DRV2510QPWPRQ1 [TI]

适用于螺线管且具有集成诊断和负载突降保护功能的汽车类 3A 触觉驱动器 | PWP | 16 | -40 to 125;
DRV2510QPWPRQ1
型号: DRV2510QPWPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于螺线管且具有集成诊断和负载突降保护功能的汽车类 3A 触觉驱动器 | PWP | 16 | -40 to 125

驱动 驱动器
文件: 总33页 (文件大小:3125K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DRV2510-Q1  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
DRV2510-Q1 适用于螺线管和音圈且集成诊断功能的 3A 汽车类触觉驱动  
器评  
1 特性  
3 说明  
1
宽工作电压范围 (5V - 18V)  
DRV2510-Q1 器件是一款专为感性负载(例如,螺线  
管和音圈)而设计的大电流触觉驱动器。  
集成负载突降保护 (40V)  
大电流驱动(峰值电流达 3A)  
RDS(on)完整 H 桥输出  
集成诊断  
输出级含一个完整 H 桥,能够提供 3A 峰值电流。  
DRV2510-Q1 器件提供欠压闭锁、过流保护和过热保  
护等多种保护功能。  
集成故障保护  
40V 负载突降保护,符合 ISO-7637-2 标准  
DRV2510-Q1 器件符合汽车类产品标准。集成的突降  
保护可降低外部电压钳位组件的成本和尺寸,板载负载  
诊断会通过数字接口报告致动器状态。  
短路保护  
过热保护  
过压和欠压保护  
故障报告  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
模拟输入  
I2C 通信  
DRV2510-Q1  
HTSSOP (16)  
5.00 mm x 4.40 mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
专用中断引脚  
符合汽车级 (Q100) 标准  
环境温度范围:–40ºC 125ºC  
简化电路原理图  
VDD  
BSTP  
OUT+  
2 应用  
电磁致动器驱动器  
音圈  
螺线管  
机械按钮替代产品  
汽车类触觉 应用  
EN  
STDBY  
信息娱乐  
中央控制台  
方向盘  
INTZ  
SDA  
SCL  
Solenoid/  
Voice-Coil  
M
车门板  
座椅  
IN+  
IN-  
OUTœ  
REG  
GND  
BSTN  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLOS919  
 
 
 
 
DRV2510-Q1  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
www.ti.com.cn  
目录  
7.3 Feature Description................................................... 8  
7.4 Device Functional Modes........................................ 11  
7.5 Programming........................................................... 11  
7.6 Register Map........................................................... 15  
Application and Implementation ........................ 18  
8.1 Application Information............................................ 18  
8.2 Typical Applications ................................................ 18  
Power Supply Recommendations...................... 22  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 5  
6.7 Switching Characteristics.......................................... 6  
6.8 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
8
9
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 22  
11 器件和文档支持 ..................................................... 23  
11.1 器件支持 ............................................................... 23  
11.2 ....................................................................... 23  
11.3 静电放电警告......................................................... 23  
11.4 Glossary................................................................ 23  
12 机械、封装和可订购信息....................................... 24  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (June 2016) to Revision A  
Page  
发布为量产数据................................................................................................................................................................... 1  
2
Copyright © 2016, Texas Instruments Incorporated  
 
DRV2510-Q1  
www.ti.com.cn  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
5 Pin Configuration and Functions  
TWP  
HTSSOP 16-Pin With Thermal Pad  
Top View  
GND  
EN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VDD  
REG  
SDA  
SCL  
INTZ  
BSTP  
OUT+  
OUT-  
BSTN  
GND  
IN+  
IN-  
STDBY  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
GND  
NO.  
1, 9, 16  
2
P
I
Ground.  
EN  
Device enable pin.  
Internally generated gate voltage supply. Not to be used as a supply or connected to any component other than a 1  
µF X7R ceramic decoupling capacitor and the MODE resistor divider.  
REG  
3
P
I2C data.  
SDA  
4
5
I
I
I2C clock.  
SCL  
IN+  
6
I
Positive differential input.  
IN-  
7
I
Negative differential input.  
STDBY  
BSTN  
OUT-  
OUT+  
BSTP  
8
I
Standby pin.  
10  
11  
12  
13  
P
O
O
P
Boot strap for negative output, connect to 220 nF X5R, or better ceramic cap to OUT-.  
Negative output.  
Positive output.  
Boot strap for positive output, connect to 220 nF X5R, or better ceramic cap to OUT+.  
General fault reporting. Open drain.  
INTZ = High, normal operation  
INTZ = Low, fault condition  
INTZ  
14  
15  
O
VDD  
P
Power supply.  
Thermal Pad  
G
Connect to GND for best system performance. If not connected to GND, leave floating.  
Copyright © 2016, Texas Instruments Incorporated  
3
DRV2510-Q1  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–1  
MAX  
30  
40  
15  
5
UNIT  
V
VDD DC supply voltage range  
Supply voltage  
Input voltage, VI  
Current  
VDD pulsed supply voltage range. t < 400 ms exposure  
VDD supply voltage ramp rate  
SCL, SDA, EN  
V/ms  
V
–0.3  
–0.3  
–4  
IN+, IN-, STDBY  
6.5  
4
DC current on VDD, GND, OUT+, OUT-  
Maximum current in all input pins  
Maximum sink current for open-drain pins  
A
–1  
1
mA  
7
Operating free-air temperature, TA  
Storage temperature range, Tstg  
–40  
–55  
125  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±3500  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
5
NOM  
MAX  
UNIT  
V
VDD  
VIH  
VIL  
Supply voltage. VDD.  
18  
High-level input voltage. SDA, SCL, STDBY, EN.  
Low-level input voltage. SDA, SCL, STDBY, EN  
Low-level output voltage  
2.1  
V
0.7  
0.4  
V
VOL  
VOH  
IIH  
V
High-level output voltage  
2.4  
V
High-level input current. SDA, SCL, STDBY, EN  
Minimum load Impedance  
50  
µA  
Ω
RL  
1.5  
CB  
Load capacitance for each bus line (SDA/SCL)  
400  
pF  
6.4 Thermal Information  
DRV2510-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
{16} PINS  
39.4  
24.9  
20  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJB  
19.8  
2
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2016, Texas Instruments Incorporated  
DRV2510-Q1  
www.ti.com.cn  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
6.5 Electrical Characteristics  
TA = 25°C, AVCC = VDD = 12 V, RL = 5 Ω (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Output offset voltage (measured  
differentially)  
| VOS  
IVDD  
|
VI = 0 V, Gain = 20 dB  
No load or filter  
–25  
25  
mV  
mA  
µA  
Quiescent supply current  
16  
5
Quiescent supply current in shutdown  
mode  
IVDD(SD)  
No load or filter  
20  
IVDD(STD  
BY)  
Quiescent supply current in standby mode No load or filter  
7
mA  
Drain-source on-state resistance,  
TJ = 25°C  
rDS(on)  
180  
mΩ  
measured pin to pin  
19  
25  
31  
35  
6.4  
20  
26  
21  
27  
33  
37  
7.4  
dB  
dB  
G
Gain  
P(o) = 1 W  
32  
36  
VREG  
VO  
Regulator voltage  
6.9  
20  
V
V
Output voltage (measured differentially)  
Power supply ripple rejection  
Input common-mode min  
PSRR  
VICMIN  
VDD = 12 V + 1 Vrms at 1 kHz  
75  
dB  
V
0.3  
4.4  
VICMAX Input common-mode max  
f = 1 kHz, 100 mVrms referenced to GND. Gain =  
20 dB  
CMRR Common-mode rejection ratio  
63  
dB  
400  
500  
10  
Oscillator frequency  
fOSC  
kHz  
(with PWM duty cycle < 96%)  
Output resistance in shutdown  
MΩ  
Resistance to detect a short from OUT  
pin(s) to VDD or GND  
200  
Ω
Open-circuit detection threshold  
Short-circuit detection threshold  
Power-on threshold  
75  
95  
1.2  
4.1  
150  
15  
120  
1.5  
Ω
Ω
V
0.9  
Thermal trip point  
°C  
°C  
A
Thermal hysteresis  
Over-current trip point  
Over-voltage trip point  
Over-voltage hysteresis  
Under-voltage trip point  
Under-voltage hysteresis  
3.5  
21  
V
0.6  
4
V
V
0.25  
V
6.6 Timing Requirements  
TA = 25 °C, VDD = 3.6 V (unless otherwise noted)  
MIN  
NOM  
MAX  
400  
UNIT  
ƒ(SCL)  
tw(H)  
tw(L)  
Frequency at the SCL pin with no wait states  
kHz  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
Pulse duration, SCL high  
0.6  
1.3  
100  
300  
1.3  
0.6  
0.6  
0.6  
Pulse duration, SCL low  
tsu(1)  
th(1)  
Setup time, SDA to SCL  
Hold time, SCL to SDA  
t(BUF)  
tsu(2)  
th(2)  
Bus free time between stop and start condition  
Setup time, SCL to start condition  
Hold time, start condition to SCL  
Setup time, SCL to stop condition  
tsu(3)  
Copyright © 2016, Texas Instruments Incorporated  
5
DRV2510-Q1  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
www.ti.com.cn  
t
t
w(L)  
w(H)  
{/[  
t
su(1)  
t
h(1)  
{5!  
Figure 1. SCL and SDA Timing  
{/[  
t
t
t
su(3)  
h(2)  
su(2)  
t
(BUF)  
{5!  
{tart /ondition  
{top /ondition  
Figure 2. Timing for Start and Stop Conditions  
6.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
229  
47  
MAX UNIT  
Turn-on time from shutdown to  
waveform  
ton-sd  
EN = Low to High, STBY = Low  
EN = High to Low  
ms  
µs  
µs  
tOFF-sd  
ton-stdby  
Turn-off time  
Turn-on time from standby to  
waveform  
EN = High, STBY = High to Low  
32  
6.8 Typical Characteristics  
24.0  
20.0  
16.0  
12.0  
8.0  
10  
9
8
7
6
4.0  
5
0.0  
4
4
6
8
10  
12  
14  
16  
18  
4
6
8
10  
12  
14  
16  
18  
VDD − Supply Voltage (V)  
VDD − Supply Voltage (V)  
3. Shutdown Current vs VDD Voltage  
4. Standby Current vs VDD Voltage  
6
版权 © 2016, Texas Instruments Incorporated  
DRV2510-Q1  
www.ti.com.cn  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
7 Detailed Description  
7.1 Overview  
The DRV2510-Q1 device is a high current haptic driver specifically designed for inductive loads, such as  
solenoids and voice coils.  
The output stage consists of a full H-bridge capable of delivering 3 A of peak current.  
The design uses an ultra-efficient switching output technology developed by Texas Instruments, but with features  
added for the automotive industry. The DRV2510-Q1 device provides protection functions such as undervoltage  
lockout, over-current protection and over-temperature protection. This technology allows for reduced power  
consumption, reduced heat, and reduced peak currents in the electrical system.  
The DRV2510-Q1 device is automotive qualified. The integrated load-dump protection reduces external voltage  
clamp cost and size, and the onboard load diagnostics report the status of the actuator through the digital  
interface.  
7.2 Functional Block Diagram  
REG  
VDD  
BSTP  
OUT+  
Reg  
VDD  
Digital Core  
EN  
STDBY  
SDA  
POR  
Control  
Gate  
Drive  
Reg  
Map  
SCL  
I2C  
INTZ  
Solenoid/  
Voice-Coil  
M
Interrupt  
Control  
VDD  
Load  
Diagnostics  
OT  
Thermal  
Protection  
OUTœ  
Gate  
Drive  
VDD  
VDD  
OVV  
Critical  
Condition  
Control  
OSC  
UVLO  
OC  
BSTN  
Over-Current  
Protection  
PWM  
Logic  
Freq_Sel  
IN+  
IN-  
Gain  
Control  
GND  
版权 © 2016, Texas Instruments Incorporated  
7
DRV2510-Q1  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Analog Input and Configurable Pre-amplifier  
The DRV2510-Q1 device features a differential input stage that cancels common-mode noise that appears on  
the inputs. The DRV2510-Q1 device also features four gain settings that are configurable via I2C. Please see the  
Programming Sections for register locations.  
1. Gain Configuration Table  
GAIN  
20 dB  
26 dB  
32 dB  
36 dB  
INPUT IMPEDANCE  
60 kΩ  
30 kΩ  
15 kΩ  
9 kΩ  
7.3.2 Pulse-Width Modulator (PWM)  
The DRV2510-Q1 device features BD modulation scheme with high bandwidth, low noise, low distortion, and  
excellent stability.  
The BD modulation scheme allows for smaller ripple currents through the load. Each output switches from 0 V to  
the supply voltage. With no input, the OUT+ and OUT- pins are in phase with each other so that there is little or  
no current in the load. For positive differential inputs, the duty cycle of OUT+ is greater than 50% and the duty  
cycle of OUT- is lower than 50% for a positive differential output voltage. The opposite is true for negative  
differential inputs. The voltage accross the load sits at 0 V throughout most of the switching period, reducing the  
switching current, which reduces the I2R losses in the load.  
8
版权 © 2016, Texas Instruments Incorporated  
DRV2510-Q1  
www.ti.com.cn  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
No Output  
OUT+  
OUT-  
OUT+ - OUT- 0 V  
Solenoid Current 0 A  
Positive Output  
OUT+  
OUT-  
OUT+ - OUT- 0 V  
Solenoid Current 0 A  
Negative Output  
OUT+  
OUT-  
OUT+ - OUT- 0 V  
Solenoid Current 0 A  
5. BD Mode Modulation  
7.3.3 Designed for low EMI  
The DRV2510-Q1 device design has minimal parasitic inductances due to the short leads on the package. This  
dramatically reduces EMI that results from current passing from the die to the system PCB. The design  
incorporates circuitry that optimizes output transitions that causes EMI. Follow the recommended design  
requirements in the Design Requirements section.  
7.3.4 Device Protection Systems  
The DRV2510-Q1 device features a complete set of protection circuits carefully designed to protect the device  
against permanent failures due to shorts, over-temperature, over-voltage, and under-voltage scenarios. The INTZ  
pin signals if an error is detected.  
Additionally, the DRV2510-Q1 device is not damaged by adjacent pin to pin shorts.  
版权 © 2016, Texas Instruments Incorporated  
9
DRV2510-Q1  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
www.ti.com.cn  
2. Fault Reporting Table  
FAULT  
TRIGGERING CONDITION  
INTZ  
ACTION  
output in high impedance.  
I2 updated.  
Over-current  
Output short or short to VDD or GND  
pulled low  
output in high impedance.  
Recovery is automatic  
once the temperature  
returns to a safe level.  
Over-temperature  
Tj > 150 ºC  
pulled low  
output in high impedance.  
I2 reset.  
Under-voltage  
Over-voltage  
VDD < 4 V  
pulled low  
pulled low  
output in high impedance.  
I2 updated.  
VDD > 21 V  
7.3.4.1 Diagnostics  
The device incorporates load diagnostic circuitry designed for detecting and determining the status of output  
connections. The device supports the following diagnostics:  
Short to GND  
Short to VDD  
Short across load  
Open load  
The device reports the presence of any of the short or open conditions to the system via I2C register read.  
1. Load Diagnostics—The load diagnostic function runs on de-assertion of EN or when the device is in a fault  
state (dc detect, overcurrent, overvoltage, undervoltage, and overtemperature). During this test, the outputs  
are in a Hi-Z state. The device determines whether the output is a short to GND, short to VDD, open load, or  
shorted load. The load diagnostic biases the output, which therefore requires limiting the capacitance value  
for proper functioning. The load diagnostic test takes approximately 229 ms to run. Note that the check  
phase repeats up to five times if a fault is present or a large capacitor to GND is present on the output. On  
detection of an open load, the output still operates. On detection of any other fault condition, the output goes  
into a Hi-Z state, and the device checks the load continuously until removal of the fault condition. After  
detection of a normal output condition, the output starts. The load diagnostics run after every other  
overvoltage (OV) event. The load diagnostic for open load only has I2C reporting. All other faults have I2C  
and INTZ pin assertion.  
The device performs load diagnostic tests as shown in 6.  
7 illustrates how the diagnostics determine the load based on output conditions.  
Discharge  
(75 ms)  
Ramp Up  
(52 ms)  
Check  
(50 ms)  
Ramp Down  
(52 ms)  
6. Load Diagnostics Sequence of Events  
10  
版权 © 2016, Texas Instruments Incorporated  
 
DRV2510-Q1  
www.ti.com.cn  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
Output Conditions  
Open Load  
Load Diagnostics  
Open Load Detected  
OL Max  
OL Min  
SL Max  
SL Min  
Normal or Open Load  
May Be Detected  
Open Load (OL)  
Detection Threshold  
Normal  
Load  
Play Mode  
Shorted Load (SL)  
Detection Threshold  
Normal or Shorted Load  
May Be Detected  
Shorted Load  
Detected  
Shorted  
Load  
7. Load Diagnostic Reporting Thresholds  
2. Faults During Load Diagnostics—If the device detects a fault (overtemperature, overvoltage, undervoltage)  
during the load diagnostics test, the device exits the load diagnostics, which may result in a small transient  
on the output.  
7.4 Device Functional Modes  
The DRV2510-Q1 device has multiple power states to optimize power consumption.  
7.4.1 Operation in Shutdown Mode  
The NRST pin of the DRV2510-Q1 device puts the device in a shutdown mode. When NRST is asserted (logic  
low), all internal blocks of the device are off to achieve ultra low power. I2C is not operational in this mode and  
the output is in Hi-Z state.  
7.4.2 Operation in Standby Mode  
The STDBY pin of the DRV2510-Q1 device puts the device in a standby mode. When STDBY is asserted (logic  
high), some internal blocks of the device are off to achieve low power while preserving the ability to wake up  
quickly to achieve low latency waveform playback.  
7.4.3 Operation in Active Mode  
The DRV2510-Q1 device is in active mode when it has a valid supply, and it is not in either shutdown or standby  
modes. In this mode the DRV2510-Q1 device is fully on and reproducing at the output the input times the gain.  
7.5 Programming  
7.5.1 General I2C Operation  
The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system. The bus transfers data serially, one bit at a time. The 8-bit address and data bytes are transferred with  
the most-significant bit (MSB) first. In addition, each byte transferred on the bus is acknowledged by the receiving  
device with an acknowledge bit. Each transfer operation begins with the master device driving a start condition  
on the bus and ends with the master device driving a stop condition on the bus. The bus uses transitions on the  
data pin (SDA) while the clock is at logic high to indicate start and stop conditions. A high-to-low transition on the  
SDA signal indicates a start, and a low-to-high transition indicates a stop. Normal data-bit transitions must occur  
within the low time of the clock period. 8 shows a typical sequence. The master device generates the 7-bit  
版权 © 2016, Texas Instruments Incorporated  
11  
 
DRV2510-Q1  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
www.ti.com.cn  
Programming (接下页)  
slave address and the read-write (R/W) bit to start communication with a slave device. The master device then  
waits for an acknowledge condition. The slave device holds the SDA signal low during the acknowledge clock  
period to indicate acknowledgment. When the acknowledgment occurs, the master transmits the next byte of the  
sequence. Each device is addressed by a unique 7-bit slave address plus a R/W bit (1 byte). All compatible  
devices share the same signals through a bidirectional bus using a wired-AND connection.  
The number of bytes that can be transmitted between start and stop conditions is not limited. When the last word  
transfers, the master generates a stop condition to release the bus. 8 shows a generic data-transfer  
sequence.  
Use external pull-up resistors for the SDA and SCL signals to set the logic-high level for the bus. Pull-up resistors  
between 660 Ω and 4.7 kΩ are recommended. Do not allow the SDA and SCL voltages to exceed the DRV2510-  
Q1 supply voltage, VDD  
.
The DRV2510-Q1 slave address is 0x6C (7-bit), or 1101100 in binary.  
8-bit register data for address  
8-bit register data for address  
7-bit slave address  
A
8-bit register address (N)  
A
A
A
R/W  
(N)  
(N)  
b7 b6 b5 b4 b3 b2 b1 b0  
b7 b6 b5 b4 b3 b2 b1 b0  
b7 b6 b5 b4 b3 b2 b1 b0  
b7 b6 b5 b4 b3 b2 b1 b0  
{tart  
{top  
8. Typical I2C Sequence  
The DRV2510-Q1 device operates as an I2C-slave 1.8-V logic thresholds, but can operate up to the VDD voltage.  
The device address is 0x5A (7-bit), or 1011010 in binary which is equivalent to 0xB4 (8-bit) for writing and 0xB5  
(8-bit) for reading.  
7.5.2 Single-Byte and Multiple-Byte Transfers  
The serial control interface supports both single-byte and multiple-byte R/W operations for all registers.  
During multiple-byte read operations, the DRV2510-Q1 device responds with data one byte at a time and begins  
at the signed register. The device responds as long as the master device continues to respond with  
acknowledges.  
The DRV2510-Q1 supports sequential I2C addressing. For write transactions, a sequential I2C write transaction  
has taken place if a register is issued followed by data for that register as well as the remaining registers that  
follow. For I2C sequential-write transactions, the register issued then serves as the starting point and the amount  
of data transmitted subsequently before a stop or start is transmitted determines how many registers are written.  
7.5.3 Single-Byte Write  
As shown in 9, a single-byte data-write transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the read-write bit. The read-write bit determines the direction of the data  
transfer. For a write-data transfer, the read-write bit must be set to 0. After receiving the correct I2C device  
address and the read-write bit, the DRV2510-Q1 responds with an acknowledge bit. Next, the master transmits  
the register byte corresponding to the DRV2510-Q1 internal-memory address that is accessed. After receiving  
the register byte, the device responds again with an acknowledge bit. Finally, the master device transmits a stop  
condition to complete the single-byte data-write transfer.  
12  
版权 © 2016, Texas Instruments Incorporated  
 
DRV2510-Q1  
www.ti.com.cn  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
Programming (接下页)  
!cknowledge  
!cknowledge  
!cknowledge  
!7 !6 !ꢀ  
!6 !ꢀ !4 !3 !2 !1 !0  
í
!/Y  
!4 !3 !2 !0 !1 !/Y 57 56 5ꢀ 54 53 52 51 50 !/Y  
2
{top  
condition  
{ubaddress  
5ata byte  
{tart  
condition  
I C device address  
and R/W bit  
9. Single-Byte Write Transfer  
7.5.4 Multiple-Byte Write and Incremental Multiple-Byte Write  
A multiple-byte data write transfer is identical to a single-byte data write transfer except that multiple data bytes  
are transmitted by the master device to the DRV2510-Q1 device as shown in 10. After receiving each data  
byte, the DRV2510-Q1 device responds with an acknowledge bit.  
!cknowledge  
!cknowledge  
!cknowledge  
!cknowledge  
!cknowledge  
!1  
!0  
!1  
!0  
í
!/Y !7 !6  
!1  
!0 !/Y 57 56  
51 50 !/Y 57  
50 !/Y 57  
50 !/Y  
{top  
condition  
2
{tart  
condition  
{ubaddress  
Cirst data byte  
htꢀer data bytes  
[ast data byte  
I C device address  
and R/W bit  
10. Multiple-Byte Write Transfer  
7.5.5 Single-Byte Read  
11 shows that a single-byte data-read transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the read-write bit. For the data-read transfer, both a write followed by a  
read actually occur. Initially, a write occurs to transfer the address byte of the internal memory address to be  
read. As a result, the read-write bit is set to 0.  
After receiving the DRV2510-Q1 address and the read-write bit, the DRV2510-Q1 device responds with an  
acknowledge bit. The master then sends the internal memory address byte, after which the device issues an  
acknowledge bit. The master device transmits another start condition followed by the DRV2510-Q1 address and  
the read-write bit again. On this occasion, the read-write bit is set to 1, indicating a read transfer. Next, the  
DRV2510-Q1 device transmits the data byte from the memory address that is read. After receiving the data byte,  
the master device transmits a not-acknowledge followed by a stop condition to complete the single-byte data  
read transfer. See the note in the General I2C Operation section.  
!cknowledge  
!cknowledge  
!cknowledge  
!cknowledge  
!/Y  
!/Y  
!/Y  
!6  
!5  
!1  
!0  
í
!7  
!6  
!1  
!0  
!6  
!5  
!0  
ꢀ7  
ꢀ0 !/Y  
2
2
{tart  
/ondition  
{ubaddress  
ꢁepeat start  
condition  
ꢀata .yte  
{top  
/ondition  
I C device address and  
R/W bit  
I C device address and  
R/W bit  
11. Single-Byte Read Transfer  
7.5.6 Multiple-Byte Read  
A multiple-byte data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes  
are transmitted by the DRV2510-Q1 device to the master device as shown in 12. With the exception of the  
last data byte, the master device responds with an acknowledge bit after receiving each data byte.  
Copyright © 2016, Texas Instruments Incorporated  
13  
 
 
DRV2510-Q1  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
www.ti.com.cn  
Programming (接下页)  
!cknowledge  
!cknowledge  
!cknowledge  
!cknowledge  
ꢂ0 !/Y ꢂ7  
!cknowledge  
ꢂ0 !/Y ꢂ7  
!cknowledge  
!6  
!0  
!/Y !7 !6  
!1 !0 !/Y  
!6 !5  
!0  
!/Y ꢂ7  
ꢂ0 !/Y  
í
2
2
{top  
condition  
ꢀepeat start  
condition  
{tart  
condition  
{ubaddress  
Cirst data byte  
htꢁer data byte  
[ast data byte  
I C device address  
and R/W bit  
I C device address  
and R/W bit  
12. Multiple-Byte Read Transfer  
14  
Copyright © 2016, Texas Instruments Incorporated  
DRV2510-Q1  
www.ti.com.cn  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
7.6 Register Map  
Table 3. Register Map Overview  
REG  
DEFAULT  
NO.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
0x00  
0x01  
0x00  
0x00  
Reserved  
LOAD_DIAG  
Reserved  
OVER_TEMP  
DEV_ACTIVE  
Reserved  
STDBY  
OVER_VOLT  
UNDER_VOLT  
FAULT  
OVER_CURR  
LOAD_SHORT  
Reserved  
Reserved  
LOAD_SHORT_  
GND  
LOAD_SHORT_  
VDD  
0x02  
0x03  
0x00  
0x00  
DIAG_ACTIVE  
LOAD_OPEN  
GAIN[1:0]  
FREQ_SEL  
7.6.1 Address: 0x00  
Figure 13. 0x00  
7
6
5
4
3
2
1
0
Reserved  
LOAD_DIAG[0]  
RO-0  
Reserved  
Table 4. Address: 0x00  
BIT  
7-3  
2
FIELD  
TYPE DEFAULT DESCRIPTION  
Reserved  
LOAD_DIAG  
RO  
0
Shows the status of the load diagnostics.  
0
1
An open or short has not been detected.  
An open or short was detected.  
1-0  
Reserved  
7.6.2 Address: 0x01  
Figure 14. 0x01  
7
6
5
4
3
2
1
Reserved  
0
OVER_TEMP[0  
]
Reserved  
OVER_VOLT[0] UNDER_VOLT[ OVER_CURR[0  
0]  
]
RO-0  
RO-0  
RO-0  
RO-0  
Table 5. Address: 0x01  
BIT  
FIELD  
TYPE DEFAULT DESCRIPTION  
7
OVER_TEMP  
RO  
0
Shows the current statuts of the thermal protection  
0
1
Temperature is below the over-temperature threshold.  
Temperature is above the over-temperature threshold.  
6
5
Reserved  
OVER_VOLT  
RO  
RO  
RO  
0
0
0
Shows the status of the over-voltage protection.  
0
1
VDD voltage is below the over-voltage threshold.  
VDD voltage is above the over-voltage threshold.  
4
3
UNDER_VOLT  
OVER_CURR  
Reserved  
Shows the status of the under-voltage protection.  
0
1
VDD voltage is above the under-voltage threshold.  
VDD voltage is below the under-voltage threshold.  
Shows the status of the over-current protection.  
0
1
An over-current event has not occured.  
Device shutdown due to over-current.  
2-0  
Copyright © 2016, Texas Instruments Incorporated  
15  
DRV2510-Q1  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
www.ti.com.cn  
7.6.3 Address: 0x02  
Figure 15. 0x02  
7
6
5
4
3
2
1
0
DEV_ACTIVE[0  
]
STDBY[0]  
DIAG_ACTIVE[  
0]  
FAULT[0]  
LOAD_SHORT[ LOAD_OPEN[0 LOAD_SHORT LOAD_SHORT  
0]  
]
_GND[0]  
_VDD[0]  
RO-0  
RO-0  
RO-0  
RO-0  
RO-0  
RO-0  
RO-0  
RO-0  
Table 6. Address: 0x02  
BIT  
FIELD  
TYPE DEFAULT DESCRIPTION  
7
DEV_ACTIVE  
RO  
RO  
RO  
RO  
0
0
0
0
Shows the device status (active or shutdown).  
0
1
Device is shutdown.  
Device is active.  
6
5
4
STDBY  
Shows the device standby status.  
0
1
Device is not on standby.  
Device is on standby.  
DIAG_ACTIVE  
FAULT  
Shows the status of the diagnositcs engine.  
0
1
Not performing load diagnostics.  
Performing load diagnostics.  
Shows if a fault has occured on the system. Either over-voltage, under-voltage, over-current,  
over-temperature.  
0
1
No fault has occured.  
A fault has occured.  
3
2
1
0
LOAD_SHORT  
RO  
RO  
RO  
RO  
0
0
0
0
Shows whether the output is shorted.  
0
1
OUT+ is not shorted to OUT-.  
OUT+ is shorted to OUT-.  
LOAD_OPEN  
Shows whether the output has a proper load connected.  
0
1
A proper load is connected between OUT+ and OUT-.  
There is an open connection between OUT+ and OUT-.  
LOAD_SHORT_GND  
LOAD_SHORT_VDD  
Shows whether the output is shorted to GND.  
0
1
Output is not shorted to GND.  
Either OUT+ or OUT- is shorted to GND.  
Shows whether the output is shorted to VDD.  
0
1
Output is not shorted to VDD.  
Either OUT+ or OUT- is shorted to VDD.  
16  
Copyright © 2016, Texas Instruments Incorporated  
DRV2510-Q1  
www.ti.com.cn  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
7.6.4 Address: 0x03  
Figure 16. 0x03  
7
6
5
4
3
2
1
0
GAIN[1:0]  
Reserved  
FREQ_SEL[0]  
R/W-0  
R/W-0  
R/W-0  
Table 7. Address: 0x03  
BIT  
FIELD  
TYPE DEFAULT DESCRIPTION  
R/W 0 Sets the gain of the driver.  
7-6  
GAIN[1:0]  
0
1
2
3
20 dB.  
26 dB.  
32 dB.  
36 dB.  
5-1  
0
Reserved  
FREQ_SEL  
R/W  
0
Sets the output frequency.  
0
1
400 kHz.  
500 kHz.  
版权 © 2016, Texas Instruments Incorporated  
17  
DRV2510-Q1  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV2510-Q1 device is a high-efficiency driver for inductive loads, such as solenoids and voice-coils. The  
typical use of the device is on haptic applications where short, strong waveforms are desired to create a haptic  
event that will be coming from the application processor.  
8.2 Typical Applications  
8.2.1 Single-Ended Source  
To use the DRV2510-Q1 with a single-ended source, apply either a voltage divider to bias INB to 3 V, tie to GND  
or use a 0.1-μF cap from INB to GND to have the device self bias. Apply the single-ended signal to the INA pin.  
C2  
VDD  
BSTP  
OUT+  
C1  
Optional  
L1  
Application  
Processor  
R
R
R
(PU) (PU) (PU)  
EN  
GPIO  
STDBY  
C7  
GPIO  
GPIO  
SDA  
SCL  
R1  
INTZ  
SDA  
SCL  
C4  
C5  
Solenoid/  
Voice-Coil  
M
IN+  
IN-  
PWM+  
LPF  
R2  
L2  
OUTœ  
C9  
REG  
GND  
C8  
C6  
C3  
BSTN  
Optional  
17. Typical Application Schematic  
8.2.1.1 Design Requirements  
For most applications the following component values found in 8 below can be used.  
18  
版权 © 2016, Texas Instruments Incorporated  
DRV2510-Q1  
www.ti.com.cn  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
Typical Applications (接下页)  
8. Component Requirements Table  
COMPONENT  
C1  
DESCRIPTION  
SPECIFICATION  
Capacitance  
TYPICAL VALUE  
Supply capacitor  
Boost capacitor  
22 µF, 10 µF, and 0.1 µF  
C2/C3  
C4/C5  
C6  
Capacitance  
Capacitance  
Capacitance  
Capacitance  
Resistance  
Resistance  
0.22 µF  
470 pF  
1 µF  
Output snubber capacitor  
Regulator capacitor  
Input decoupling capacitor  
Output snubber resistor  
Pull-up resistor  
C9  
0.1 µF  
3.3 Ω  
R1/R2  
R(PU)  
100 kΩ  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Optional Components  
Note that in the diagrams, there are a few optional external components. These optional external components  
may be needed in the application to meet EMI/EMC standards and specifications by filters necessary frequency  
spectrums.  
8.2.1.2.2 Capacitor Selection  
A bulk bypass capacitor should be mounted between VBAT and GND. The capacitance needs to be >22 uF with  
a X5R or better rating on the power pins to GND. Also include two ceramic capacitors in the ranges of 220 pF to  
1 uF and 100 nF to 1 uF. The bootstrap capacitors, BSTA and BSTB, should be 220-nF ceramic capacitors of  
quality X5R or better rated for at least the maximum rating of the pin.  
8.2.1.2.3 Solenoid Selection  
The DRV2510-Q1 solenoid driver can accommodate a variety of solenoids. Solenoids should have an equivalent  
resistance of 1.6 Ω or greater. Solenoids with lower resistances are prone to driving high currents. A maximum  
peak current of 3-A should not be exceeded.  
8.2.1.2.4 Output Filter Considerations  
The output filter is optional and is mainly for limiting peak currents. A second-order Butterworth low-pass filter  
with the cut-off frequency set to a few kilohertz should be sufficient. See 公式 2, 公式 3, and 公式 4 for example  
filter design.  
1
H(s) =  
s2 + 2s +1  
(1)  
2 ´RL  
Lx  
=
2wo  
(2)  
2
2´ CF =  
RL  
2´  
´ w0  
2
(3)  
(4)  
w0 = 2p´ ƒ  
8.2.1.3 Application Curves  
These application curves were taken using an HA200 solenoid with a 100-g mass, and the acceleration was  
measured using the DRV-AAC16-EVM accelerometer. The following scales apply to the graphs:  
Output Differential Voltage scale is shown on the plots at 5-V/div  
Acceleration scale is 5.85-G/div  
Current scale is 2-A/div  
版权 © 2016, Texas Instruments Incorporated  
19  
 
 
 
DRV2510-Q1  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
www.ti.com.cn  
Acceleration  
Input  
Acceleration  
Current  
[OUT+] − [OUT−]  
[OUT+] − [OUT−]  
0
2m  
4m  
6m  
8m 10m 12m 14m 16m 18m 20m  
Time (s)  
0
2m  
4m  
6m  
8m 10m 12m 14m 16m 18m 20m  
Time (s)  
18. Voltage and Acceleration vs Time (Input Square  
19. Voltage and Acceleration vs Time (Square Wave)  
Wave)  
Acceleration  
Current  
Acceleration  
Current  
[OUT+] − [OUT−]  
[OUT+] − [OUT−]  
0
2m  
4m  
6m  
8m 10m 12m 14m 16m 18m 20m  
Time (s)  
0
2m  
4m  
6m  
8m 10m 12m 14m 16m 18m 20m  
Time (s)  
20. Voltage and Acceleration vs Time (Ramp Wave)  
21. Voltage and Acceleration vs Time (1/2 Sine Wave)  
8.2.1.4 Differential Input Diagram  
To use the DRV2510-Q1 with a differential input source, apply both inputs differentially from a control source  
(GPIO, DAC, etc...).  
20  
版权 © 2016, Texas Instruments Incorporated  
DRV2510-Q1  
www.ti.com.cn  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
C2  
VDD  
BSTP  
OUT+  
C1  
Optional  
L1  
Application  
Processor  
R
R
R
(PU) (PU) (PU)  
EN  
GPIO  
GPIO  
GPIO  
SDA  
STDBY  
C7  
R1  
INTZ  
SDA  
SCL  
C4  
Solenoid/  
M
Voice-Coil  
SCL  
C5  
IN+  
IN-  
PWM+  
PWM-  
LPF  
R2  
L2  
LPF  
OUTœ  
REG  
GND  
C8  
C6  
C3  
BSTN  
Optional  
22. Typical Application Schematic  
版权 © 2016, Texas Instruments Incorporated  
21  
DRV2510-Q1  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
www.ti.com.cn  
9 Power Supply Recommendations  
The DRV2510-Q1 device operates from 5 V - 18 V and this supply should be able to handle high surge currents  
in order to meet the high currrent draws for haptics effects. Additionally the DRV2510-Q1 should have 22-µF, 10-  
µF and 0.1-µF ceramic capacitors near the VDD pin for additional decoupling from trace routing.  
10 Layout  
10.1 Layout Guidelines  
The EVM layout optimizes for thermal dissipation and EMC performance. The DRV2510-Q1 device has a  
thermal pad down, and good thermal conduction and dissipation require adequate copper area. Layout also  
affects EMC performance. It is best practice to use the same/similiar layout as shown below in the  
DRV2510Q1EVM.  
10.2 Layout Example  
23. DRV2510-Q1 EVM  
22  
版权 © 2016, Texas Instruments Incorporated  
DRV2510-Q1  
www.ti.com.cn  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 商标  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2016, Texas Instruments Incorporated  
23  
DRV2510-Q1  
ZHCSFB0A JUNE 2016REVISED JUNE 2016  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2016, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV2510QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
16  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
DRV2510  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV2510QPWPRQ1  
HTSSOP PWP  
16  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
DRV2510QPWPRQ1  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PWP0016B  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
0.19  
B
0.1  
C A  
B
(0.15) TYP  
SEE DETAIL A  
4X 0.15 MAX  
NOTE 5  
2X 0.95 MAX  
NOTE 5  
THERMAL  
PAD  
0.25  
GAGE PLANE  
3.0  
2.4  
1.2 MAX  
0.15  
0.05  
0 - 8  
0.75  
0.50  
DETAIL A  
TYPICAL  
(1)  
3.0  
2.4  
4218971/A 01/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0016B  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(3)  
16X (1.5)  
SYMM  
SEE DETAILS  
1
16  
16X (0.45)  
(1.1)  
TYP  
SYMM  
(3)  
(5)  
NOTE 9  
14X (0.65)  
8
9
(
0.2) TYP  
VIA  
(1.1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-16  
4218971/A 01/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0016B  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3)  
BASED ON  
0.125 THICK  
STENCIL  
16X (1.5)  
(R0.05) TYP  
1
16  
16X (0.45)  
(3)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
14X (0.65)  
9
8
SYMM  
(5.8)  
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.35 X 3.35  
3 X 3 (SHOWN)  
2.74 X 2.74  
0.125  
0.15  
0.175  
2.54 X 2.54  
4218971/A 01/2016  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

DRV2511-Q1

适用于螺线管且具有集成故障保护功能的汽车类 8A 触觉驱动器
TI

DRV2511QDAPRQ1

适用于螺线管且具有集成故障保护功能的汽车类 8A 触觉驱动器 | DAP | 32 | -40 to 125
TI

DRV2603

Haptic Driver with Auto Resonance Tracking for Linear Resonance Actuators (LRA) and Optimized Drive for Eccentric Rotating Mass Actuators (ERM)
TI

DRV2603ERM

DRV2603 ERM/LRA Haptic Driver Evaluation Kit
TI

DRV2603RUN

DRV2603 ERM/LRA Haptic Driver Evaluation Kit
TI

DRV2603RUNR

Haptic Driver with Auto Resonance Tracking for Linear Resonance Actuators (LRA) and Optimized Drive for Eccentric Rotating Mass Actuators (ERM)
TI

DRV2603RUNT

Haptic Driver with Auto Resonance Tracking for Linear Resonance Actuators (LRA) and Optimized Drive for Eccentric Rotating Mass Actuators (ERM)
TI

DRV2603_14

Haptic Drive with Auto-Resonance Detection for Linear Resonance Actuators (LRA)
TI

DRV2604

Haptic Driver for ERM and LRA with Internal Memory and Smart Loop Architecture
TI

DRV2604L

具有 2V 工作电压、波形存储器和自动谐振跟踪功能的 ERM/LRA 触觉驱动器
TI

DRV2604LDGSR

具有 2V 工作电压、波形存储器和自动谐振跟踪功能的 ERM/LRA 触觉驱动器 | DGS | 10 | -40 to 85
TI

DRV2604LDGST

具有 2V 工作电压、波形存储器和自动谐振跟踪功能的 ERM/LRA 触觉驱动器 | DGS | 10 | -40 to 85
TI