  
BEMF = Kt × speed  
M
VU = BEMF + I× Rm  
Copyright © 2017, Texas Instruments Incorporated  
Figure 25. Motor Start-Up Current  
8.4.5.1 Start-Up Current Ramp-Up  
A fast change in the applied drive current may result in a sudden change in the driving torque. In some  
applications, this could result in acoustic noise. To avoid this, the DRV10983-Q1 device allows the option of  
limiting the rate at which the current is applied to the motor. OpLCurrRt[2:0] sets the maximum voltage ramp-up  
rate that is applied to the motor. The waveforms in Figure 26 show how this feature can be used to gradually  
ramp the current applied to the motor.  
Start driving with fast current ramp  
Start driving with slow current ramp  
Figure 26. Motor Start-Up Current Ramp  
8.4.6 Closed Loop  
In closed loop operation, the DRV10983-Q1 device continuously samples the current in the U phase of the motor  
and uses this information to estimate the BEMF voltage that is present. The drive state of the motor is controlled  
based on the estimated BEMF voltage.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: DRV10983-Q1  
 
 
 
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
8.4.6.1 Half-Cycle Control and Full-Cycle Control  
The estimated BEMF used to control the drive state of the motor has two zero-crosses every electrical cycle. The  
DRV10983-Q1 device can be configured to update the drive state either once every electrical cycle or twice for  
every electrical cycle. When AdjMode is programmed to 1, half-cycle adjustment is applied. The control logic is  
triggered at both the rising edge and falling edge. When AdjMode is programmed to 0, full-cycle adjustment is  
applied. The control logic is triggered only at the rising edge (see Figure 27).  
Half-cycle adjustment provides a faster response when compared with full-cycle adjustment. Use half-cycle  
adjustment whenever the application requires operation over large dynamic loading conditions. Use the full-cycle  
adjustment for low-current (<1 A) applications because it offers more tolerance for current-measurement offset  
errors.  
Zero cross signal  
Zero cross signal  
Estimated Position  
Real Driving Voltage  
Real Position  
Ideal Driving Voltage  
Estimated Position  
Real Driving Voltage  
Real Position  
Ideal Driving Voltage  
Adjustment (full cycle)  
Adjustment (half cycle)  
Figure 27. Closed-Loop Control Commutation-Adjustment Mode  
8.4.6.2 Analog-Mode Speed Control  
The SPEED input pin can be configured to operate as an analog input (SpdCtrlMd = 0).  
When configured for analog mode, the voltage range on the SPEED pin can be varied from 0 to V3P3. If  
SPEED > VANA_FS, the speed command is maximum. If VANA_ZS SPEED < VANA_FS the speed command  
changes linearly according to the magnitude of the voltage applied at the SPEED pin. If SPEED < VANA_ZS the  
speed command is to stop the motor. Figure 28 shows the speed command when operating in analog mode.  
Speed  
Command  
Maximum  
Speed  
Command  
Analog Input  
VANA-ZS  
VANA-FS  
Figure 28. Analog-Mode Speed Command  
8.4.6.3 Digital PWM-Input-Mode Speed Control  
If SpdCtrlMd = 1, the SPEED input pin is configured to operate as a PWM-encoded digital input. The PWM duty  
cycle applied to the SPEED pin can be varied from 0 to 100%. The speed command is proportional to the PWM  
input duty cycle. The speed command stops the motor when the PWM input keeps at 0 for tEN_SL_SB (see  
Figure 29).  
The frequency of the PWM input signal applied to the SPEED pin is defined as fPWM. This is the frequency the  
device can accept to control motor speed. It does not correspond to the PWM output frequency that is applied to  
the motor phase. The PWM output frequency can be configured to be either 25 kHz when the PWMFreq bit is set  
to 0 or to 50 kHz when PWMFreq bit is set to 1.  
34  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
 
 
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
Speed  
Command  
Maximum  
Speed  
Command  
PWM duty  
0
100%  
Figure 29. PWM-Mode Speed Command  
8.4.6.4 I2C-Mode Speed Control  
The DRV10983-Q1 device can also command the speed through the I2C serial interface. To enable this feature,  
the OverRide bit is set to 1. When the DRV10983-Q1 device is configured to operate in I2C mode, it ignores the  
signal applied to the SPEED pin.  
The speed command can be set by writing the SpdCtrl[8:0] bits. The 9-bit SpdCtrl [8:0] located in the SpeedCtrl  
registers is used to set the peak amplitude voltage applied to the motor. The maximum speed command is set  
when SpdCtrl [8:0] is set to 0x1FF (511).  
8.4.6.5 Closed-Loop Accelerate  
To prevent sudden changes in the torque applied to the motor which could result in acoustic noise, the  
DRV10983-Q1 device provides the option of limiting the maximum rate at which the speed command changes.  
ClsLpAccel[2:0] can be programmed to set the maximum rate at which the speed command changes (shown in  
Figure 30).  
y%  
Speed command  
input  
x%  
y%  
Speed command  
after closed loop  
accelerate buffer  
x%  
Closed loop  
accelerate settings  
Figure 30. Closed Loop Accelerate  
8.4.6.6 Control Coefficient  
The DRV10983-Q1 device continuously measures the motor current and uses this information to control the drive  
state of the motor when operating in closed-loop mode. In applications where noise makes it difficult to control  
the commutation optimally, the CtrlCoef[1:0] can be used to attenuate the feedback used for closed-loop control.  
The loop is less reactive to the noise on the feedback and provides for a smoother output.  
8.4.6.7 Commutation Control Advance Angle  
To achieve the best efficiency, it is often desirable to control the drive state of the motor so that the motor phase  
current is aligned with the motor BEMF voltage.  
To align the motor phase current with the motor BEMF voltage, consider the inductive effect of the motor. The  
voltage applied to the motor should be applied in advance of the motor BEMF voltage (see Figure 31). The  
DRV10983-Q1 device provides configuration bits for controlling the time (tadv) between the driving voltage and  
BEMF.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: DRV10983-Q1  
 
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
For motors with salient pole structures, aligning the motor BEMF voltage with the motor current may not achieve  
the best efficiency. In these applications, the timing advance should be adjusted accordingly. Accomplish this by  
operating the system at constant speed and load conditions and by adjusting tadv until the minimum current is  
achieved.  
Phase  
Voltage  
Phase  
BEMF  
Phase  
Current  
tadv  
Figure 31. Advance Time (tadv) Definition  
The DRV10983-Q1 device has two options for adjusting the motor commutate advance time. When  
CommAdvMode = 0, mode 0 is selected. When CommAdvMode = 1, mode 1 is selected.  
Mode 0: tadv is maintained to be a fixed time relative to the estimated BEMF zero cross as determined by  
Equation 5.  
tadv = tSETTING  
(5)  
Mode 1: tadv is maintained to be a variable time relative to the estimated BEMF zero cross as determined by  
Equation 6.  
tadv = tSETTING × (U - BEMF) / U.  
where  
U is the phase voltage amplitude  
BEMF is phase BEMF amplitude  
(6)  
tSETTING (in µs) is determined by the configuration of the TCtrlAdvShift [2:0] and TCtrlAdvValue [3:0] bits as  
defined in Equation 7. For convenience, the available tSETTING values are provided in Table 6.  
tSETTING = 2.5 µs × [TCtrlAdvValue[3:0]] << TCtrlAdvShift[2:0]  
(7)  
36  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
 
 
 
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
Table 6. Configuring Commutation Advance Timing by Adjusting tSETTING  
TCtrlAdv [6:0]  
TCtrlAdv [6:0]  
TCtrlAdv [6:0]  
{TCtrlAdvShift[2:0],  
TCtrlAdvValue[3:0]}  
{TCtrlAdvShift[2:0],  
TCtrlAdvValue[3:0]}  
{TCtrlAdvShift[2:0],  
TCtrlAdvValue[3:0]}  
tSETTING (µs)  
tSETTING (µs)  
tSETTING (µs)  
Binary  
Hex  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
Binary  
Hex  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
Binary  
Hex  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
000 0000  
000 0001  
000 0010  
000 0011  
000 0100  
000 0101  
000 0110  
000 0111  
000 1000  
000 1001  
000 1010  
000 1011  
000 1100  
000 1101  
000 1110  
000 1111  
001 1000  
001 1001  
001 1010  
001 1011  
001 1100  
001 1101  
001 1110  
001 1111  
0.0  
2.5  
5
010 1000  
010 1001  
010 1010  
010 1011  
010 1100  
010 1101  
010 1110  
010 1111  
011 1000  
011 1001  
011 1010  
011 1011  
011 1100  
011 1101  
011 1110  
011 1111  
100 1000  
100 1001  
100 1010  
100 1011  
100 1100  
100 1101  
100 1110  
100 1111  
80  
101 1000  
101 1001  
101 1010  
101 1011  
101 1100  
101 1101  
101 1110  
101 1111  
110 1000  
110 1001  
110 1010  
110 1011  
110 1100  
110 1101  
110 1110  
110 1111  
111 1000  
111 1001  
111 1010  
111 1011  
111 1100  
111 1101  
111 1110  
111 1111  
640  
720  
90  
100  
110  
120  
130  
140  
150  
160  
170  
200  
220  
240  
260  
280  
300  
320  
360  
400  
440  
480  
520  
560  
600  
800  
7.5  
10  
880  
960  
12.5  
15  
1040  
1120  
1200  
1280  
1440  
1600  
1760  
1920  
2080  
2240  
2400  
2560  
2880  
3200  
3520  
3840  
4160  
4480  
4800  
17.5  
20  
22.5  
25  
27.5  
30  
32.5  
35  
37.5  
40  
45  
50  
55  
60  
65  
70  
75  
8.4.7 Current Limit  
The DRV10983-Q1 device has several current-limit modes to help ensure optimal control of the motor and to  
ensure safe operation. The various current-limit modes are listed in Table 7. Acceleration current limit is used to  
provide a means of controlling the amount of current delivered to the motor. This is useful when the system  
needs to limit the amount of current pulled from the power supply during motor start-up. The lock-detection  
current limit is a configurable threshold that can be used to limit the current applied to the motor. Overcurrent  
protection is used to protect the device; therefore, it cannot be disabled or configured to a different threshold.  
The current-limit modes are described in the following sections.  
Table 7. DRV10983-Q1 Current-Limit Modes  
CURRENT LIMIT MODE  
Acceleration current limit  
Lock-detection current limit  
Overcurrent Protection  
SITUATION  
Motor start  
ACTION  
FAULT DIAGNOSIS  
No fault  
Limit the output voltage amplitude  
Motor locked  
Short circuit  
Stop driving the motor and enter the lock state  
Stop driving the motor and enter the lock state  
Mechanical rotation error  
Circuit connection  
8.4.7.1 Acceleration Current Limit  
The acceleration current limit limits the voltage applied to the motor to prevent the current from exceeding the  
programmed threshold. The acceleration current limit threshold is configured by writing the SWiLimitThr[3:0] bits  
to select ILIMIT. The acceleration current limit does not use a direct measurement of current. It uses the  
programmed motor phase resistance, RPH_CT, and programmed BEMF constant, Kt, to limit the voltage applied to  
the motor, U, as shown in Figure 32 and Equation 8.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: DRV10983-Q1  
 
 
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
When the acceleration current limit is active, it does not stop the motor from spinning nor does it trigger a fault.  
The functionality of the acceleration current limit is only available in closed-loop control.  
Rm  
ILIMIT  
BEMF = Kt ´ Speed  
M
VU_LIMIT  
Copyright © 2017, Texas Instruments Incorporated  
Figure 32. Acceleration Current Limit  
ULIMIT = ILIMIT × RPH_CT + Speed × Kt  
(8)  
8.4.8 Lock Detect and Fault Handling  
The DRV10983-Q1 device provides several options for determining if the motor becomes locked as a result of  
some external torque. Five lock-detect schemes work together to ensure the lock condition is detected quickly  
and reliably. Figure 33 shows the logic which integrates the various lock-detect schemes. When a lock condition  
is detected, the DRV10983-Q1 device takes action to prevent continuously driving the motor in order to prevent  
damage to the system or the motor.  
In addition to detecting if there is a locked motor condition, the DRV10983-Q1 device also identifies and takes  
action if there is no motor connected to the system.  
Each of the five lock-detect schemes and the no-motor detection can be disabled by respective register bits  
LockEn[5:0].  
When a lock condition is detected, the FaultReg register provides an indication of which of the six different  
conditions was detected on Lock5 to Lock0. These bits are reset when the motor restarts. The bits in the  
FaultReg register are set even if the lock detect scheme is disabled.  
The DRV10983-Q1 device reacts to either locked-rotor or no-motor-connected conditions by putting the output  
drivers into a high-impedance state. To prevent the energy in the motor from pumping the supply voltage, the  
DRV10983-Q1 device incorporates an anti-voltage-surge (AVS) process whenever the output stages transition  
into the high-impedance state. The AVS function is described in Anti Voltage Suppression Function. After  
entering the high-impedance state as a result of a fault condition, the system tries to restart after tLOCK_OFF  
.
LockEn(0, 1, 2, 3, 4, 5)  
Lock-Detection Current Limit  
Speed Abnormal  
BEMF Abnormal  
Hi-Z  
OR  
and Restart  
Logic  
No-Motor Fault  
Open-Loop Stuck  
Closed-Loop Stuck  
Reset  
Register:  
FaultCode[5:0]  
Set  
Copyright © 2017, Texas Instruments Incorporated  
Figure 33. Lock Detect and Fault Diagnose  
38  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
 
 
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
8.4.8.1 Lock0: Lock-Detection Current Limit Triggered  
The lock-detection current-limit function provides a configurable threshold for limiting the current to prevent  
damage to the system. This is often tripped in the event of a sudden locked-rotor condition. The DRV10983-Q1  
device continuously monitors the current in the low-side drivers as shown in Figure 34. If the current goes higher  
than the threshold configured by the HWiLimitThr[2:0] bits, then the DRV10983-Q1 device stops driving the  
motor by placing the output phases into a high-impedance state. The Lock0 bit is set and a lock condition is  
reported. It retries after tLOCK_OFF  
.
Set the lock-detection current limit to a higher value than the acceleration current limit.  
+
DigitalCore  
DAC  
Figure 34. Lock-Detection Current Limit  
8.4.8.2 Lock1: Abnormal Speed  
If the motor is operating normally, the motor BEMF should always be less than the output amplitude. The  
DRV10983-Q1 device uses two methods of monitoring the BEMF in the system. The U phase current is  
monitored to maintain an estimate of BEMF based on the setting for Rm[6:0] {RmShift[2:0],RmValue[3:0]}. In  
addition, the BEMF is estimated based on the operation speed of the motor and the setting for Kt[6:0]  
{KtShift[2:0],KtValue[3:0]}. Figure 35 shows the method for using this information to detect a lock condition. If the  
motor BEMF is much higher than the output amplitude for a certain period of time, tLCK_ETR, it means the  
estimated speed is wrong, and the motor has gotten out of phase.  
Rm  
BEMF1 = VU I× Rm  
BEMF2 =Kt × Speed  
I
M
VU  
Lock Detected If BEMF2 > VU  
Copyright © 2017, Texas Instruments Incorporated  
Figure 35. Lock Detection 1  
8.4.8.3 Lock2: Abnormal Kt  
For any given motor, the integrated value of BEMF during half of an electrical cycle is constant. The value is  
determined by the BEMF constant (KtPH) (see Figure 36). The BEMF constant is the same regardless of whether  
the motor is running fast or slow. This constant value is continuously monitored by calculation and used as a  
criterion to determine the motor lock condition, and is referred to as Ktc.  
Based on the KtPH value programmed, create a range from Kt_low to Kt_high. If Ktc goes beyond the range for a  
certain period of time, tLCK_ETR, lock is detected. Kt_low and Kt_high are determined by KtLckThr[1:0] (see  
Figure 37).  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: DRV10983-Q1  
 
 
 
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
Figure 36. BEMF Integration  
Kt_high  
Ktc  
Kt  
Kt_low  
Lock detect  
Figure 37. Abnormal-Kt Lock Detect  
8.4.8.4 Lock3 (Fault3): No-Motor Fault  
The phase U current is checked after transitioning from open loop to closed loop. If phase U current is not  
greater than 140 mA then the motor is not connected as shown in Figure 38. This condition is treated and  
reported as a fault.  
DRV10983-Q1  
M
Figure 38. No Motor Error  
8.4.8.5 Lock4: Open-Loop Motor-Stuck Lock  
Lock4 is used to detect locked-motor conditions while the motor start sequence is in open loop.  
For a successful startup, motor speed should be equal to the open-to-closed-loop handoff threshold when the  
motor is transitioning into closed loop. However, if the motor is locked, the motor speed is not able to match the  
open-loop drive rate.  
If the motor BEMF is not detected for one electrical cycle after the open-loop drive rate exceeds the threshold,  
then the open loop was unsuccessful as a result of a locked-rotor condition.  
8.4.8.6 Lock5: Closed Loop Motor Stuck Lock  
If the motor suddenly becomes locked, motor speed and Ktc are not able to be refreshed because the BEMF  
zero cross of the motor may not appear after the lock. In this condition, lock can also be detected by the  
following scheme: if the current commutation period is 2× longer than the previous period.  
40  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
 
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
8.4.9 Anti Voltage Suppression Function  
When a motor is driven, energy is transferred from the power supply into the motor. Some of this energy is  
stored in the form of inductive energy or as mechanical energy. The DRV10983-Q1 device includes circuits to  
prevent this energy from being returned to the power supply, which could result in pumping up the VCC voltage.  
This function is referred to as the AVS and acts to protect the DRV10983-Q1 device as well as other circuits that  
share the same VCC connection. Two forms of AVS protection are used to prevent both the mechanical energy  
and the inductive energy from being returned to the supply. Each of these modes can be independently disabled  
through the register configuration bits AVSMEn and AVSIndEn.  
8.4.9.1 Mechanical AVS Function  
If the speed command suddenly drops such that the BEMF voltage generated by the motor is greater than the  
voltage that is applied to the motor, then the mechanical energy of the motor is returned to the power supply and  
the VCC voltage surges. The mechanical AVS function works to prevent this from happening. The DRV10983-Q1  
device buffers the speed command value and limits the resulting output voltage, UMIN, so that it is not less than  
the BEMF voltage of the motor. The BEMF voltage in the mechanical AVS function is determined using the  
programmed value for the motor Kt (Kt[6:0]) along with the speed. Figure 39 shows the criteria used by the  
mechanical AVS function.  
Rm  
IMIN = 0  
BEMF  
M
VU  
VU_MIN = BEMF + IMIN ´ Rm = BEMF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 39. Mechanical AVS  
The mechanical AVS function can operate in one of two modes, which can be configured by the register bit  
AVSMMd:  
AVSMMd = 0 – AVS mode is always active to prevent the applied voltage from being less than the BEMF  
voltage.  
AVSMMd = 1 – AVS mode becomes active when VCC reaches 24 V. The motor acts as a generator and returns  
energy into the power supply until VCC reaches 24 V. This mode can be used to enable faster deceleration of the  
motor in applications where returning energy to the power supply is allowed.  
8.4.9.2 Inductive AVS Function  
When the DRV10983-Q1 device transitions from driving the motor into a high-impedance state, the inductive  
current in the motor windings continues to flow and the energy returns to the power supply through the intrinsic  
body diodes in the FET output stage (see Figure 40).  
S1  
S3  
S4  
S5  
S6  
S1  
S3  
S4  
S5  
S6  
M
M
VCC  
S2  
VCC  
S2  
Driving State  
High-Impedance State  
Figure 40. Inductive-Mode Voltage Surge  
To prevent the inductive energy from being returned to the power supply, the DRV10983-Q1 system transitions  
from driving to a high-impedance state by first turning OFF the active high-side drivers, and turning ON all low-  
side drivers. The DRV10983-Q1 device monitors phase current after entering the BRAKE state and transitions  
into the high-impedance state when the amplitude of the phase current is less than BrkCurThrSel for a fixed  
period of time (BrkDoneThr[2:0])(see Figure 41).  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: DRV10983-Q1  
 
 
 
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
S3  
S5  
S1  
S3  
S4  
S5  
M
M
VCC  
S2  
VCC  
S2  
S4  
Driving  
AVS State  
Figure 41. Inductive AVS  
In this example, current is applied to the motor through the high-side driver on phase U (S1) and returned  
through the low-side driver on phase W (S6). The high-side driver on phase U is turned off and after a period of  
time (to allow the inductive energy in the resulting LR circuit to decay) the low-side driver on phase W is turned  
off. If BrkDoneThr[2:0] = 000, no brake will be applied and the device will not protect from inductive energy even  
with the inductive AVS feature enabled.  
8.4.10 PWM Output  
The DRV10983-Q1 device has 32 options for PWM dead time. These options can be used to configure the time  
between one of the bridge FETs turning off and the complementary FET turning on. Deadtime[4:0] can be used  
to configure dead times between 40 and 1280 ns. Take care that the dead time is long enough to prevent the  
bridge FETs from shooting through.  
The DRV10983-Q1 device offers two options for PWM switching frequency. When the configuration bit PWMFreq  
is set to 0, the output PWM frequency is 25 kHz, and when PWMFreq is set to 1, the output PWM frequency is  
50 kHz.  
8.4.11 FG Customized Configuration  
The DRV10983-Q1 device provides information about the motor speed through the frequency generate (FG) pin.  
FG also provides information about the driving state of the DRV10983-Q1 device.  
8.4.11.1 FG Output Frequency  
The FG output frequency can be configured by FGcycle[3:0]. The default FG toggles once every electrical cycle  
(FGcycle = 0000). Many applications configure the FG output so that it provides two pulses for every mechanical  
rotation of the motor. The configuration bits provided in the DRV10983-Q1 device can accomplish this for 2-pole,  
4-pole, 6-pole, and 8-pole motors up to 32-pole motors. This is illustrated in Figure 42 for 2, 4, 6, and 8-pole  
motors.  
Figure 42 shows the DRV10983-Q1 device has been configured to provide FG pulses once every electrical cycle  
(4 poles), twice every three electrical cycles (6 poles), once every two electrical cycles (8 poles), and once every  
three electrical cycles (12 poles).  
Note that when it is set to two FG pulses every three electrical cycles, the FG output is not 50% duty cycle. Motor  
speed is able to be measured by monitoring the rising edge of the FG output.  
42  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
Motor phase  
driving voltage  
FGCycle = 0000  
2 pole  
FGCycle = 0001  
4 pole  
FGCycle = 0010  
6 pole  
FGCycle = 0011  
8 pole  
Figure 42. FG Frequency Divider  
8.4.11.2 FG Open Loop and Lock Behavior  
Note that the FG output reflects the driving state of the motor. During normal closed-loop behavior, the driving  
state and the actual state of the motor are synchronized. During open-loop acceleration, however, this may not  
reflect the actual motor speed. During a locked-motor condition, the FG output is driven high.  
The DRV10983-Q1 device provides three options for controlling the FG output during open loop, as shown in  
Figure 43. The selection of these options is determined by the FGOLSel[1:0] setting.  
Option0: Open-loop, FG output based on driving frequency  
Option1: Open-loop, no FG output (keep high)  
Option2: FG output based on driving frequency at the first power-on startup, and no FG output (keep high) for  
any subsequent restarts  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
Open loop  
Closed loop  
Motor phase  
driving voltage  
FGOLset= 00  
FGOLset =01  
Open loop  
Closed loop  
Open loop  
Closed loop  
Motor phase  
driving voltage  
FGOLset =10  
Start-up after power-on or wake  
up from sleep/standby mode  
Rest of the startups  
Figure 43. FG Behavior During Open Loop  
8.4.12 Diagnostics and Visibility  
The DRV10983-Q1 device offers extensive visibility into the motor system operation conditions stored in internal  
registers. This information can be monitored through the I2C interface. Information can be monitored relating to  
the device status, motor speed, supply voltage, speed command, motor phase-voltage amplitude, fault status,  
and others. The data is updated on the fly.  
8.4.12.1 Motor-Status Readback  
The motor FaultReg register provides information on overtemperature (OverTemp), overcurrent (OverCurr), and  
locked rotor (Lock0–Lock5).  
8.4.12.2 Motor-Speed Readback  
The motor operation speed is automatically updated in register MotorSpeed while the motor is spinning. The  
value is determined by the period for calculated BEMF zero crossings on phase U. The electrical speed of the  
motor is denoted as Velocity (Hz) and is calculated as shown in Equation 9.  
Velocity (Hz) = {MotorSpeed} / 10  
As an example consider the following:  
MotorSpeed = 0x01FF;  
(9)  
Velocity = 512 (0x01FF) / 10 = 51 Hz  
ecycles 1 mechcycle  
second  
minute  
51  
ì
ì 60  
= 1530 RPM  
second  
2
ecycle  
For a 4-pole motor, this translates to:  
44  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
 
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
8.4.12.3 Motor Electrical-Period Readback  
The motor-operation electrical period is automatically updated in register MotorPeriod while the motor is spinning.  
The electrical period is measured as the time between calculated BEMF zero crossings for phase U. The  
electrical period of the motor is denoted as tELE_PERIOD (µs) and is calculated as shown in Equation 10.  
tELE_PERIOD (µs) = {MotorPeriod} × 10  
As an example consider the following:  
MotorPeriod = 0x01FF;  
(10)  
(11)  
tELE_PERIOD = 512 (0x01FF) × 10 = 5120 µs  
The motor electrical period and motor speed satisfies the condition of Equation 11.  
tELE_PERIOD (s) × Velocity (Hz) = 1  
8.4.12.4 BEMF Constant Read Back  
For any given motor, the integrated value of BEMF during half of an electronic cycle is a constant, Ktc (see  
Lock2: Abnormal Kt ).  
The integration of the motor BEMF is processed periodically (updated every electrical cycle) while the motor is  
spinning. The result is stored in register MotorKt.  
The relationship is shown in .  
Ktc (V/Hz) = {MotorKt} / 2 / 1090  
(12)  
8.4.12.5 Motor Estimated Position by IPD  
After inductive sense is executed, the rotor position is detected within 60 electrical degrees of resolution. The  
position is stored in register IPDPosition.  
The value stored in IPDPosition corresponds to one of the six motor positions plus the IPD advance angle as  
shown in Table 8. For more information about IPD, see Initial Position Detect (IPD).  
Table 8. IPD Position Read Back  
S
U
V
U
V
U
V
U
V
U
V
U
V
N
N
S
W
W
W
W
W
W
Rotor position (°)  
Data1  
0
0
60  
43  
60  
44  
120  
85  
180  
128  
120  
85  
240  
171  
300  
213  
IPD advance angle  
Data2  
30  
22  
90  
63  
Register data  
(Data1 + Data2) mod (256)  
8.4.12.6 Supply-Voltage Readback  
The power supply is monitored periodically during motor operation. This information is available in register  
SupplyVoltage. The power supply voltage is recorded as shown in Equation 13.  
VPOWERSUPPLY (V) = Supply Voltage × 30 V / 256  
(13)  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: DRV10983-Q1  
 
 
 
 
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
8.4.12.7 Speed-Command Readback  
The DRV10983-Q1 device converts the various types of speed command into a speed command value  
(SpeedCmd) as shown in Figure 44. By reading SpeedCmd, the user can observe PWM input duty (PWM digital  
mode), analog voltage (analog mode), or I2C data (I2C mode). This value is calculated as shown in Equation 14.  
Equation 14 shows how the speed command as a percentage can be calculated and set in SpeedCmd.  
DutySPEED (%) = SpeedCmd × 100 / 255  
where  
DutySPEED = Speed command as a percentage  
SpeedCmd = Register value  
(14)  
8.4.12.8 Speed-Command Buffer Readback  
If acceleration current limit and AVS are enabled, the PWM duty cycle output (read back at spdCmdBuffer) may  
not always match the input command (read back at SpeedCmd) shown in Figure 44. See Anti Voltage  
Suppression Function and Current Limit.  
By reading the value of spdCmdBuffer, the user can observe buffered speed command (output PWM duty cycle)  
to the motor.  
Equation 15 shows how the buffered speed is calculated.  
DutyOUTPUT (%) = spdCmdBuffer × 100 / 255  
where  
DutyOUTPUT = The maximum duty cycle of the output PWM, which represents the output amplitude in  
percentage.  
spdCmdBuffer = Register value  
(15)  
PWM in  
Analog  
PWM duty  
ADC  
AVS,  
Acceleration Current Limit  
Closed Loop Accelerate  
Speed  
Command  
I2C  
SpeedCmd  
PWM_DCO  
spdCmdBuffer  
Figure 44. SpeedCmd and spdCmdBuffer Registers  
8.4.12.9 Fault Diagnostics  
See Lock Detect and Fault Handling.  
46  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
 
 
 
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
8.5 Register Maps  
8.5.1 I2C Serial Interface  
The DRV10983-Q1 device provides an I2C slave interface with slave address 101 0010. TI recommends a pullup  
resistor of 4.7 kΩ to 3.3 V for I2C interface ports SCL and SDA. The protocol for the I2C interface is given in  
Figure 45.  
I2C Write  
Start  
7 bit Slave Add  
R/W=0 ACK 8 bit Reg Add  
ACK 8 bit Data ACK 8 bit Data ACK  
Stop  
Internal Reg  
write happens  
I2C Read  
Start  
7 bit Slave Add  
R/W=0 ACK 8 bit Reg Add  
ACK  
Start  
7 bit Slave Add  
R/W=1 8 bit Data ACK 8 bit Data ACK  
Stop  
Data from Reg is  
loaded to the buffer  
Figure 45. I2C Protocol  
Seven read/write registers (0x30:0x36) are used to set motor speed and control device registers and EEPROM.  
Device operation status can be read back through nine read-only registers (0x0:0x08). Another seven EEPROM  
registers (0x90:0x96) can be accessed to program motor parameters and optimize the spin-up profile for the  
application.  
8.5.2 Register Map  
REGISTER  
NAME  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D8  
D0  
ADDR.  
(1)(2)  
FaultReg  
0x00  
OverTemp TempWarni  
ng  
VCC_OV  
VREG_OC  
OverCurr  
CP_UVLO VREG_UVL VCC_UVLO  
O
V3P3_UVL  
O
Reserved  
Lock5  
Lock4  
Lock3  
Lock2  
Lock1  
Lock0  
(1)  
(1)  
MotorSpeed  
MotorPeriod  
0x01  
0x02  
0x03  
0x04  
MotorSpeed[15:0]  
MotorPeriod[15:0]  
MotorKt[15:0]  
(1)  
MotorKt  
(1)  
MotorCurrent  
Reserved  
MotorCurrent[10:8]  
MotorCurrent[7:0]  
IPDPosition[7:0]  
SupplyVoltage[7:0]  
SpeedCmd[7:0]  
IPDPosition /  
SupplyVoltage  
0x05  
0x06  
0x07  
0x08  
0x30  
(1)  
SpeedCmd /  
spdCmdBuffer(1)  
spdCmdBuffer[7:0]  
(1)  
AnalogInLvl  
Reserved  
commandSenseAdc[9:8]  
commandSenseAdc[7:0]  
DieID[7:0]  
Device ID /  
(1)  
Revision ID  
RevisionID[7:0]  
Reserved  
(3)  
SpeedCtrl  
OverRide  
SpeedCtrl[8  
]
SpeedCtrl[7:0]  
EEPROM  
Programming1  
0x31  
ENPROGKEY[15:0]  
(3)  
(1) Read only  
(2) Fault Register requires 0xFF to be written to the register to clear the bits.  
(3) R/W  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: DRV10983-Q1  
 
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
Register Maps (continued)  
REGISTER  
NAME  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D11  
D3  
D10  
D2  
D9  
D1  
D8  
D0  
ADDR.  
EEPROM  
Programming2  
0x32  
Reserved  
Reserved  
(3)  
(3)  
eeReadySt  
atus  
EEPROM  
Programming3  
0x33  
Reserved  
eeIndAddress[7:0]  
eeIndWData[15:0]  
EEPROM  
Programming4  
0x34  
0x35  
(3)  
(3)  
EEPROM  
Programming5  
Reserved  
ShadowRe  
Reserved  
eeWRnEn  
eeRefresh  
gEn  
Reserved  
eeAccMode[1:0]  
EEPROM  
Programming6  
0x36  
0x60  
eeIndRData[15:0]  
(3)  
EECTRL  
MTR_DIS  
Reserved  
Reserved  
(4)  
CONFIG1  
CONFIG2  
CONFIG3  
0x90  
0x91  
0x92  
0x93  
0x94  
SSMConfig[1:0]  
FGOLSel[1:0]  
FGCycle[3:0]  
ClkCycleAdj  
ust  
RMShift[2:0]  
RMValue[3:0]  
(4)  
(4)  
Reserved  
KtShift[2:0]  
KtValue[3:0]  
CommAdv  
Mode  
TCtrlAdvShift[2:0]  
TCtrlAdvValue[3:0]  
ISDThr[1:0]  
BrkCurrThr BEMF_HYS  
Sel  
ISDEn  
RvsDrEn  
RvsDrThr[1:0]  
OpenLCurr[1:0]  
OpLCurrRt[2:0]  
StAccel2[2:0]  
BrkDoneThr[2:0]  
StAccel[2:0]  
CONFIG4(4)  
Reserved AccelRange  
Sel  
Op2ClsThr[4:0]  
AlignTime[2:0]  
LockEn1  
(4)  
CONFIG5  
OTWarning_ILimit[1:0]  
LockEn5  
LockEn4  
LockEn3  
LockEn2  
LockEn0  
SwILimit[3:0]  
HwILimit[2:0]  
AVSMEn  
IPDasHwILi  
mit  
(4)  
CONFIG6  
0x95  
0x96  
SpdCtlrMd  
CLoopDis  
PWMFreq  
KtLckThr[1:0]  
ClsLpAccel[2:0]  
AvSIndEn  
AVSMMd  
IPDRIsMd  
DutyCycleLimit[1:0]  
IPDCurrThr[3:0]  
SlewRate[1:0]  
IPDClk[1:0]  
(4)  
CONFIG7  
IPDAdvcAg[1:0]  
Reserved CtrlCoef[1:0]  
DeadTime[4:0]  
(4) EEPROM  
48  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
Table 9. Default EEPROM  
Values  
ADDRESS  
DEFAULT  
VALUE  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x1048  
0x2F3B  
0x0050  
0x1B8A  
0x3FAF  
0x3C43  
0x016A  
8.5.3 Register Descriptions  
Table 10. Access Type Codes  
ACCESS TYPE  
CODE  
DESCRIPTION  
READ TYPE  
R
R
Read  
Write  
WRITE TYPE  
W
W
W1C  
W
Write  
1C  
1 to clear  
RESET OR DEFAULT VALUE  
-n  
Value after reset or the default  
value  
8.5.3.1 FaultReg Register (address = 0x00) [reset = 0x00]  
Figure 46. FaultReg Register  
15  
14  
13  
12  
11  
10  
9
8
OverTemp  
R/W1C-0  
TempWarning  
R//W1C-0  
VCC_OV  
R/W1C-0  
VREG_OC  
R/W1C-0  
OverCurr  
R/W1C-0  
CP_UVLO  
R/W1C-0  
VREG_UVLO  
R/W1C-0  
VCC_UVLO  
R/W1C-0  
7
6
5
4
3
2
1
0
V3P3_UVLO  
R/W1C-0  
Reserved  
R/W1C-0  
Lock5  
Lock4  
Lock3  
Lock2  
Lock1  
Lock0  
R/W1C-0  
R/W1C-0  
R/W1C-0  
R/W1C-0  
R/W1C-0  
R/W1C-0  
Table 11. FaultReg Register Field Descriptions  
Bit  
Field  
OverTemp  
Type  
Reset  
Description  
Bit to indicate device temperature is over the limit.  
15  
R//W1C  
0
14  
13  
12  
TempWarning  
VCC_OV  
R/W1C  
R/W1C  
R/W1C  
0
0
0
Bit to indicate device temperature is over the warning limit.  
Bit to indicate the supply voltage is above the upper limit.  
VREG_OC  
Bit to indicate that the step-down regulator is in an overcurrent  
condition.  
11  
10  
OverCurr  
R/W1C  
R/W1C  
0
0
Bit to indicate that an overcurrent event happened.  
CP_UVLO  
Bit to indicate that the charge pump is in an undervoltage fault  
condition.  
9
8
7
6
VREG_UVLO  
VCC_UVLO  
V3P3_UVLO  
Reserved  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
Bit to indicate that the step-down regulator (VREG) is in an  
undervoltage fault condition.  
Bit to indicate that the supply (VCC) is in an undervoltage fault  
condition.  
Bit to indicate that the 3.3 V LDO regulator is in an undervoltage  
fault condition.  
Do not access this bit.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
Table 11. FaultReg Register Field Descriptions (continued)  
Bit  
5
Field  
Type  
Reset  
Description  
Lock5  
Lock4  
Lock3  
Lock2  
Lock1  
Lock0  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
0
0
Stuck in closed loop fault  
Stuck in open loop fault  
No motor fault  
4
3
2
Kt abnormal fault  
1
Speed abnormal fault  
Hardware current-limit fault  
0
8.5.3.2 MotorSpeed Register (address = 0x01) [reset = 0x00]  
Figure 47. MotorSpeed Register  
15  
14  
13  
12  
11  
10  
9
8
MotorSpeed[15] MotorSpeed[14] MotorSpeed[13] MotorSpeed[12] MotorSpeed[11] MotorSpeed[10] MotorSpeed[9] MotorSpeed[8]  
R-0  
7
R-0  
6
R-0  
5
R-0  
4
R-0  
3
R-0  
2
R-0  
1
R-0  
0
MotorSpeed[7] MotorSpeed[6] MotorSpeed[5] MotorSpeed[4] MotorSpeed[3] MotorSpeed[2] MotorSpeed[1] MotorSpeed[0]  
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0  
Table 12. MotorSpeed Register Field Descriptions  
Bit  
15:0  
Field  
MotorSpeed[15:0]  
Type  
Reset  
Description  
R
0x00  
16-bit value indicating the motor speed.  
Motor speed in Hz = MotorSpeed[15:0] / 10  
8.5.3.3 MotorPeriod Register (address = 0x02) [reset = 0x00]  
Figure 48. MotorPeriod Register  
15  
14  
13  
12  
11  
10  
9
8
MotorPeriod[15] MotorPeriod[14] MotorPeriod[13] MotorPeriod[12] MotorPeriod[11] MotorPeriod[10] MotorPeriod[9] MotorPeriod[8]  
R-0  
7
R-0  
6
R-0  
5
R-0  
4
R-0  
3
R-0  
2
R-0  
1
R-0  
0
MotorPeriod[7] MotorPeriod[6] MotorPeriod[5] MotorPeriod[4] MotorPeriod[3] MotorPeriod[2] MotorPeriod[1] MotorPeriod[0]  
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0  
Table 13. MotorPeriod Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
MotorPeriod[15:0]  
R
0x00  
16-bit value indicating the motor period.  
Motor period = MotorPeriod[15:0] × 10 = period in μs  
50  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
8.5.3.4 MotorKt Register (address = 0x03) [reset = 0x00]  
Figure 49. MotorKt Register  
15  
MotorKt[15]  
R-0  
14  
MotorKt[14]  
R-0  
13  
MotorKt[13]  
R-0  
12  
MotorKt[12]  
R-0  
11  
MotorKt[11]  
R-0  
10  
MotorKt[10]  
R-0  
9
8
MotorKt[9]  
R-0  
MotorKt[8]  
R-0  
7
6
5
4
3
2
1
0
MotorKt[7]  
R-0  
MotorKt[6]  
R-0  
MotorKt[5]  
R-0  
MotorKt[4]  
R-0  
MotorKt[3]  
R-0  
MotorKt[2]  
R-0  
MotorKt[1]  
R-0  
MotorKt[0]  
R-0  
Table 14. MotorKt Register Field Descriptions  
Bit  
Field  
MotorKt[15:0]  
Type  
Reset  
Description  
15:0  
R
0x00  
16-bit value indicating the motor measured velocity constant.  
Ktc (V/Hz) = {MotorKt[15:0]} / 2 / 1090  
8.5.3.5 MotorCurrent Register (address = 0x04) [reset = 0x00]  
Figure 50. MotorCurrent Register  
15  
14  
13  
12  
11  
10  
9
8
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
MotorCurrent[1 MotorCurrent[9] MotorCurrent[8]  
0]  
R-0  
7
R-0  
6
R-0  
5
R-0  
4
R-0  
3
R-0  
2
R-0  
1
R-0  
0
MotorCurrent[7] MotorCurrent[6] MotorCurrent[5] MotorCurrent[4] MotorCurrent[3] MotorCurrent[2] MotorCurrent[1] MotorCurrent[0]  
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0  
Table 15. MotorCurrent Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0
Description  
15:11  
10:0  
Reserved  
Do not access these bits.  
MotorCurrent[10:0]  
R
0x00  
11-bit value indicating the motor peak current.  
if MotorCurrent[10:0] >=1023  
Current (A) = 3 × (MotorCurrent[10:0] – 1023) / 512  
Else  
Current (A) = 3 × (MotorCurrent[10:0]) / 512  
8.5.3.6 IPDPosition–SupplyVoltage Register (address = 0x05) [reset = 0x00]  
Figure 51. IPDPosition–SupplyVoltage Register  
15  
14  
13  
12  
11  
10  
9
8
IPDPosition [7] IPDPosition [6] IPDPosition [5] IPDPosition [4] IPDPosition [3] IPDPosition [2] IPDPosition [1] IPDPosition [0]  
R-0  
7
R-0  
6
R-0  
5
R-0  
4
R-0  
3
R-0  
2
R-0  
1
R-0  
0
SupplyVoltage[ SupplyVoltage[ SupplyVoltage[ SupplyVoltage[ SupplyVoltage[ SupplyVoltage[ SupplyVoltage[ SupplyVoltage[  
7]  
6]  
5]  
4]  
3]  
2]  
1]  
0]  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
Table 16. IPDPosition–SupplyVoltage Register Field Descriptions  
Bit  
15:8  
Field  
Type  
Reset  
Description  
IPDPosition [7:0]  
R
0x0  
8-bit value indicating the estimated motor position during IPD  
plus the IPD advance angle (see Table 8)  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
Table 16. IPDPosition–SupplyVoltage Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
7:0  
SupplyVoltage[7:0]  
R
0x0  
8-bit value indicating the supply voltage  
VPOWERSUPPLY (V) = SupplyVoltage[7:0] × 30 V / 255  
For example, SupplyVoltage[7:0] = 0x67,  
VPOWERSUPPLY (V) = 0x67 (102) × 30 / 255 = 12 V  
8.5.3.7 SpeedCmd–spdCmdBuffer Register (address = 0x06) [reset = 0x00]  
Figure 52. SpeedCmd–spdCmdBuffer Register  
15  
SpeedCmd[7]  
R-0  
14  
SpeedCmd[6]  
R-0  
13  
SpeedCmd[5]  
R-0  
12  
SpeedCmd[4]  
R-0  
11  
SpeedCmd[3]  
R-0  
10  
SpeedCmd[2]  
R-0  
9
8
SpeedCmd[1]  
R-0  
SpeedCmd[0]  
R-0  
7
6
5
4
3
2
1
0
spdCmdBuffer[[ spdCmdBuffer[[ spdCmdBuffer[[ spdCmdBuffer[[ spdCmdBuffer[[ spdCmdBuffer[[ spdCmdBuffer[[ spdCmdBuffer[[  
7]  
6]  
5]  
4]  
3]  
2]  
1]  
0]  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
Table 17. SpeedCmd–spdCmdBuffer Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:8  
SpeedCmd[7:0]  
R
0x0  
8-bit value indicating the speed command based on analog or  
PWMin or I2C.  
FF indicates 100% speed command.  
7:0  
spdCmdBuffer[7:0]  
R
0x0  
8-bit value indicating the speed command after buffer output.  
FF indicates 100% speed command.  
8.5.3.8 AnalogInLvl Register (address = 0x07) [reset = 0x00]  
Figure 53. AnalogInLvl Register  
15  
14  
13  
12  
Reserved  
11  
Reserved  
10  
9
8
Reserved  
Reserved  
Reserved  
Reserved  
commandSnsA commandSnsA  
DC[9]  
DCt[8]  
R-0  
7
R-0  
6
R-0  
5
R-0  
4
R-0  
3
R-0  
2
R-0  
R-0  
1
0
commandSnsA commandSnsA commandSnsA commandSnsA commandSnsA commandSnsA commandSnsA commandSnsA  
DC[7]  
DC[6]  
DC[5]  
DC[4]  
DC[3]  
DC[2]  
DC[1]  
DC[0]  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
Table 18. AnalogInLvl Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0
Description  
15:10  
9:0  
Reserved  
Do not access these bits.  
commandSnsADC[9:0]  
R
0x00  
10-bit value indicating the analog speed input converted to a  
digital word.  
AnalogSPEED (V) = AnalogInLvl × V3P3 / 1024  
8.5.3.9 DeviceID–RevisionID Register (address = 0x08) [reset = 0x00]  
Figure 54. DeviceID–RevisionID Register  
15  
DieID[7]  
R-0  
14  
DieID[6]  
R-0  
13  
DieID[5]  
R-0  
12  
DieID[4]  
R-0  
11  
DieID[3]  
R-0  
10  
DieID[2]  
R-0  
9
8
DieID[1]  
R-0  
DieID[0]  
R-0  
7
6
5
4
3
2
1
0
52  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
RevisionID[7]  
R-0  
RevisionID[6]  
R-0  
RevisionID[5]  
R-0  
RevisionID[4]  
R-0  
RevisionID[3]  
R-0  
RevisionID[2]  
R-0  
RevisionID[1]  
R-0  
RevisionID[0]  
R-0  
Table 19. DeviceID–RevisionID Register Field Descriptions  
Bit  
15:10  
9:0  
Field  
Type  
R
Reset  
0
Description  
DieID[7:0]  
8-bit unique device identification.  
RevisionID[7:0]  
R
0x00  
8-bit revision ID for the device  
0000 0000 REV A  
0000 0001 REV B  
...  
8.5.3.10 DeviceID–RevisionID Register (address = 0x08) [reset = 0x00]  
Figure 55. DeviceID–RevisionID Register  
15  
DieID[7]  
R-0  
14  
DieID[6]  
R-0  
13  
DieID[5]  
R-0  
12  
DieID[4]  
R-0  
11  
DieID[3]  
R-0  
10  
DieID[2]  
R-0  
9
8
DieID[1]  
R-0  
DieID[0]  
R-0  
7
6
5
4
3
2
1
0
RevisionID[7]  
R-0  
RevisionID[6]  
R-0  
RevisionID[5]  
R-0  
RevisionID[4]  
R-0  
RevisionID[3]  
R-0  
RevisionID[2]  
R-0  
RevisionID[1]  
R-0  
RevisionID[0]  
R-0  
Table 20. DeviceID–RevisionID Register Field Descriptions  
Bit  
15:8  
7:0  
Field  
Type  
R
Reset  
0x0  
Description  
DieID[7:0]  
8-bit unique device identification.  
RevisionID[7:0]  
R
0x0  
8-bit revision ID for the device  
0000 0000 REV A  
0000 0001 REV B  
...  
8.5.3.11 Unused Registers (addresses = 0x011 Through 0x2F)  
Registers 0x09 through 0x2F are not used.  
8.5.3.12 SpeedCtrl Register (address = 0x30) [reset = 0x00]  
Figure 56. SpeedCtrl Register  
15  
14  
Reserved  
R-0  
13  
Reserved  
R-0  
12  
Reserved  
R-0  
11  
Reserved  
R-0  
10  
Reserved  
R-0  
9
8
OverRide  
R/W-0  
Reserved  
R-0  
SpeedCtrl[8]  
R/W-0  
7
6
5
4
3
2
1
0
SpeedCtrl[7]  
R/W-0  
SpeedCtrl[6]  
R/W-0  
SpeedCtrl[5]  
R/W-0  
SpeedCtrl[4]  
R/W-0  
SpeedCtr[3]  
R/W-0  
SpeedCtrl[2]  
R/W-0  
SpeedCtrl[1]  
R/W-0  
SpeedCtrl[0]  
R/W-0  
Table 21. SpeedCtrl Register Field Descriptions  
Bit  
Field  
OverRide  
Type  
Reset  
Description  
15  
R/W  
0
Used to control the SpdCtrl[8:0] bits. If OverRide = 1, the user  
can write the speed command directly through I2C.  
14:9  
8:0  
Reserved  
R
0x0  
Do not access this bit.  
SpeedCtrl[8:0]  
R/W  
0x00  
9-bit value used for the motor speed. If OverRide = 1, speed  
command can be written by the user through I2C.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
8.5.3.13 EEPROM Programming1 Register (address = 0x31) [reset = 0x00]  
Figure 57. EEPROM Programming1 Register  
15  
14  
13  
12  
11  
10  
9
8
ENPROGKEY  
[15]  
ENPROGKEY  
[14]  
ENPROGKEY  
[13]  
ENPROGKEY  
[12]  
ENPROGKEY  
[11]  
ENPROGKEY  
[10]  
ENPROGKEY  
[9]  
ENPROGKEY  
[9]  
R/W-0  
7
R/W-0  
6
R/W-0  
5
R/W-0  
4
R/W-0  
3
R/W-0  
2
R/W-0  
1
R/W-0  
0
ENPROGKEY  
[7]  
ENPROGKEY  
[6]  
ENPROGKEY  
[5]  
ENPROGKEY  
[4]  
ENPROGKEY  
[3]  
ENPROGKEY  
[2]  
ENPROGKEY  
[1]  
ENPROGKEY  
[0]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 22. EEPROM Programming1 Register Field Descriptions  
Bit  
Field  
ENPROGKEY[15:0]  
Type  
Reset  
Description  
15:0  
R/W  
0x00  
EEPROM access key  
0xCODE access key for customer space; registers 0x90 to  
0x96  
8.5.3.14 EEPROM Programming2 Register (address = 0x32) [reset = 0x00]  
Figure 58. EEPROM Programming2 Register  
15  
Reserved  
R-0  
14  
Reserved  
R-0  
13  
Reserved  
R-0  
12  
Reserved  
R-0  
11  
Reserved  
R-0  
10  
Reserved  
R-0  
9
8
Reserved  
R-0  
Reserved  
R-0  
7
6
5
4
3
2
1
0
eeReadyStatus  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Table 23. EEPROM Programming2 Register Field Descriptions  
Bit  
15:1  
0
Field  
Type  
R
Reset  
0x00  
0
Description  
Reserved  
eeReadyStatus  
Do not access these bits.  
R
EEPROM status bit.  
0: EEPROM not ready for read/write access  
1: EEPROM ready for read/write access  
8.5.3.15 EEPROM Programming3 Register (address = 0x33) [reset = 0x00]  
Figure 59. EEPROM Programming3 Register  
15  
Reserved  
R-0  
14  
Reserved  
R-0  
13  
Reserved  
R-0  
12  
Reserved  
R-0  
11  
Reserved  
R-0  
10  
Reserved  
R-0  
9
8
Reserved  
R-0  
Reserved  
R-0  
7
6
5
4
3
2
1
0
eeIndAddress  
[7]  
eeIndAddress  
[6]  
eeIndAddress  
[5]  
eeIndAddress  
[4]  
eeIndAddress  
[3]  
eeIndAddress  
[2]  
eeIndAddress  
[1]  
eeIndAddress  
[0]  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
54  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
Table 24. EEPROM Programming3 Register Field Descriptions  
Bit  
15:8  
7:0  
Field  
Type  
R
Reset  
0x0  
Description  
Reserved  
Do not access these bits.  
eeIndAddress[7:0]  
R
0x0  
EEPROM individual access address.  
Contents of this register define the address of EEPROM for the  
individual access operation. For example, for writing/reading  
CONFIG1 in individual access mode happens if eeIndAddress =  
0x90.  
8.5.3.16 EEPROM Programming4 Register (address = 0x34) [reset = 0x00]  
Figure 60. EEPROM Programming4 Register  
15  
14  
13  
12  
11  
10  
9
8
eeIndWData  
[15]  
eeIndWData  
[14]  
eeIndWData  
[13]  
eeIndWData  
[12]  
eeIndWData  
[11]  
eeIndWData  
[10]  
eeIndWData[9] eeIndWData[8]  
R/W-0  
7
R/W-0  
6
R/W-0  
5
R/W-0  
4
R/W-0  
3
R/W-0  
2
R/W-0  
1
R/W-0  
0
eeIndWData[7] eeIndWData[6] eeIndWData[5] eeIndWData[4] eeIndWData[3] eeIndWData[2] eeIndWData[1] eeIndWData[0]  
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0  
Table 25. EEPROM Programming4 Register Field Descriptions  
Bit  
15:0  
Field  
Type  
Reset  
Description  
eeIndWData[15:0]  
R/W  
0x00  
EEPROM individual access write data  
Contents of this register are used to write to EEPROM data of  
the registers specified by eeIndAddress.  
8.5.3.17 EEPROM Programming5 Register (address = 0x35) [reset = 0x00]  
Figure 61. EEPROM Programming5 Register  
15  
Reserved  
R-0  
14  
Reserved  
R-0  
13  
Reserved  
R-0  
12  
11  
Reserved  
R-0  
10  
Reserved  
R-0  
9
8
ShadowRegEn  
R/W-0  
Reserved  
R-0  
R-0  
0
7
6
5
4
3
2
1
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
eeWRnEn  
R/W-0  
eeAccMode[1] eeAccMode[0]  
R/W-0 R/W-0  
Table 26. EEPROM Programming5 Register Field Descriptions  
Bit  
15:13  
12  
Field  
Type  
R
Reset  
000  
0
Description  
Reserved  
ShadowRegEn  
Do not access these bits.  
R/W  
Enable shadow register.  
0 : Shadow register is not used.  
1 : Shadow register values are used for device operation  
(EEPROM contents are ignored). I2C read returns the contents  
of the shadow registers.  
11:9  
8
Reserved  
eeRefresh  
R
000  
0
Do not access these bits.  
R/W  
EEPROM refresh  
0 : normal operation  
1 : Sync shadow registers with contents of EEPROM.  
7:3  
2
Reserved  
eeWRnEn  
R
0x0  
0
Do not access these bits.  
R/W  
EEPROM Write/Read enable  
0 : EEPROM read enable  
1 : EEPROM write enable.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
Table 26. EEPROM Programming5 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1:0  
eeAccMode[1:0]  
R/W  
00  
EEPROM access mode  
00 : EEPROM access disabled  
01 : EEPROM individual access enabled  
10 : EEPROM mass access enabled  
11 : Do not access these bits.  
8.5.3.18 EEPROM Programming6 Register (address = 0x36) [reset = 0x00]  
Figure 62. EEPROM Programming6 Register  
15  
14  
13  
12  
11  
10  
9
8
eeIndRData[15] eeIndRData[14] eeIndRData[13] eeIndRData[12] eeIndRData[11] eeIndRData[10] eeIndRData[9] eeIndRData[8]  
R-0  
7
R-0  
6
R-0  
5
R-0  
4
R-0  
3
R-0  
2
R-0  
1
R-0  
0
eeIndRData[7] eeIndRData[6] eeIndRData[5] eeIndRData[4] eeIndRData[3] eeIndRData[2] eeIndRData[1] eeIndRData[0]  
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0  
Table 27. EEPROM Programming6 Register Field Descriptions  
Bit  
15:0  
Field  
eeIndRData[15:0]  
Type  
Reset  
Description  
R
0x00  
EEPROM Individual Access Read Data  
Contents of this register reflect the value of EEPROM location  
accessed through the individual read.  
8.5.3.19 Unused Registers (addresses = 0x37 Through 0x5F)  
Registers 0x37 through 0x5F are not used.  
8.5.3.20 EECTRL Register (address = 0x60) [reset = 0x00]  
Figure 63. EECTRL Register  
15  
MTR_DIS  
W-0  
14  
Reserved  
R-0  
13  
Reserved  
R-0  
12  
Reserved  
R-0  
11  
Reserved  
R-0  
10  
Reserved  
R-0  
9
8
Reserved  
R-0  
Reserved  
R-0  
7
6
5
4
3
2
1
0
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
Table 28. EECTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
MTR_DIS  
W
0
Control to disable motor without going to sleep. For use during  
EEPROM programming. This bit is write-only (cannot be read).  
0: Motor control is enabled.  
1: Motor control is disabled.  
14:0  
Reserved  
R
0x00  
Do not access these bits.  
8.5.3.21 Unused Registers (addresses = 0x61 Through 0x8F)  
Registers 0x61 through 0x8F are not used.  
56  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
8.5.3.22 CONFIG1 Register (address = 0x90) [reset = 0x00]  
Figure 64. CONFIG1 Register  
15  
14  
13  
12  
11  
10  
9
8
SSMConfig[1]  
R/W-0  
SSMConfig[0]  
R/W-0  
FGOLSel[1]  
R/W-0  
FGOLSel[0]  
R/W-0  
FGCycle[3]  
R/W-0  
FGCycle[2]  
R/W-0  
FGCycle[1]  
R/W-0  
FGCycle[0]  
R/W-0  
7
6
5
4
3
2
1
0
ClkCycleAdjust  
R/W-0  
RMShift[2]  
R/W-0  
RMShift[1]  
R/W-0  
RMShift[0]  
R/W-0  
RMValue[3]  
R/W-0  
RMValue[2]  
R/W-0  
RMValue[1]  
R/W-0  
RMValue[0]  
R/W-0  
Table 29. CONFIG1 Register Field Descriptions  
Bit  
Field  
SSMConfig[1:0]  
Type  
Reset  
Description  
15:14  
R/W  
00  
Spread spectrum modulation control  
00: No spread spectrum  
01: ±5% dithering  
1:0: ±10% dithering  
11: ±15% dithering  
13:12  
11:8  
FGOLSel[1:0]  
FGCycle[3:0]  
R/W  
R/W  
00  
FG open-loop output select  
00: FG outputs in both open loop and closed loop  
01: FG outputs only in closed loop after approximately 280ms of  
delay  
10: FG outputs closed loop and the first open loop  
11: Reserved  
0x0  
FG motor pole option  
n: FG output is electrical speed / (n + 1)  
0: FG / 1 (2 pole)  
1: FG / 2 (4 pole)  
2: FG / 3 (6 pole)  
3: FG / 4 (8 pole)  
...  
15: FG / 16 (32 pole)  
7
ClkCycleAdjust  
RMShift[2:0]  
R/W  
R/W  
0
0: Full-cycle adjust  
1: Half-cycle adjust  
6:4  
000  
Number of shift bits to determine the motor phase resistance.  
RPH_CT = RmValue << RmShift  
RPH_CT' = (bin) {RPhase / 0.009615}  
After calculating RPH_CT' value, split the value with shift number  
and significant number according the length of the RPH_CT  
'
value.  
If the length of RPH_CT' is within 4 bits; RmValue[3:0] = RPH_CT';  
RmShift[2:0] = 000  
If the length of RPH_CT' is 5 bits; RmValue[3:0] = RPH_CT'[4:1];  
RmShift[2:0] = 001  
and so on.  
3:0  
RMValue[3:0]  
R/W  
0x0  
Significant portion of the motor resistor, used in conjunction with  
RmShift[2:0]  
8.5.3.23 CONFIG2 Register (address = 0x91) [reset = 0x00]  
Figure 65. CONFIG2 Register  
15  
Reserved  
R-0  
14  
13  
12  
11  
10  
9
8
KtShift[2]  
R/W-0  
KtShift[1]  
R/W-0  
KtShift[0]  
R/W-0  
KtValue[3]  
R/W-0  
KtValue[2]  
R/W-0  
KtValue[1]  
R/W-0  
KtValue[0]  
R/W-0  
7
6
5
4
3
2
1
0
CommAdvMod TCtrlAdvShift[2] TCtrlAdvShift[1] TCtrlAdvShift[0]  
e
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R-0  
R-0  
R-0  
R-0  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
Table 30. CONFIG2 Register Field Descriptions  
Bit  
15  
Field  
Type  
R
Reset  
0
Description  
Reserved  
KtShift[2:0]  
Do not access this bit  
14:12  
R/W  
000  
Number of shift bits to determine the motor BEMF constant.  
Kt = KtValue << KtShift  
11:8  
7
KtValue[3:0]  
R/W  
R/W  
0x0  
0
CommAdvMode  
Commutation advance mode  
0: Voltage advance is maintained at a fixed time(1) relative to the  
estimated BEMF.  
1: Voltage advance is maintained at a variable time relative to  
the estimated BEMF based on: tadv = tsetting × (U-BEMF) / U  
6:4  
3:0  
TCtrlAdvShift[2:0]  
TCtrlAdvValue[3:0]  
R/W  
R/W  
000  
0x0  
Number of shift bits to determine the commutation advance  
timing  
tadv = TCtrlAdvValue << TCtrlAdvShift  
Commutation advance value.  
(1) EEPROM  
8.5.3.24 CONFIG3 Register (address = 0x92) [reset = 0x00]  
Figure 66. CONFIG3 Register  
15  
14  
13  
12  
11  
10  
9
8
ISDThr[1]  
R/W-0  
ISDThr[0]  
R/W-0  
BrkCurThrSel  
R/W-0  
BEMF_HYS  
R/W-0  
ISDEn  
R/W-0  
RvsDrEn  
R/W-0  
RvsDrThr[1]  
R/W-0  
RvsDrThr[0]  
R/W-0  
7
6
5
4
3
2
1
0
OpenLCurr[1]  
R/W-0  
OpenLCurr[0]  
R/W-0  
OpLCurrRt[2]  
R/W-0  
OpLCurrRt[1]  
R/W-0  
OpLCurrRt[0]  
R/W-0  
BrkDoneThr[2] BrkDoneThr[1] BrkDoneThr[0]  
R/W-0 R/W-0 R/W-0  
Table 31. CONFIG3 Register Field Descriptions  
Bit  
Field  
ISDThr[1:0]  
Type  
Reset  
Description  
15:14  
R/W  
00  
ISD stationary judgment threshold  
00: 6 Hz (80 ms, no zero cross)  
01: 3 Hz (160 ms, no zero cross)  
10: 1.6 Hz (320 ms, no zero cross)  
11: 0.8 Hz (640 ms, no zero cross)  
13  
BrkCurThrSel  
R/W  
0
Brake current-level-threshold selection.  
0: 24 mA  
1: 48 mA  
12  
11  
10  
9:8  
BEMF_HYS  
ISDEn  
R/W  
R/W  
R/W  
R/W  
0
0: Low hysteresis for BEMF comparator (approximately 20 mV)  
1: High hysteresis for BEMF comparator (approximately 40 mV)  
0
0: Initial speed detect (ISD) disabled  
1: ISD enabled  
RvsDrEn  
0
0: Reverse drive disabled  
1: Reverse drive enabled  
RvsDrThr[1:0]  
00  
The threshold where device starts to process revers drive  
(RvsDr) or brake.  
00: 6.3 Hz  
01: 13 Hz  
10: 26 Hz  
11: 51 Hz  
58  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
Table 31. CONFIG3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
7:6  
OpenLCurr[1:0]  
R/W  
00  
Open-loop current setting.  
00: 0.2 A  
01: 0.4 A  
10: 0.8 A  
11: 1.6 A  
Align current setting.  
00: 0.15 A  
01: 0.3 A  
10: 0.6 A  
11: 1.2 A  
5:3  
OpLCurrRt[2:0]  
R/W  
000  
Open-loop current ramp-up setting.  
000: 6 VCC/s  
001: 3 VCC/s  
010: 1.5 VCC/s  
011: 0.7 VCC/s  
100: 0.34 VCC/s  
101: 0.16 VCC/s  
110: 0.07 VCC/s  
111: 0.023 VCC/s  
2:0  
BrkDoneThr[2:0]  
R/W  
000  
Braking mode setting.  
000: No brake (BrkEn = 0)  
001: 2.7 s  
010: 1.3 s  
011: 0.67 s  
100: 0.33 s  
101: 0.16 s  
110: 0.08 s  
111: 0.04 s  
8.5.3.25 CONFIG4 Register (address = 0x93) [reset = 0x00]  
Figure 67. CONFIG4 Register  
15  
Reserved  
R-0  
14  
13  
12  
11  
10  
9
8
AccelRangeSel  
R/W-0  
StAccel2[2]  
R/W-0  
StAccel2[1]  
R/W-0  
StAccel2[0]  
R/W-0  
StAccel[2]  
R/W-0  
StAccel[1]  
R/W-0  
StAccel[0]  
R/W-0  
7
6
5
4
3
2
1
0
Op2ClsThr[4]  
R/W-0  
Op2ClsThr[3]  
R/W-0  
Op2ClsThr[2]  
R/W-0  
Op2ClsThr[1]  
R/W-0  
Op2ClsThr[0]  
R/W-0  
AlignTime[2]  
R/W-0  
AlignTime[1]  
R/W-0  
AlignTime[0]  
R/W-0  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
Table 32. CONFIG4 Register Field Descriptions  
Bit  
15  
14  
Field  
Type  
R
Reset  
Description  
Reserved  
AccelRangeSel  
0
0
Do not access this bit  
R/W  
Acceleration range selection  
0: Fast  
1: Slow  
13:11  
StAccel2[2:0]  
R/W  
000  
Open-loop start-up acceleration (second-order)  
AccelRangeSel = 0; 000: 57 Hz/s2  
AccelRangeSel = 0; 001 = 29 Hz/s2  
AccelRangeSel = 0; 010 = 14 Hz/s2  
AccelRangeSel = 0; 011 = 6.9 Hz/s2  
AccelRangeSel = 0; 100 = 3.3 Hz/s2  
AccelRangeSel = 0; 101 = 1.6 Hz/s2  
AccelRangeSel = 0; 110 = 0.66 Hz/s2  
AccelRangeSel = 0; 111 = 0 Hz/s2  
AccelRangeSel = 1; 000 = 0.22 Hz/s2  
AccelRangeSel = 1; 001 = 0.11 Hz/s2  
AccelRangeSel = 1; 010 = 0.055 Hz/s2  
AccelRangeSel = 1; 011 = 0.027 Hz/s2  
AccelRangeSel = 1; 100 = 0.013 Hz/s2  
AccelRangeSel = 1; 101 = 0.0063 Hz/s2  
AccelRangeSel = 1; 110 = 0.0026 Hz/s2  
AccelRangeSel = 1; 111 = 0 Hz/s2  
10:8  
StAccel[2:0]  
R/W  
0
Open-loop start-up acceleration (first-order)  
AccelRangeSel = 0; 000 = 76 Hz/s  
AccelRangeSel = 0; 001 = 38 Hz/s  
AccelRangeSel = 0; 010 = 19 Hz/s  
AccelRangeSel = 0; 011 = 9.2 Hz/s  
AccelRangeSel = 0; 100 = 4.5 Hz/s  
AccelRangeSel = 0; 101 = 2.1 Hz/s  
AccelRangeSel = 0; 110 = 0.9 Hz/s  
AccelRangeSel = 0; 111 = 0.3 Hz/s  
AccelRangeSel = 1; 000 = 4.8 Hz/s  
AccelRangeSel = 1; 001 = 2.4 Hz/s  
AccelRangeSel = 1; 010 = 1.2 Hz/s  
AccelRangeSel = 1; 011 = 0.58 Hz/s  
AccelRangeSel = 1; 100 = 0.28 Hz/s  
AccelRangeSel = 1; 101 = 0.13 Hz/s  
AccelRangeSel = 1; 110 = 0.056 Hz/s  
AccelRangeSel = 1; 111 = 0.019 Hz/s  
7:3  
Op2ClsThr[4:0]  
R/W  
0
Open- to closed-loop threshold  
0 xxxx = Range 0: n × 0.8 Hz  
0 0000 = N/A  
0 0001 = 0.8 Hz  
0 0111 = 5.6 Hz  
0 1111 = 12 Hz  
1 xxxx = Range 1: 12.8 × (n-16)+11.9 Hz  
1 0000 = 11.9 Hz  
1 0001 = 24.7 Hz  
...  
1 0111 = 101.5 Hz  
1 1111 = 203.9 Hz  
2:0  
AlignTime[2:0]  
R/W  
0
Align time.  
000 = 5.3 s  
001 = 2.7 s  
010 = 1.3 s  
011 = 0.67 s  
100 = 0.33 s  
101 = 0.16 s  
110 = 0.08 s  
111 = 0.04 s  
60  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
8.5.3.26 CONFIG5 Register (address = 0x94) [reset = 0x00]  
Figure 68. CONFIG5 Register  
15  
14  
13  
12  
11  
10  
9
8
OTWarning  
Limit[1]  
OTWarning  
Limit[0]  
LockEn5  
LockEn4  
LockEn3  
LockEn2  
LockEn1  
LockEn0  
R/W-0  
7
R/W-0  
6
R/W-0  
5
R/W-0  
4
R/W-0  
3
R/W-0  
2
R/W-0  
1
R/W-0  
0
SWiLimitThr [3] SWiLimitThr [2] SWiLimitThr [1] SWiLimitThr [0] HWiLimitThr [2] HWiLimitThr [1] HWiLimitThr [0] IPDasHwILimit  
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0  
Table 33. CONFIG5 Register Field Descriptions  
Bit  
15:14  
Field  
OTWarningLimit[1:0]  
Type  
Reset  
Description  
R/W  
00  
Overtemperature warning current limit  
00: No temperature-based current-limit function, uses  
SWILimitThr  
01: Limit current to 1 A when overtemperature warning reached  
10: Limit current to 1.6 A when overtemperature warning  
reached  
11: Limit current to 2 A when overtemperature warning reached  
13  
LockEn5  
R/W  
0
Stuck in closed loop (no zero cross detected). Enabled when  
high  
12  
11  
10  
9
LockEn4  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
Open loop stuck (no zero cross detected). Enabled when high  
No motor fault. Enabled when high  
LockEn3  
0
LockEn2  
0
Abnormal Kt. Enabled when high  
LockEn1  
0
Abnormal speed. Enabled when high  
8
LockEn0  
0
Lock-detection current limit. Enabled when high.  
7:4  
SWiLimitThr[3:0]  
0x0  
Acceleration current limit threshold  
0000: No acceleration current limit  
0001: 0.2-A current limit  
0010 to 1111: n × 0.2 A current limit  
3:1  
HWiLimitThr[2:0]  
R/W  
000  
HWILimitThr: Current limit for lock detection  
If IPDasHwILimit = 0 then  
x00: 2.5 A  
x01: 1.9 A  
x10: 1.5 A  
x11: 0.9 A  
If IPDasHwILimit = 1 then  
000: 0.4 A  
001: 0.8 A  
010: 1.2 A  
011: 1.6 A  
100: 2 A  
101: 2.4 A  
110: 2.8 A  
111: 3.2 A  
0
IPDasHwILimit  
R/W  
0
0: Range1 of current limit for lock detection  
1: Range2 of current limit for lock detection  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
8.5.3.27 CONFIG6 Register (address = 0x95) [reset = 0x00]  
Figure 69. CONFIG6 Register  
15  
14  
13  
12  
11  
10  
9
8
SpdCtrlMd  
R/W-0  
PWMFreq  
R/W-0  
KtLckThr[1]  
R/W-0  
KtLckThr[0]  
R/W-0  
AVSIndEn  
R/W-0  
AVSMEn  
R/W-0  
AVSMMd  
R/W-0  
IPDRlsMd  
R/W-0  
7
6
5
4
3
2
1
0
CLoopDis  
ClsLpAccel[2]  
ClsLpAccel[1]  
ClsLpAccel[0] DutyCycleLimit[ DutyCycleLimit[  
SlewRate[1]  
SlewRate[0]  
1]  
0]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Table 34. CONFIG6 Register Field Descriptions  
Bit  
Field  
SpdCtrlMd  
Type  
Reset  
Description  
15  
R/W  
0
Speed input mode  
0: Analog input expected at SPEED pin  
1: PWM input expected at SPEED pin  
14  
PWMFreq  
R/W  
R/W  
0
0
PWM Frequency Control  
0: PWM frequency = 25 kHz  
1: PWM frequency = 50 kHz  
13:12  
KtLckThr[1:0]  
Abnormal Kt lock detect threshold  
00: Kt_high = 3/2Kt. Kt_low = 3/4Kt  
01: Kt_high = 2Kt. Kt_low = 3/4Kt  
10: Kt_high = 3/2Kt. Kt_low = 1/2Kt  
11: Kt_high = 2Kt. Kt_low = 1/2Kt  
11  
10  
9
AVSIndEn  
AVSMEn  
AVSMMd  
R/W  
R/W  
R/W  
0
0
0
Inductive AVS enable. Enabled when high  
Mechanical AVS enable. Enabled when high  
Mechanical AVS mode  
0: AVS to VCC  
1: AVS to 24 V  
8
IPDRlsMd  
R/W  
0
IPD release mode  
0: Brake when inductive release  
1: Hi-z when inductive release  
7
CLoopDis  
R/W  
R/W  
0
0
0: Transfer to closed loop at Op2ClsThr speed  
1: No transfer to closed loop. Keep in open loop  
6:4  
ClsLpAccel[2:0]  
Closed-loop accelerate  
000: Immediate change  
001: 48 VCC/s  
010: 48 VCC/s  
011: 0.77 VCC/s  
100: 0.37 VCC/s  
101: 0.19 VCC/s  
110: 0.091 VCC/s  
111: 0.045 VCC/s  
3:2  
DutyCycleLimit[1:0]  
R/W  
0
Minimum duty-cycle limit  
00: Linear down to 5%, then holds at 5% until duty command is  
1.5 %; 0 % for duty command below 1.5 %.  
01: Linear down to 10%, then holds at 10% until duty command  
is 1.5 %; 0 % for duty command below 1.5 %.  
10: Linear down to 5%, then holds at 5% until duty command is  
1.5 %; 100 % for duty command below 1.5 %.  
11: Linear down to 10%, then holds at 10% until duty command  
is 1.5 %; 100 % for duty command below 1.5 %.  
1:0  
SlewRate[1:0]  
R/W  
0
Slew-rate control for phase node  
00: Typical slew rate for VCC at 12 V = 35 V/μs  
01: Typical slew rate for VCC at 12 V = 50 V/μs  
10: Typical slew rate for VCC at 12 V = 80 V/μs  
11: Typical slew rate for VCC at 12 V = 120 V/μs  
62  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
8.5.3.28 CONFIG7 Register (address = 0x96) [reset = 0x00]  
Figure 70. CONFIG7 Register  
15  
14  
13  
12  
11  
10  
9
8
IPDAdvcAg[1]  
R/W-0  
IPDAdvcAg[0]  
R/W-0  
IPDCurrThr[3]  
R/W-0  
IPDCurrThr[2]  
R/W-0  
IPDCurrThr[1]  
R/W-0  
IPDCurrThr[0]  
R/W-0  
IPDClk[1]  
R/W-0  
IPDClk[0]  
R/W-0  
7
6
5
4
3
2
1
0
Reserved  
R-0  
CtrlCoef[1]  
R/W-0  
CtrlCoef[0]  
R/W-0  
DeadTime[4]  
R/W-0  
DeadTime[3]  
R/W-0  
DeadTime[2]  
R/W-0  
DeadTime[1]  
R/W-0  
DeadTime[0]  
R/W-0  
Table 35. CONFIG7 Register Field Descriptions  
Bit  
Field  
IPDAdvcAg[1:0]  
Type  
Reset  
Description  
15:14  
R/W  
00  
Advance angle after inductive sense.  
00: 30 degrees  
01: 60 degrees  
10: 90 degrees  
11: 120 degrees  
13:10  
9:8  
IPDCurrThr[3:0]  
IPDClk[1:0]  
R/W  
R/W  
0x0  
00  
IPD (inductive sense) current threshold  
0000: No IPD function. Align and go  
0001: 0.4-A current threshold.  
0010 to 1111: 0.2 A × (n + 1) current threshold.  
Inductive sense clock  
00: IPD clock 12 Hz; IPD measurement resolution = 2.56 µs  
01: IPD clock = 24 Hz; IPD measurement resolution = 1.28 µs  
10: IPD clock = 47 Hz; IPD measurement resolution = 0.64 µs  
11: IPD clock = 95 Hz; IPD measurement resolution = 0.32 µs  
7
Reserved  
R
0
Do not access this bit.  
6:5  
CtrlCoef[1:0]  
R/W  
00  
SCORE control constant  
00: 0.25  
01: 0.5  
10: 0.75  
11: 1  
4:0  
DeadTime[4:0]  
R/W  
0x0  
Driver dead time  
(n + 1) × 40 ns  
40 ns to 1.204 μs  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DRV10983-Q1 device is used in sensorless 3-phase BLDC motor control. The driver provides a high-  
performance, high-reliability, flexible, and simple solution for appliance fan, pump, and HVAC applications. The  
following design shows a common application of the DRV10983-Q1 device.  
9.2 Typical Application  
VCC  
0.1 µF  
1
2
3
4
5
6
7
8
9
VCP  
VCC 24  
VCC 23  
10 µF  
CPP  
10 nF  
CPN  
W
W
V
22  
21  
20  
19  
18  
17  
10 µF  
5 V  
SW  
47 µH  
SWGND  
VREG  
V1P8  
GND  
V3P3  
M
V
1 µF  
U
U
1 µF  
PGND 16  
PGND 15  
DIR 14  
4.75 kW  
4.75 kW  
10 SCL  
11 SDA  
12 FG  
SPEED 13  
Interface to  
Microcontroller  
Copyright © 2017, Texas Instruments Incorporated  
Figure 71. Typical Application Schematic  
9.2.1 Design Requirements  
Table 36 provides design input parameters and motor parameters for system design.  
64  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
 
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
Typical Application (continued)  
Table 36. Recommended Application Range  
MIN  
6.2  
TYP  
MAX UNIT  
28  
1.8 V/Hz  
Motor voltage  
12  
V
BEMF constant  
Phase to phase, measured while motor is coasting  
Measured ph-ph  
0.001  
0.6  
Phase-Phase resistance  
Phase-Phase inductance  
38  
Ω
Measured ph-ph  
0.7  
mH  
Operating closed loop  
speed  
Electrical frequency  
1
1000  
Hz  
Operating current  
PGND, GND  
0.1  
2
3
A
A
Absolute maximum current During start-up or locked condition  
Table 37. External Components  
COMPONENT  
CVCC  
PIN 1  
VCC  
PIN 2  
GND  
VCC  
RECOMMENDED  
10-µF ceramic capacitor rated for VCC  
0.1-µF ceramic capacitor rated for 10 V  
10-nF ceramic capacitor rated for VCC × 2  
CVCP  
VCP  
CPP  
SW  
CCP  
CPN  
LSW-VREG  
VREG  
47-µH ferrite inductor with 1.15-A current rating, 1.15-A saturation current, and DC resistance <  
1-Ω (buck mode)  
RSW-VREG  
CVREG  
CV1P8  
CV3P3  
RSCL  
SW  
VREG  
GND  
GND  
GND  
V3P3  
V3P3  
V3P3  
39-Ω series resistor rated for ¼ W (linear mode)  
10-µF ceramic capacitor rated for 10 V  
1-µF ceramic capacitor rated for 5 V  
1-µF ceramic capacitor rated for 5 V  
4.75-kΩ pullup to V3P3  
VREG  
V1P8  
V3P3  
SCL  
SDA  
FG  
RSDA  
4.75-kΩ pullup to V3P3  
RFG  
4.75-kΩ pullup to V3P3  
9.2.2 Detailed Design Procedure  
1. See the Design Requirements section and make sure your system meets the recommended application  
range.  
2. See the DRV10983-Q1 Tuning Guide and measure the motor parameters.  
3. See the DRV10983-Q1 Tuning Guide. Configure the parameters using the DRV10983-Q1 GUI, and optimize  
the motor operation. The Tuning Guide takes the user through all the configurations step by step, including:  
start-up operation, closed-loop operation, current control, initial positioning, lock detection, and anti-voltage  
surge.  
4. Build your hardware based on Layout Guidelines .  
5. Connect the device into a system and validate your system solution.  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
9.2.3 Application Curves  
FG  
Phase  
current  
Phase  
voltage  
Figure 72. DRV10983-Q1 Start-Up Waveform  
Figure 73. DRV10983-Q1 Operation Current Waveform  
66  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
www.ti.com  
SLVSD14A JUNE 2017REVISED JUNE 2020  
10 Power Supply Recommendations  
The DRV10983-Q1 device is designed to operate from an input voltage supply, VCC, in a range between 8 V and  
28 V. The user must place a 10-µF ceramic capacitor rated for VCC as close as possible to the VCC and GND  
pins.  
If the power supply ripple is more than 200 mV, in addition to the local decoupling capacitors, a bulk capacitance  
is required and must be sized according to the application requirements. If the bulk capacitance is implemented  
in the application, the user can reduce the value of the local ceramic capacitor to 1 µF.  
11 Layout  
11.1 Layout Guidelines  
Place the VCC, GND, U, V, and W pins with thick traces because high current passes through these traces.  
Place the 10-µF capacitor between VCC and GND, and as close to the VCC and GND pins as possible.  
Place the capacitor between CPP and CPN, and as close to the CPP and CPN pins as possible.  
Connect the GND, PGND, and SWGND under the thermal pad.  
Keep the thermal pad connection as large as possible, on both the bottom side and top sides. It should be  
one piece of copper without any gaps.  
If EEPROM is programmed, it is okay to leave SCL and SDA floating.  
11.2 Layout Example  
CVCC (10 µF)  
CVCP (0.1 µF)  
VCC  
VCC  
W
VCP  
CPP  
CCP (10 nF)  
CPN  
LSW_VREG (47 µH)  
SW  
W
CVRE (10 µF)  
G
SWGND  
VREG  
V
V
V1P8  
GND  
V3P3  
U
CV1P8 (1 µF)  
CV3P3 (1 µF)  
U
PGND  
PGND  
DIR  
SPEED  
RSCL(4.75 kW)  
SCL  
RSDA (4.75 kW)  
SDA  
RFG (4.75 kW)  
FG  
Figure 74. Layout Diagram  
Copyright © 2017–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Links: DRV10983-Q1  
DRV10983-Q1  
SLVSD14A JUNE 2017REVISED JUNE 2020  
www.ti.com  
12 Device and Documentation Support  
12.1 Trademarks  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.2 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.4 Community Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most-  
current data available for the designated devices. This data is subject to change without notice and without  
revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.  
68  
Submit Documentation Feedback  
Copyright © 2017–2020, Texas Instruments Incorporated  
Product Folder Links: DRV10983-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV10983QPWPRQ1  
DRV10983SQPWPRQ1  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
PWP  
PWP  
24  
24  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
DRV10983Q  
10983SQ1  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
OTHER QUALIFIED VERSIONS OF DRV10983-Q1 :  
Catalog: DRV10983  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV10983QPWPRQ1 HTSSOP PWP  
DRV10983SQPWPRQ1 HTSSOP PWP  
24  
24  
2000  
2000  
330.0  
330.0  
16.4  
16.4  
6.95  
6.95  
8.3  
8.3  
1.6  
1.6  
8.0  
8.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV10983QPWPRQ1  
DRV10983SQPWPRQ1  
HTSSOP  
HTSSOP  
PWP  
PWP  
24  
24  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PWP 24  
4.4 x 7.6, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224742/B  
www.ti.com  
PACKAGE OUTLINE  
PWP0024J  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
22X 0.65  
PLANE  
24  
1
2X  
7.9  
7.7  
7.15  
NOTE 3  
12  
B
13  
0.30  
24X  
4.5  
4.3  
0.19  
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 2.08 MAX  
NOTE 5  
4X 0.3 MAX  
13  
4X 0.1 MAX  
NOTE 5  
12  
0.25  
GAGE PLANE  
1.2 MAX  
5.26  
5.11  
25  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1
24  
3.20  
3.05  
4225860/A 04/2020  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0024J  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(3.2)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
24X (1.5)  
1
24  
24X (0.45)  
SEE DETAILS  
(R0.05) TYP  
(5.26)  
22X (0.65)  
SYMM  
25  
(7.8)  
NOTE 9  
(1.2) TYP  
SOLDER MASK  
DEFINED PAD  
(
0.2) TYP  
VIA  
13  
12  
(1.2) TYP  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4225860/A 04/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0024J  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.2)  
BASED ON  
0.125 THICK  
STENCIL  
METAL COVERED  
BY SOLDER MASK  
24X (1.5)  
1
24  
24X (0.45)  
(R0.05) TYP  
22X (0.65)  
SYMM  
(5.26)  
25  
BASED ON  
0.125 THICK  
STENCIL  
12  
13  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.58 X 5.88  
3.20 X 5.26 (SHOWN)  
2.92 X 4.80  
0.125  
0.15  
0.175  
2.70 X 4.45  
4225860/A 04/2020  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

DRV10983PWP

24V 标称电压、3A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | PWP | 24 | -40 to 125
TI

DRV10983PWPR

24V 标称电压、3A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | PWP | 24 | -40 to 125
TI

DRV10983QPWPRQ1

汽车类 12V 电池、3.5A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | PWP | 24 | -40 to 125
TI

DRV10983SQPWPRQ1

汽车类 12V 电池、3.5A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | PWP | 24 | -40 to 125
TI

DRV10983ZPWP

24V 标称电压、3A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | PWP | 24 | -40 to 125
TI

DRV10983ZPWPR

24V 标称电压、3A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | PWP | 24 | -40 to 125
TI

DRV10987

12V 至 24V 标称电压、3.5A 峰值无传感器正弦控制三相 BLDC 电机驱动器
TI

DRV10987DPWPR

12V 至 24V 标称电压、3.5A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | PWP | 24 | -40 to 125
TI

DRV10987SPWPR

12V 至 24V 标称电压、3.5A 峰值无传感器正弦控制三相 BLDC 电机驱动器 | PWP | 24 | -40 to 125
TI

DRV110

POWER SAVING SOLENOID CONTROLLER WITH INTEGRATED SUPPLY REGULATION
TI

DRV1100

HIGH POWER DIFFERENTIAL DRIVER AMPLIFIER
BB

DRV1100

HIGH POWER DIFFERENTIAL DRIVER AMPLIFIER
TI