DRV5057Z4QDBZT [TI]

DRV5057 Linear Hall Effect Sensor With PWM Output;
DRV5057Z4QDBZT
型号: DRV5057Z4QDBZT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DRV5057 Linear Hall Effect Sensor With PWM Output

文件: 总37页 (文件大小:1842K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DRV5057  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
DRV5057 Linear Hall Effect Sensor With PWM Output  
1 Features  
3 Description  
PWM-output linear Hall effect magnetic sensor  
The DRV5057 is a linear Hall effect sensor that  
responds proportionally to magnetic flux density. The  
device can be used for accurate position sensing in a  
wide range of applications.  
Operates from 3.3-V and 5-V power supplies  
2-kHz clock output with 50% quiescent duty cycle  
Magnetic sensitivity options (at VCC = 5 V):  
– A1/Z1: 2%D/mT, ±21-mT range  
– A2/Z2: 1%D/mT, ±42-mT range  
– A3/Z3: 0.5%D/mT, ±84-mT range  
– A4/Z4: 0.25%D/mT, ±168-mT range  
Open-drain output with 20-mA sink capability  
Compensation for magnet temperature drift for  
A1/A2/A3/A4 Versions and None for Z1/Z2/Z3/Z4  
Versions  
The device operates from 3.3-V or 5-V power  
supplies. When no magnetic field is present, the  
output produces a clock with a 50% duty cycle. The  
output duty cycle changes linearly with the applied  
magnetic flux density, and four sensitivity options  
maximize the output dynamic range based on the  
required sensing range. North and south magnetic  
poles produce unique outputs. The typical pulse-width  
modulation (PWM) carrier frequency is 2 kHz.  
Industry standard package:  
– Surface-mount SOT-23  
– Through-hole TO-92  
Magnetic flux perpendicular to the top of the package  
is sensed, and the two package options provide  
different sensing directions.  
2 Applications  
Because the PWM signal is based on edge-to-edge  
timing, signal integrity is maintained in the presence of  
voltage noise or ground potential mismatch. This  
signal is suitable for distance transmission in noisy  
environments, and the always-present clock allows  
the system controller to confirm there are good  
interconnects. Additionally, the device features  
magnet temperature compensation to counteract how  
magnets drift for linear performance across a wide –  
40°C to +125°C temperature range. Device options  
for no temperature compensation of magnet drift are  
also available.  
Precise position sensing  
Industrial automation and robotics  
Home appliances  
Gamepads, pedals, keyboards, triggers  
Height leveling, tilt and weight measurement  
Fluid flow rate measurement  
Medical devices  
Absolute angle encoding  
Current sensing  
Device Information  
PART NUMBER  
PACKAGE (1)  
BODY SIZE (NOM)  
2.92 mm × 1.30 mm  
4.00 mm × 3.15 mm  
SOT-23 (3)  
TO-92 (3)  
DRV5057  
(1) For all available packages, see the package option  
addendum at the end of the data sheet.  
PWM  
Output  
VCC  
VDD  
Duty Cycle  
DRV5057  
VCC  
Controller  
8%  
25%  
38%  
50%  
69%  
75%  
92%  
VOH  
VOL  
OUT  
GPIO  
GND  
Time  
North  
0 mT  
South  
Magnetic Field  
Typical Schematic  
Magnetic Response  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 3  
6.1 Absolute Maximum Ratings........................................ 3  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................4  
6.6 Magnetic Characteristics.............................................4  
6.7 Typical Characteristics................................................6  
7 Detailed Description......................................................10  
7.1 Overview...................................................................10  
7.2 Functional Block Diagram.........................................10  
7.3 Feature Description...................................................10  
7.4 Device Functional Modes..........................................13  
8 Application and Implementation..................................14  
8.1 Application Information............................................. 14  
8.2 Typical Applications.................................................. 15  
8.3 What to Do and What Not to Do............................... 22  
9 Power Supply Recommendations................................23  
10 Layout...........................................................................23  
10.1 Layout Guidelines................................................... 23  
10.2 Layout Examples ................................................... 23  
11 Device and Documentation Support..........................24  
11.1 Documentation Support.......................................... 24  
11.2 Receiving Notification of Documentation Updates..24  
11.3 Support Resources................................................. 24  
11.4 Trademarks............................................................. 24  
11.5 Electrostatic Discharge Caution..............................24  
11.6 Glossary..................................................................24  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 24  
4 Revision History  
Changes from Revision * (November 2018) to Revision A (August 2020)  
Page  
Updated the numbering format for tables, figures, and cross-references throughout the document..................1  
Added Zero TC sensitivity options .....................................................................................................................1  
Added Zero TC information to Section 6.6 ........................................................................................................ 4  
Fixed labels for some of the plots for graphs for DRV5057 A1/A2/A3/A4 devices and added Zero TC  
characteristics plots for DRV5057 Z1/Z2/Z3/Z4 devices in Section 6.7 .............................................................6  
Updated Section 7.3.4 section for Zero TC options..........................................................................................12  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DRV5057  
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
5 Pin Configuration and Functions  
VCC  
1
2
3
GND  
OUT  
Not to scale  
Figure 5-1. DBZ Package 3-Pin SOT-23 Top View  
1
2
3
VCC GND OUT  
Figure 5-2. LPG Package 3-Pin TO-92 Top View  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME SOT-23  
TO-92  
GND  
OUT  
VCC  
3
2
1
2
3
1
Ground Ground reference  
Output Analog output  
Power Power supply. Connect this pin to a ceramic capacitor to ground with a value of at least 0.01 µF.  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX UNIT  
VCC  
Power supply voltage  
Output voltage  
VCC  
7
6
V
V
OUT  
OUT  
Output current  
30  
mA  
T
B
Magnetic flux density  
Operating junction temperature  
Storage temperature  
Unlimited  
–40  
TJ  
150  
150  
°C  
°C  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DRV5057  
 
 
 
 
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
6.2 ESD Ratings  
VALUE  
±3000  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
3.63  
UNIT  
3
VCC  
Power-supply voltage(1)  
V
4.5  
0
5.5  
5.5  
20  
VO  
IO  
Output pullup voltage  
V
Output continuous current  
Operating ambient temperature(2)  
0
mA  
°C  
TA  
–40  
125  
(1) There are two isolated operating VCC ranges. For more information see the Section 7.3.3 section.  
(2) Power dissipation and thermal limits must be observed.  
6.4 Thermal Information  
DRV5057  
THERMAL METRIC(1)  
SOT-23 (DBZ)  
TO-92 (LPG)  
UNIT  
3 PINS  
170  
66  
3 PINS  
121  
67  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ΨJT  
ΨJB  
Junction-to-board thermal resistance  
49  
97  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.7  
7.6  
48  
97  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
for VCC = 3 V to 3.63 V and 4.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mA  
ms  
ICC  
tON  
fPWM  
DJ  
Operating supply current  
Power-on time (see Figure 7-4)(2)  
PWM carrier frequency  
6
10  
B(1) = 0 mT, no load on OUT  
0.6  
2.0  
±0.1  
0.9  
2.2  
1.8  
kHz  
%D(1)  
nA  
Duty cycle peak-to-peak jitter  
From change in B to change in OUT  
IOZ  
High-impedance output leakage current VCC = 5 V  
Low-level output voltage IOUT = 20 mA  
100  
0.4  
VOL  
0.15  
V
(1) This unit is a percentage of duty cycle.  
(2) tON is the time from when VCC goes above 3 V until the first rising edge of the first valid pulse.  
6.6 Magnetic Characteristics  
for VCC = 3 V to 3.63 V and 4.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DL  
Linear duty cycle range  
8
92 %D(1)  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DRV5057  
 
 
 
 
 
 
 
 
 
 
 
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
for VCC = 3 V to 3.63 V and 4.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Clamped-low duty cycle  
Clamped-high duty cycle  
Quiescent duty cycle(2)  
TEST CONDITIONS  
B(1) < –250 mT  
MIN  
TYP  
MAX UNIT  
DCL  
DCH  
DQ  
5.3  
6
6.7  
%D  
94.7  
B > 250 mT  
93.3  
46  
94  
50  
B = 0 mT, TA = 25°C, VCC = 3.3 V or 5 V  
54  
%D  
%
High-temperature operating stress for  
1000 hours  
VQΔL Quiescent duty cycle lifetime drift  
< 0.5  
DRV5057A1/Z1  
1.88  
0.94  
0.47  
0.23  
1.13  
0.56  
0.28  
0.138  
2
1
2.12  
1.06  
0.53  
0.27  
1.27  
0.64  
0.32  
0.162  
DRV5057A2/Z2  
DRV5057A3/Z3  
DRV5057A4/Z4  
DRV5057A1/Z1  
DRV5057A2/Z2  
DRV5057A3/Z3  
DRV5057A4/Z4  
DRV5057A1/Z1  
DRV5057A2/Z2  
DRV5057A3/Z3  
DRV5057A4/Z4  
VCC = 5 V,  
TA = 25°C  
0.5  
0.25  
1.2  
S
Sensitivity(5)  
%D/mT  
0.6  
VCC = 3.3 V,  
TA = 25°C  
0.3  
0.15  
±21  
±42  
±84  
±168  
Linear magnetic flux density sensing  
range(2) (3) (5)  
VCC = 5 V,  
TA = 25°C  
BL  
mT  
Sensitivity temperature compensation DRV5057A1, DRV5057A2, DRV5057A3,  
for magnets(4)  
DRV5057A4  
STC  
0.12  
%/°C  
Sensitivity temperature compensation DRV5057Z1, DRV5057Z2, DRV5057Z3,  
STCz  
SLE  
0
±1  
±1  
%/°C  
%
for magnets(4) (5)  
DRV5057Z4  
Sensitivity linearity error(2)  
Output duty cycle is within DL  
Sensitivity error over operating VCC  
range  
RSE  
Output duty cycle is within DL  
%
Quiescent error over operating VCC  
range  
SΔL  
< 0.5  
%
(1) B is the applied magnetic flux density.  
(2) See the Section 7.3.2 section.  
(3) BL describes the minimum linear sensing range at 25°C taking into account the maximum VQ and sensitivity tolerances.  
(4) STC describes the rate the device increases Sensitivity with temperature. For more information, see the Section 7.3.4 section and  
Figure 6-7 to Figure 6-20.  
(5) Product Preview data only for DRV5055Z1 - DRV5055Z4 device options.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DRV5057  
 
 
 
 
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
6.7 Typical Characteristics  
for TA = 25°C (unless otherwise noted)  
2.2  
2
2.2  
2
5057Z1  
5057Z2  
5057Z3  
5057Z4  
5057A1  
5057A2  
5057A3  
5057A4  
1.8  
1.6  
1.4  
1.2  
1
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5  
Supply (V)  
4.5 4.6 4.7 4.8 4.9  
5
Supply (V)  
5.1 5.2 5.3 5.4 5.5  
D010  
VCC = 5.0 V  
VCC = 5.0 V  
Figure 6-2. Sensitivity vs Supply Voltage  
Figure 6-1. Sensitivity vs Supply Voltage  
1.3  
1.2  
1.3  
1.2  
1.1  
1
1.1  
5057Z1  
5057Z2  
5057Z3  
5057Z4  
5057A1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
5057A2  
5057A3  
5057A4  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
3
3.1  
3.2  
3.3  
Supply (V)  
3.4  
3.5  
3.6  
3
3.1  
3.2  
3.3  
Supply (V)  
3.4  
3.5  
3.6  
D011  
VCC = 3.3 V  
VCC = 3.3 V  
Figure 6-4. Sensitivity vs Supply Voltage  
Figure 6-3. Sensitivity vs Supply Voltage  
10  
10  
VCC = 3.3 V  
VCC = 5.0 V  
VCC = 3.3 V  
VCC = 5.0 V  
9
9
8
7
6
5
4
3
2
1
8
7
6
5
4
3
2
1
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D022  
DRV5057Z1/Z2/Z3/Z4  
DRV5057A1/A2/A3/A4  
Figure 6-6. Supply Current vs Temperature  
Figure 6-5. Supply Current vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DRV5057  
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
2.5  
2.25  
2
2.5  
2.25  
2
+3STD  
AVG  
-3STD  
1.75  
1.5  
1.25  
1
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0.75  
0.5  
0.25  
0
+3STD  
AVG  
-3STD  
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
DRV5057A1, VCC = 5.0 V  
DRV5057A1, VCC = 3.3 V  
Figure 6-7. Sensitivity vs Temperature  
Figure 6-8. Sensitivity vs Temperature  
2.5  
2.5  
2.25  
2
2.25  
2
1.75  
1.5  
1.25  
1
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0.75  
0.5  
0.25  
0
+3STD  
AVG  
-3STD  
+3STD  
AVG  
-3STD  
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
DRV5057Z1, VCC = 5.0 V  
DRV5057Z1, VCC = 3.3 V  
Figure 6-9. Sensitivity vs Temperature  
Figure 6-10. Sensitivity vs Temperature  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
+3STD  
AVG  
-3STD  
+3STD  
AVG  
-3STD  
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
DRV5057A2, VCC = 5.0 V  
DRV5057A2, VCC = 3.3 V  
Figure 6-11. Sensitivity vs Temperature  
Figure 6-12. Sensitivity vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DRV5057  
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.5  
1.4  
1.3  
1.2  
1.1  
1
+3STD  
AVG  
-3STD  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
+3STD  
AVG  
-3STD  
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
DRV5057Z2, VCC = 5.0 V  
DRV5057Z2, VCC = 3.3 V  
Figure 6-13. Sensitivity vs Temperature  
Figure 6-14. Sensitivity vs Temperature  
1
1
+3STD  
AVG  
-3STD  
+3STD  
AVG  
-3STD  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
DRV5057A3, VCC = 5.0 V  
DRV5057A3, VCC = 3.3 V  
Figure 6-15. Sensitivity vs Temperature  
Figure 6-16. Sensitivity vs Temperature  
1
1
+3STD  
AVG  
-3STD  
+3STD  
AVG  
-3STD  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
DRV5057Z3, VCC = 5.0 V  
DRV5057Z3, VCC = 3.3 V  
Figure 6-17. Sensitivity vs Temperature  
Figure 6-18. Sensitivity vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DRV5057  
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
0.5  
0.45  
0.4  
0.5  
0.45  
0.4  
+3STD  
AVG  
-3STD  
+3STD  
AVG  
-3STD  
0.35  
0.3  
0.35  
0.3  
0.25  
0.2  
0.25  
0.2  
0.15  
0.1  
0.15  
0.1  
0.05  
0
0.05  
0
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
DRV5057A4, VCC = 5.0 V  
DRV5057A4, VCC = 3.3 V  
Figure 6-19. Sensitivity vs Temperature  
Figure 6-20. Sensitivity vs Temperature  
0.5  
0.5  
+3STD  
AVG  
-3STD  
+3STD  
AVG  
-3STD  
0.45  
0.4  
0.45  
0.4  
0.35  
0.3  
0.35  
0.3  
0.25  
0.2  
0.25  
0.2  
0.15  
0.1  
0.15  
0.1  
0.05  
0
0.05  
0
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
DRV5057Z4, VCC = 5.0 V  
DRV5057Z4, VCC = 3.3 V  
Figure 6-21. Sensitivity vs Temperature  
Figure 6-22. Sensitivity vs Temperature  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DRV5057  
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
7 Detailed Description  
7.1 Overview  
The DRV5057 is a 3-pin pulse-width modulation (PWM) output Hall effect sensor with fully integrated signal  
conditioning, temperature compensation circuits, mechanical stress cancellation, and amplifiers. The device  
operates from 3.3-V and 5-V (±10%) power supplies, measures magnetic flux density, and outputs a pulse-width  
modulated, 2-kHz digital signal.  
7.2 Functional Block Diagram  
VCC  
Element Bias  
Bandgap  
Reference  
0 F  
Offset Cancellation  
GND  
Trim Registers  
Temperature  
Compensation  
VCC  
OUT  
Precision  
PWM Driver  
Amplifier  
7.3 Feature Description  
7.3.1 Magnetic Flux Direction  
As shown in Figure 7-1, the DRV5057 is sensitive to the magnetic field component that is perpendicular to the  
top of the package.  
TO-92  
B
B
SOT-23  
PCB  
Figure 7-1. Direction of Sensitivity  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DRV5057  
 
 
 
 
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
Magnetic flux that travels from the bottom to the top of the package is considered positive in this document. This  
condition exists when a south magnetic pole is near the top (marked-side) of the package. Magnetic flux that  
travels from the top to the bottom of the package results in negative millitesla values. Figure 7-2 shows flux  
direction.  
N
S
S
N
PCB  
PCB  
Figure 7-2. Flux Direction for Positive B  
7.3.2 Sensitivity Linearity  
The device produces a pulse-width modulated digital signal output. As shown in Figure 7-3, the duty-cycle of the  
PWM output signal is proportional to the magnetic field detected by the Hall element of the device. If there is no  
magnetic field present, the duty cycle is 50%. The DRV5057 can detect both magnetic north and south poles.  
The output duty cycle maintains a linear relationship with the input magnetic field from 8% to 92%.  
PWM  
Output  
Duty Cycle  
8%  
25%  
38%  
50%  
69%  
75%  
92%  
VOH  
VOL  
Time  
North  
0 mT  
South  
Magnetic Field  
Figure 7-3. Magnetic Response  
7.3.3 Operating VCC Ranges  
The DRV5057 has two recommended operating VCC ranges: 3 V to 3.63 V and 4.5 V to 5.5 V. When VCC is in  
the middle region between 3.63 V to 4.5 V, the device continues to function but sensitivity is less known because  
there is a crossover threshold near 4 V that adjusts device characteristics.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DRV5057  
 
 
 
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
7.3.4 Sensitivity Temperature Compensation for Magnets  
Magnets generally produce weaker fields as temperature increases. The DRV5057A1 - DRV5057A4 device  
options have a temperature compensation feature that is designed to directly compensate the average drift of  
neodymium (NdFeB) magnets and partially compensate ferrite magnets. The residual induction (Br) of a magnet  
typically reduces by 0.12%/°C for NdFeB, and 0.20%/°C for ferrite. When the operating temperature of a system  
is reduced, temperature drift errors are also reduced. The DRV5057Z1 - DRV5057Z4 devices options do not  
compensate for the drift external magnets  
7.3.5 Power-On Time  
After the VCC voltage is applied, the DRV5057 requires a short initialization time before the output is set. The  
parameter tON describes the time from when VCC crosses 3 V until OUT is within 5% of VQ, with 0 mT applied  
and no load attached to OUT. Figure 7-4 shows this timing diagram.  
VCC  
3 V  
tON  
time  
Output  
95% × VQ  
Invalid  
time  
Figure 7-4. tON Definition  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DRV5057  
 
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
7.3.6 Hall Element Location  
Figure 7-5 shows the location of the sensing element inside each package option.  
SOT-23  
Top View  
SOT-23  
Side View  
centered  
50 µm  
650 µm  
80 µm  
TO-92  
Top View  
2 mm  
2 mm  
TO-92  
Side View  
1.54 mm  
1.61 mm  
50 µm  
1030 µm  
115 µm  
Figure 7-5. Hall Element Location  
7.4 Device Functional Modes  
The DRV5057 has one mode of operation that applies when the Recommended Operating Conditions are met.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DRV5057  
 
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Selecting the Sensitivity Option  
Select the highest DRV5057 sensitivity option that can measure the required range of magnetic flux density so  
that the output voltage swing is maximized.  
Larger-sized magnets and farther sensing distances can generally enable better positional accuracy than very  
small magnets at close distances, because magnetic flux density increases exponentially with the proximity to a  
magnet. TI created an online tool to help with simple magnet calculations on the DRV5057 product folder.  
8.1.2 Decoding a PWM  
A PWM output helps system designers drive signals for long distances in noisy environments, with the ability to  
retrieve the signal accurately. A decoder is employed at the load to retrieve the analog magnetic signal. Two  
different methods of decoding are discussed in this section.  
8.1.2.1 Decoding a PWM (Digital)  
8.1.2.1.1 Capture and Compare Timer Interrupt  
Many microcontrollers have a capture and compare timer mode that can simplify the PWM decoding process.  
Use the timer in capture and compare mode with an interrupt that triggers on both the rising and falling edges of  
the signal to obtain both the relative high (on) and low (off) time of the PWM. Make sure that the timer period is  
significantly faster than the period of the PWM, based on the desired resolution. Calculate the percent duty cycle  
(%D) of the PWM with Equation 1 by using the relative on and off time of the signal.  
OnTime  
%D =  
ì 100  
OnTime + OffTime  
8.1.2.1.2 Oversampling and Counting With a Timer Interrupt  
(1)  
If a capture and compare timer is not available, a standard timer interrupt and a counter can be used. Configure  
the timer interrupt to be significantly faster than the period of the PWM, based on the desired resolution. Count  
how many times the timer interrupts while the signal is high (OnTime), then count how many times the timer  
interrupts while the signal is low (OffTime). Then use Equation 1 to calculate the duty cycle.  
8.1.2.1.3 Accuracy and Resolution  
The accuracy and resolution for the methods described in the Section 8.1.2.1.1 and Section 8.1.2.1.2 sections  
depends significantly on the timer sampling frequency. Equation 2 calculates the least significant bit of the duty  
cycle (%DLSB) based on the chosen timer sampling frequency.  
PWMfrequency  
%DLSB  
=
ì 100  
TIMER frequency  
(2)  
For example, with a 2-kHz PWM and a 400-kHz sampling frequency, the %DLSB is:  
(2 kHz / 400 kHz) × 100 = 0.5%DLSB  
If the sampling frequency in increased to 2-MHz, the %DLSB is improved to be:  
(2 MHz / 400 kHz) × 100 = 0.1%DLSB  
However, accuracy and resolution are still subject to noise and sensitivity.  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DRV5057  
 
 
 
 
 
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
8.1.2.2 Decoding a PWM (Analog)  
If an analog signal is needed at the end of a large travel distance, first use a microcontroller to digitally decode  
the PWM, then use a DAC to produce the analog signal. If an analog signal is needed after a short signal travel  
distance, use an analog output device, such as the DRV5055.  
If an analog signal is needed at the end of a large travel distance and a microcontroller is unavailable, use a low-  
pass filter to convert the PWM signal into an analog voltage, as shown in Figure 8-1. When using this method,  
note the following:  
A ripple appears at the analog voltage output, causing a decrease in accuracy. The ripple intensity and  
frequency depend on the values chosen for R and C in the filter.  
The minimum and maximum voltages of the PWM must be known to calculate the magnetic field strength  
from the analog voltage. Thus, if the signal is traveling a large distance, then the minimum and maximum  
values must be either measured or buffered back to a known value.  
PWM Signal  
Analog Signal  
R
C
Figure 8-1. Low-Pass RC Filter  
8.2 Typical Applications  
The DRV557-Q1 is a very robust linear position sensor for applications such as throttle positions, brakes, and  
clutch pedals. In linear position applications, depending on the mechanical placement and design limitations, two  
common types of magnet orientations are selected: full-swing and half-swing.  
8.2.1 Full-Swing Orientation Example  
In the full-swing orientation, a magnet travels in parallel to the DRV5057-Q1 surface. In this case, the magnetic  
range extends from south polarity to north polarity, and allows the DRV5057-Q1 to use the full linear magnetic  
flux density sensing range.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DRV5057  
 
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
S
N
Figure 8-2. Full-Swing Orientation Example  
8.2.1.1 Design Requirements  
Use the parameters listed in Table 8-1 for this design example.  
Table 8-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
DRV5057  
5 V  
Device  
VCC  
Cylinder: 4.7625-mm diameter, 12.7-mm thick,  
neodymium N52, Br = 1480 mT  
Magnet  
Travel distance  
10 mm  
Desired accuracy  
< 0.1 mm  
8.2.1.2 Detailed Design Procedure  
Linear Hall effect sensors provide flexibility in mechanical design because many possible magnet orientations  
and movements produce a usable response from the sensor. Figure 8-2 illustrates one of the most common  
orientations that uses the full north to south range of the sensor and causes a close-to-linear change in magnetic  
flux density as the magnet moves across the sensor. Figure 8-3 illustrates the close-to-linear change in magnetic  
field present at the sensor as the magnet moves a given distance across the sensor. The usable linear region is  
close to but less than the length (thickness) of the magnet.  
When designing a linear magnetic sensing system, always consider these three variables: the magnet, sensing  
distance, and the range of the sensor. Select the DRV5057 with the highest sensitivity possible based on the  
system distance requirements without railing the sensor PWM output. To determine the magnetic flux density the  
sensor receives at the various positions of the magnet, use a magnetic field calculator or simulation software,  
referring to magnet specifications, and testing.  
Determine if the desired accuracy is met by comparing the maximum allowed duty cycle least significant bit  
(%DLSBmax) with the noise level (PWM jitter) of the device. Equation 3 calculates the %DLSBmax by taking into  
account the used length of the linear region (travel distance), the desired resolution, and the output PWM swing  
(within the linear duty cycle range).  
%D swing  
%DLSBmax  
=
ì Resolution  
Travel Distance  
(3)  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DRV5057  
 
 
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
Thus, with this example (and a linear duty cycle range of 8%D to 92%D), using Equation 3 gives (92 – 8) / (10) ×  
0.1 = 0.84%DLSBmax. This value is larger than the 0.1%D jitter, and therefore the desired accuracy can be  
achieved by using Equation 2 to select a %DLSB that is equal to or less than 0.84. Then, simply calibrate the  
magnet position to align the sensor output along the movement path.  
8.2.1.3 Application Curve  
Figure 8-3 shows the magnetic field present at the sensor as the magnet passes by as described in Figure 8-2.  
The change in distance from the trough to the peak is approximately the length (thickness) of the magnet. B  
changes based on the strength of the magnet and how close the magnet is to the sensor.  
5
-9  
9
D015  
Distance  
Figure 8-3. Magnetic Field vs Distance  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DRV5057  
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
8.2.2 Half-Swing Orientation Example  
In the half-swing orientation, a magnet travels perpendicular to the DRV5057-Q1 surface. In this case, the  
magnetic range extends only to either the south or north pole, using only half of the DRV5057-Q1 linear  
magnetic flux density sensing range.  
Mechanical Component  
S
PCB  
Figure 8-4. Half-Swing Orientation Example  
8.2.2.1 Design Requirements  
Use the parameters listed in Table 8-2 for this design example.  
Table 8-2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
DRV5057  
5 V  
Device  
VCC  
Cylinder: 4.7625 mm diameter, 12.7 mm thick,  
Neodymium N52, Br = 1480 mT  
Magnet  
Travel distance  
5 mm  
Desired accuracy  
< 0.1 mm  
8.2.2.2 Detailed Design Procedure  
As illustrated in Figure 8-4, this design example consists of a mechanical component that moves back and forth,  
an embedded magnet with the south pole facing the printed-circuit board, and a DRV5057. The DRV5057  
outputs a PWM that describes the precise position of the component. The component must not contain  
ferromagnetic materials such as iron, nickel, and cobalt because these materials change the magnetic flux  
density at the sensor.  
When designing a linear magnetic sensing system, always consider these three variables: the magnet, sensing  
distance, and the range of the sensor. Select the DRV5057 with the highest sensitivity possible based on the  
system distance requirements without railing the sensor PWM output. To determine the magnetic flux density the  
sensor receives at the various positions of the magnet, use a magnetic field calculator or simulation software,  
referring to magnet specifications, and testing.  
Magnets are made from various ferromagnetic materials that have tradeoffs in cost, drift with temperature,  
absolute maximum temperature ratings, remanence or residual induction (Br), and coercivity (Hc). The Br and the  
dimensions of a magnet determine the magnetic flux density (B) produced in 3-dimensional space. For simple  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DRV5057  
 
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
magnet shapes, such as rectangular blocks and cylinders, there are simple equations that solve B at a given  
distance centered with the magnet. Figure 8-5 shows diagrams for Equation 4 and Equation 5.  
Thickness  
Thickness  
Width  
Distance  
Distance  
Diameter  
S
N
Length  
S
N
B
B
Figure 8-5. Rectangular Block and Cylinder Magnets  
Use Equation 4 for the rectangular block shown in Figure 8-5:  
Br  
Œ ( (  
WL  
2D 4D2 + W2 + L2  
WL  
2(D + T) 4(D + T)2 + W2 + L2  
B =  
arctan  
œ arctan  
) (  
))  
(4)  
(5)  
Use Equation 5 for the cylinder illustrated in Figure 8-5:  
Br  
2
D + T  
(0.5C)2 + (D + T)2  
D
B =  
œ
(
)
(0.5C)2 + D2  
where:  
W is width  
L is length  
T is thickness (the direction of magnetization)  
D is distance  
C is diameter  
This example uses a cylinder magnet; therefore, Equation 5 can be used to create a lookup table for the  
distances from a specific magnet based on a magnetic field strength. Figure 8-6 shows a magnetic field from 0  
mm to 16 mm with the magnet defined in Table 8-2 as C = 4.7625 mm, T = 12.7 mm, and Br = 1480 mT.  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
1
2
3
4
5
6
7
Distance (mm)  
8
9
10 11 12 13 14 15 16  
D009  
Figure 8-6. Magnetic Field vs Distance  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DRV5057  
 
 
 
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
In this setup, each gain version of the sensor produces the corresponding duty cycle shown in Figure 8-7 for  
0 mm to 16 mm.  
100  
DRV5057A1  
DRV5057A2  
95  
DRV5057A3  
DRV5057A4  
90  
85  
80  
75  
70  
65  
60  
55  
50  
0
1
2
3
4
5
6
7
Distance (mm)  
8
9
10 11 12 13 14 15 16  
D008  
Figure 8-7. %D vs South Pole Distance (All Gains)  
With a desired 5-mm movement swing, select the DRV5057 with the largest possible sensitivity that fits the  
system requirements for the magnet distance to the sensor. Assume that for this example, because of  
mechanical restrictions, the magnet at the nearest point to the sensor must be selected to be within 5 mm to  
8 mm. The largest sensitivity option (A1) does not work in this situation because the device output is railed at the  
farthest allowed distance of 8 mm. The A2 version is not railed at this point, and is therefore the sensor selected  
for this example. Choose the closest point of the magnet to the sensor to be a distance that allows the magnet to  
get as close to the sensor as possible without railing but stays within the selectable 5-mm to 8-mm allowed  
range. Because the A2 version rails at approximately 6 mm, choose a closest distance of 6.5 mm to allow for a  
little bit of margin. With this choice, Figure 8-8 shows the %D response at the sensor across the full movement  
range.  
100  
DRV5057A2  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
6.5  
7
7.5  
8
8.5  
Distance (mm)  
9
9.5 10 10.5 11 11.5  
D007  
Figure 8-8. %D vs South Pole Distance (Gain A2)  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DRV5057  
 
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
The magnetic field strength is calculated using Equation 6, where a negative number represents the opposite  
pole (in this example a south pole is over the sensor, causing the results to be a positive number).  
%D - 50  
(
)
B =  
Gain  
(6)  
For example, if the A2 version of the DRV5057 measured a duty cycle of %D = 74.6% using Equation 1, then the  
magnetic field strength present at the sensor is (74.6 – 50) / 1 = 24.6 mT.  
Using the lookup table that was used to create the plot in Figure 8-6, the distance from the magnet at 24.6 mT is  
D ≈ 8.2 mm.  
For more accurate results, the lookup table can be calibrated along the movement path of the magnet.  
Additionally, instead of using the calibrated lookup table for each measurement, consider using a best-fit  
polynomial equation from the curve for the desired movement range to calculate D in terms of B.  
The curve in Figure 8-8 is not linear; therefore, the achievable accuracy varies for each position along the  
movement path. The location with the worst accuracy is where there is the smallest change in output for a given  
amount of movement, which in this example is where the magnet is farthest from the sensor (at 11.5 mm).  
Determine if the desired accuracy is met by checking if the needed %DLSB at this location for the specified  
accuracy is greater than the noise level (PWM jitter) of 0.1%D. Thus, with a desired accuracy of 0.1 mm, the  
needed %DLSB is the change in %D between 11.4 mm and 11.5 mm. Using the lookup table to find B and then  
solving for %D in Equation 6, at 11.5 mm, B = 11.815 mT (which equates to 61.815%D), and at 11.4 mm B =  
12.048 mT (which equates to 62.048%D). The difference in %D between these two points is 62.048 – 61.815 =  
0.223%DLSB. This value is larger than the 0.1%D jitter, so the desired accuracy can be met as long as a %DLSB  
is selected that is equal to or less than 0.223 using Equation 2.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DRV5057  
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
8.3 What to Do and What Not to Do  
The Hall element is sensitive to magnetic fields that are perpendicular to the top of the package. Therefore, to  
correctly detect the magnetic field, make sure to use the correct magnet orientation for the sensor. Figure 8-9  
shows correct and incorrect orientation.  
CORRECT  
N
S
S
N
N
S
INCORRECT  
N
S
Figure 8-9. Correct and Incorrect Magnet Orientation  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DRV5057  
 
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
9 Power Supply Recommendations  
Use a decoupling capacitor placed close to the device to provide local energy with minimal inductance. Use a  
ceramic capacitor with a value of at least 0.01 µF.  
10 Layout  
10.1 Layout Guidelines  
Magnetic fields pass through most nonferromagnetic materials with no significant disturbance. Embedding Hall  
effect sensors within plastic or aluminum enclosures and sensing magnets on the outside is common practice.  
Magnetic fields also easily pass through most printed-circuit boards, which makes placing the magnet on the  
opposite side possible.  
10.2 Layout Examples  
VCC  
GND  
VCC  
GND  
OUT  
OUT  
Figure 10-1. Layout Examples  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DRV5057  
 
 
 
 
DRV5057  
www.ti.com  
SBAS646A – NOVEMBER 2018 – REVISED AUGUST 2020  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Using Linear Hall Effect Sensors to Measure Angle tech note  
Texas Instruments, Incremental Rotary Encoder Design Considerations tech note  
Texas Instruments, DRV5055 Ratiometric Linear Hall Effect Sensor data sheet  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DRV5057  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Aug-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
DBZ  
DBZ  
LPG  
LPG  
DBZ  
DBZ  
LPG  
LPG  
DBZ  
DBZ  
LPG  
LPG  
DBZ  
DBZ  
LPG  
LPG  
Qty  
3000  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV5057A1QDBZR  
DRV5057A1QDBZT  
DRV5057A1QLPG  
DRV5057A1QLPGM  
DRV5057A2QDBZR  
DRV5057A2QDBZT  
DRV5057A2QLPG  
DRV5057A2QLPGM  
DRV5057A3QDBZR  
DRV5057A3QDBZT  
DRV5057A3QLPG  
DRV5057A3QLPGM  
DRV5057A4QDBZR  
DRV5057A4QDBZT  
DRV5057A4QLPG  
DRV5057A4QLPGM  
ACTIVE  
SOT-23  
SOT-23  
TO-92  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Green (RoHS  
& no Sb/Br)  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
N / A for Pkg Type  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
57A1  
57A1  
57A1  
57A1  
57A2  
57A2  
57A2  
57A2  
57A3  
57A3  
57A3  
57A3  
57A4  
57A4  
57A4  
57A4  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
1000  
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
TO-92  
Green (RoHS  
& no Sb/Br)  
N / A for Pkg Type  
SOT-23  
SOT-23  
TO-92  
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
N / A for Pkg Type  
Green (RoHS  
& no Sb/Br)  
1000  
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
TO-92  
Green (RoHS  
& no Sb/Br)  
N / A for Pkg Type  
SOT-23  
SOT-23  
TO-92  
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
N / A for Pkg Type  
Green (RoHS  
& no Sb/Br)  
1000  
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
TO-92  
Green (RoHS  
& no Sb/Br)  
N / A for Pkg Type  
SOT-23  
SOT-23  
TO-92  
Green (RoHS  
& no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
N / A for Pkg Type  
Green (RoHS  
& no Sb/Br)  
1000  
3000  
Green (RoHS  
& no Sb/Br)  
TO-92  
Green (RoHS  
& no Sb/Br)  
N / A for Pkg Type  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Aug-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
3000  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV5057Z1QDBZR  
DRV5057Z1QDBZT  
DRV5057Z2QDBZR  
DRV5057Z2QDBZT  
DRV5057Z3QDBZR  
DRV5057Z3QDBZT  
DRV5057Z4QDBZR  
DRV5057Z4QDBZT  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
3
3
3
3
3
3
3
3
Green (RoHS  
& no Sb/Br)  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
57Z1  
57Z1  
57Z2  
57Z2  
57Z3  
57Z3  
57Z4  
57Z4  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DBZ  
Green (RoHS  
& no Sb/Br)  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
DBZ  
3000  
250  
Green (RoHS  
& no Sb/Br)  
DBZ  
Green (RoHS  
& no Sb/Br)  
DBZ  
3000  
250  
Green (RoHS  
& no Sb/Br)  
DBZ  
Green (RoHS  
& no Sb/Br)  
DBZ  
3000  
250  
Green (RoHS  
& no Sb/Br)  
DBZ  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Aug-2020  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF DRV5057 :  
Automotive: DRV5057-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Aug-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV5057A1QDBZR  
DRV5057A1QDBZT  
DRV5057A2QDBZR  
DRV5057A2QDBZT  
DRV5057A3QDBZR  
DRV5057A3QDBZT  
DRV5057A4QDBZR  
DRV5057A4QDBZT  
DRV5057Z1QDBZR  
DRV5057Z1QDBZT  
DRV5057Z2QDBZR  
DRV5057Z2QDBZT  
DRV5057Z3QDBZR  
DRV5057Z3QDBZT  
DRV5057Z4QDBZR  
DRV5057Z4QDBZT  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
2.77  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
1.22  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Aug-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV5057A1QDBZR  
DRV5057A1QDBZT  
DRV5057A2QDBZR  
DRV5057A2QDBZT  
DRV5057A3QDBZR  
DRV5057A3QDBZT  
DRV5057A4QDBZR  
DRV5057A4QDBZT  
DRV5057Z1QDBZR  
DRV5057Z1QDBZT  
DRV5057Z2QDBZR  
DRV5057Z2QDBZT  
DRV5057Z3QDBZR  
DRV5057Z3QDBZT  
DRV5057Z4QDBZR  
DRV5057Z4QDBZT  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
DBZ  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3000  
250  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
LPG0003A  
TO-92 - 5.05 mm max height  
S
C
A
L
E
1
.
3
0
0
TRANSISTOR OUTLINE  
4.1  
3.9  
3.25  
3.05  
0.55  
0.40  
3X  
5.05  
MAX  
3
1
3X (0.8)  
3X  
15.5  
15.1  
0.48  
0.35  
0.51  
0.36  
3X  
3X  
2X 1.27 0.05  
2.64  
2.44  
2.68  
2.28  
1.62  
1.42  
2X (45 )  
1
3
2
0.86  
0.66  
(0.5425)  
4221343/C 01/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
LPG0003A  
TO-92 - 5.05 mm max height  
TRANSISTOR OUTLINE  
FULL R  
TYP  
0.05 MAX  
ALL AROUND  
TYP  
(1.07)  
METAL  
TYP  
3X ( 0.75) VIA  
2X  
METAL  
(1.7)  
2X (1.7)  
2X  
SOLDER MASK  
OPENING  
2
3
1
2X (1.07)  
(R0.05) TYP  
(1.27)  
SOLDER MASK  
OPENING  
(2.54)  
LAND PATTERN EXAMPLE  
NON-SOLDER MASK DEFINED  
SCALE:20X  
4221343/C 01/2018  
www.ti.com  
TAPE SPECIFICATIONS  
LPG0003A  
TO-92 - 5.05 mm max height  
TRANSISTOR OUTLINE  
0
1
13.0  
12.4  
0
1
1 MAX  
21  
18  
2.5 MIN  
6.5  
5.5  
9.5  
8.5  
0.25  
0.15  
19.0  
17.5  
3.8-4.2 TYP  
0.45  
0.35  
6.55  
6.15  
12.9  
12.5  
4221343/C 01/2018  
www.ti.com  
4203227/C  
PACKAGE OUTLINE  
DBZ0003A  
SOT-23 - 1.12 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
2.64  
2.10  
1.12 MAX  
1.4  
1.2  
B
A
0.1 C  
PIN 1  
INDEX AREA  
1
0.95  
3.04  
2.80  
1.9  
3
2
0.5  
0.3  
3X  
0.10  
0.01  
(0.95)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.08  
TYP  
0.6  
0.2  
TYP  
SEATING PLANE  
0 -8 TYP  
4214838/C 04/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration TO-236, except minimum foot length.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X (0.95)  
2
(R0.05) TYP  
(2.1)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214838/C 04/2017  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBZ0003A  
SOT-23 - 1.12 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
3X (1.3)  
1
3X (0.6)  
SYMM  
3
2X(0.95)  
2
(R0.05) TYP  
(2.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214838/C 04/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY