DRV425RTJR [TI]

用于开环应用的全集成式磁通门磁传感器 | RTJ | 20 | -40 to 125;
DRV425RTJR
型号: DRV425RTJR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于开环应用的全集成式磁通门磁传感器 | RTJ | 20 | -40 to 125

传感器
文件: 总39页 (文件大小:1614K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DRV425  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
DRV425 磁通门磁场传感器  
1 特性  
3 说明  
1
高精度、集成磁通门传感器:  
DRV425 专为单轴磁场感测 需要快速切换频率的应  
用, 而设计,可实现电气隔离式高灵敏度精密直流和  
交流磁场测量。该器件可提供独特且专有的集成磁通门  
传感器 (IFG)。该传感器内置一个补偿线圈,支持  
±2mT 的高精度感测范围,测量带宽最高可达 47kHz。  
该传感器的低偏移、低漂移、低噪声特性与内部补偿线  
圈的精确增益、低增益漂移和极低非线性度相结合,可  
提供无与伦比的磁场测量精度。DRV425 输出与感测  
到的场强成正比的模拟信号。  
偏移:±8µT(最大值)  
偏移漂移:±5nT/°C(典型值)  
增益误差: 0.04%(典型值)  
增益漂移:±7ppm/°C(典型值)  
线性度:±0.1%  
噪声:1.5nT/Hz(典型值)  
传感器范围:±2mT(最大值)  
范围和增益可通过外部电阻进行调节  
可选带宽:47kHz 32kHz  
DRV425 提供了一组完整 采用,包括内部差分放大  
器、片上精密基准以及诊断功能,能够最大限度地减少  
组件数量并削减系统级成本。  
精密基准:  
精度:2%(最大值),漂移:50ppm/°C(最大  
值)  
DRV425 采用带有 PowerPAD™的耐热增强型、无磁  
性、超薄四方扁平无引线 (WQFN) 封装来实现优化散  
热,并且在 –40°C +125°C 的扩展工业温度范围内  
额定运行。  
引脚可选电压:2.5V 1.65V  
可选比例模式:VDD/2  
诊断 特性: 超限和错误标志  
电源电压范围:3.0V 5.5V  
器件信息 (1)  
2 应用  
部件号  
DRV425  
封装  
WQFN (20)  
封装尺寸(标称值)  
线性位置感测  
4.00mm x 4.00mm  
母线电流感测  
走线电流感测  
通用磁场传感器  
过流检测  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
电机可靠性诊断  
频率和电压逆变器  
太阳能逆变器  
简化电路原理图  
RSHUNT  
COMP1  
DRV425  
COMP2  
DRV2  
DRV1 AINP  
AINN  
Shunt  
Sense  
Amplifier  
Differential  
Driver  
Fluxgate  
Sensor  
and  
Integrator  
Compensation  
Coil  
VOUT  
REFIN  
ADC  
Fluxgate Sensor Front-End  
Device Control and Diagnostic  
Reference  
REFOUT  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS729  
 
 
 
 
 
DRV425  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 17  
7.1 Overview ................................................................. 17  
7.2 Functional Block Diagram ....................................... 17  
7.3 Feature Description................................................. 18  
7.4 Device Functional Modes........................................ 23  
8
9
Application and Implementation ........................ 24  
8.1 Application Information............................................ 24  
8.2 Typical Applications ................................................ 24  
Power-Supply Recommendations...................... 29  
9.1 Power-Supply Decoupling....................................... 29  
9.2 Power-On Start-Up and Brownout .......................... 29  
9.3 Power Dissipation ................................................... 29  
10 Layout................................................................... 30  
10.1 Layout Guidelines ................................................. 30  
10.2 Layout Example .................................................... 31  
11 器件和文档支持 ..................................................... 32  
11.1 文档支持 ............................................................... 32  
11.2 社区资源................................................................ 32  
11.3 ....................................................................... 32  
11.4 静电放电警告......................................................... 32  
11.5 Glossary................................................................ 32  
12 机械、封装和可订购信息....................................... 32  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (October 2015) to Revision A  
Page  
已修复损坏的链................................................................................................................................................................... 1  
已添加最后四个 应用 要点的措辞 .......................................................................................................................................... 1  
Changed device name in 63 ........................................................................................................................................... 21  
2
Copyright © 2015–2016, Texas Instruments Incorporated  
 
DRV425  
www.ti.com.cn  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
5 Pin Configuration and Functions  
RTJ Package  
20-Pin WQFN  
Top View  
BSEL  
RSEL1  
1
2
3
4
5
15  
14  
13  
12  
11  
OR  
AINN  
AINP  
DRV1  
DRV2  
RSEL0  
(Thermal Pad)  
REFOUT  
REFIN  
Pin Functions  
PIN  
NAME  
AINN  
NO.  
I/O  
I
DESCRIPTION  
14  
Inverting input of the shunt-sense amplifier  
Noninverting input of the shunt-sense amplifier  
Filter bandwidth select input  
AINP  
13  
I
BSEL  
1
I
COMP1  
COMP2  
DRV1  
16  
I
Internal compensation coil input 1  
17  
I
Internal compensation coil input 2  
12  
O
O
O
O
I
Compensation coil driver output 1  
DRV2  
11  
Compensation coil driver output 2  
ERROR  
GND  
19  
7, 10, 18, 20  
15  
Error flag: open-drain, active-low output  
Ground reference  
OR  
Shunt-sense amplifier overrange indicator: open-drain, active-low output  
Connect the thermal pad to GND  
PowerPAD  
REFIN  
REFOUT  
RSEL0  
RSEL1  
5
4
3
2
Common-mode reference input for the shunt-sense amplifier  
Voltage reference output  
O
I
Voltage reference mode selection input 0  
Voltage reference mode selection input 1  
I
Supply voltage, 3.0 V to 5.5 V. Decouple both pins using 1-µF ceramic capacitors placed as  
close as possible to the device. See the Power-Supply Decoupling and Layout sections for  
further details.  
VDD  
8, 9  
6
O
VOUT  
Shunt-sense amplifier output  
Copyright © 2015–2016, Texas Instruments Incorporated  
3
DRV425  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
6.5  
UNIT  
Supply voltage (VDD to GND)  
Voltage  
Input voltage, except AINP and AINN pins(2)  
Shunt-sense amplifier inputs (AINP and AINN pins)(3)  
GND – 0.5  
GND – 6.0  
–300  
VDD + 0.5  
VDD + 6.0  
300  
V
(4)  
DRV1 and DRV2 pins (short-circuit current, IOS  
)
Current  
Shunt-sense amplifier input pins AINP and AINN  
All remaining pins  
–5  
5
mA  
°C  
–25  
25  
Junction, TJ max  
–50  
150  
Temperature  
Storage, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails must be  
current limited, except for the differential amplifier input pins.  
(3) These inputs are not diode-clamped to the power-supply rails.  
(4) Power-limited; observe maximum junction temperature.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.0  
NOM  
MAX  
5.5  
UNIT  
VDD  
TA  
Supply voltage range (VDD to GND)  
Specified ambient temperature range  
5.0  
V
–40  
125  
°C  
6.4 Thermal Information  
DRV425  
THERMAL METRIC(1)  
RTJ (WQFN)  
UNIT  
20 PINS  
34.1  
33.1  
11  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
11  
RθJC(bot)  
2.1  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015–2016, Texas Instruments Incorporated  
 
DRV425  
www.ti.com.cn  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
6.5 Electrical Characteristics  
All minimum and maximum specifications are at TA = 25°C, VDD = 3.0 V to 5.5 V, and IDRV1 = IDRV2 = 0 mA, unless otherwise  
noted. Typical values are at VDD = 5.0 V.  
PARAMETER  
FLUXGATE SENSOR FRONT-END  
Offset  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
No magnetic field  
–8  
±2  
±5  
8
µT  
Offset drift  
No magnetic field  
nT/°C  
mA/mT  
G
Gain  
Current at DRV1 and DRV2 outputs  
12.2  
±0.04%  
±7  
Gain error  
Gain drift  
Best-fit line method  
ppm/°C  
Linearity error  
Hysteresis  
Noise  
0.1%  
1.4  
Magnetic field sweep from –10 mT to 10 mT  
f = 0.1 Hz to 10 Hz  
µT  
17  
nTrms  
nT/Hz  
mT  
Noise density  
Compensation range  
f = 1 kHz  
1.5  
–2  
2
Saturation trip level for the  
ERROR pin(1)  
Open-loop, uncompensated field  
1.6  
mT  
µs  
ERROR delay  
Open-loop at B > 1.6 mT  
BSEL = 0, RSHUNT = 22 Ω  
BSEL = 1, RSHUNT = 22 Ω  
VDD = 5 V  
4 to 6  
32  
BW  
IOS  
Bandwidth  
kHz  
mA  
47  
250  
150  
Short-circuit current  
VDD = 3.3 V  
Common-mode output voltage at the  
DRV1 and DRV2 pins  
VREFOUT  
100  
V
Compensation coil resistance  
Ω
SHUNT-SENSE AMPLIFIER  
VOO  
Output offset voltage  
Output offset voltage drift  
Common-mode rejection ratio, RTO(2) VCM = –1 V to VDD + 1 V, VREFIN = VDD / 2  
VAINP = VAINN = VREFIN, VDD = 3.0 V  
–0.075  
–2  
±0.01  
±0.4  
±50  
±4  
0.075  
2
mV  
µV/°C  
µV/V  
µV/V  
V
CMRR  
PSRRAMP  
VICR  
–250  
–50  
–1  
250  
Power-supply rejection ratio, RTO(2)  
Common-mode input voltage range  
Differential input impedance  
Common-mode input impedance  
Nominal gain  
VDD = 3.0 V to 5.5 V, VCM = VREFIN  
50  
VDD + 1  
23.5  
60  
zid  
16.5  
40  
20  
kΩ  
zic  
50  
kΩ  
Gnom  
EG  
VVOUT / (VAINP – VAINN  
)
4
±0.02%  
±1  
V/V  
Gain error  
–0.3%  
–5  
0.3%  
5
Gain error drift  
ppm/°C  
ppm  
Linearity error  
12  
VDD = 5.5 V, IVOUT = 2.5 mA  
VDD = 3.0 V, IVOUT = 2.5 mA  
VDD = 5.5 V, IVOUT = –2.5 mA  
VDD = 3.0 V, IVOUT = –2.5 mA  
48  
85  
Voltage output swing from negative  
rail (OR pin trip level)(1)  
mV  
56  
100  
VDD – 85  
VDD – 48  
VDD – 56  
Voltage output swing from positive rail  
(OR pin trip level)(1)  
mV  
µs  
VDD – 100  
Signal overrange indication delay  
(OR pin)(1)  
VIN = 1-V step  
2.5 to 3.5  
VOUT connected to GND  
VOUT connected to VDD  
–18  
20  
2
IOS  
Short-circuit current  
mA  
BW–3dB  
SR  
Bandwidth  
Slew rate  
MHz  
V/µs  
6.5  
0.9  
8
Large signal  
Settling time  
ΔV = ± 2 V to 1%, no external filter  
ΔV = ± 0.4 V to 0.01%  
tsa  
µs  
Small signal  
en  
Output voltage noise density  
f = 1 kHz, compensation loop disabled  
Input voltage range at REFIN pin  
170  
nV/Hz  
VREFIN  
Input voltage range at pin REFIN  
GND  
VDD  
V
(1) See the Magnetic Field Range, Overrange Indicator, and Error Flag section for details on the behavior of the ERROR and OR outputs.  
(2) Parameter value is referred-to-output (RTO).  
Copyright © 2015–2016, Texas Instruments Incorporated  
5
DRV425  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
All minimum and maximum specifications are at TA = 25°C, VDD = 3.0 V to 5.5 V, and IDRV1 = IDRV2 = 0 mA, unless otherwise  
noted. Typical values are at VDD = 5.0 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOLTAGE REFERENCE  
RSEL[1:0] = 00, no load  
2.45  
1.6  
2.5  
2.55  
1.7  
V
Reference output voltage at the  
REFOUT pin  
RSEL[1:0] = 01, no load  
RSEL[1:0] = 1x, no load  
1.65  
VREFOUT  
% of  
VDD  
45  
50  
55  
Reference output voltage drift  
Voltage divider gain error drift  
Power-supply rejection ratio  
RSEL[1:0] = 0x  
RSEL[1:0] = 1x  
RSEL[1:0] = 0x  
–50  
–50  
±10  
±10  
±15  
50 ppm/°C  
50 ppm/°C  
PSRRREF  
–300  
300  
µV/V  
RSEL[1:0] = 0x, load to GND or VDD,  
ΔILOAD = 0 mA to 5 mA, TA = –40°C to +125°C  
0.15  
0.3  
0.35  
0.8  
ΔVO(ΔIO)  
Load regulation  
mV/mA  
RSEL[1:0] = 1x, load to GND or VDD,  
ΔILOAD = 0 mA to 5 mA, TA = –40°C to +125°C  
REFOUT connected to VDD  
REFOUT connected to GND  
20  
mA  
mA  
IOS  
Short-circuit current  
–18  
DIGITAL INPUTS/OUTPUTS (CMOS)  
IIL  
Input leakage current  
0.01  
µA  
V
VIH  
VIL  
VOH  
VOL  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
Open-drain output  
0.7 × VDD  
–0.3  
VDD + 0.3  
0.3 × VDD  
V
Set by external pullup resistor  
0.3  
V
4-mA sink current  
V
POWER SUPPLY  
IDRV1/2 = 0 mA, 3.0 V VDD 3.6 V,  
TA = –40°C to +125°C  
6
8
IQ  
Quiescent current  
mA  
V
IDRV1/2 = 0 mA, 4.5 V VDD 5.5 V,  
TA = –40°C to +125°C  
7
10  
VPOR  
Power-on reset threshold  
2.4  
6
版权 © 2015–2016, Texas Instruments Incorporated  
DRV425  
www.ti.com.cn  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
6.6 Typical Characteristics  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
D001  
D002  
Offset (mT)  
Offset (mT)  
VDD = 5 V  
VDD = 3.3 V  
1. Fluxgate Sensor Front-End Offset Histogram  
2. Fluxgate Sensor Front-End Offset Histogram  
4
3
4
3
Device 1  
Device 2  
Device 3  
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Supply Voltage (V)  
D003  
D004  
3. Fluxgate Sensor Front-End Offset vs  
4. Fluxgate Sensor Front-End Offset vs  
Supply Voltage  
Temperature  
100  
80  
60  
40  
20  
0
50  
40  
30  
20  
10  
0
D046  
D005  
Offset Drift (nT/èC)  
Gain (mA/mT)  
VDD = 5 V  
5. Fluxgate Sensor Front-End Offset Drift Histogram  
6. Fluxgate Sensor Front-End Gain Histogram  
版权 © 2015–2016, Texas Instruments Incorporated  
7
DRV425  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
12.35  
12.35  
12.3  
Device 1  
Device 2  
Device 3  
12.3  
12.25  
12.2  
12.25  
12.2  
12.15  
12.1  
12.15  
12.1  
12.05  
12.05  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Supply Voltage (V)  
D008  
D009  
7. Fluxgate Sensor Front-End Gain vs  
8. Fluxgate Sensor Front-End Gain vs Temperature  
Supply Voltage  
50  
40  
30  
20  
10  
0
0.2  
0.175  
0.15  
0.125  
0.1  
0.075  
0.05  
0.025  
0
3
3.5  
4
4.5  
5
5.5  
Supply Voltage (V)  
D057  
D010  
Linearity (%)  
VDD = 5 V  
9. Fluxgate Sensor Front-End Linearity Histogram  
10. Fluxgate Sensor Front-End Linearity vs  
Supply Voltage  
100  
10  
1
0.2  
0.175  
0.15  
0.125  
0.1  
Device 1  
Device 2  
Device 3  
0.075  
0.05  
0.025  
0
0.1  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Noise Frequency (kHz)  
D006  
D011  
12. Fluxgate Sensor Front-End Noise Density vs Noise  
11. Fluxgate Sensor Front-End Linearity vs Temperature  
Frequency  
8
版权 © 2015–2016, Texas Instruments Incorporated  
DRV425  
www.ti.com.cn  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
D007  
D013  
Saturation Trip Level (mT)  
Saturation Trip Level (mT)  
VDD = 5 V  
VDD = 3.3 V  
13. Fluxgate Sensor Saturation (ERROR Pin)  
14. Fluxgate Sensor Saturation (ERROR Pin)  
Trip Level Histogram  
Trip Level Histogram  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
60  
50  
40  
30  
20  
10  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D052  
D053  
Compensation Coil Resistance (W)  
16. Compensation Coil Resistance Histogram  
15. Fluxgate Sensor Saturation (ERROR Pin) Trip Level  
vs Temperature  
150  
140  
130  
120  
110  
100  
90  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D054  
D015  
Output Offset (mV)  
VDD = 5 V  
18. Shunt-Sense Amplifier Output Offset Histogram  
17. Compensation Coil Resistance vs Temperature  
版权 © 2015–2016, Texas Instruments Incorporated  
9
 
DRV425  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
70  
75  
50  
60  
50  
40  
30  
20  
10  
0
25  
0
-25  
-50  
-75  
3
3.5  
4
4.5  
5
5.5  
Supply Voltage (V)  
D0165  
D018  
Output Offset (mV)  
VDD = 3.3 V  
20. Shunt-Sense Amplifier Output Offset vs  
19. Shunt-Sense Amplifier Output Offset Histogram  
Supply Voltage  
75  
50  
40  
30  
20  
10  
0
Device 1  
Device 2  
Device 3  
50  
25  
0
-25  
-50  
-75  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D019  
Common-Mode Rejection Ratio (mV/V)  
D017  
21. Shunt-Sense Amplifier Output Offset vs Temperature  
22. Shunt-Sense Amplifier CMRR Histogram  
100  
70  
60  
50  
40  
30  
20  
10  
0
80  
60  
40  
20  
0
0.01  
0.1  
1
10  
100  
1000  
D021  
Input Signal Frequency (kHz)  
Power-Supply Rejection Ratio (mV/V)  
D020  
23. Shunt-Sense Amplifier CMRR vs  
24. Shunt-Sense Amplifier PSRR Histogram  
Input Signal Frequency  
10  
版权 © 2015–2016, Texas Instruments Incorporated  
DRV425  
www.ti.com.cn  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
0.01  
0.1  
1
10  
100  
1000  
D023  
Ripple Frequency (kHz)  
AINP Input Impedance (kW)  
D022  
26. Shunt-Sense Amplifier AINP Input Impedance  
25. Shunt-Sense Amplifier PSRR vs  
Histogram  
Ripple Frequency  
50  
51  
50.8  
50.6  
50.4  
50.2  
50  
40  
30  
20  
10  
0
49.8  
49.6  
49.4  
49.2  
49  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D025  
D024  
AINN Input Impedance (kW)  
27. Shunt-Sense Amplifier AINP Input Impedance  
28. Shunt-Sense Amplifier AINN Input Impedance  
vs Temperature  
Histogram  
100  
80  
60  
40  
20  
0
11  
10.8  
10.6  
10.4  
10.2  
10  
9.8  
9.6  
9.4  
9.2  
9
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D027  
D026  
Gain Error (%)  
Including IFG, VDD = 5 V  
29. Shunt-Sense Amplifier AINN Input Impedance  
30. Shunt-Sense Amplifier Gain Error Histogram  
vs Temperature  
版权 © 2015–2016, Texas Instruments Incorporated  
11  
DRV425  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
100  
0.3  
0.25  
0.2  
80  
60  
40  
20  
0
0.15  
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D028  
D055  
Gain Error (%)  
Including IFG, VDD = 3.3 V  
32. Shunt-Sense Amplifier Gain Error vs  
31. Shunt-Sense Amplifier Gain Error Histogram  
Temperature  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0.01  
0
3
0.1  
1
10  
100  
1000  
10000  
3.5  
4
4.5  
5
5.5  
Input Signal Frequency (kHz)  
Supply Voltage (V)  
D029  
D030  
33. Shunt-Sense Amplifier Gain vs  
34. Shunt-Sense Amplifier Linearity Error vs  
Input Signal Frequency  
Supply Voltage  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
VDD = 5.5 V  
VDD = 3.0 V  
0
1
2
3
4
5
6
7
8
9
10  
3
3.5  
4
4.5  
5
5.5  
Output Current (mA)  
Supply Voltage (V)  
D031  
D056  
35. OR Pin Trip Level vs Output Current  
36. OR Pin Trip Level vs Supply Voltage  
12  
版权 © 2015–2016, Texas Instruments Incorporated  
DRV425  
www.ti.com.cn  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
0.5  
4
3.75  
3.5  
3.25  
3
VDD = 5.5 V  
VDD = 3.0 V  
0.4  
0.3  
0.2  
0.1  
0
2.75  
2.5  
2.25  
2
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D032  
D033  
37. OR Pin Trip Level vs Temperature  
38. OR Pin Trip Delay vs Temperature  
40  
30  
40  
30  
VOUT to GND  
VOUT to VDD  
VOUT to GND  
VOUT to VDD  
20  
20  
10  
10  
0
0
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
3
3.5  
4
4.5  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Supply Voltage (V)  
D035  
D034  
39. Shunt-Sense Amplifier Output Short-Circuit Current  
40. Shunt-Sense Amplifier Output Short-Circuit Current  
vs Supply Voltage  
vs Temperature  
0.25  
0.2  
0.25  
VVOUT  
VAINP - VAINN  
0.2  
0.15  
0.1  
0.15  
0.1  
0.05  
0
0.05  
0
-0.05  
-0.1  
-0.15  
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
VVOUT  
VAINP - VAINN  
-0.2  
-0.25  
-2.5  
0
2.5  
5
7.5  
10  
12.5  
15  
17.5  
-2.5  
0
2.5  
5
7.5  
10  
12.5  
15  
17.5  
Time (ms)  
Time (ms)  
D012  
D049  
Rising edge  
Falling edge  
41. Shunt-Sense Amplifier Small-Signal  
42. Shunt-Sense Amplifier Small-Signal  
Settling Time  
Settling Time  
版权 © 2015–2016, Texas Instruments Incorporated  
13  
DRV425  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
1.25  
1
1.25  
VVOUT  
VAINP - VAINN  
1
0.75  
0.5  
0.75  
0.5  
0.25  
0
0.25  
0
-0.25  
-0.5  
-0.75  
-0.25  
-0.5  
-0.75  
-1  
VVOUT  
VAINP - VAINN  
-1  
-1.25  
-1.25  
-0.5  
0
0.5  
1
1.5  
2
2.5  
-0.5  
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
Time (ms)  
D050  
D051  
Rising edge  
Falling edge  
43. Shunt-Sense Amplifier Large-Signal  
44. Shunt-Sense Amplifier Large-Signal  
Settling Time  
Settling Time  
5
4
5
4
VAINP - VAINN  
VVOUT  
VAINP - VAINN  
VVOUT  
3
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
-0.1 -0.075 -0.05 -0.025  
0
0.025 0.05 0.075 0.1  
-0.1 -0.075 -0.05 -0.025  
0
0.025 0.05 0.075 0.1  
Time (ms)  
Time (ms)  
D036  
D037  
VDD = 5 V  
VDD = 3.3 V  
45. Shunt-Sense Amplifier Overload Recovery Response  
46. Shunt-Sense Amplifier Overload Recovery Response  
10000  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
10  
100  
1000  
10000  
100000  
Noise Frequency (Hz)  
D039  
Reference Voltge (V)  
D038  
VREFOUT = 2.5 V  
48. Reference Voltage Histogram  
47. Shunt-Sense Amplifier Output Voltage Noise Density  
vs Noise Frequency  
14  
版权 © 2015–2016, Texas Instruments Incorporated  
DRV425  
www.ti.com.cn  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
3
2.8  
2.6  
2.4  
2.2  
2
70  
RSEL[1:0] = 00  
RSEL[1:0] = 01  
60  
50  
40  
30  
20  
10  
0
1.8  
1.6  
1.4  
3
3.5  
4
4.5  
5
5.5  
Supply Voltage (V)  
D042  
D058  
Reference Voltage (V)  
VREFOUT = 1.65 V  
50. Reference Voltage vs Supply Voltage  
49. Reference Voltage Histogram  
2.55  
3
2.8  
2.6  
2.4  
2.2  
2
Device 1  
Device 2  
Device 3  
RSEL[1:0] = 00  
RESL[1:0] = 01  
RSEL[1:0] = 1x  
2.54  
2.53  
2.52  
2.51  
2.5  
2.49  
2.48  
2.47  
2.46  
2.45  
1.8  
1.6  
1.4  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
Referene Current (mA)  
D040  
D043  
51. Reference Voltage vs Temperature  
52. Reference Voltage vs Reference Output Current  
30  
25  
20  
15  
10  
5
50  
40  
30  
20  
10  
0
0
D041  
Reference Voltage Drift (ppm/èC)  
D044  
Power-Supply Rejection Ratio (mV/V)  
53. Reference Voltage Drift Histogram  
54. Reference Voltage PSRR Histogram  
版权 © 2015–2016, Texas Instruments Incorporated  
15  
DRV425  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics (接下页)  
at VDD = 5 V and TA = 25°C (unless otherwise noted)  
100  
30  
25  
20  
15  
10  
5
REFOUT to GND  
REFOUT to VDD  
80  
60  
40  
20  
0
0
-5  
-10  
-15  
-20  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D045  
D060  
Load Regulation (mV/mA)  
56. Reference Short-Circuit Current vs Temperature  
55. Reference Voltage Load Regulation Histogram  
10  
10  
VDD = 3.3 V  
VDD = 5 V  
9.5  
9
9
8.5  
8
8
7.5  
7
7
6.5  
6
6
5.5  
5
5
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.5  
4
4.5  
5
5.5  
Supply Voltage (V)  
D048  
D061  
58. Quiescent Current vs Temperature  
57. Quiescent Current vs Supply Voltage  
40  
35  
30  
25  
20  
15  
10  
5
2.55  
2.45  
2.35  
2.25  
VDD = 3.3 V  
VDD = 5 V  
0
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Magnetic Field (mT)  
D014  
D047  
59. Supply Current vs Magnetic Field  
60. Power-On Reset Threshold vs Temperature  
16  
版权 © 2015–2016, Texas Instruments Incorporated  
 
DRV425  
www.ti.com.cn  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
7 Detailed Description  
7.1 Overview  
Magnetic sensors are used in a broad range of applications (such as position, indirect ac and dc current, or  
torque measurement). Hall-effect sensors are most common in magnetic field sensing, but their offset, noise,  
gain variation, and nonlinearity limit the achievable resolution and accuracy of the system. Fluxgate sensors offer  
significantly higher sensitivity, lower drift, lower noise, and high linearity and enable up to 1000-times better  
accuracy of the measurement.  
As shown in the Functional Block Diagram section, the DRV425 consists of a magnetic fluxgate sensor with the  
necessary sensor conditioning and compensation coil to internally close the control loop. The fluxgate sensor is  
repeatedly driven in and out of saturation and supports hysteresis-free operation with excellent accuracy. The  
internal compensation coil assures stable gain and high linearity.  
The magnetic field (B) is detected by the internal fluxgate sensor in the DRV425. The device integrates the  
sensor output to assure high-loop gain. The integrator output connects to the built-in differential driver that drives  
an opposing compensation current through the internal compensation coil. The compensation coil generates an  
opposite magnetic field that brings the original magnetic field at the sensor back to zero.  
The compensation current is proportional to the external magnetic field and its value is 12.2 mA/mT. This  
compensation current generates a voltage drop across an external shunt resistor, RSHUNT. An integrated  
difference amplifier with a fixed gain of 4 V/V measures this voltage and generates an output voltage that is  
referenced to REFIN and is proportional to the magnetic field. The value of the output voltage at the VOUT pin  
(VVOUT) is calculated using 公式 1:  
VVOUT [V] = B × G × RSHUNT × GAMP = B [mT] × 12.2 mA/mT × RSHUNT [Ω] × 4 [V/V]  
(1)  
7.2 Functional Block Diagram  
RSHUNT  
COMP1  
COMP2  
DRV2  
DRV1  
AINP  
AINN  
Fluxgate Sensor Front-End  
Shunt  
Sense  
Amplifier  
Compensation  
Coil  
Integrator  
Fluxgate  
Sensor  
Differential  
Driver  
VOUT  
REFIN  
Voltage Reference  
RSEL0 RSEL1  
REFOUT  
Device Control  
DRV425  
OR ERROR BSEL  
版权 © 2015–2016, Texas Instruments Incorporated  
17  
 
 
DRV425  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Fluxgate Sensor Front-End  
The following sections describe the functional blocks and features of the integrated fluxgate sensor front-end.  
7.3.1.1 Fluxgate Sensor  
The fluxgate sensor of the DRV425 is uniquely suited for high-performance magnetic-field sensors because of  
the high sensitivity, low noise, and low offset of the sensor. The fluxgate principle relies on repeatedly driving the  
sensor in and out of saturation; therefore, the sensor is free of any significant magnetic hysteresis. The feedback  
loop accurately drives a compensation current through the integrated compensation coil and drives the magnetic  
field at the sensor back to zero. This approach supports excellent gain stability and high linearity of the  
measurement.  
The DRV425 package is free of any ferromagnetic materials in order to prevent magnetization by external fields  
and to obtain accurate and hysteresis-free operation. Select non-magnetizable materials for the printed circuit  
board (PCB) and passive components in the direct vicinity of the DRV425; see the Layout Guidelines section for  
more details.  
The orientation and the sensitivity axis of the fluxgate sensor is indicated by a dashed line on the top of the  
package, as shown in 61. 61 also shows the location of the sensor inside the package.  
Sensitivity Axis Indication  
(Top View)  
Sensor Location  
(Top View)  
Sensor Location  
(Side View)  
>
0.4 mm ± 0.025 mm  
Top  
DRV425  
TI Date  
Code  
Bottom  
61. Magnetic Sensitivity Direction of the Integrated Fluxgate Sensor  
The sensitivity of the fluxgate sensor is a vector function of its sensitivity axis and the magnetic field orientation.  
62 shows the output of the DRV425 in dependency of the orientation of the device to a constant magnetic  
field.  
2.65  
2.6  
2.55  
2.5  
2.45  
2.4  
2.35  
0
30 60 90 120 150 180 210 240 270 300 330 360  
Angle (è)  
D063  
62. DRV425 Output vs Magnetic Field Orientation  
18  
版权 © 2015–2016, Texas Instruments Incorporated  
 
 
DRV425  
www.ti.com.cn  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
Feature Description (接下页)  
7.3.1.2 Bandwidth  
The small-signal bandwidth of the DRV425 is determined by the behavior of the compensation loop versus  
frequency. The implemented integrator limits the bandwidth of the loop to provide stable response. Use the  
digital input pin BSEL to select the bandwidth. For a shunt resistor of 22 Ω and BSEL = 0, the bandwidth is  
32 kHz; for BSEL = 1, the bandwidth is 47 kHz.  
Bandwidth can be reduced by increasing the value of the shunt resistor because the shunt resistor and the  
compensation coil resistance form a voltage divider. The reduced bandwidth (BW) can be calculated using 公式  
2:  
RCOIL + 22 W  
RCOIL + RSHUNT  
122 W  
100 W + RSHUNT  
BW =  
ìBW22 W  
=
ìBW22 W  
where  
RCOIL = internal compensation coil resistance (100 Ω),  
RSHUNT = external shunt resistance, and  
BW22Ω = sensor bandwidth with RSHUNT = 22 Ω (depending on the BSEL setting)  
(2)  
The bandwidth for a given shunt resistor value can also be calculated using the DRV425 System Parameter  
Calculator, SLOC331. For large magnetic fields (B > 500 μT), the effective bandwidth of the sensor is limited by  
fluxgate saturation effects. For a magnetic signal with a 2-mT amplitude, the large-signal bandwidth is 10 kHz  
with BSEL = 0 or 15 kHz with BSEL = 1.  
Although the analog output responds slowly to large fields, a magnetic field with a magnitude of 1.6 mT (or  
higher) beyond the measurement range of the DRV425 triggers the ERROR pin within 4 µs to 6 µs. See the  
Magnetic Field Range, Overrange Indicator, and Error Flag section for more details.  
7.3.1.3 Differential Driver for the Internal Compensation Coil  
The differential compensation coil driver provides the current for the internal compensation coil at the DRV1 and  
DRV2 pins. The driver is capable of sourcing up to ±250 mA with a 5-V supply or up to ±150 mA in 3.3-V mode.  
The current capability is not internally limited. The actual value of the compensation coil current depends on the  
magnetic field strength and is limited by the sum of the resistance of the internal compensation coil and the  
external shunt resistor value. The internal compensation coil resistance depends on temperature (see 17) and  
must be taken into account when dimensioning the system. Select the value of the shunt resistor to avoid OR pin  
trip levels in normal operation.  
The common-mode voltage of the compensation coil driver outputs is set by the RSEL pins (see the Voltage  
Reference section). Thus, the common-mode voltage of the shunt-sense amplifier is matched if the internal  
reference is used.  
Consider the polarity of the compensation coil connection to the output of the compensation coil driver. If the  
polarity is incorrect, then the driver output drives to the power-supply rails, even at low primary-current levels. In  
this case, interchange the connection of the DRV1 and DRV2 pins to the compensation coil.  
版权 © 2015–2016, Texas Instruments Incorporated  
19  
 
DRV425  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Feature Description (接下页)  
7.3.1.4 Magnetic Field Range, Overrange Indicator, and Error Flag  
The measurement range of the DRV425 is determined by the amount of current driven into the compensation coil  
and the output voltage range of the shunt-sense amplifier. The maximum compensation current is limited by the  
supply voltage and the series resistance of the compensation coil and the shunt.  
The magnetic field range is adjusted with the external shunt resistor. The DRV425 System Parameter Calculator,  
SLOC331 provides the maximum shunt resistor values depending on the supply voltage (VDD) and the selected  
reference voltage (VREFIN) for various magnetic field ranges.  
For proper operation at a maximum field (BMAX), choose a shunt resistor (RSHUNT) using 公式 3  
min VDD - V  
,V  
- 0.085 V  
(
)
(
)
REFIN  
REFIN  
RSHUNT  
Ç
BMAX ì12.2 A/Tì 4 V/V  
where  
VDD = minimum supply voltage of the DRV425 (V),  
VREFIN = common-mode voltage of the shunt-sense amplifier (V), and  
BMAX = desired magnetic field range (T)  
(3)  
Alternatively, to adjust the output voltage of the DRV425 for a desired maximum voltage (VVOUTMAX), use 公式 4:  
VVOUTMAX - VREFIN  
RSHUNT  
Ç
BMAX ì12.2 A/Tì 4 V/V  
where  
VVOUTMAX = desired maximum output voltage at VOUT pin (V), and  
BMAX = desired magnetic field range (T)  
(4)  
To avoid railing of the compensation coil driver, assure that 公式 5 is fulfilled:  
BMAX ì(RCOIL + RSHUNT )ì12.2A / T  
+ 0.1V Ç min VDD - V  
,V  
REFIN  
(
)
(
)
REFIN  
2
where  
BMAX = desired magnetic field range (T),  
RCOIL = compensation coil resistance (Ω),  
VDD = minimum supply voltage of the DRV425 (V), and  
VREFIN = selected internal reference voltage value (V)  
(5)  
The DRV425 System Parameter Calculator, SLOC331 is designed to assist with selecting the system  
parameters.  
The DRV425 offers two diagnostic output pins to detect large fields that exceed the measurement range of the  
sensor: the overrange indicator (OR) and the ERROR flag.  
In normal operation, the DRV425 sensor feedback loop compensates the magnetic field inside the fluxgate to  
zero. Therefore, a large field inside the fluxgate indicates that the feedback loop is not properly working and the  
sensor output is invalid. To detect this condition, the ERROR pin is pulled low if the internal field exceeds  
1.6 mT. The ERROR output is suppressed for 4 µs to 6 µs to prevent an undesired reaction to transients or  
noise. For static and slowly varying ambient fields, the ERROR pin triggers when the ambient field exceeds the  
sensor measurement range by more than 1.6 mT. For dynamic magnetic fields that exceed the sensor bandwidth  
as specified in the Specifications section, the feedback loop response is too slow to accurately compensate the  
internal field to zero. Therefore, high-frequency fields can trigger the ERROR pin, even if the ambient field does  
not exceed the measurement range by 1.6 mT.  
In addition, the low-active overrange pin (OR) indicates railing of the output of the shunt-sense amplifier. The OR  
output is suppressed for 2.5 µs to 3.5 µs to prevent an undesired reaction to transients or noise. The OR pin trip  
level refers to the output voltage value of the shunt-sense amplifier as specified in the Specifications section. Use  
公式 3 and 公式 4 to adjust the OR pin behavior to the specific system-level requirements.  
Both the ERROR and OR pins are open-drain outputs that require an external pullup resistor. Connect both pins  
together with a single pullup resistor to provide a single diagnostic flag, if desired.  
20  
版权 © 2015–2016, Texas Instruments Incorporated  
 
 
 
DRV425  
www.ti.com.cn  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
Feature Description (接下页)  
Based on the DRV425 System Parameter Calculator, SLOC331, for a design for a ±2-mT magnetic field input  
range with a supply of 5 V (±5%), a shunt resistor value of 22 Ω is selected and 63 shows the status of the  
diagnostic flags in the resulting three operation ranges.  
Sensor Saturation: B > 3.6 mT  
(OR = 0, ERROR = 0)  
4
Magnetic Overrange: 2 mT < B ≤ 3.6 mT  
3
2
(OR = 0, ERROR = 1)  
1
Designated Operating Range: -2 mT ≤ B ≤ 2 mT  
0
(OR = 1, ERROR = 1)  
-1  
-2  
-3  
-4  
Magnetic Overrange: -3.6 mT ≤ B < -2 mT  
(OR = 0, ERROR = 1)  
Sensor Saturation: B < -3.6 mT  
(OR = 0, ERROR = 0)  
63. Magnetic Field Range of the DRV425 (VDD = 5 V and RSHUNT = 22 Ω)  
With the proper RSHUNT value, the differential amplifier output rails and activates the overrange flag (OR = 0)  
when the magnetic field exceeds the designated operating range. For fields that exceed the measurement range  
of the DRV425 by 1.6 mT, the fluxgate is permanently saturated and the ERROR pin is pulled low. In this  
condition, the fluxgate sensor does not provide a valid output value and, therefore, the output VOUT of the  
DRV425 must be ignored. In applications where the ERROR pin cannot be separately monitored, combining the  
VOUT and ERROR outputs is recommended (as shown in 64) to indicate a magnetic field outside of the  
sensor range by pulling the output of the DRV425 to ground.  
5 V  
1 kW  
DRV2  
VOUT  
RSHUNT  
DRV1  
AINP  
REFIN  
Device REFOUT  
OR  
AINN  
COMP1  
COMP2  
ERROR  
5 V  
1 µF  
1 µF  
64. Field Overrange Detection Using a Combined VOUT and ERROR Pin  
版权 © 2015–2016, Texas Instruments Incorporated  
21  
 
 
DRV425  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 Shunt-Sense Amplifier  
The compensation coil current creates a voltage drop across the external shunt resistor, RSHUNT. The internal  
differential amplifier senses this voltage drop. This differential amplifier offers wide bandwidth and a high slew  
rate. Excellent dc stability and accuracy result from a chopping technique. The voltage gain is 4 V/V, set by  
precisely-matched and thermally-stable internal resistors.  
Both the AINN and AINP differential amplifier inputs are connected to the external shunt resistor. This shunt  
resistor, in series with the internal 10-kΩ input resistors of the shunt sense amplifier, causes an additional gain  
error. Therefore, for best common-mode rejection performance, place a dummy shunt resistor (R5) with a value  
higher than the shunt resistor in series with the REFIN pin to restore the matching of both resistor dividers, as  
shown in 65.  
Device  
DRV2  
DRV1  
R1  
R2  
10 k  
40 kꢀ  
AINP  
_
Optional  
RF  
500 ꢀ  
VOUT  
REFIN  
RSHUNT  
Shunt-Sense  
Amplifier  
ADC  
CF  
10 nF  
+
R4  
40 kꢀ  
R3  
10 kꢀ  
AINN  
REFIN (Compensated)  
R5  
(Dummy Shunt)  
ICOMP1  
ICOMP2  
65. Internal Difference Amplifier with an Example of a Decoupling Filter  
For an overall gain of 4 V/V, calculate the value of R5 using 公式 6:  
R2  
R1  
R4 + R5  
4 =  
=
RSHUNT + R3  
where:  
R2 / R1 = R4 / R3 = 4,  
R5 = RSHUNT × 4  
(6)  
If the input signal is large, the amplifier output drives close to the supply rails. The amplifier output is able to drive  
the input of a successive approximation register (SAR) analog-to-digital converter (ADC). For best performance,  
add an RC low-pass filter stage between the shunt-sense amplifier output and the ADC input. This filter limits the  
noise bandwidth and decouples the high-frequency sampling noise of the ADC input from the amplifier output.  
For filter resistor RF and filter capacitor CF values, see the specific converter recommendations in the respective  
product data sheet.  
The shunt-sense amplifier output drives 100 pF directly and shows a 50% overshoot with a 1-nF capacitance.  
Filter resistor RF extends the capacitive load range. Note that with an RF of only 20 Ω, the load capacitor must be  
either less than 1 nF or more than 33 nF to avoid overshoot; with an RF of 50 Ω, this transient area is avoided.  
22  
版权 © 2015–2016, Texas Instruments Incorporated  
 
 
DRV425  
www.ti.com.cn  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
Feature Description (接下页)  
Reference input REFIN is the common-mode voltage node for the output signal VOUT. Use the internal voltage  
reference of the DRV425 by connecting the REFIN pin to the reference output REFOUT. To avoid mismatch  
errors, use the same reference voltage for REFIN and the ADC. Alternatively, use an ADC with a pseudo-  
differential input, with the positive input of the ADC connected to VOUT and the negative input connected to  
REFIN of the DRV425.  
7.3.3 Voltage Reference  
The internal precision voltage reference circuit offers low-drift performance at the REFOUT output pin and is  
used for internal biasing. The reference output is intended to be the common-mode voltage of the output (the  
VOUT pin) to provide a bipolar signal swing. This low-impedance output tolerates sink and source currents of  
±5 mA. However, fast load transients can generate ringing on this line. A small series resistor of a few ohms  
improves the response, particularly for capacitive loads equal to or greater than 1 μF.  
Adjust the value of the voltage reference output to the power supply of the DRV425 using mode selection pins  
RSEL0 and RSEL1, as shown in 1.  
1. Reference Output Voltage Selection  
MODE  
RSEL1  
RSEL0  
DESCRIPTION  
Use with a sensor module supply of 5 V  
VREFOUT = 2.5 V  
VREFOUT = 1.65 V  
Ratiometric output  
0
0
1
0
1
x
Use with a sensor module supply of 3.3 V  
Provides an output centered on VDD / 2  
In ratiometric output mode, an internal resistor divider divides the power-supply voltage by a factor of two.  
7.3.4 Low-Power Operation of the DRV425  
In applications with low-bandwidth or low sample-rate requirements, the average power dissipation of the  
DRV425 can be significantly reduced by powering the device down between measurements. The DRV425  
requires 300 μs to fully settle the analog output VOUT, as shown in 66. To minimize power dissipation, the  
device can be powered down immediately after acquiring the sample by the ADC.  
startup  
VDD  
VOUT  
Settling time:  
300 µs  
66. Settling Time of the DRV425 Output VOUT  
7.4 Device Functional Modes  
The DRV425 is operational when the power supply VDD is applied, as specified in the Specifications section.  
The DRV425 has no additional functional modes.  
版权 © 2015–2016, Texas Instruments Incorporated  
23  
 
 
DRV425  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV425 is a high-sensitivity and high-performance magnetic-field sensor. The analog output of the DRV425  
can be processed by a 12- to 16-bit analog to digital converter (ADC). The following sections show examples of  
DRV425-based applications.  
8.2 Typical Applications  
8.2.1 Linear Position Sensing  
The high sensitivity of the fluxgate sensor, combined with the high linearity of the compensation loop and low  
noise of the DRV425, make the device suitable for high-performance linear-position sense applications. A typical  
schematic of such a 5-V application using an internal 2.5-V reference is shown in 67.  
5 V  
MCU  
DRV2  
VOUT  
RSHUNT  
DRV1  
AINP  
REFIN  
Device REFOUT  
OR  
ADC  
AINN  
COMP1  
COMP2  
GPIO0  
GPIO1  
ERROR  
10 kW  
10 kW  
5 V  
1 µF  
1 µF  
67. Simplified Schematic of a DRV425-Based Linear-Position Sensing Application  
8.2.1.1 Design Requirements  
For the example shown in 67, use the parameters listed in 2 as a starting point of the design.  
2. Design Parameters  
DESIGN PARAMETER  
Magnetic field range  
EXAMPLE VALUE  
VDD = 5 V: ±2 mT (max)  
VDD = 3.3 V: ±1.3 mT (max)  
Supply voltage, VDD  
3.0 V to 5.5 V  
Range: GND to VDD  
If an internal reference is used: 2.5 V, 1.65 V, or VDD / 2  
Reference voltage, VREFIN  
Depends on the desired magnetic field range, reference, and supply voltage; see the  
DRV425 System Parameter Calculator, SLOC331 for details.  
Shunt resistor, RSHUNT  
24  
版权 © 2015–2016, Texas Instruments Incorporated  
 
 
DRV425  
www.ti.com.cn  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
8.2.1.2 Detailed Design Procedure  
Use the following procedure to design a solution for a linear-position sensor based on the DRV425:  
Select the proper supply voltage VDD to support the desired magnetic field range (see 2 for reference).  
Select the proper reference voltage VREFIN to support the desired magnetic field range and to match the input  
voltage specifications of the desired ADC.  
Use the DRV425 System Parameter Calculator, SLOC331 (RangeCalculator tab) to select the proper shunt  
resistor value of RSHUNT  
.
The sensitivity drift performance of a DRV425-based linear position sensor is dominated by the temperature  
coefficient of the external shunt resistor. Select a low-drift shunt resistor for best sensor performance.  
Use the DRV425 System Parameter Calculator, SLOC331 (Problems Detected Table in DRV425 System  
Parameters tab) to verify the system response.  
The amplitude of the magnetic field is a function of distance to and the shape of the magnet, as shown in 69.  
If the magnetic field to be measured exceeds 3.6 mT, see the datasheet of the magnet to calculate the  
appropriate minimum distance to the DRV425 to avoid saturating the fluxgate sensor.  
The high sensitivity of the DRV425 may require shielding of the sensing area to avoid influence of undesired  
magnetic field sources (such as the earth magnetic field). Alternatively, an additional DRV425 can be used to  
perform difference measurement to cancel the influence of a static magnetic field source, as shown in 68. 图  
70 shows the differential voltage generated by two DRV425 devices in such a circuit.  
DRV425-1  
DRV425-2  
Direction of Linear  
Movement  
>
>
REFOUT  
REFIN  
VOUT  
REFOUT  
REFIN  
VOUT  
ADC  
68. Differential Linear-Position Sensing Using Two DRV425 Devices  
8.2.1.3 Application Curves  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
50 100 150 200 250 300 350 400 450 500  
Distance (mm)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Distance (mm)  
D064  
D065  
69. Analog Output Voltage of the DRV425 vs Distance to  
70. Difference Between Two DRV425 Outputs vs  
the Magnet  
Distance to the Magnet  
版权 © 2015–2016, Texas Instruments Incorporated  
25  
 
 
DRV425  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
www.ti.com.cn  
8.2.2 Current Sensing in Busbars  
In existing applications that use busbars for power distribution, closed-loop current modules are usually used to  
accurately measure and control the current. These modules are usually bulky because of the required large  
magnetic core. Additionally, because the compensation current generated inside the module is proportional to the  
usually high busbar current, the power dissipation of this solution is usually as high as several watts.  
71 shows an alternative approach with two DRV425 devices. If a hole is drilled in the middle of the busbar, the  
current is split in two equal parts that generate magnetic field gradients with opposite directions inside the hole.  
These magnetic fields are termed BR and BL in 72. The opposite fields cancel each other out in the middle of  
the hole. The high sensitivity and linearity of two DRV425 devices positioned at the same distance from the  
middle of the hole allow the small opposite fields to be sensed and the current measured with high-accuracy  
levels. The differential measurement rejects outside fields that generate a common-mode error that is subtracted  
at the output.  
Busbar  
(Top View)  
I/2  
Hole  
DRV425-1  
I
I
DRV425-2  
PCB  
I/2  
71. DRV425-Based Busbar Current Sensing  
I
Axis of  
cross-section  
I/2  
I/2  
Cross-section  
PCB  
DRV425 - 1  
BR  
I/2  
I/2  
Y-Axis  
BL  
DRV425 - 2  
72. Magnetic Field Distribution Inside a Busbar Hole  
26  
版权 © 2015–2016, Texas Instruments Incorporated  
 
 
DRV425  
www.ti.com.cn  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
8.2.2.1 Design Requirements  
In order to measure the field gradient in the busbar, two DRV425 sensors are placed inside the hole at a well-  
defined distance by mounting them on opposite sides of a PCB that is inserted in the hole. The measurement  
range and resolution of this solution depends on the following factors:  
Busbar geometry: a wider busbar means a larger measurement range and lower resolution.  
Size of the hole: a larger diameter means a larger measurement range and lower resolution.  
Distance between the two DRV425 sensors: a smaller distance increases the measurement range and  
resolution.  
Each of these factors can be optimized to create the desired measurement range for a particular application.  
Measurement ranges of ±250 A to ±1500 A are achievable with this approach. Larger currents are supported  
with large busbar structures and minimized distance between the two DRV425 sensors. Use the parameters  
listed in 3 as a starting point of the design.  
3. Design Parameters  
DESIGN PARAMETER  
Current range  
EXAMPLE VALUE  
Up to ±1500 A  
3.0 V to 5.5 V  
VDD / 2  
Supply voltage, VDD  
Reference voltage, VREFIN  
8.2.2.2 Detailed Design Procedure  
73 shows the schematic diagram of a differential gradient field measurement circuit.  
VDD  
DRV2  
DRV1  
AINP  
AINN  
COMP1  
COMP2  
DRV2  
DRV1  
AINP  
AINN  
COMP1  
COMP2  
VOUT  
REFIN  
REFOUT  
OR  
VCM  
VOUT  
REFIN  
REFOUT  
OR  
VDIFF  
U1  
DRV425  
U2  
DRV425  
ERROR  
ERROR  
VDD  
1 µF  
1 µF  
1 µF  
1 µF  
VDD  
R1  
R2  
5.1 W  
5.1 W  
VDD  
R3  
10 W  
1 µF  
U3  
10 kW  
10 kW  
OPA320  
+
VREF  
œ
73. Schematic of a DRV425-Based Busbar Current-Sensing Circuit  
版权 © 2015–2016, Texas Instruments Incorporated  
27  
 
 
DRV425  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
www.ti.com.cn  
In 73, the feedback loops of both DRV425 sensors are combined to directly produce a differential output VDIFF  
that is proportional to the sensed magnetic field difference inside the busbar hole. Both compensation coils are  
connected in series and are driven from a single side of the compensation coil driver (the DRV1 pins of each  
DRV425). Therefore, both driver stages ensure that a current proportional to the magnetic fields BR and BL is  
driven through the respective compensation coil. The difference in current through both compensation coils, and  
thus the difference field between the sensors, flows through resistor R3 and is sensed by the shunt-sense  
amplifier of U2. The current proportional to the common-mode field inside the busbar hole flows through R1 and  
R2 and is sensed by the shunt-sense amplifier of U1.  
Use the output VCM to verify that the sensors are correctly positioned in the busbar hole with the following steps:  
1. Measure VCM with no current flow through the busbar and the PCB in the middle of the busbar hole. This  
value is the offset voltage VOFFSET. The value of VOFFSET only depends on stray fields and varies little with the  
absolute position of the sensors.  
2. Apply current through the busbar and move the PCB along the y-axis in the busbar hole, as shown in 72.  
The PCB is in the center of the hole if VCM = VOFFSET  
.
The sensitivity drift performance of the circuit shown in 73 is dominated by the temperature coefficient of the  
external resistors R1, R2, and R3. Select low-drift resistors for best sensor performance. For overall system error  
calculation, also consider the affect of thermal expansion on the PCB and busbar.  
The internal voltage reference of the DRV425 cannot be used in this application because of its limited driver  
capability. The OPA320 (U3) is a low-noise operational amplifier with a short-circuit current capability of ±65 mA  
and is used to support the required compensation current.  
The advantage of this solution is its simplicity: the currents are subtracted by the two DRV425 devices without  
additional components. The series connection of the compensation coils halves the voltage swing and reduces  
the measurement range of the sensors also by 50%. If a larger sensing range is required, operate the two  
sensors independently and use a differential amplifier or ADC to subtract both voltage outputs (VOUT).  
Use the ERROR outputs for fast overcurrent detection on the system level.  
8.2.2.3 Application Curves  
74 and 75 show the measurement results on a 16-mm wide and 6-mm thick copper busbar with a 12-mm  
hole diameter using the circuit shown in 73. The two DRV425 devices are placed at a distance of 1 mm from  
each other on opposite sides of the PCB. The measurement range is ±500 A; measurement results are limited by  
test setup. Independent operation of the two DRV425 sensors increases the measurement range to ±1000 A with  
the same busbar geometry.  
400  
350  
300  
250  
200  
150  
100  
50  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0
20  
40  
60  
80 100 120 140 160 180 200  
Busbar Current (A)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Busbar Current (A)  
D066  
D067  
74. Analog Output Voltage vs  
75. Linearity Error vs Busbar Current  
Busbar Current  
28  
版权 © 2015–2016, Texas Instruments Incorporated  
 
DRV425  
www.ti.com.cn  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
9 Power-Supply Recommendations  
9.1 Power-Supply Decoupling  
Decouple both VDD pins of the DRV425 with 1-µF, X7R-type ceramic capacitors to the adjacent GND pin as  
illustrated in 76. For best performance, place both decoupling capacitors as close to the related power-supply  
pins as possible. Connect these capacitors to the power-supply source in a way that allows the current to flow  
through the pads of the decoupling capacitors.  
9.2 Power-On Start-Up and Brownout  
Power-on is detected when the supply voltage exceeds 2.4 V at the VDD pin. At this point, the DRV425 initiates  
the following start-up sequence:  
1. Digital logic starts up and waits for 26 μs for the supply to settle.  
2. The fluxgate sensor powers up.  
3. The compensation loop is active 70 μs after the supply voltage exceeds 2.4 V.  
During this startup sequence, the DRV1 and DRV2 outputs are pulled low to prevent undesired signals on the  
compensation coil and the ERROR pin is asserted low.  
The DRV425 tests for low supply voltages with a brownout voltage level of 2.4 V. Use a power-supply source  
capable of supporting large current pulses driven by the DRV425, and low-ESR bypass capacitors for a stable  
supply voltage in the system. A supply drop below 2.4 V that lasts longer than 20 μs generates a power-on reset;  
the device ignores shorter voltage drops. A voltage drop on the VDD pin to below 1.8 V immediately initiates a  
power-on reset. After the power supply returns to 2.4 V, the device initiates a start-up cycle.  
9.3 Power Dissipation  
The thermally-enhanced, PowerPAD, WQFN package reduces the thermal impedance from junction to case.  
This package has a downset lead frame that the die is mounted to. The lead frame has an exposed thermal pad  
(PowerPAD) on the underside of the package, and provides a good thermal path for heat dissipation.  
The power dissipation on both linear outputs DRV1 and DRV2 is calculated with 公式 7:  
PD(DRV) = IDRV × (VDRV – VSUPPLY  
)
where  
IDRV = supply current as shown in 59,  
VDRV = voltage potential on the DRV1 or DRV2 output pin, and  
VSUPPLY = voltage potential closer to VDRV: VDD or GND  
(7)  
9.3.1 Thermal Pad  
Packages with an exposed thermal pad are specifically designed to provide excellent power dissipation, but  
board layout greatly influences the overall heat dissipation. Technical details are described in application report  
PowerPad Thermally Enhanced Package, SLMA002, available for download at www.ti.com.  
版权 © 2015–2016, Texas Instruments Incorporated  
29  
 
DRV425  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The unique, integrated fluxgate of the DRV425 has a very high sensitivity to enable designing a closed-loop  
magnetic-field sensor with best-in-class precision and linearity. Observe proper PCB layout techniques because  
any current-conducting wire in the direct vicinity of the DRV425 generates a magnetic field that can distort  
measurements. Common passive components and some PCB plating materials contain ferromagnetic materials  
that are magnetizable. For best performance, use the following layout guidelines:  
Route current-conducting wires in pairs: route a wire with an incoming supply current next to, or on top of, its  
return current path. The opposite magnetic field polarity of these connections cancel each other. To facilitate  
this layout approach, the DRV425 positive and negative supply pins are located next to each other.  
Route the compensation coil connections close to each other as a pair to reduce coupling effects.  
Minimize the length of the compensation coil connections between the DRV1/2 and COMP1/2 pins.  
Route currents parallel to the fluxgate sensor sensitivity axis as illustrated in 76. As a result, magnetic  
fields are perpendicular to the fluxgate sensitivity and have limited affect.  
Vertical current flow (for example, through vias) generates a field in the fluxgate-sensitive direction. Minimize  
the number of vias in the vicinity of the DRV425.  
Use nonmagnetic passive components (for example, decoupling capacitors and the shunt resistor) to prevent  
magnetizing effects near the DRV425.  
Do not use PCB trace finishes with nickel-gold plating because of the potential for magnetization.  
Connect all GND pins to a local ground plane.  
Ferrite beads in series to the power-supply connection reduce interaction with other circuits powered from the  
same supply voltage source. However, to prevent influence of the magnetic fields if ferrite beads are used, do  
not place them next to the DRV425.  
The reference output (the REFOUT pin) refers to GND. Use a low-impedance and star-type connection to reduce  
the driver current and the fluxgate sensor current modulating the voltage drop on the ground track. The REFOUT  
and VOUT outputs are able to drive some capacitive load, but avoid large direct capacitive loading because of  
increased internal pulse currents. Given the wide bandwidth of the shunt-sense amplifier, isolate large capacitive  
loads with a small series resistor.  
Solder the exposed PowerPAD on the bottom of the package to the ground layer because the PowerPAD is  
internally connected to the substrate that must be connected to the most-negative potential.  
76 illustrates a generic layout example that highlights the placement of components that are critical to the  
DRV425 performance. For specific layout examples, see the DRV425EVM Users Guide, SLOU410.  
30  
版权 © 2015–2016, Texas Instruments Incorporated  
DRV425  
www.ti.com.cn  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
10.2 Layout Example  
Fluxgate sensor sensitivity axis  
Keep this area free of components  
creating magnetic fields.  
To MCU  
To MCU  
BSEL  
RSEL1  
RSEL0  
REFOUT  
REFIN  
OR  
AINN  
AINP  
DRV1  
DRV2  
RSHUNT  
1206  
LEGEND  
To ADC  
Top Layer:  
Copper Pour and Traces  
Via to Ground Plane  
Via to Supply Plane  
76. Generic Layout Example (Top View)  
版权 © 2015–2016, Texas Instruments Incorporated  
31  
DRV425  
ZHCSE99A OCTOBER 2015REVISED MARCH 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
OPA320 数据表》,SBOS513  
DRV425EVM 用户指南》,SLOU410  
DRV425 系统参数计算器》SLOC331  
PowerPAD 耐热增强型封装》SLMA002  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
32  
版权 © 2015–2016, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV425RTJR  
DRV425RTJT  
ACTIVE  
QFN  
QFN  
RTJ  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
----->  
DRV425  
ACTIVE  
RTJ  
Call TI  
----->  
DRV425  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RTJ 20  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224842/A  
www.ti.com  
MECHANICAL DATA  
RTJ (S-PWQFN-ꢀ20)  
ꢁLASꢂIC ꢃUAD ꢄLAꢂPACK NO-ꢅEAꢆ  
3,85  
5
ꢀ1  
10  
I
16  
I
I
4ꢀ5  
-ꢄ-ꢄ  
3:85  
Pin 1 Index Area  
Top ꢀnd Bꢁtꢂom  
5
0,20 Nominꢀl  
Leꢀd Fraꢆꢇ  
0ꢅ80  
0ꢅ70  
-_ꢀꢁ  
_L d  
jꢁꢂ ꢃꢄIꢅ Seꢀting Plꢀne  
00  
ꢉ ꢋꢌ ꢎ ꢐꢎcꢑ-f  
- f  
�ꢀ  
o,o5  
Seating Heighꢂ  
0,00  
I
6
1"+ꢀꢁ7  
SIZE JD SHAPE  
-ꢀꢁ-ꢀꢁ+ꢀꢁ-ꢀꢁ-  
SꢀOWN ON  
S
ARATE SHEET  
r
10  
L ꢀ  
0,50  
-ꢂ  
15  
1
ꢀ1  
0,3ꢀ  
0,18  
20X  
Cꢕꢖ  
0,10 @  
0,0 ꢗ@ C  
Bottom View  
4205505/ꢆ 07/1ꢃ  
NOTES:  
A. All linear dimensꢀons are ꢀn miꢁꢁꢀmeters. Dꢀmeꢂsioꢂꢀꢂg and toꢁeranciꢂg per ASME Y14.5-ꢃ994.  
Bꢄ ꢅhꢀs drawing ꢀs subject to change without noticeꢄ  
C. QFN (Quad ꢆꢁatpack No-Lead) package coꢂfꢀguratioꢂ.  
D. ꢅhe package thermaꢁ pad must be soldered to the board for thermal and mechaꢂꢀcaꢁ perꢇormance.  
E. See the additional fꢀgure in the Product Data Sheet ꢇor details regardꢀꢂg the exposed thermaꢁ pad features and dimensꢀons.  
Check thermal pad mechanical drawiꢂg ꢀn the product datasheet ꢇor nomꢀnaꢁ ꢁead ꢁeꢂgth dimeꢂsionsꢄ  
ꢀTꢁS  
INSꢀUMEꢁTꢂ  
ꢃ.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

DRV425RTJT

用于开环应用的全集成式磁通门磁传感器 | RTJ | 20 | -40 to 125
TI

DRV5011

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器
TI

DRV5011ADDBZR

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器 | DBZ | 3 | -40 to 135
TI

DRV5011ADDBZT

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器 | DBZ | 3 | -40 to 135
TI

DRV5011ADDMRR

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器 | DMR | 4 | -40 to 135
TI

DRV5011ADDMRT

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器 | DMR | 4 | -40 to 135
TI

DRV5011ADLPG

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器 | LPG | 3 | -40 to 135
TI

DRV5011ADLPGM

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器 | LPG | 3 | -40 to 135
TI

DRV5011ADYBHR

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器 | YBH | 4 | -40 to 125
TI

DRV5011ADYBHT

小尺寸(采用 WCSP 和 X2SON 封装)、低电压(最高 5.5V)霍尔效应锁存器 | YBH | 4 | -40 to 125
TI

DRV5012

低功耗(低至 3.3μA)、低电压(最高 5.5V)霍尔效应锁存器
TI

DRV5012AEDMRR

低功耗(低至 3.3μA)、低电压(最高 5.5V)霍尔效应锁存器 | DMR | 4 | -40 to 85
TI