DRV5012AEDMRT [TI]

低功耗(低至 3.3μA)、低电压(最高 5.5V)霍尔效应锁存器 | DMR | 4 | -40 to 85;
DRV5012AEDMRT
型号: DRV5012AEDMRT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

低功耗(低至 3.3μA)、低电压(最高 5.5V)霍尔效应锁存器 | DMR | 4 | -40 to 85

锁存器 传感器 换能器
文件: 总26页 (文件大小:1795K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV5012  
ZHCSGS0 AUGUST 2017  
DRV5012 超低功耗数字锁存器霍尔效应传感器  
1 特性  
3 说明  
1
行业领先的低功耗特性  
可通过引脚选择的采样率:  
DRV5012 器件是可通过引脚选择采样率的超低功耗数  
字锁存器霍尔效应传感器。  
SEL = 低电平:使用 1.3µA (1.8V) 时为 20Hz  
当南磁极靠近封装顶部并且超出 BOP 阈值时,该器件  
会驱动低电压。输出会保持低电平,直到应用北极并且  
超出 BRP 阈值,这将使输出驱动高电压。必须交换北  
极和南极才能切换输出,且集成的磁滞会分开 BOP 和  
SEL = 高电平:使用 142µA (1.8V) 时为  
2.5kHz  
V
CC 工作电压范围为 1.65V 5.5V  
高磁性灵敏度:±2mT(典型值)  
可靠磁滞:4mT(典型值)  
推挽式 CMOS 输出  
BRP 以提供可靠切换。  
通过使用内部振荡器,DRV5012 器件对磁场进行采  
样,并根据 SEL 引脚以 20Hz 2.5kHz 的速率更新  
输出。这种双带宽特性可让系统在使用最小功率的情况  
下监控移动变化。  
小型纤薄 X2SON 封装  
运行温度范围:–40°C +85°C  
2 应用  
此器件通过 1.65V 5.5V VCC 工作,并采用小型  
X2SON 封装。  
无刷直流电机传感器  
增量旋转编码:  
器件信息(1)  
电机速度  
机械行程  
流体测量  
旋钮转动  
轮速  
器件型号  
DRV5012  
封装  
X2SON (4)  
封装尺寸(标称值)  
1.10mm × 1.40mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
便携式医疗设备  
电子锁、电动自行车、电动百叶窗  
流量计  
非接触式激活  
20Hz 模式下的电流消耗  
典型原理图  
3
VCC  
S
N
N
S
DRV5012  
Controller  
2.5  
2
VCC  
N
S
S
N
OUT  
GPIO  
GPIO  
SEL  
GND  
1.5  
1
Copyright © 2017, Texas Instruments Incorporated  
1.65 V  
3 V  
0.5  
5.5 V  
0
-40  
-10  
20  
50  
80  
Temperature (èC)  
D016  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSDD5  
 
 
 
DRV5012  
ZHCSGS0 AUGUST 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 11  
8.1 Application Information............................................ 11  
8.2 Typical Applications ............................................... 11  
8.3 Do's and Don'ts....................................................... 15  
Power Supply Recommendations...................... 16  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings ............................................................ 3  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Magnetic Characteristics........................................... 5  
6.7 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
7.3 Feature Description................................................... 7  
10 Layout................................................................... 16  
10.1 Layout Guidelines ................................................. 16  
10.2 Layout Example .................................................... 16  
11 器件和文档支持 ..................................................... 17  
11.1 器件支持................................................................ 17  
11.2 接收文档更新通知 ................................................. 17  
11.3 社区资源................................................................ 17  
11.4 ....................................................................... 17  
11.5 静电放电警告......................................................... 17  
11.6 Glossary................................................................ 17  
12 机械、封装和可订购信息....................................... 17  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2017 8 月  
*
初始发行版。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
DRV5012  
www.ti.com.cn  
ZHCSGS0 AUGUST 2017  
5 Pin Configuration and Functions  
DMR Package  
4-Pin X2SON With Exposed Thermal Pad  
Top View  
VCC  
1
SEL  
4
Thermal  
Pad  
2
3
GND OUT  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
GND  
OUT  
SEL  
NO.  
2
O
I
Ground reference  
Push-pull CMOS output. Drives a VCC or ground level.  
3
4
CMOS input that selects the sampling rate: a low voltage sets 20 Hz; a high voltage sets 2.5 kHz.  
1.65-V to 5.5-V power supply. TI recommends connecting this pin to a ceramic capacitor to ground  
with a value of at least 0.1 µF.  
VCC  
1
Thermal  
Pad  
No-connect. This pin should be left floating or tied to ground. It should be soldered to the board for  
mechanical support.  
PAD  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Power supply voltage  
Power supply voltage slew rate  
Output voltage  
VCC  
VCC  
OUT  
OUT  
SEL  
–0.3  
5.5  
Unlimited  
V / µs  
V
–0.3  
–5  
VCC + 0.3  
5
Output current  
mA  
V
Input voltage  
–0.3  
VCC + 0.3  
Magnetic flux density, BMAX  
Junction temperature, TJ  
Storage temperature, Tstg  
Unlimited  
T
105  
150  
°C  
–65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±6000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2017, Texas Instruments Incorporated  
3
DRV5012  
ZHCSGS0 AUGUST 2017  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.65  
0
MAX  
5.5  
VCC  
5
UNIT  
V
VCC  
VO  
IO  
Power supply voltage (VCC)  
Output voltage (OUT)  
V
Output current (OUT)  
–5  
mA  
V
VI  
Input voltage (SEL)  
0
VCC  
85  
TA  
Operating ambient temperature  
–40  
°C  
6.4 Thermal Information  
DRV5012  
THERMAL METRIC(1)  
DMR (X2SON)  
UNIT  
4 PINS  
159  
77  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
102  
0.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
100  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017, Texas Instruments Incorporated  
 
DRV5012  
www.ti.com.cn  
ZHCSGS0 AUGUST 2017  
6.5 Electrical Characteristics  
for VCC = 1.65 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUT pin  
VOH  
High-level output voltage  
Low-level output voltage  
IOUT = –1 mA  
VCC – 0.35 VCC – 0.1  
0.1  
V
V
VOL  
IOUT = 1 mA  
0.3  
SEL pin  
VCC = 1.65 to 2.5 V  
VCC = 2.5 to 5.5 V  
0.8 × VCC  
2
VIH  
High-level input voltage  
V
VIL  
IIH  
IIL  
Low-level input voltage  
0.15 × VCC  
V
High-level input leakage current  
Low-level input leakage current  
SEL = VCC  
SEL = 0 V  
1
1
nA  
nA  
DYNAMIC CHARACTERISTICS  
SEL = Low  
SEL = High  
SEL = Low  
SEL = High  
13.3  
1665  
27  
20  
2500  
50  
37  
4700  
75  
fS Frequency of magnetic sampling  
Hz  
ms  
tS  
Period of magnetic sampling  
0.21  
0.4  
1.3  
142  
1.6  
153  
2
0.6  
SEL = Low  
SEL = High  
SEL = Low  
SEL = High  
SEL = Low  
SEL = High  
VCC = 1.8 V  
VCC = 3 V  
VCC = 5 V  
3.3  
ICC(AVG) Average current consumption  
µA  
370  
160  
2
ICC(PK)  
tON  
Peak current consumption  
2.7  
mA  
µs  
Power-on time (see 11)  
55  
100  
tACTIVE Active time period (see 11)  
40  
µs  
6.6 Magnetic Characteristics  
for VCC = 1.65 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Magnetic threshold operate point  
(see 9)  
BOP  
0.6  
2
3.3  
mT  
Magnetic threshold release point  
(see 9)  
BRP  
–3.3  
2
–2  
4
–0.6  
mT  
mT  
BHYS  
Magnetic hysteresis: |BOP – BRP|  
版权 © 2017, Texas Instruments Incorporated  
5
DRV5012  
ZHCSGS0 AUGUST 2017  
www.ti.com.cn  
6.7 Typical Characteristics  
180  
170  
160  
150  
140  
130  
3
2.5  
2
1.65 V  
3 V  
5.5 V  
1.5  
1
1.65 V  
3 V  
5.5 V  
0.5  
0
-40  
-10  
20  
50  
80  
-40  
-10  
20  
50  
80  
Temperature (èC)  
Temperature (èC)  
D016  
D001  
1. ICC(AVG) vs Temperature (20-Hz Mode)  
2. ICC(AVG) vs Temperature (2.5-kHz Mode)  
5
4
3
2
1
0
0
-1  
-2  
-3  
-4  
-5  
-40  
-10  
20  
50  
80  
-40  
-10  
20  
50  
80  
Temperature (èC)  
Temperature (èC)  
D002  
D003  
3. BOP vs Temperature  
4. BRP vs Temperature  
5
4
3
2
1
0
0
-1  
-2  
-3  
-4  
-5  
1.5  
2.5  
3.5  
4.5  
5.5  
1.5  
2.5  
3.5  
4.5  
5.5  
Supply Voltage (V)  
Supply Voltage (V)  
D004  
D005  
5. BOP vs VCC  
6. BRP vs VCC  
6
版权 © 2017, Texas Instruments Incorporated  
DRV5012  
www.ti.com.cn  
ZHCSGS0 AUGUST 2017  
7 Detailed Description  
7.1 Overview  
The DRV5012 device is a magnetic sensor with a digital output that latches the most recent pole measured.  
Applying a south magnetic pole near the top of the package causes the output to drive low, a north pole causes  
the output to drive high, and the absence of a magnetic field causes the output to continue to drive the previous  
state, whether low or high.  
The device integrates a Hall effect element, analog signal conditioning, and a low-frequency oscillator that  
enables ultra-low average power consumption. By operating from a 1.65-V to 5.5-V supply, the device  
periodically measures magnetic flux density, updates the output, and enters a low-power sleep state. A logic  
input pin, SEL, sets the sampling frequency to 20 Hz or 2.5 kHz with a tradeoff in power consumption.  
7.2 Functional Block Diagram  
0.1 F  
(min)  
SEL  
VCC  
Ultra-low-power  
Oscillator  
Voltage  
Regulator  
REF  
VCC  
Element Bias  
Output  
Control  
Offset  
Cancellation  
Amp  
OUT  
Temperature  
Compensation  
GND  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Magnetic Flux Direction  
The DRV5012 device is sensitive to the magnetic field component that is perpendicular to the top of the package  
(as shown in 7).  
B
PCB  
7. Direction of Sensitivity  
版权 © 2017, Texas Instruments Incorporated  
7
 
DRV5012  
ZHCSGS0 AUGUST 2017  
www.ti.com.cn  
Feature Description (接下页)  
Magnetic flux that travels from the bottom to the top of the package is considered positive in this data sheet. This  
condition exists when a south magnetic pole is near the top of the package. Magnetic flux that travels from the  
top to the bottom of the package results in negative millitesla values.  
positive B  
negative B  
N
S
S
N
PCB  
PCB  
8. Flux Direction Polarity  
7.3.2 Magnetic Response  
9 shows the device functionality and hysteresis.  
OUT  
VCC  
BHYS  
0V  
B
BRP  
BOP  
north  
0 mT  
south  
9. Device Functionality  
8
版权 © 2017, Texas Instruments Incorporated  
 
DRV5012  
www.ti.com.cn  
ZHCSGS0 AUGUST 2017  
Feature Description (接下页)  
7.3.3 Output Driver  
The device features a push-pull CMOS output that can drive a VCC or ground level.  
VCC  
Output  
Output  
Control  
10. Push-Pull Output (Simplified)  
7.3.4 Sampling Rate  
When the DRV5012 device powers up, it measures the first magnetic sample and sets the output within the tON  
time. The output is latched, and the device enters an ultra-low-power sleep state. After each tS time has passed,  
the device measures a new sample and updates the output if necessary. If the magnetic field does not change  
between periods, the output also does not change.  
VCC  
1.65 V  
tON  
time  
tACTIVE  
tS  
tS  
ICC  
ICC(PK)  
time  
Output  
VCC  
2nd sample  
3rd sample  
Invalid  
1st sample  
GND  
time  
11. Timing Diagram  
版权 © 2017, Texas Instruments Incorporated  
9
DRV5012  
ZHCSGS0 AUGUST 2017  
www.ti.com.cn  
Feature Description (接下页)  
7.3.5 SEL Pin  
The SEL pin is a CMOS input that selects between two sampling rates. When the pin is low, the device samples  
at 20 Hz and uses low power. When the pin is high, the device samples at 2500 Hz and uses more power. The  
SEL pin can be tied directly high or low, or it can be changed during device operation. If the SEL voltage  
changes, the device detects the new voltage during the next tACTIVE time.  
7.3.6 Hall Element Location  
The sensing element inside the device is in the center of the package when viewed from the top. 12 shows  
the tolerances and side-view dimensions.  
X2SON  
Top View  
X2SON  
Side View  
centered  
±60 µm  
250 µm  
±50 µm  
12. Hall Element Location  
7.4 Device Functional Modes  
The DRV5012 device has two operating modes, 20 Hz and 2.5 kHz, as set by the SEL pin. In both cases the  
Recommended Operating Conditions must be met.  
10  
版权 © 2017, Texas Instruments Incorporated  
 
DRV5012  
www.ti.com.cn  
ZHCSGS0 AUGUST 2017  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV5012 device is typically used in rotary applications for brushless DC (BLDC) motor sensors or  
incremental rotary encoding.  
To ensure reliable functionality, the magnet should apply a flux density at the sensor greater than the maximum  
BOP and less than the minimum BRP thresholds. It is good practice to add additional margin to account for  
mechanical tolerance, temperature effects, and magnet variation.  
8.2 Typical Applications  
8.2.1 BLDC Motor Sensors Application  
VBAT  
VBAT  
DRV5012  
PWM  
DRV5012  
DRV5012  
GPIOs  
Microcontroller  
6 Gate Drivers  
& MOSFETs  
M
3
Outputs  
SEL control  
GPIOs  
GPIO  
Copyright © 2017, Texas Instruments Incorporated  
13. BLDC Motor System  
8.2.1.1 Design Requirements  
For this design example, use the parameters listed in 1.  
1. Design Parameters  
DESIGN PARAMETER  
Number of motor phases  
EXAMPLE VALUE  
3
3000  
Motor RPM  
Number of magnet poles on the rotor  
Magnetic material  
6
Bonded Neodymium  
±15 mT  
Peak magnetic flux density at the Hall sensors  
Battery voltage range (VBAT  
)
2 to 3.5 V  
版权 © 2017, Texas Instruments Incorporated  
11  
 
DRV5012  
ZHCSGS0 AUGUST 2017  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
Three-phase brushless DC motors often use 3 Hall effect latch devices to measure the electrical angle of the  
rotor and tell the controller how to drive the 3 wires. These wires connect to electromagnet windings, which  
generate magnetic fields that apply forces to the permanent magnets on the rotor.  
The 3 Hall sensors should be spaced across the printed-circuit board (PCB) so that they are 120° electrical  
degrees apart. This configuration creates six 3-bit states with equal time duration for each electrical cycle, which  
consists of 1 north and 1 south magnetic pole. From the center of the motor axis, the number of degrees each  
sensor should be spaced equals 2 / [number of poles] × 120°. In this design example, 1 sensor is placed at 0°,  
1 sensor is placed 40° rotated, and 1 sensor is placed 80° rotated. Alternatively, a 3× degree offset can be  
added or subtracted to any sensor, meaning the third sensor could alternatively be placed at  
80° – (3 × 40°) = –40°.  
While an ideal BLDC motor would energize the phases at the exact correct times, the DRV5012 device  
introduces variable lag because of the sampling architecture that achieves low power. An acceptable amount of  
lag can be measured by the sampling time error as a percentage of the electrical period. This design example  
uses 3000 RPM, which is 50 revolutions per second. Each revolution has 6 poles (3 electrical cycles), so the  
electrical frequency is 150 Hz, a period of 6.7 ms. The DRV5012 device in 2.5 kHz mode has a sampling period  
of 0.4 ms, which is 6% of the electrical period. Generally, the maximum timing error should be kept under 10% to  
ensure the BLDC motor spins, and timing error can reduce motor efficiency.  
When the motor in this example is not driven, the SEL pins of the DRV5012 devices are set to a low voltage, and  
the sensor outputs are monitored for changes. If a change occurs, the microcontroller wakes the system into a  
higher power state and takes other appropriate action.  
8.2.1.3 Application Curve  
U
Phase  
V
Voltages  
W
Hall 1  
DRV5012  
Hall 2  
Outputs  
Hall 3  
Electrical Angle  
0°  
0°  
120°  
240°  
360°  
120°  
Mechanical Angle  
60°  
.
14. 3-Phase BLDC Motor Phase Voltages and Hall Signals  
12  
版权 © 2017, Texas Instruments Incorporated  
DRV5012  
www.ti.com.cn  
ZHCSGS0 AUGUST 2017  
8.2.2 Incremental Rotary Encoding Application  
VCC  
VCC  
DRV5012  
Controller  
VCC  
OUT  
GPIO  
GPIO  
GPIO  
SEL  
GND  
S
N
VCC  
N
S
DRV5012  
VCC  
OUT  
SEL  
GND  
Copyright © 2017, Texas Instruments Incorporated  
15. Incremental Rotary Encoding System  
8.2.2.1 Design Requirements  
For this design example, use the parameters listed in 2.  
2. Design Parameters  
DESIGN PARAMETER  
RPM range  
EXAMPLE VALUE  
0 to 4000  
8
Number of magnet poles  
Magnetic material  
Ferrite  
Air gap above the Hall sensors  
Peak magnetic flux density at the sensors  
2.5 mm  
±7 mT  
8.2.2.2 Detailed Design Procedure  
Incremental encoders are used on knobs, wheels, motors, and flow meters to measure relative rotary movement.  
By attaching a ring magnet to the rotating component and placing a DRV5012 device nearby, the sensor  
generates voltage pulses as the magnet turns. If directional information is also needed (clockwise versus  
counterclockwise), a second DRV5012 device can be added with a phase offset, and then the order of transitions  
between the two signals describes the direction.  
Creating this phase offset requires spacing the two sensors apart on the PCB, and an ideal 90° quadrature offset  
is attained when the sensors are separated by half the length of each magnet pole, plus any integer number of  
pole lengths. 15 shows this configuration, as the sensors are 1.5 pole lengths apart. One of the sensors  
changes its output every 360° / 8 poles / 2 sensors = 22.5° of rotation. For reference, the TI Design TIDA-00480  
uses a 66-pole magnet with changes every 2.7°.  
Because the DRV5012 device periodically samples the magnetic field, there is a limit to the maximum rotational  
speed that can be measured. Generally, the device sampling rate should be faster than 2 times the number of  
poles per second. In this design example, the maximum speed is 4000 RPM, which involves 533 poles per  
second. The DRV5012 has a minimum sampling frequency of 1665 Hz (when the SEL pin is high), which is  
approximately 3 × 533 poles per second.  
In systems where the sensor sampling rate is close to 2 times the number of poles per second, most of the  
samples will measure a magnetic field that is significantly lower than the peak value, since the peaks only occur  
when the sensor and pole are perfectly aligned. In this case, margin should be added by applying a stronger  
magnetic field that has peaks significantly higher than the maximum BOP of the DRV5012 device.  
版权 © 2017, Texas Instruments Incorporated  
13  
 
 
DRV5012  
ZHCSGS0 AUGUST 2017  
www.ti.com.cn  
8.2.2.3 Application Curve  
Two signals in quadrature provide movement and direction information. Each 2-bit state has unique adjacent  
2-bit states for clockwise and counterclockwise.  
Voltage  
Sensor 1  
Sensor 2  
time  
16. 2-bit Quadrature Output  
14  
版权 © 2017, Texas Instruments Incorporated  
DRV5012  
www.ti.com.cn  
ZHCSGS0 AUGUST 2017  
8.3 Do's and Don'ts  
Because the Hall element is sensitive to magnetic fields that are perpendicular to the top of the package, a  
correct magnet orientation must be used for the sensor to detect the field. 17 shows correct and incorrect  
orientations when using a ring magnet.  
CORRECT  
N
S
N
N
S
S
N
S
S
N
N
S
INCORRECT  
S
N
N
S
17. Correct and Incorrect Magnet Orientations  
版权 © 2017, Texas Instruments Incorporated  
15  
 
DRV5012  
ZHCSGS0 AUGUST 2017  
www.ti.com.cn  
9 Power Supply Recommendations  
The DRV5012 device is powered from 1.65-V to 5.5-V DC power supplies. A decoupling capacitor close to the  
device must be used to provide local energy with minimal inductance. TI recommends using a ceramic capacitor  
with a value of at least 0.1 µF.  
10 Layout  
10.1 Layout Guidelines  
Magnetic fields pass through most nonferromagnetic materials with no significant disturbance. Embedding Hall  
effect sensors within plastic or aluminum enclosures and sensing magnets on the outside is common practice.  
Magnetic fields also easily pass through most PCBs, which makes placing the magnet on the opposite side  
possible.  
10.2 Layout Example  
VCC  
SEL  
Thermal  
Pad  
GND OUT  
18. Layout Example  
16  
版权 © 2017, Texas Instruments Incorporated  
DRV5012  
www.ti.com.cn  
ZHCSGS0 AUGUST 2017  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
有关其他设计参考,请参阅汽车霍尔传感器旋转编码器 TI 设计 (TIDA-00480)。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
版权 © 2017, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV5012AEDMRR  
DRV5012AEDMRT  
ACTIVE  
ACTIVE  
X2SON  
X2SON  
DMR  
DMR  
4
4
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
2AE  
2AE  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV5012AEDMRR  
DRV5012AEDMRT  
X2SON  
X2SON  
DMR  
DMR  
4
4
3000  
250  
179.0  
180.0  
8.4  
8.4  
1.27  
1.27  
1.57  
1.57  
0.5  
0.5  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV5012AEDMRR  
DRV5012AEDMRT  
X2SON  
X2SON  
DMR  
DMR  
4
4
3000  
250  
200.0  
200.0  
183.0  
183.0  
25.0  
25.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DMR 4  
1.1 x 1.4, 0.5 mm pitch  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4229480/A  
www.ti.com  
PACKAGE OUTLINE  
DMR0004A  
X2SON - 0.4 mm max height  
SCALE 9.000  
PLASTIC SMALL OUTLINE - NO LEAD  
1.15  
1.05  
A
B
PIN 1 INDEX AREA  
1.45  
1.35  
(0.13) TYP  
C
0.4 MAX  
SEATING PLANE  
0.08 C  
NOTE 4  
0.05  
0.00  
2X 0.5  
SYMM  
2
3
NOTE 4  
EXPOSED  
THERMAL PAD  
5
SYMM  
0.6 0.1  
0.25  
0.15  
4X  
PIN 1 ID  
(OPTIONAL)  
4
1
0.27  
0.17  
4X  
0.8 0.1  
0.1  
C B  
C
A
0.05  
4222825/B 05/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
4. Quantity and shape of side wall metal may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DMR0004A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (0.5)  
4X (0.22)  
4X (0.4)  
(R0.05) TYP  
1
4
5
SYMM  
(1.4)  
(0.6)  
(
0.2) VIA  
2
3
SYMM  
(0.8)  
LAND PATTERN EXAMPLE  
SCALE:35X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222825/B 05/2022  
NOTES: (continued)  
5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
6. Vias are optional depending on application, refer to device data sheet. If all or some are implemented, recommended via locations are shown.  
It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DMR0004A  
X2SON - 0.4 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (0.5)  
4X (0.22)  
4X (0.4)  
(R0.05) TYP  
1
4
5
SYMM  
(1.4)  
(0.57)  
METAL  
TYP  
2
3
SYMM  
(0.76)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 5:  
90% PRINTED SOLDER COVERAGE BY AREA  
SCALE:50X  
4222825/B 05/2022  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DRV5013

高电压(高达 38V)、高带宽 (30kHz) 霍尔效应锁存器
TI

DRV5013-Q1

汽车类、高电压(高达 38V)、高带宽 (30kHz) 霍尔效应锁存器
TI

DRV5013ADEDBZJQ1

汽车类、高电压(高达 38V)、高带宽 (30kHz) 霍尔效应锁存器 | DBZ | 3 | -40 to 150
TI

DRV5013ADEDBZRQ1

汽车类、高电压(高达 38V)、高带宽 (30kHz) 霍尔效应锁存器 | DBZ | 3 | -40 to 150
TI

DRV5013ADEDBZTQ1

汽车类、高电压(高达 38V)、高带宽 (30kHz) 霍尔效应锁存器 | DBZ | 3 | -40 to 150
TI

DRV5013ADELPGMQ1

汽车类、高电压(高达 38V)、高带宽 (30kHz) 霍尔效应锁存器 | LPG | 3 | -40 to 150
TI

DRV5013ADELPGQ1

汽车类、高电压(高达 38V)、高带宽 (30kHz) 霍尔效应锁存器 | LPG | 3 | -40 to 150
TI

DRV5013ADQDBZR

高电压(高达 38V)、高带宽 (30kHz) 霍尔效应锁存器 | DBZ | 3 | -40 to 125
TI

DRV5013ADQDBZRQ1

汽车类、高电压(高达 38V)、高带宽 (30kHz) 霍尔效应锁存器 | DBZ | 3 | -40 to 125
TI

DRV5013ADQDBZT

高电压(高达 38V)、高带宽 (30kHz) 霍尔效应锁存器 | DBZ | 3 | -40 to 125
TI

DRV5013ADQDBZTQ1

汽车类、高电压(高达 38V)、高带宽 (30kHz) 霍尔效应锁存器 | DBZ | 3 | -40 to 125
TI

DRV5013ADQLPG

高电压(高达 38V)、高带宽 (30kHz) 霍尔效应锁存器 | LPG | 3 | -40 to 125
TI