DRV5057-Q1 [TI]

具有数字 PWM 输出的汽车类线性霍尔效应传感器;
DRV5057-Q1
型号: DRV5057-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有数字 PWM 输出的汽车类线性霍尔效应传感器

传感器
文件: 总30页 (文件大小:1494K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV5057-Q1  
ZHCSK51 AUGUST 2019  
具有 PWM 输出的DRV5057-Q1汽车类线性霍尔效应传感器  
1 特性  
3 说明  
1
具有符合面向汽车 标准  
DRV5057-Q1 是一款线性霍尔效应传感器,可按比例  
响应磁通量密度。该器件可用于进行精确的位置检测,  
应用范围 广泛。  
温度等级 0–40°C 150°C  
PWM 输出线性霍尔效应磁传感器  
3.3V 5V 电源供电  
2kHz 时钟输出,静态占空比为 50%  
磁性灵敏度选项(VCC = 5V 时):  
该器件由 3.3V 5V 电源供电。当不存在磁场时,输  
出产生占空比为 50% 的时钟。输出占空比会随施加的  
磁通量密度呈线性变化,四个灵敏度选项可以根据所需  
的感应范围最大限度扩大输出动态范围。南北磁极产生  
唯一的输出。典型的脉宽调制 (PWM) 载波频率为  
2kHz。  
A12%D/mT±21mT 范围  
A21%D/mT±42mT 范围  
A30.5%D/mT±84mT 范围  
A40.25%D/mT±168mT 范围  
它可检测垂直于封装顶部的磁通量,而且两个封装选项  
提供不同的检测方向。  
开漏输出,具有 20mA 灌电流能力  
磁体温度漂移补偿  
行业标准封装:  
由于 PWM 信号基于边沿到边沿定时,因此当存在电  
压噪声或接地电势失配时,可保持信号完整性。该信号  
适合嘈杂环境中的远距离传输,始终存在的时钟使得系  
统控制器能够确认具备良好的互连。此外,该器件 还  
具有 磁体温度补偿功能,可以抵消磁体漂移,在  
–40°C +150°C 的宽温度范围内实现线性特性。  
表面贴装 SOT-23  
2 应用  
汽车位置检测  
制动踏板、油门踏板、离合器踏板  
扭矩传感器、换挡器  
节气门位置、高度找平  
动力传动系统和变速器组件  
绝对值角度编码  
器件信息(1)  
器件型号  
封装  
SOT-23 (3)  
封装尺寸(标称值)  
DRV5057-Q1  
2.92mm × 1.30mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
电流检测  
典型原理图  
磁响应  
PWM  
Output  
VCC  
VDD  
DRV5057-Q1  
VCC  
Controller  
Duty Cycle  
8%  
25%  
38%  
50%  
69%  
75%  
92%  
OUT  
GND  
GPIO  
VOH  
VOL  
Time  
North  
0 mT  
South  
Magnetic Field  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS645  
 
 
 
DRV5057-Q1  
ZHCSK51 AUGUST 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
8.1 Application Information............................................ 12  
8.2 Typical Applications ................................................ 14  
8.3 What to Do and What Not to Do ............................. 20  
Power Supply Recommendations...................... 21  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Magnetic Characteristics........................................... 5  
6.7 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 8  
7.3 Feature Description................................................... 8  
10 Layout................................................................... 21  
10.1 Layout Guidelines ................................................. 21  
10.2 Layout Example .................................................... 21  
11 器件和文档支持 ..................................................... 22  
11.1 文档支持................................................................ 22  
11.2 接收文档更新通知 ................................................. 22  
11.3 社区资源................................................................ 22  
11.4 ....................................................................... 22  
11.5 静电放电警告......................................................... 22  
11.6 Glossary................................................................ 22  
12 机械、封装和可订购信息....................................... 22  
7
4 修订历史记录  
日期  
修订版本  
说明  
2019 8 月  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
DRV5057-Q1  
www.ti.com.cn  
ZHCSK51 AUGUST 2019  
5 Pin Configuration and Functions  
DBZ Package  
3-Pin SOT-23  
Top View  
VCC  
1
2
3
GND  
OUT  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
GND  
OUT  
VCC  
NO.  
3
Ground  
Output  
Power  
Ground reference  
Analog output  
2
1
Power supply. Connect this pin to a ceramic capacitor to ground with a value of at least 0.01 µF.  
Copyright © 2019, Texas Instruments Incorporated  
3
DRV5057-Q1  
ZHCSK51 AUGUST 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX UNIT  
VCC  
Power supply voltage  
Output voltage  
VCC  
7
6
V
V
OUT  
OUT  
Output current  
30  
mA  
T
B
Magnetic flux density  
Operating junction temperature  
Storage temperature  
Unlimited  
–40  
TJ  
170  
150  
°C  
°C  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 2  
±3000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per AEC Q100-011  
CDM ESD classification level C5  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
3.63  
5.5  
UNIT  
3
VCC  
Power-supply voltage(1)  
V
4.5  
0
VO  
IO  
Output pullup voltage  
5.5  
V
Output continuous current  
Operating ambient temperature(2)  
0
20  
mA  
°C  
TA  
–40  
150  
(1) There are two isolated operating VCC ranges. For more information see the Operating VCC Ranges section.  
(2) Power dissipation and thermal limits must be observed.  
6.4 Thermal Information  
DRV5057-Q1  
THERMAL METRIC(1)  
SOT-23 (DBZ)  
UNIT  
3 PINS  
170  
66  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
49  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.7  
ΨJB  
48  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
 
DRV5057-Q1  
www.ti.com.cn  
ZHCSK51 AUGUST 2019  
6.5 Electrical Characteristics  
for VCC = 3 V to 3.63 V and 4.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
B(2) = 0 mT, no load on OUT  
From change in B to change in OUT  
MIN  
TYP  
6
MAX  
10  
UNIT  
mA  
ms  
ICC  
tON  
fPWM  
DJ  
Operating supply current  
Power-on time (see 15)(1)  
PWM carrier frequency  
0.6  
2.0  
±0.1  
0.9  
1.8  
2.2  
kHz  
%D(3)  
nA  
Duty cycle peak-to-peak jitter  
IOZ  
High-impedance output leakage current VCC = 5 V  
Low-level output voltage IOUT = 20 mA  
100  
0.4  
VOL  
0.15  
V
(1) tON is the time from when VCC goes above 3 V until the first rising edge of the first valid pulse.  
(2) B is the applied magnetic flux density.  
(3) This unit is a percentage of duty cycle.  
6.6 Magnetic Characteristics  
for VCC = 3 V to 3.63 V and 4.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Linear duty cycle range  
Clamped-low duty cycle  
TEST CONDITIONS  
MIN  
8
TYP  
MAX UNIT  
92 %D(1)  
DL  
DCL  
B(2) < –250 mT  
5.3  
93.3  
43  
6
94  
50  
6.7  
%D  
DCH Clamped-high duty cycle  
DQ  
Quiescent duty cycle(3)  
B > 250 mT  
94.7  
B = 0 mT, TA = 25°C, VCC = 3.3 V or 5 V  
57  
%D  
%
High-temperature operating stress for  
1000 hours  
VQΔL Quiescent duty cycle lifetime drift  
< 0.5  
DRV5057A1-Q1  
1.88  
0.94  
0.47  
0.23  
1.13  
0.56  
0.28  
0.138  
2
1
2.12  
1.06  
0.53  
0.27  
1.27  
0.64  
0.32  
0.162  
DRV5057A2-Q1  
DRV5057A3-Q1  
DRV5057A4-Q1  
DRV5057A1-Q1  
DRV5057A2-Q1  
DRV5057A3-Q1  
DRV5057A4-Q1  
DRV5057A1-Q1  
DRV5057A2-Q1  
DRV5057A3-Q1  
DRV5057A4-Q1  
VCC = 5 V,  
TA = 25°C  
0.5  
0.25  
1.2  
S
Sensitivity  
%D/mT  
0.6  
VCC = 3.3 V,  
TA = 25°C  
0.3  
0.15  
±21  
±42  
±84  
±168  
VCC = 5 V,  
TA = 25°C  
Linear magnetic flux density sensing  
range(3)(4)  
BL  
mT  
Sensitivity temperature compensation  
for magnets(5)  
Sensitivity linearity error(3)  
STC  
SLE  
RSE  
0.12  
±1  
%/°C  
%
Output duty cycle is within DL  
Output duty cycle is within DL  
Sensitivity error over operating VCC  
range  
±1  
%
Quiescent error over operating VCC  
range  
SΔL  
< 0.5  
%
(1) This unit is a percentage of duty cycle.  
(2) B is the applied magnetic flux density.  
(3) See the Sensitivity Linearity section.  
(4) BL describes the minimum linear sensing range at 25°C taking into account the maximum VQ and sensitivity tolerances.  
(5) STC describes the rate the device increases Sensitivity with temperature. For more information, see the Sensitivity Temperature  
Compensation for Magnets section and 4 to 11.  
版权 © 2019, Texas Instruments Incorporated  
5
DRV5057-Q1  
ZHCSK51 AUGUST 2019  
www.ti.com.cn  
6.7 Typical Characteristics  
for TA = 25°C (unless otherwise noted)  
2.2  
2
1.3  
1.2  
1.1  
1
5057A1  
5057A2  
5057A3  
5057A4  
1.8  
1.6  
1.4  
1.2  
1
5057A1  
5057A2  
5057A3  
5057A4  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.8  
0.6  
0.4  
0.2  
0
4.5 4.6 4.7 4.8 4.9  
5
Supply (V)  
5.1 5.2 5.3 5.4 5.5  
3
3.1  
3.2  
3.3  
Supply (V)  
3.4  
3.5  
3.6  
D010  
D011  
VCC = 5.0 V  
VCC = 3.3 V  
1. Sensitivity vs Supply Voltage  
2. Sensitivity vs Supply Voltage  
10  
9
2.5  
2.25  
2
VCC = 3.3 V  
VCC = 5.0 V  
8
1.75  
1.5  
1.25  
1
7
6
5
4
0.75  
0.5  
0.25  
0
3
+STD  
AVG  
-STD  
2
1
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D012  
D014  
DRV5057A1-Q1, VCC = 5.0 V  
3. Supply Current vs Temperature  
4. Sensitivity vs Temperature  
2.5  
2.25  
2
1.5  
1.4  
1.3  
1.2  
1.1  
1
+STD  
AVG  
-STD  
1.75  
1.5  
1.25  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.75  
0.5  
0.25  
0
+STD  
AVG  
-STD  
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D013  
D005  
DRV5057A1-Q1, VCC = 3.3 V  
DRV5057A2-Q1, VCC = 5.0 V  
5. Sensitivity vs Temperature  
6. Sensitivity vs Temperature  
6
版权 © 2019, Texas Instruments Incorporated  
DRV5057-Q1  
www.ti.com.cn  
ZHCSK51 AUGUST 2019  
Typical Characteristics (接下页)  
for TA = 25°C (unless otherwise noted)  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
+STD  
AVG  
-3STD  
+STD  
AVG  
-3STD  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D006  
D003  
DRV5057A2-Q1, VCC = 3.3 V  
DRV5057A3-Q1, VCC = 5.0 V  
7. Sensitivity vs Temperature  
8. Sensitivity vs Temperature  
1
0.5  
+STD  
AVG  
-3STD  
+STD  
AVG  
-3STD  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D004  
D001  
DRV5057A3-Q1, VCC = 3.3 V  
DRV5057A4-Q1, VCC = 5.0 V  
9. Sensitivity vs Temperature  
10. Sensitivity vs Temperature  
0.5  
0.45  
0.4  
+STD  
AVG  
-3STD  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
D002  
DRV5057A4-Q1, VCC = 3.3 V  
11. Sensitivity vs Temperature  
版权 © 2019, Texas Instruments Incorporated  
7
DRV5057-Q1  
ZHCSK51 AUGUST 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DRV5057-Q1 is a 3-pin pulse-width modulation (PWM) output Hall effect sensor with fully integrated signal  
conditioning, temperature compensation circuits, mechanical stress cancellation, and amplifiers. The device  
operates from 3.3-V and 5-V (±10%) power supplies, measures magnetic flux density, and outputs a pulse-width  
modulated, 2-kHz digital signal.  
7.2 Functional Block Diagram  
VCC  
Element Bias  
Bandgap  
Reference  
0 F  
Offset Cancellation  
GND  
Trim Registers  
Temperature  
Compensation  
VCC  
OUT  
Precision  
PWM Driver  
Amplifier  
7.3 Feature Description  
7.3.1 Magnetic Flux Direction  
As shown in 12, the DRV5057-Q1 is sensitive to the magnetic field component that is perpendicular to the top  
of the package.  
B
SOT-23  
PCB  
12. Direction of Sensitivity  
8
版权 © 2019, Texas Instruments Incorporated  
 
DRV5057-Q1  
www.ti.com.cn  
ZHCSK51 AUGUST 2019  
Feature Description (接下页)  
Magnetic flux that travels from the bottom to the top of the package is considered positive in this document. This  
condition exists when a south magnetic pole is near the top (marked-side) of the package. Magnetic flux that  
travels from the top to the bottom of the package results in negative millitesla values. 13 shows flux direction.  
N
S
PCB  
13. Flux Direction for Positive B  
7.3.2 Sensitivity Linearity  
The device produces a pulse-width modulated digital signal output. As shown in 14, the duty-cycle of the  
PWM output signal is proportional to the magnetic field detected by the Hall element of the device. If there is no  
magnetic field present, the duty cycle is 50%. The DRV5057-Q1 can detect both magnetic north and south poles.  
The output duty cycle maintains a linear relationship with the input magnetic field from 8% to 92%.  
PWM  
Output  
Duty Cycle  
8%  
25%  
38%  
50%  
69%  
75%  
92%  
VOH  
VOL  
Time  
North  
0 mT  
South  
Magnetic Field  
14. Magnetic Response  
版权 © 2019, Texas Instruments Incorporated  
9
 
 
DRV5057-Q1  
ZHCSK51 AUGUST 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.3 Operating VCC Ranges  
The DRV5057-Q1 has two recommended operating VCC ranges: 3 V to 3.63 V and 4.5 V to 5.5 V. When VCC is  
in the middle region between 3.63 V to 4.5 V, the device continues to function but sensitivity is less known  
because there is a crossover threshold near 4 V that adjusts device characteristics.  
7.3.4 Sensitivity Temperature Compensation for Magnets  
Magnets generally produce weaker fields as temperature increases. The DRV5057-Q1 has a temperature  
compensation feature that is designed to directly compensate the average drift of neodymium (NdFeB) magnets  
and partially compensate ferrite magnets. The residual induction (Br) of a magnet typically reduces by 0.12%/°C  
for NdFeB, and 0.20%/°C for ferrite. When the operating temperature of a system is reduced, temperature drift  
errors are also reduced.  
7.3.5 Power-On Time  
After the VCC voltage is applied, the DRV5057-Q1 requires a short initialization time before the output is set. The  
parameter tON describes the time from when VCC crosses 3 V until OUT is within 5% of VQ, with 0 mT applied  
and no load attached to OUT. 15 shows this timing diagram.  
VCC  
3 V  
tON  
time  
Output  
95% × VQ  
Invalid  
time  
15. tON Definition  
10  
版权 © 2019, Texas Instruments Incorporated  
 
DRV5057-Q1  
www.ti.com.cn  
ZHCSK51 AUGUST 2019  
Feature Description (接下页)  
7.3.6 Hall Element Location  
16 shows the location of the sensing element inside each package option.  
SOT-23  
Top View  
SOT-23  
Side View  
centered  
50 µm  
650 µm  
80 µm  
16. Hall Element Location  
7.4 Device Functional Modes  
The DRV5057-Q1 has one mode of operation that applies when the Recommended Operating Conditions are  
met.  
版权 © 2019, Texas Instruments Incorporated  
11  
 
DRV5057-Q1  
ZHCSK51 AUGUST 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Selecting the Sensitivity Option  
Select the highest DRV5057-Q1 sensitivity option that can measure the required range of magnetic flux density  
so that the output voltage swing is maximized.  
Larger-sized magnets and farther sensing distances can generally enable better positional accuracy than very  
small magnets at close distances, because magnetic flux density increases exponentially with the proximity to a  
magnet. TI created an online tool to help with simple magnet calculations on the DRV5057-Q1 product folder.  
8.1.2 Decoding a PWM  
A PWM output helps system designers drive signals for long distances in noisy environments, with the ability to  
retrieve the signal accurately. A decoder is employed at the load to retrieve the analog magnetic signal. Two  
different methods of decoding are discussed in this section.  
8.1.2.1 Decoding a PWM (Digital)  
8.1.2.1.1 Capture and Compare Timer Interrupt  
Many microcontrollers have a capture and compare timer mode that can simplify the PWM decoding process.  
Use the timer in capture and compare mode with an interrupt that triggers on both the rising and falling edges of  
the signal to obtain both the relative high (on) and low (off) time of the PWM. Make sure that the timer period is  
significantly faster than the period of the PWM, based on the desired resolution. Calculate the percent duty cycle  
(%D) of the PWM with 公式 1 by using the relative on and off time of the signal.  
OnTime  
%D =  
ì 100  
OnTime + OffTime  
8.1.2.1.2 Oversampling and Counting With a Timer Interrupt  
(1)  
If a capture and compare timer is not available, a standard timer interrupt and a counter can be used. Configure  
the timer interrupt to be significantly faster than the period of the PWM, based on the desired resolution. Count  
how many times the timer interrupts while the signal is high (OnTime), then count how many times the timer  
interrupts while the signal is low (OffTime). Then use 公式 1 to calculate the duty cycle.  
8.1.2.1.3 Accuracy and Resolution  
The accuracy and resolution for the methods described in the Capture and Compare Timer Interrupt and  
Oversampling and Counting With a Timer Interrupt sections depends significantly on the timer sampling  
frequency. 公式 2 calculates the least significant bit of the duty cycle (%DLSB) based on the chosen timer  
sampling frequency.  
PWMfrequency  
%DLSB  
=
ì 100  
TIMER frequency  
(2)  
For example, with a 2-kHz PWM and a 400-kHz sampling frequency, the %DLSB is:  
(2 kHz / 400 kHz) × 100 = 0.5%DLSB  
If the sampling frequency in increased to 2-MHz, the %DLSB is improved to be:  
(2 MHz / 400 kHz) × 100 = 0.1%DLSB  
However, accuracy and resolution are still subject to noise and sensitivity.  
12  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
DRV5057-Q1  
www.ti.com.cn  
ZHCSK51 AUGUST 2019  
Application Information (接下页)  
8.1.2.2 Decoding a PWM (Analog)  
If an analog signal is needed at the end of a large travel distance, first use a microcontroller to digitally decode  
the PWM, then use a DAC to produce the analog signal. If an analog signal is needed after a short signal travel  
distance, use an analog output device, such as the DRV5055-Q1.  
If an analog signal is needed at the end of a large travel distance and a microcontroller is unavailable, use a low-  
pass filter to convert the PWM signal into an analog voltage, as shown in 17. When using this method, note  
the following:  
A ripple appears at the analog voltage output, causing a decrease in accuracy. The ripple intensity and  
frequency depend on the values chosen for R and C in the filter.  
The minimum and maximum voltages of the PWM must be known to calculate the magnetic field strength  
from the analog voltage. Thus, if the signal is traveling a large distance, then the minimum and maximum  
values must be either measured or buffered back to a known value.  
PWM Signal  
Analog Signal  
R
C
17. Low-Pass RC Filter  
版权 © 2019, Texas Instruments Incorporated  
13  
 
DRV5057-Q1  
ZHCSK51 AUGUST 2019  
www.ti.com.cn  
8.2 Typical Applications  
The DRV557-Q1 is a very robust linear position sensor for applications such as throttle positions, brakes, and  
clutch pedals. In linear position applications, depending on the mechanical placement and design limitations, two  
common types of magnet orientations are selected: full-swing and half-swing.  
8.2.1 Full-Swing Orientation Example  
In the full-swing orientation, a magnet travels in parallel to the DRV5057-Q1 surface. In this case, the magnetic  
range extends from south polarity to north polarity, and allows the DRV5057-Q1 to use the full linear magnetic  
flux density sensing range.  
S
N
18. Full-Swing Orientation Example  
8.2.1.1 Design Requirements  
Use the parameters listed in 1 for this design example.  
1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
DRV5057-Q1  
5 V  
Device  
VCC  
Cylinder: 4.7625-mm diameter, 12.7-mm thick,  
neodymium N52, Br = 1480 mT  
Magnet  
Travel distance  
10 mm  
Desired accuracy  
< 0.1 mm  
14  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV5057-Q1  
www.ti.com.cn  
ZHCSK51 AUGUST 2019  
8.2.1.2 Detailed Design Procedure  
Linear Hall effect sensors provide flexibility in mechanical design because many possible magnet orientations  
and movements produce a usable response from the sensor. 18 illustrates one of the most common  
orientations that uses the full north to south range of the sensor and causes a close-to-linear change in magnetic  
flux density as the magnet moves across the sensor. 19 illustrates the close-to-linear change in magnetic field  
present at the sensor as the magnet moves a given distance across the sensor. The usable linear region is close  
to but less than the length (thickness) of the magnet.  
When designing a linear magnetic sensing system, always consider these three variables: the magnet, sensing  
distance, and the range of the sensor. Select the DRV5057-Q1 with the highest sensitivity possible based on the  
system distance requirements without railing the sensor PWM output. To determine the magnetic flux density the  
sensor receives at the various positions of the magnet, use a magnetic field calculator or simulation software,  
referring to magnet specifications, and testing.  
Determine if the desired accuracy is met by comparing the maximum allowed duty cycle least significant bit  
(%DLSBmax) with the noise level (PWM jitter) of the device. 公式 3 calculates the %DLSBmax by taking into account  
the used length of the linear region (travel distance), the desired resolution, and the output PWM swing (within  
the linear duty cycle range).  
%D swing  
%DLSBmax  
=
ì Resolution  
Travel Distance  
(3)  
Thus, with this example (and a linear duty cycle range of 8%D to 92%D), using 公式 3 gives (92 – 8) / (10) × 0.1  
= 0.84%DLSBmax. This value is larger than the 0.1%D jitter, and therefore the desired accuracy can be achieved  
by using 公式 2 to select a %DLSB that is equal to or less than 0.84. Then, simply calibrate the magnet position to  
align the sensor output along the movement path.  
8.2.1.3 Application Curve  
19 shows the magnetic field present at the sensor as the magnet passes by as described in 18. The  
change in distance from the trough to the peak is approximately the length (thickness) of the magnet. B changes  
based on the strength of the magnet and how close the magnet is to the sensor.  
5
-9  
9
D015  
Distance  
19. Magnetic Field vs Distance  
版权 © 2019, Texas Instruments Incorporated  
15  
 
 
DRV5057-Q1  
ZHCSK51 AUGUST 2019  
www.ti.com.cn  
8.2.2 Half-Swing Orientation Example  
In the half-swing orientation, a magnet travels perpendicular to the DRV5057-Q1 surface. In this case, the  
magnetic range extends only to either the south or north pole, using only half of the DRV5057-Q1 linear  
magnetic flux density sensing range.  
Mechanical Component  
S
PCB  
20. Half-Swing Orientation Example  
8.2.2.1 Design Requirements  
Use the parameters listed in 2 for this design example.  
2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
DRV5057-Q1  
5 V  
Device  
VCC  
Cylinder: 4.7625 mm diameter, 12.7 mm thick,  
Neodymium N52, Br = 1480 mT  
Magnet  
Travel distance  
5 mm  
Desired accuracy  
< 0.1 mm  
8.2.2.2 Detailed Design Procedure  
As illustrated in 20, this design example consists of a mechanical component that moves back and forth, an  
embedded magnet with the south pole facing the printed-circuit board, and a DRV5057-Q1. The DRV5057-Q1  
outputs a PWM that describes the precise position of the component. The component must not contain  
ferromagnetic materials such as iron, nickel, and cobalt because these materials change the magnetic flux  
density at the sensor.  
When designing a linear magnetic sensing system, always consider these three variables: the magnet, sensing  
distance, and the range of the sensor. Select the DRV5057-Q1 with the highest sensitivity possible based on the  
system distance requirements without railing the sensor PWM output. To determine the magnetic flux density the  
sensor receives at the various positions of the magnet, use a magnetic field calculator or simulation software,  
referring to magnet specifications, and testing.  
16  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV5057-Q1  
www.ti.com.cn  
ZHCSK51 AUGUST 2019  
Magnets are made from various ferromagnetic materials that have tradeoffs in cost, drift with temperature,  
absolute maximum temperature ratings, remanence or residual induction (Br), and coercivity (Hc). The Br and the  
dimensions of a magnet determine the magnetic flux density (B) produced in 3-dimensional space. For simple  
magnet shapes, such as rectangular blocks and cylinders, there are simple equations that solve B at a given  
distance centered with the magnet. 21 shows diagrams for 公式 4 and 公式 5.  
Thickness  
Thickness  
Width  
Distance  
Distance  
Diameter  
S
N
Length  
S
N
B
B
21. Rectangular Block and Cylinder Magnets  
Use 公式 4 for the rectangular block shown in 21:  
Br  
Œ ( (  
WL  
2D 4D2 + W2 + L2  
WL  
2(D + T) 4(D + T)2 + W2 + L2  
B =  
arctan  
œ arctan  
) (  
))  
(4)  
Use 公式 5 for the cylinder illustrated in 21:  
Br  
2
D + T  
(0.5C)2 + (D + T)2  
D
B =  
œ
(
)
(0.5C)2 + D2  
where:  
W is width  
L is length  
T is thickness (the direction of magnetization)  
D is distance  
C is diameter  
(5)  
This example uses a cylinder magnet; therefore, 公式 5 can be used to create a lookup table for the distances  
from a specific magnet based on a magnetic field strength. 22 shows a magnetic field from 0 mm to 16 mm  
with the magnet defined in 2 as C = 4.7625 mm, T = 12.7 mm, and Br = 1480 mT.  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
1
2
3
4
5
6
7
Distance (mm)  
8
9
10 11 12 13 14 15 16  
D009  
22. Magnetic Field vs Distance  
版权 © 2019, Texas Instruments Incorporated  
17  
 
 
 
 
DRV5057-Q1  
ZHCSK51 AUGUST 2019  
www.ti.com.cn  
In this setup, each gain version of the sensor produces the corresponding duty cycle shown in 23 for 0 mm to  
16 mm.  
100  
DRV5057A1  
DRV5057A2  
95  
DRV5057A3  
DRV5057A4  
90  
85  
80  
75  
70  
65  
60  
55  
50  
0
1
2
3
4
5
6
7
Distance (mm)  
8
9
10 11 12 13 14 15 16  
D008  
23. %D vs South Pole Distance (All Gains)  
With a desired 5-mm movement swing, select the DRV5057-Q1 with the largest possible sensitivity that fits the  
system requirements for the magnet distance to the sensor. Assume that for this example, because of  
mechanical restrictions, the magnet at the nearest point to the sensor must be selected to be within 5 mm to  
8 mm. The largest sensitivity option (A1) does not work in this situation because the device output is railed at the  
farthest allowed distance of 8 mm. The A2 version is not railed at this point, and is therefore the sensor selected  
for this example. Choose the closest point of the magnet to the sensor to be a distance that allows the magnet to  
get as close to the sensor as possible without railing but stays within the selectable 5-mm to 8-mm allowed  
range. Because the A2 version rails at approximately 6 mm, choose a closest distance of 6.5 mm to allow for a  
little bit of margin. With this choice, 24 shows the %D response at the sensor across the full movement range.  
100  
DRV5057A2  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
6.5  
7
7.5  
8
8.5  
Distance (mm)  
9
9.5 10 10.5 11 11.5  
D007  
24. %D vs South Pole Distance (Gain A2)  
18  
版权 © 2019, Texas Instruments Incorporated  
 
 
DRV5057-Q1  
www.ti.com.cn  
ZHCSK51 AUGUST 2019  
The magnetic field strength is calculated using 公式 6, where a negative number represents the opposite pole (in  
this example a south pole is over the sensor, causing the results to be a positive number).  
%D - 50  
(
)
B =  
Gain  
(6)  
For example, if the A2 version of the DRV5057-Q1 measured a duty cycle of %D = 74.6% using 公式 1 , then the  
magnetic field strength present at the sensor is (74.6 – 50) / 1 = 24.6 mT.  
Using the lookup table that was used to create the plot in 22, the distance from the magnet at 24.6 mT is D  
8.2 mm.  
For more accurate results, the lookup table can be calibrated along the movement path of the magnet.  
Additionally, instead of using the calibrated lookup table for each measurement, consider using a best-fit  
polynomial equation from the curve for the desired movement range to calculate D in terms of B.  
The curve in 24 is not linear; therefore, the achievable accuracy varies for each position along the movement  
path. The location with the worst accuracy is where there is the smallest change in output for a given amount of  
movement, which in this example is where the magnet is farthest from the sensor (at 11.5 mm). Determine if the  
desired accuracy is met by checking if the needed %DLSB at this location for the specified accuracy is greater  
than the noise level (PWM jitter) of 0.1%D. Thus, with a desired accuracy of 0.1 mm, the needed %DLSB is the  
change in %D between 11.4 mm and 11.5 mm. Using the lookup table to find B and then solving for %D in 公式  
6, at 11.5 mm, B = 11.815 mT (which equates to 61.815%D), and at 11.4 mm B = 12.048 mT (which equates to  
62.048%D). The difference in %D between these two points is 62.048 – 61.815 = 0.223%DLSB. This value is  
larger than the 0.1%D jitter, so the desired accuracy can be met as long as a %DLSB is selected that is equal to  
or less than 0.223 using 公式 2.  
版权 © 2019, Texas Instruments Incorporated  
19  
 
DRV5057-Q1  
ZHCSK51 AUGUST 2019  
www.ti.com.cn  
8.3 What to Do and What Not to Do  
The Hall element is sensitive to magnetic fields that are perpendicular to the top of the package. Therefore, to  
correctly detect the magnetic field, make sure to use the correct magnet orientation for the sensor. 25 shows  
correct and incorrect orientation.  
CORRECT  
N
S
S
N
N
S
INCORRECT  
N
S
25. Correct and Incorrect Magnet Orientation  
20  
版权 © 2019, Texas Instruments Incorporated  
 
DRV5057-Q1  
www.ti.com.cn  
ZHCSK51 AUGUST 2019  
9 Power Supply Recommendations  
Use a decoupling capacitor placed close to the device to provide local energy with minimal inductance. Use a  
ceramic capacitor with a value of at least 0.01 µF.  
10 Layout  
10.1 Layout Guidelines  
Magnetic fields pass through most nonferromagnetic materials with no significant disturbance. Embedding Hall  
effect sensors within plastic or aluminum enclosures and sensing magnets on the outside is common practice.  
Magnetic fields also easily pass through most printed-circuit boards, which makes placing the magnet on the  
opposite side possible.  
10.2 Layout Example  
VCC  
GND  
OUT  
26. Layout Example  
版权 © 2019, Texas Instruments Incorporated  
21  
DRV5057-Q1  
ZHCSK51 AUGUST 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)利用线性霍尔效应传感器测量角度技术手册  
德州仪器 (TI)增量旋转编码器设计注意事项技术手册  
德州仪器 (TI)DRV5055 比例式线性霍尔效应传感器数据表  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV5057A1EDBZRQ1  
DRV5057A2EDBZRQ1  
DRV5057A3EDBZRQ1  
DRV5057A4EDBZRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
57A1Z  
SN  
SN  
SN  
57A2Z  
57A3Z  
57A4Z  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Aug-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV5057A1EDBZRQ1 SOT-23  
DRV5057A2EDBZRQ1 SOT-23  
DRV5057A3EDBZRQ1 SOT-23  
DRV5057A4EDBZRQ1 SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
3.15  
3.15  
3.15  
3.15  
2.77  
2.77  
2.77  
2.77  
1.22  
1.22  
1.22  
1.22  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Aug-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV5057A1EDBZRQ1  
DRV5057A2EDBZRQ1  
DRV5057A3EDBZRQ1  
DRV5057A4EDBZRQ1  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3000  
3000  
3000  
3000  
213.0  
213.0  
213.0  
213.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBZ0003A  
SOT-23 - 1.12 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
2.64  
2.10  
1.12 MAX  
1.4  
1.2  
B
A
0.1 C  
PIN 1  
INDEX AREA  
1
0.95  
(0.125)  
3.04  
2.80  
1.9  
3
(0.15)  
NOTE 4  
2
0.5  
0.3  
3X  
0.10  
0.01  
(0.95)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.08  
TYP  
0.6  
0.2  
TYP  
SEATING PLANE  
0 -8 TYP  
4214838/D 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration TO-236, except minimum foot length.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X (0.95)  
2
(R0.05) TYP  
(2.1)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214838/D 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X(0.95)  
2
(R0.05) TYP  
(2.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214838/D 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY