DRV5021A3EDBZRQ1 [TI]

汽车类 2.5-V 至 5.5-V 霍尔效应单极开关

| DBZ | 3 | -40 to 150;
DRV5021A3EDBZRQ1
型号: DRV5021A3EDBZRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 2.5-V 至 5.5-V 霍尔效应单极开关

| DBZ | 3 | -40 to 150

开关
文件: 总24页 (文件大小:924K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV5021-Q1  
ZHCSHJ6 FEBRUARY 2019  
DRV5021-Q1 汽车用、低电压、单极、数字开关霍尔效应传感器  
1 特性  
3 说明  
1
适用于汽车电子 应用  
DRV5021-Q1 是一款低电压数字开关霍尔效应传感  
器,适用于高速汽车 应用。该器件由 2.5V 5.5V 的  
电源供电,可以检测磁通量密度并根据预定义的磁性阈  
值提供数字输出。  
下列性能符合 AEC-Q100 标准:  
器件温度等级 0–40°C 150°C 环境工作温  
度范围  
器件 HBM ESD 分类等级 3A  
器件 CDM ESD 分类等级 C6  
该器件会检测垂直于封装面的磁场。当施加的磁通量密  
度超过磁运行点 BOP 阈值时,器件的漏极开路输出将  
驱动低电压。当磁通量密度降至磁释放点 (BRP) 阈值  
时,输出会变为高阻抗。BOP BRP 的分离所产生的  
滞后有助于防止输入噪声引起的输出误差。这种配置使  
得系统设计能够更加稳健地抵抗噪声干扰。  
数字单极开关霍尔传感器  
2.5V 5.5V 工作 VCC 范围  
磁性灵敏度选项 (BOPBRP):  
DRV5021A1-Q12.9mT1.8mT  
DRV5021A2-Q19.2mT7.0mT  
DRV5021A3-Q117.9mT14.1mT  
该器件可在 –40°C +150°C 的宽环境温度范围内保  
持稳定的优异性能。  
30kHz 高速感应带宽  
漏极开路输出电流高达 20mA  
经过优化的低电压架构  
器件信息(1)  
器件型号  
封装  
SOT-23 (3)  
封装尺寸(标称值)  
具有集成迟滞特性,可增强抗噪能力  
标准行业封装:  
DRV5021-Q1  
2.90mm x 1.30mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
表面贴装 SOT-23  
2 应用  
汽车变速器、车身外壳  
限位开关  
一般接近感应  
刷式直流电机反馈  
门开关检测  
阀定位  
脉冲计数  
典型应用电路原理图  
磁响应  
OUT  
VCC  
Bhys  
DRV5021-Q1  
Controller  
GPIO  
VCC  
OUT  
B (mT)  
BRP  
BOF  
BOP  
GND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS914  
 
 
 
DRV5021-Q1  
ZHCSHJ6 FEBRUARY 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Applications ................................................ 14  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings.............................................................. 3  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 4  
6.6 Magnetic Characteristics........................................... 4  
6.7 Typical Characteristics.............................................. 5  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
7.3 Feature Description................................................... 7  
10 Layout................................................................... 17  
10.1 Layout Guidelines ................................................. 17  
10.2 Layout Example .................................................... 17  
11 器件和文档支持 ..................................................... 18  
11.1 文档支持................................................................ 18  
11.2 接收文档更新通知 ................................................. 18  
11.3 社区资源................................................................ 18  
11.4 ....................................................................... 18  
11.5 静电放电警告......................................................... 18  
11.6 术语表 ................................................................... 18  
12 机械、封装和可订购信息....................................... 18  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2019 2 月  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
DRV5021-Q1  
www.ti.com.cn  
ZHCSHJ6 FEBRUARY 2019  
5 Pin Configuration and Functions  
DBZ Package  
3-Pin SOT-23  
Top View  
VCC  
OUT  
1
2
3
GND  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
GND  
OUT  
DBZ  
3
2
GND  
Ground pin  
Output  
Hall sensor open-drain output. The open drain requires a pullup resistor.  
2.5-V to 5.5-V power supply. Bypass this pin to the GND pin with a 0.1-μF (minimum) ceramic  
VCC  
1
Power  
capacitor rated for VCC  
.
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
6.0  
UNIT  
V
Power supply voltage (VCC)  
Output voltage (OUT)  
6.0  
V
Output current (OUT)  
30  
mA  
T
Magnetic flux density, BMAX  
Operating junction temperature, TJ  
Storage temperature, Tstg  
Unlimited  
170  
–40  
–65  
°C  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
UNIT  
Human body model (HBM), per AEC  
Q100-002(1)  
±6000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per AEC  
Q100-011  
±1000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2019, Texas Instruments Incorporated  
3
DRV5021-Q1  
ZHCSHJ6 FEBRUARY 2019  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
0
MAX  
5.5  
UNIT  
V
VCC  
VO  
Power supply voltage range  
Output pin voltage  
5.5  
V
IOUT  
TA  
Output sinking current  
0
20  
mA  
°C  
Operating ambient temperature  
–40  
150  
6.4 Thermal Information  
DRV5021-Q1  
THERMAL METRIC(1)  
SOT-23 (DBZ)  
UNIT  
3 PINS  
356  
128  
94  
RθJA  
RθJC(top)  
RθJB  
YJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
11.4  
92  
YJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
at VCC = 2.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Operating supply current  
Power-on time  
TEST CONDITION  
MIN  
TYP  
2.3  
40  
MAX  
2.8  
UNIT  
mA  
µs  
ICC  
tON  
70  
B = BRP – 10 mT to BOP + 10 mT in  
1 µs  
td  
Propagation delay time(1)  
13  
25  
µs  
High-impedance output leakage  
current  
5.5 V applied to OUT, while OUT is  
high-impedance  
IOZ  
100  
0.4  
nA  
VOL  
Low-level output voltage  
Output FET resistance  
IOUT = 20 mA  
0.15  
8
V
RDS(on)  
IOUT = 5 mA, VCC = 3.3 V  
Ω
(1) See the Propagation Delay section for more information.  
6.6 Magnetic Characteristics  
at VCC = 2.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
DRV5021A1-Q1, DRV5021A2-Q1, DRV5021A3-Q1  
fBW  
Sensing bandwidth  
30  
kHz  
DRV5021A1-Q1  
TA = –40°C to +125°C  
TA = –40°C to +150°C  
TA = –40°C to +125°C  
TA = –40°C to +150°C  
TA = –40°C to +125°C  
TA = –40°C to +150°C  
1.3  
1.1  
0.2  
0.1  
0.1  
0.1  
2.9  
2.9  
1.8  
1.8  
1.1  
1.1  
4.4  
4.7  
3.0  
3.3  
2.5  
2.8  
mT  
mT  
mT  
mT  
mT  
mT  
BOP  
Magnetic threshold Operate Point  
Magnetic threshold Release Point  
BRP  
BHYS  
Magnetic hysteresis: |BOP – BRP  
|
|
BHYS  
Magnetic hysteresis: |BOP – BRP  
DRV5021A2-Q1  
TA = –40°C to +125°C  
TA = –40°C to +150°C  
TA = –40°C to +125°C  
TA = –40°C to +150°C  
5.0  
4.5  
3.2  
2.7  
9.2  
9.2  
7.0  
7.0  
13.0  
14.0  
10.0  
11.0  
mT  
mT  
mT  
mT  
BOP  
Magnetic threshold Operate Point  
Magnetic threshold Release Point  
BRP  
4
Copyright © 2019, Texas Instruments Incorporated  
 
DRV5021-Q1  
www.ti.com.cn  
ZHCSHJ6 FEBRUARY 2019  
Magnetic Characteristics (continued)  
at VCC = 2.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
TA = –40°C to +125°C  
TA = –40°C to +150°C  
MIN  
0.9  
TYP  
2.2  
MAX  
4.5  
UNIT  
mT  
BHYS  
Magnetic hysteresis: |BOP – BRP  
|
|
BHYS  
Magnetic hysteresis: |BOP – BRP  
0.9  
2.2  
5.0  
mT  
DRV5021A3-Q1  
TA = –40°C to +125°C  
TA = –40°C to +150°C  
TA = –40°C to +125°C  
TA = –40°C to +150°C  
TA = –40°C to +125°C  
TA = –40°C to +150°C  
8.8  
7.7  
6.2  
5.1  
1.5  
1.3  
17.9  
17.9  
14.1  
14.1  
3.8  
23.4  
25.4  
18.8  
20.8  
6.2  
mT  
mT  
mT  
mT  
mT  
mT  
BOP  
Magnetic threshold Operate Point  
Magnetic threshold Release Point  
BRP  
BHYS  
BHYS  
Magnetic hysteresis: |BOP – BRP  
|
|
Magnetic hysteresis: |BOP – BRP  
3.8  
6.7  
6.7 Typical Characteristics  
5
5
4.5  
4
BOP  
BRP  
HYSTERESIS  
BOP  
BRP  
HYSTERESIS  
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D001  
D002  
DRV5021A1-Q1, VCC = 3.3 V  
DRV5021A1-Q1, VCC = 5.0 V  
1. Magnetic Threshold vs Temperature  
2. Magnetic Threshold vs Temperature  
15  
14  
13  
12  
11  
10  
9
15  
14  
13  
12  
11  
10  
9
BOP  
BRP  
HYSTERESIS  
BOP  
BRP  
HYSTERESIS  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D002  
D005  
DRV5021A2-Q1, VCC = 3.3 V  
3. Magnetic Threshold vs Temperature  
DRV5021A2-Q1, VCC = 5.0 V  
4. Magnetic Threshold vs Temperature  
版权 © 2019, Texas Instruments Incorporated  
5
DRV5021-Q1  
ZHCSHJ6 FEBRUARY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
BOP  
BRP  
HYSTERESIS  
BOP  
BRP  
HYSTERESIS  
6
6
4
4
2
2
0
0
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D003  
D006  
DRV5021A3-Q1, VCC = 3.3 V  
5. Magnetic Threshold vs Temperature  
VCC = 2.5V  
DRV5021A3-Q1, VCC = 5.0 V  
6. Magnetic Threshold vs Temperature  
VCC = 2.5V  
5
4.5  
4
5
4.5  
4
VCC = 4.0V  
VCC = 5.5V  
VCC = 4.0V  
VCC = 5.5V  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-40 -20  
0
20  
40  
60  
Temperature (C)  
80 100 120 140  
-40 -20  
0
20  
40  
60  
Temperature (C)  
80 100 120 140  
D007  
D008  
DRV5021A1-Q1  
DRV5021A2-Q1  
7. Supply Current vs Temperature  
8. Supply Current vs Temperature  
5
4.5  
4
VCC = 2.5V  
VCC = 4.0V  
VCC = 5.5V  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-40 -20  
0
20  
40  
Temperature (C)  
60  
80 100 120 140  
D009  
DRV5021A3-Q1  
9. Supply Current vs Temperature  
6
版权 © 2019, Texas Instruments Incorporated  
DRV5021-Q1  
www.ti.com.cn  
ZHCSHJ6 FEBRUARY 2019  
7 Detailed Description  
7.1 Overview  
The DRV5021-Q1 device is a spinning-current Hall sensor with a digital output for magnetic-sensing applications.  
The DRV5021-Q1 can be powered with a supply voltage between 2.5 V and 5.5 V.  
The field polarity is defined as follows: a south pole near the marked side of the package is a positive magnetic  
field. A north pole near the marked side of the package is a negative magnetic field. The output state depends on  
the magnetic field perpendicular to the package.  
A strong south pole near the marked side of the package causes the output to pull low. A weak south pole, the  
absence of a field, or any north pole makes the output high impedance. Hysteresis is included in between the  
operate point and the release point to prevent toggling near the magnetic threshold.  
An external pullup resistor is required on the OUT pin. The OUT pin can be pulled up to VCC, or to a different  
voltage supply. This feature allows for easier interfacing with controller circuits.  
7.2 Functional Block Diagram  
0.1 F  
(min)  
VCC  
Voltage  
Regulator  
Oscillator  
OUT  
REF  
Output  
Control  
Element Bias  
Amp  
Offset Cancellation  
Temperature  
Compensation  
GND  
7.3 Feature Description  
7.3.1 Field Direction Definition  
As shown in 10, the DRV5021-Q1 is sensitive to the magnetic field component that is perpendicular to the top  
of the package.  
B
SOT-23  
PCB  
10. Direction of Sensitivity  
版权 © 2019, Texas Instruments Incorporated  
7
 
DRV5021-Q1  
ZHCSHJ6 FEBRUARY 2019  
www.ti.com.cn  
Feature Description (接下页)  
11 shows that a positive magnetic field is defined as a south pole near the marked side of the package.  
Positive B  
Negative B  
N
S
S
N
PCB  
PCB  
N = North pole, S = South pole  
11. Field Direction Definition  
7.3.2 Device Output  
If the device is powered on with a magnetic field strength between BRP and BOP, then the device output is  
indeterminate. If the field strength is greater than BOP, then the output is pulled low. If the field strength is less  
than BRP, then the output is released.  
OUT  
Bhys  
B (mT)  
BRP  
BOF  
BOP  
12. Output State  
8
版权 © 2019, Texas Instruments Incorporated  
 
DRV5021-Q1  
www.ti.com.cn  
ZHCSHJ6 FEBRUARY 2019  
Feature Description (接下页)  
7.3.3 Power-On Time  
After applying VCC to the DRV5021-Q1, ton must elapse before the OUT pin is valid. In case 1 (13) and case 2  
(14), the output is defined assuming that magnetic field BAPPLIED > BOP, and BAPPLIED < BRP, respectively.  
VCC  
t (s)  
B (mT)  
BAPPLIED  
BOP  
BRP  
t (s)  
OUT  
Valid Output  
t (s)  
ton  
13. Case 1: Power On When B > BOP  
VCC  
t (s)  
B (mT)  
BOP  
BRP  
BAPPLIED  
t (s)  
OUT  
Valid Output  
t (s)  
ton  
14. Case 2: Power On When B < BRP  
版权 © 2019, Texas Instruments Incorporated  
9
 
 
DRV5021-Q1  
ZHCSHJ6 FEBRUARY 2019  
www.ti.com.cn  
Feature Description (接下页)  
If the device is powered on with BRP < BAPPLIED < BOP, then the device output remains in indeterminate state until  
the magnetic field changes. After the change in magnetic field results in a condition that meets either BOP  
<
BAPPLIED or BRP > BAPPLIED, the output turns to valid state after td time elapses. Case 3 (15) and case 4 (16)  
show examples of this behavior.  
VCC  
t (s)  
B (mT)  
BOP  
BAPPLIED  
BRP  
t (s)  
OUT  
Valid Output  
t (s)  
td  
ton  
15. Case 3: Power On When BRP < B < BOP, Followed by B > BOP  
VCC  
t (s)  
t (s)  
t (s)  
B (mT)  
BOP  
BAPPLIED  
BRP  
OUT  
Valid Output  
td  
ton  
16. Case 4: Power On When BRP < B < BOP, Followed by B < BRP  
10  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV5021-Q1  
www.ti.com.cn  
ZHCSHJ6 FEBRUARY 2019  
Feature Description (接下页)  
7.3.4 Hall Element Location  
The sensing element inside the device is in the center of both packages when viewed from the top. 17 shows  
the tolerances and side-view dimensions.  
SOT-23 Top View  
133 µm  
centered  
70 µm  
133 µm  
SOT-23 Side View  
650 µm  
80 µm  
17. Hall Element Location  
版权 © 2019, Texas Instruments Incorporated  
11  
 
DRV5021-Q1  
ZHCSHJ6 FEBRUARY 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.5 Propagation Delay  
The DRV5021-Q1 samples the Hall element at a nominal sampling period of 16.67 µs to detect the presence of a  
magnetic north or south pole. At each sampling point, the device takes the average of the current sampled value  
and immediately preceding sampled value of the magnetic field. If this average value crosses the BOP or BRP  
threshold, the device output changes according to the transfer function.  
18 shows the DRV5021-Q1 propagation delay analysis in the proximity of a magnetic south pole. The Hall  
element of the DRV5021-Q1 experiences an increasing magnetic field as the magnetic south pole approaches  
near the device. At time t2, the average magnetic field is (B2 + B1) / 2, which is less than the BOP threshold of the  
device. At time t3, the actual magnetic field has crossed the BOP threshold. However, the average (B3 + B2) / 2 is  
still less than the BOP threshold. Thus, the device waits for next sample time, t4, to start the output transition  
through the analog signal chain. The propagation delay, td, is measured as the delay from the time the magnetic  
field crosses the BOP threshold to the time output transitions.  
Magnetic Field  
Magnetic  
Field Ramp  
B6  
B5  
B4  
B3  
BOP Threshold  
B2  
B1  
Delay Through  
Analog Signal Chain  
t5  
t6  
t1  
t2  
t3  
t4  
Time  
td  
Output  
Time  
18. Propagation Delay  
12  
版权 © 2019, Texas Instruments Incorporated  
 
DRV5021-Q1  
www.ti.com.cn  
ZHCSHJ6 FEBRUARY 2019  
Feature Description (接下页)  
7.3.6 Output Stage  
The DRV5021-Q1 output stage uses an open-drain NMOS transistor that is rated to sink up to 20 mA of current.  
For proper operation, calculate the value of pullup resistor R1 using 公式 1.  
V max  
V min  
ref  
ref  
Ç R1Ç  
20 mA  
100 mA  
(1)  
The size of R1 is a tradeoff between the OUT rise time and the current when OUT is pulled low. A lower current  
is generally better; however, faster transitions and bandwidth require a smaller resistor for faster switching.  
In addition, the value of R1 must be > 500 in order to make sure that the output driver can pull the OUT pin  
close to GND.  
Vref is not restricted to VCC. The allowable voltage range of this pin is specified in the  
Recommended Operating Conditions.  
Vref  
R1  
OUT  
C2  
Gate  
Drive  
GND  
ISINK  
19. Open-Drain Output  
Select a value for C2 based on the system bandwidth specifications shown in 公式 2.  
1
2 ì ƒBW (Hz) <  
2p ì R1ì C2  
(2)  
Most applications do not require this C2 filtering capacitor.  
7.4 Device Functional Modes  
The DRV5021-Q1 device is active only when VCC is between 2.5 V and 5.5 V.  
版权 © 2019, Texas Instruments Incorporated  
13  
 
 
DRV5021-Q1  
ZHCSHJ6 FEBRUARY 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV5021-Q1 device is used in magnetic-field sensing applications.  
8.2 Typical Applications  
8.2.1 Proximity Sensing Circuit  
C2  
680 pF  
(Optional)  
OUT  
2
GND  
R1  
10 k  
3
VCC  
VCC  
1
C1  
0.1 F  
20. Proximity Sensing Circuit  
8.2.1.1 Design Requirements  
For this design example, use the parameters listed in 1 as the input parameters.  
1. Design Parameters  
DESIGN PARAMETER  
Supply voltage  
REFERENCE  
VCC  
EXAMPLE VALUE  
3.2 V to 3.4 V  
10 kHz  
System bandwidth  
ƒBW  
8.2.1.2 Detailed Design Procedure  
2 shows the external components needed to create this design example.  
2. External Components  
COMPONENT  
CONNECTED BETWEEN  
RECOMMENDED  
A 0.1-µF ceramic capacitor rated for VCC  
C1  
C2  
R1  
VCC  
OUT  
OUT  
GND  
GND  
Optional: Place a ceramic capacitor to GND  
Requires a pullup resistor  
(1)  
VCC  
(1) Pullup resistor may be connected to a voltage source other than VCC; see the Recommended Operating Conditions for the valid range of  
the output pin voltage.  
14  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV5021-Q1  
www.ti.com.cn  
ZHCSHJ6 FEBRUARY 2019  
8.2.1.2.1 Configuration Example  
In a 3.3-V system, 3.2 V Vref 3.4 V. Use 公式 3 to calculate the allowable range for R1.  
V max  
V min  
ref  
ref  
Ç R1Ç  
20 mA  
100 mA  
(3)  
For this design example, use 公式 4 to calculate the allowable range of R1.  
3.4 V  
3.2 V  
Ç R1Ç  
20 mA  
100 mA  
(4)  
(5)  
Therefore:  
170 Ω R1 32 kΩ  
After finding the allowable range of R1 (公式 5), select a value between 500 and 32 kfor R1.  
Assuming a system bandwidth of 10 kHz, use 公式 6 to calculate the value of C2.  
1
2 ì ƒBW (Hz) <  
2p ì R1ì C2  
(6)  
(7)  
For this design example, use 公式 7 to calculate the value of C2.  
1
2 ì 10 kHz <  
2p ì R1ì C2  
An R1 value of 10 kand a C2 value less than 820 pF satisfy the requirement for a 10-kHz system bandwidth.  
For R1 = 10 kand C2 = 680 pF, the corner frequency for the low-pass filter is 23.4 kHz.  
8.2.1.3 Application Curves  
OUT  
OUT  
R1 = 10-kΩ pullup, C2 = 680 pF  
R1 = 10-kΩ pullup resistor, no C2 capacitor  
22. 10-kHz Switching Magnetic Field  
21. 10-kHz Switching Magnetic Field  
0
-2  
-4  
-6  
-8  
-10  
-12  
-14  
100  
1000  
10000  
100000  
Frequency (Hz)  
D011  
R1 = 10-kΩ pullup resistor, C2 = 680 pF  
23. Low-Pass Filtering  
版权 © 2019, Texas Instruments Incorporated  
15  
 
 
 
 
 
DRV5021-Q1  
ZHCSHJ6 FEBRUARY 2019  
www.ti.com.cn  
8.2.2 Alternative Two-Wire Application  
For systems that require a minimal wire count, connect the device output to VCC through a resistor, and sense  
the total supplied current near the controller. Use a shunt resistor or other circuitry to sense the current.  
R1  
+
œ
OUT  
VCC  
2
1
C1  
3
GND  
Current  
sense  
Controller  
24. 2-Wire Application  
3. Design Parameters  
8.2.2.1 Design Requirements  
3 lists the related design parameters.  
DESIGN PARAMETER  
Supply voltage  
REFERENCE  
VCC  
EXAMPLE VALUE  
5 V  
OUT resistor  
R1  
1 k  
Bypass capacitor  
Current when B < BRP  
Current when B > BOP  
C1  
0.1 µF  
IRELEASE  
IOPERATE  
About 2.3 mA  
About 7.3 mA  
8.2.2.2 Detailed Design Procedure  
When the open-drain output of the device is high-impedance, current through the path equals the ICC of the  
device (approximately 2.3 mA).  
When the output pulls low, a parallel current path is added, equal to VCC / (R1 + rDS(on)). Using 5 V and 1 k, the  
parallel current is approximately 5 mA, making the total current approximately 7.3 mA.  
Local bypass capacitor C1 must be at least 0.1 µF. Use a larger value capacitor if there is high inductance in the  
power line interconnect.  
16  
版权 © 2019, Texas Instruments Incorporated  
 
DRV5021-Q1  
www.ti.com.cn  
ZHCSHJ6 FEBRUARY 2019  
9 Power Supply Recommendations  
The DRV5021-Q1 device is designed to operate from an input voltage supply (VM) range between 2.5 V and 5.5  
V. A 0.1-µF (minimum) ceramic capacitor rated for VCC must be placed as close to the DRV5021-Q1 device as  
possible.  
10 Layout  
10.1 Layout Guidelines  
Place the bypass capacitor near the DRV5021-Q1 device for efficient power delivery with minimal inductance.  
Place the external pullup resistor near the microcontroller input to provide the most stable voltage at the input.  
Alternatively, an integrated pullup resistor within the GPIO of the microcontroller can be used.  
Generally, PCB copper planes underneath the DRV5021-Q1 have no effect on magnetic flux, and do not  
interfere with device performance because copper is not a ferromagnetic material. However, If nearby system  
components contain iron or nickel, they may redirect magnetic flux in unpredictable ways.  
10.2 Layout Example  
VCC  
OUT  
GND  
25. DRV5021-Q1 Layout Example  
版权 © 2019, Texas Instruments Incorporated  
17  
DRV5021-Q1  
ZHCSHJ6 FEBRUARY 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《霍尔适配器 EVM 用户指南》  
德州仪器 (TI)《了解和应用霍尔效应传感器数据表应用报告》  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
18  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV5021A1EDBZRQ1  
DRV5021A2EDBZRQ1  
DRV5021A3EDBZRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
3
3
3
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 150  
-40 to 150  
-40 to 150  
211Z  
212Z  
213Z  
SN  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
DBZ0003A  
SOT-23 - 1.12 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
2.64  
2.10  
1.12 MAX  
1.4  
1.2  
B
A
0.1 C  
PIN 1  
INDEX AREA  
1
0.95  
(0.125)  
3.04  
2.80  
1.9  
3
(0.15)  
NOTE 4  
2
0.5  
0.3  
3X  
0.10  
0.01  
(0.95)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.08  
TYP  
0.6  
0.2  
TYP  
SEATING PLANE  
0 -8 TYP  
4214838/D 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration TO-236, except minimum foot length.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X (0.95)  
2
(R0.05) TYP  
(2.1)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214838/D 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X(0.95)  
2
(R0.05) TYP  
(2.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214838/D 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY