DRV8304 [TI]

具有电流分流放大器的 40V(最大值)三相智能栅极驱动器;
DRV8304
型号: DRV8304
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电流分流放大器的 40V(最大值)三相智能栅极驱动器

放大器 栅极驱动 驱动器
文件: 总66页 (文件大小:2660K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
DRV8304 38V 三相智能栅极驱动器  
1 特性  
3 说明  
1
6V 38V、三个半桥栅极驱动器,集成了 3 个电  
流检测放大器 (CSA)  
DRV8304 器件是一款集成式栅极驱动器,适用于需要  
12V 24V 直流电源轨的三相无刷直流 (BLDC) 电机  
应用 。这些 应用 包括 BLDC 电机的场定向控制  
(FOC)、正弦电流控制和梯形电流控制。该器件集成了  
三个电流检测放大器 (CSA),可感测 BLDC 电机的相  
电流,从而获得最佳的 FOC 和电流控制系统实现方  
案。AUTOCAL 功能可以自动校准 CSA 失调误差,因  
此可实现精确的电流检测。  
40V 绝对最大额定值  
针对 12V 24V 直流电源轨进行了全面优化  
驱动高侧和低侧 N 沟道 MOSFET  
支持 100% PWM 占空比  
智能栅极驱动架构  
通过可调压摆率控制实现更出色的 EMI EMC  
性能  
该器件基于智能栅极驱动 (SGD) 架构,因此无需任何  
外部栅极组件(电阻器和齐纳二极管),同时为外部  
FET 提供全面保护。SGD 架构可优化死区时间以避免  
出现任何击穿问题,在通过栅极压摆率控制技术降低电  
磁干扰 (EMI) 方面带来了灵活性,并可通过 VGS 握手  
和死区插入方法防止任何栅极短路问题。强下拉电流还  
可防止任何 dv/dt 栅极导通。  
通过 VGS 握手和最小死区时间插入方法避免击  
穿
15mA 150mA 峰值拉电流  
30mA 300mA 峰值灌电流  
6x3x1x 和独立 PWM 模式  
支持 120º 传感器式运行模式  
集成栅极驱动器电源  
该器件支持各种 PWM 控制模式(1x3x6x 和独立  
模式),从而使用简单接口连接到可通过 30mA3.3V  
内部稳压器进行供电的控制电路。这些模式可根据具体  
的电机控制要求减少控制器的输出外设数量,并提供控  
制灵活性。该器件还具有 1x 模式,因此可通过使用内  
部阻塞换向表对 BLDC 电机进行传感器式梯形控制。  
该器件也可以配置为以独立模式驱动多个负载(如电磁  
阀)。  
高侧倍增电荷泵  
低侧线性稳压器  
集成三个分流放大器  
可调增益(5102040 V/V)  
双向或单向支持  
SPI(预览)或硬件器件型号  
支持 1.8V3.3V 5V 逻辑输入  
低功耗睡眠模式  
3.3V30mA 线性稳压器  
集成式保护 特性  
器件信息(1)  
器件型号  
DRV8304  
封装  
接口  
VM 欠压闭锁 (UVLO)  
硬件  
SPI(2)  
VQFN (40)  
电荷泵欠压 (CPUV)  
MOSFET VDS 过流保护 (OCP)  
MOSFET 击穿保护  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
(2) SPI 器件选择仅供预览。  
栅极驱动器故障 (GDF)  
热警告和热关断 (OTW/OTSD)  
故障状态指示器 (nFAULT)  
简化原理图  
6 to 38 V  
PWM  
2 应用  
DRV8304  
Gate  
Drive  
ENABLE  
3 Half Bridge  
Smart Gate Driver  
M
打印机  
H/W  
nFAULT  
Current  
Sense  
BLDC 电机模块  
白色家电  
Sense Output  
3x Shunt Amplifiers  
Built-In Protection  
CPAP、风扇和泵  
无人机、机器人和遥控玩具  
ATM 和点钞机  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
English Data Sheet: SLVSE39  
 
 
 
 
 
 
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
目录  
7.6 Register Maps......................................................... 37  
Application and Implementation ........................ 45  
8.1 Application Information............................................ 45  
8.2 Typical Application ................................................. 45  
Power Supply Recommendations...................... 53  
9.1 Bulk Capacitance Sizing ......................................... 53  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements.............................................. 10  
6.7 Typical Characteristics............................................ 11  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 16  
7.4 Device Functional Modes........................................ 35  
7.5 Programming........................................................... 35  
8
9
10 Layout................................................................... 54  
10.1 Layout Guidelines ................................................. 54  
10.2 Layout Example .................................................... 55  
11 器件和文档支持 ..................................................... 56  
11.1 器件支持................................................................ 56  
11.2 文档支持................................................................ 56  
11.3 接收文档更新通知 ................................................. 56  
11.4 社区资源................................................................ 56  
11.5 ....................................................................... 57  
11.6 静电放电警告......................................................... 57  
11.7 术语表 ................................................................... 57  
12 机械、封装和可订购信息....................................... 57  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (June 2018) to Revision B  
Page  
已更改 将器件的 SPI 版本状态更改成了预览.......................................................................................................................... 1  
Changes from Original (November 2017) to Revision A  
Page  
已更改 将数据表状态从预告信息 更改为生产数据 .................................................................................................................. 1  
2
Copyright © 2017–2018, Texas Instruments Incorporated  
 
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
5 Pin Configuration and Functions  
DRV8304H RHA Package  
40-Pin VQFN With Exposed Thermal Pad  
Top View  
DRV8304S (Preview) RHA Package  
40-Pin VQFN With Exposed Thermal Pad  
Top View  
CPL  
CPH  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
ENABLE  
GAIN  
CPL  
CPH  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
ENABLE  
nSCS  
SCLK  
SDI  
VCP  
VDS  
VCP  
VM  
IDRIVE  
MODE  
nFAULT  
VREF  
SOA  
VM  
VDRAIN  
GHA  
SHA  
VDRAIN  
GHA  
SHA  
SDO  
Thermal  
Pad  
Thermal  
Pad  
nFAULT  
VREF  
SOA  
GLA  
GLA  
SPA  
SOB  
SPA  
SOB  
SNA  
SOC  
SNA  
SOC  
Not to scale  
Not to scale  
Pin Functions  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8304H  
DRV8304S  
AGND  
CAL  
32  
32  
PWR Device analog ground. Connect to system ground.  
Amplifier calibration input. Set logic high to internally short amplifier inputs and  
perform offset calibration.  
31  
2
31  
I
Charge pump switching node. Connect a X5R or X7R, 22-nF, VM-rated ceramic  
capacitor between the CPH and CPL pins.  
CPH  
CPL  
2
1
PWR  
PWR  
Charge pump switching node. Connect a X5R or X7R, 22-nF, VM-rated ceramic  
capacitor between the CPH and CPL pins.  
1
3.3-V internal regulator output. Connect a X5R or X7R, 1-µF, 6.3-V ceramic  
DVDD  
33  
30  
33  
30  
PWR capacitor between the DVDD and AGND pins. This regulator can source up to 30  
mA externally.  
Gate driver enable. When this pin is logic low the device enters a low power sleep  
ENABLE  
I
mode. An 5 to 32-µs low pulse can be used to reset fault conditions.  
GAIN  
GHA  
GHB  
GHC  
GLA  
GLB  
GLC  
29  
6
6
I
Amplifier gain setting. The pin is a 4 level input pin set by an external resistor.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
O
O
O
O
O
O
15  
16  
8
15  
16  
8
13  
18  
13  
18  
Gate drive output current setting. This pin is a 7 level input pin set by an external  
resistor.  
IDRIVE  
INHA  
27  
34  
I
I
High-side gate driver control input. This pin controls the output of the high-side gate  
driver (GHA).  
34  
(1) PWR = power, I = input, O = output, OD = open-drain  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8304H  
DRV8304S  
High-side gate driver control input. This pin controls the output of the high-side gate  
driver (GHB).  
INHB  
INHC  
INLA  
INLB  
36  
36  
I
I
I
I
High-side gate driver control input. This pin controls the output of the high-side gate  
driver (GHC).  
38  
35  
37  
38  
35  
37  
Low-side gate driver control input. This pin controls the output of the low-side gate  
driver (GLA).  
Low-side gate driver control input. This pin controls the output of the low-side gate  
driver (GLB).  
Low-side gate driver control input. This pin controls the output of the low-side gate  
driver (GLC).  
INLC  
39  
26  
25  
39  
25  
I
MODE  
nFAULT  
I
OD  
I
PWM input mode setting. This pin is a 4 level input pin set by an external resistor.  
Fault indicator output. This pin is pulled logic low during a fault condition and  
requires an external pullup resistor.  
nSCS  
29  
40  
Serial chip select. A logic low on this pin enables serial interface communication.  
PGND  
40  
PWR Device power ground. Connect to system ground.  
Serial clock input. Serial data is shifted out and captured on the corresponding  
rising and falling edge on this pin.  
SCLK  
SDI  
28  
27  
26  
I
I
Serial data input. Data is captured on the falling edge of the SCLK pin.  
Serial data output. Data is shifted out on the rising edge of the SCLK pin. This pin  
requires an external pullup resistor.  
SDO  
OD  
SHA  
SHB  
SHC  
SNA  
SNB  
SNC  
SOA  
SOB  
SOC  
7
7
I
I
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
Shunt amplifier input. Connect to the low-side of the current shunt resistor.  
Shunt amplifier input. Connect to the low-side of the current shunt resistor.  
Shunt amplifier input. Connect to the low-side of the current shunt resistor.  
Shunt amplifier output.  
14  
17  
10  
11  
20  
23  
22  
21  
14  
17  
10  
11  
20  
23  
22  
21  
I
I
I
I
O
O
O
Shunt amplifier output.  
Shunt amplifier output.  
Low-side source sense and shunt amplifier input. Connect to the low-side power  
MOSFET source and high-side of the current shunt resistor.  
SPA  
9
12  
19  
3
9
12  
19  
3
I
Low-side source sense and shunt amplifier input. Connect to the low-side power  
MOSFET source and high-side of the current shunt resistor.  
SPB  
I
Low-side source sense and shunt amplifier input. Connect to the low-side power  
MOSFET source and high-side of the current shunt resistor.  
SPC  
I
Charge pump output. Connect a X5R or X7R, 1-µF, 16-V ceramic capacitor  
between the VCP and VM pins.  
VCP  
PWR  
High-side MOSFET drain sense input. Connect to the common point of the external  
MOSFET drains.  
VDRAIN  
VDS  
5
5
I
I
VDS monitor trip point setting. This pin is a 7 level input pin set by an external  
resistor.  
28  
Gate driver power supply input. Connect to the bridge power supply. Connect a  
VM  
4
4
PWR X5R or X7R, 0.1-µF, VM-rated ceramic and greater than or equal to 10-uF local  
capacitance between the VM and PGND pins.  
Shunt amplifier power supply input and reference. Connect a X5R or X7R, 0.1-μF,  
6.3-V ceramic capacitor between the VREF and AGND pins.  
VREF  
24  
24  
PWR  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.5  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
40  
UNIT  
V
Power supply voltage (VM)  
Voltage differential between any ground pin (AGND, DGND, PGND)  
Internal logic regulator voltage (DVDD)  
MOSFET voltage sense (VDRAIN)  
0.5  
V
3.8  
V
40  
V
Charge pump voltage (VCP, CPH)  
VM + 13.5  
VM  
V
Charge pump negative switching pin voltage (CPL)  
V
Digital pin voltage (SCLK, SDI, nSCS, ENABLE, VDS, IDRIVE, MODE, GAIN, CAL  
INHX, INLX)  
–0.3  
5.75  
V
Open drain output current range (nFAULT, SDO)  
Continuous high-side gate pin voltage (GHX)  
Pulsed 200 ns high-side gate pin voltage (GHX)  
High-side gate voltage with respect to SHX (GHX)  
Continuous phase node pin voltage (SHX)  
Pulsed 200 ns phase node pin voltage (SHX)  
Continuous low-side gate pin voltage (GLX)  
Pulsed 200 ns low-side gate pin voltage (GLX)  
Gate pin source current (GHX, GLX)  
0
–2  
5
mA  
V
VCP + 0.5  
VCP + 0.5  
13.5  
–5  
V
–0.3  
–2  
V
VM + 2  
VM + 2  
13.5  
V
–5  
V
–1  
V
–5  
13.5  
V
Internally limited  
Internally limited  
–1  
A
Gate pin sink current (GHX, GLX)  
A
Continuous shunt amplifier input pin voltage (SPX, SNX)  
Pulsed 200 ns shunt amplifier input pin voltage (SPX, SNX)  
Reference pin input voltage (VREF)  
1
2
V
–2  
–0.3  
–0.3  
0
V
5.75  
VREF  
5
V
Shunt amplifier output pin voltage range (SOX)  
Shunt amplifier output pin current range (SOX)  
Ambient temperature, TA  
V
mA  
°C  
°C  
°C  
–40  
–40  
–65  
125  
150  
150  
Junction temperature, TJ  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2000  
V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±500 V  
may actually have higher performance.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
6
MAX  
38  
UNIT  
V
VVM  
VI  
Power supply voltage range  
Logic level input voltage range  
0
5.5  
V
Copyright © 2017–2018, Texas Instruments Incorporated  
5
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
Recommended Operating Conditions (continued)  
over operating ambient temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
kHz  
mA  
mA  
mA  
mA  
V
(1)  
fPWM  
IGATE_HS  
IGATE_LS  
IDVDD  
ISO  
Applied PWM signal (INHX, INLX)  
200  
(1)  
(1)  
(1)  
High-side average gate drive current (GHX)  
Low-side average gate drive current (GLX)  
DVDD external load current  
15  
15  
30  
Shunt amplifier output current loading (SOX)  
Open drain pull up voltage (nFAULT, SDO)  
Open drain output current (nFAULT, SDO)  
Operating ambient temperature  
0
0
5
VOD  
5.5  
5
IOD  
0
mA  
°C  
TA  
–40  
125  
(1) Power dissipation and thermal limits must be observed  
6.4 Thermal Information  
DRV8304  
THERMAL METRIC(1)  
RHA (VQFN)  
32 PINS  
35.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
22.6  
14.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
14.9  
RθJC(bot)  
2.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
at VVM = 6 to 38 V over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLIES (DVDD, VM)  
IVM  
VM operating supply current  
ENABLE = 1; INHX = 0 V; INLX = 0 V  
ENABLE = 0; VVM = 24 V; TA = 25°C  
ENABLE = 0, VVM = 24 V, TA = 125°C  
ENABLE = 0 V period to reset faults  
ENABLE = 0 V to driver tri-stated  
5
7
40  
mA  
µA  
µA  
µs  
µs  
ms  
V
20  
IVMQ  
VM sleep mode supply current  
(1)  
100  
40  
tRST  
Reset pulse time  
Sleep time  
15  
tSLEEP  
tWAKE  
VDVDD  
200  
1
Wake-up time  
VVM > VUVLO; ENABLE = 3.3 V to output transition  
Internal logic regulator voltage IDVDD = 0 to 30 mA  
2.9  
3.3  
3.6  
CHARGE PUMP (CPH, CPL, VCP)  
VM = 12 to 38 V; IVCP = 0 to 15 mA  
VM = 10 V; IVCP = 0 to 10 mA  
VM = 8 V; IVCP = 0 to 5 mA  
7
6.5  
5
10  
7.5  
6
11.5  
9.5  
V
V
V
V
VCP operating voltage with  
respect to VM  
VVCP  
7.5  
VM = 6 V; IVCP = 0 to 1 mA  
3.8  
4.3  
6.5  
LOGIC-LEVEL INPUTS (CAL, INHX, INLX, SCLK, SDI, nSCS)  
VIL  
VIH  
VHYS  
IIL  
Input logic low voltage  
Input logic high voltage  
Input logic hysteresis  
Input logic low current  
Input logic high current  
0
1.5  
100  
–1  
0.8  
5.5  
V
V
mV  
µA  
µA  
VPIN (Pin Voltage) = 0 V  
VPIN (Pin Voltage) = 5 V  
1
IIH  
100  
(1) Specified by design and characterization data  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
Electrical Characteristics (continued)  
at VVM = 6 to 38 V over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Pulldown Resistance to AGND  
(CAL, INHX, INLX, SCLK,  
SDI, nSCS)  
RPD  
100  
k  
LOGIC-LEVEL INPUTS (ENABLE)  
VIL  
VIH  
VHYS  
IIL  
Input logic low voltage  
Input logic high voltage  
Input logic hysteresis  
Input logic low current  
Input logic high current  
0
1.5  
100  
–10  
-5  
0.6  
5.5  
V
V
mV  
µA  
µA  
VPIN (Pin Voltage) = 0 V  
10  
5
IIH  
VPIN (Pin Voltage) = 5 V  
FOUR-LEVEL INPUTS (GAIN, MODE)  
VI1  
VI2  
VI3  
VI4  
Input mode 1 voltage  
Input mode 2 voltage  
Input mode 3 voltage  
Input mode 4 voltage  
Tied to AGND  
45 kΩ ± 5% to AGND  
Hi-Z  
0
1.2  
2
V
V
V
V
Tied to DVDD  
3.3  
SEVEN-LEVEL INPUTS (IDRIVE, VDS)  
VI1  
VI2  
VI3  
VI4  
VI5  
VI6  
VI7  
Input mode 1 voltage  
Input mode 2 voltage  
Input mode 3 voltage  
Input mode 4 voltage  
Input mode 5 voltage  
Input mode 6 voltage  
Input mode 7 voltage  
Tied to AGND  
0
0.5  
V
V
V
V
V
V
V
18 kΩ ± 5% to AGND  
75 kΩ ± 5% to AGND  
Hi-Z  
1.1  
1.65  
2.2  
75 kΩ ± 5% to DVDD  
18 kΩ ± 5% to DVDD  
Tied to DVDD  
2.8  
3.3  
OPEN-DRAIN OUTPUTS (nFAULT, SDO)  
VOL  
IOZ  
Output logic low voltage  
Output logic high current  
IOD = 2 mA  
VOD = 5 V  
0.1  
1
V
–1  
µA  
GATE DRIVERS (GHX, GLX, SHX)  
VVM = 12 to 38 V; IHS_GATE = 0 to 15 mA  
VVM = 10 V; IHS_GATE = 0 to 10 mA  
VVM = 8 V; IHS_GATE = 0 to 5 mA  
VVM = 6 V; IHS_GATE = 0 to 1 mA  
VVM = 12 to 38 V; ILS_GATE = 0 to 15 mA  
VVM = 10 V; ILS_GATE = 0 to 10 mA  
VVM = 8 V; ILS_GATE = 0 to 5 mA  
VVM = 6 V; ILS_GATE = 0 to 1 mA  
DEAD_TIME = 00b  
7
6.5  
5
10  
7.5  
11.5  
8.5  
7
High-side VGS gate drive  
(gate-to-source)  
(1)  
VGHS  
V
V
6
3.8  
7.5  
5.5  
3.5  
3
4.3  
6.5  
12.5  
9.5  
8.5  
6.5  
10  
7.5  
Low-side VGS gate drive (gate-  
to-source)  
(1)  
VGSL  
6
4.3  
40  
DEAD_TIME = 01b  
120  
200  
400  
120  
500  
1000  
2000  
4000  
tDEAD  
tDEAD  
tDRIVE  
Output dead time (SPI Device)  
Output dead time (HW Device)  
ns  
ns  
ns  
DEAD_TIME = 10b  
DEAD_TIME = 11b  
TDRIVE = 00b  
TDRIVE = 01b  
TDRIVE = 10b  
TDRIVE = 11b  
Peak gate drive time (SPI  
Device)  
Peak gate drive time (HW  
Device)  
tDRIVE  
4000  
ns  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
at VVM = 6 to 38 V over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IDRIVEP_HS or IDRIVEP__LS = 000b  
IDRIVEP_HS or IDRIVEP__LS = 001b  
IDRIVEP_HS or IDRIVEP__LS = 010b  
IDRIVEP_HS or IDRIVEP__LS = 011b  
IDRIVEP_HS or IDRIVEP__LS = 100b  
IDRIVEP_HS or IDRIVEP__LS = 101b  
IDRIVEP_HS or IDRIVEP__LS = 110b  
IDRIVEP_HS or IDRIVEP__LS = 111b  
IDRIVE tied to AGND  
MIN  
TYP  
15  
15  
45  
Peak source gate current  
(high-side and low-side) (SPI  
Device)  
60  
IDRIVEP  
IDRIVEP  
IDRIVEN  
IDRIVEN  
mA  
mA  
mA  
90  
105  
135  
150  
15  
IDRIVE 18 kΩ (±5%) to AGND  
IDRIVE 75 kΩ (±5%) to AGND  
IDRIVE Hi-Z ( > 500 kΩ to AGND)  
IDRIVE 75 kΩ (±5%) to DVDD  
IDRIVE 18 kΩ (±5%) to DVDD  
IDRIVE tied to DVDD  
45  
60  
Peak source gate current  
(high-side and low-side) (HW  
Device)  
90  
105  
135  
150  
30  
IDRIVEN_HS or IDRIVEN_LS = 000b  
IDRIVEN_HS or IDRIVEN_LS = 001b  
IDRIVEN_HS or IDRIVEN_LS = 010b  
IDRIVEN_HS or IDRIVEN_LS = 011b  
IDRIVEN_HS or IDRIVEN_LS = 100b  
IDRIVEN_HS or IDRIVEN_LS = 101b  
IDRIVEN_HS or IDRIVEN_LS = 110b  
IDRIVEN_HS or IDRIVEN_LS = 111b  
IDRIVE tied to AGND  
30  
90  
Peak sink gate current (high-  
side and low-side) (SPI  
Device)  
120  
180  
210  
270  
300  
30  
IDRIVE 18 kΩ (±5%) to AGND  
IDRIVE 75 kΩ (±5%) to AGND  
IDRIVE Hi-Z ( > 500 kΩ to AGND)  
IDRIVE 75 kΩ (±5%) to DVDD  
IDRIVE 18 kΩ (±5%) to DVDD  
IDRIVE tied to DVDD  
90  
120  
180  
210  
270  
300  
15  
Peak sink gate current (high-  
side and low-side) (HW  
Device)  
mA  
mA  
Source current after tDRIVE  
IHOLD  
FET holding current  
Sink current after tDRIVE  
30  
GLX pull-down current during GHX tDRIVE period or  
vice-versa  
ISTRONG  
FET hold-off strong pulldown  
300  
mA  
ROFF  
tPD  
FET gate hold-off resistor  
Propagation delay  
GHX to SHX and GLX to PGND  
150  
180  
kΩ  
INHX/INLX tansition to GHX/GLX transition  
250  
ns  
CURRENT SHUNT AMPLIFIERS (SNx, SOx, SPx, VREF)  
CSA_GAIN = 00b, VREF = 3.3 to 5 V  
4.85  
9.7  
5
10  
20  
40  
5
5.15  
10.3  
20.6  
41.2  
5.15  
10.3  
20.6  
41.2  
CSA_GAIN = 01b, VREF = 3.3 to 5 V  
CSA_GAIN = 10b, VREF = 3.3 to 5 V  
CSA_GAIN = 11b, VREF = 3.3 to 5 V  
Tied to AGND, VREF = 3.3 to 5 V  
45 kΩ ± 5% to AGND, VREF = 3.3 to 5 V  
Hi-Z, VREF = 3.3 to 5 V  
GCSA  
Amplifier gain (SPI Device)  
Amplifier gain (HW Device)  
V/V  
19.4  
38.8  
4.85  
9.7  
10  
20  
40  
GCSA  
V/V  
19.4  
38.8  
Tied to DVDD, VREF = 3.3 to 5 V  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
Electrical Characteristics (continued)  
at VVM = 6 to 38 V over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
STEP on SOX = 0.5 V; GCSA = 5 V/V, VREF = 3.3 to  
5 V  
260  
STEP on SOX = 0.5 V; GCSA = 10 V/V, VREF = 3.3  
to 5 V  
400  
700  
(1)  
tSET  
Settling time to ±1%, 30 pF  
Common-mode input range  
ns  
STEP on SOX = 0.5 V; GCSA = 20 V/V, VREF = 3.3  
to 5 V  
STEP on SOX = 0.5 V; GCSA = 40 V/V, VREF = 3.3  
to 5 V  
1550  
(1)  
VSP, COM  
–0.5  
–5  
0.5  
5
V
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
µV/°C  
VSP = VSN = 0 V, GCSA = 5, VREF = 3.3 V ± 10%  
VSP = VSN = 0 V, GCSA = 10, VREF = 3.3 V ± 10%  
VSP = VSN = 0 V, GCSA = 20, VREF = 3.3 V ± 10%  
VSP = VSN = 0 V, GCSA = 40, VREF = 3.3 V ± 10%  
VSP = VSN = 0 V, GCSA = 5, VREF = 5 V ± 10%  
VSP = VSN = 0 V, GCSA = 10, VREF = 5 V ± 10%  
VSP = VSN = 0 V, GCSA = 20, VREF = 5 V ± 10%  
VSP = VSN = 0 V, GCSA = 40, VREF = 5 V ± 10%  
VSP = VSN = 0 V  
–2.5  
–1.5  
–1.25  
–7  
2.5  
1.5  
1.25  
7
VOFF  
Input offset error  
–3.5  
–2.25  
–1.5  
3.5  
2.25  
1.5  
(1)  
VDRIFT  
Drift offset  
10  
SOX output voltage linear  
range  
VVREF  
(1)  
VLINEAR  
0.25  
V
0.25  
VVREF  
VSP = VSN = 0 V, VREF_DIV = 0b  
VSP = VSN = 0 V, VREF_DIV = 1b  
VSP = VSN = 0 V  
SOX output voltage bias (SPI  
Device)  
0.3  
VBIAS  
V
VVREF/2  
SOX output voltage bias (HW  
Device)  
VBIAS  
IBIAS  
VVREF/2  
V
SPX/SNX negative input bias  
current  
VSP = VSN = 0 V  
VREF = 5.0 V  
200  
2
µA  
VREFUV  
IVREF  
VREF undervoltage  
VREF input current  
2.6  
1
V
mA  
PROTECTION CIRCUITS  
VM falling, UVLO report  
VM rising, UVLO recovery  
Rising to falling threshold  
5.4  
5.6  
5.8  
6
VUVLO  
VM undervoltage lockout  
VM undervoltage hysteresis  
V
VUVLO_HYS  
200  
10  
mV  
µs  
V
tUVLO_DEG  
VM undervoltage deglitch time VM falling, UVLO report  
(1)  
VCPUV  
Charge pump undervoltage  
Gate drive clamping voltage  
With respect to VM  
Positive clamping voltage  
Negative clamping voltage  
VDS_LVL = 000b  
VDS_LVL = 001b  
VDS_LVL = 010b  
VDS_LVL = 011b  
VDS_LVL = 100b  
VDS_LVL = 101b  
VDS_LVL = 110b  
VDS_LVL = 111b  
2.4  
10.5  
15  
VGS_CLAMP  
V
–0.6  
0.15  
0.24  
0.4  
0.51  
0.6  
VDS overcurrent trip voltage  
(SPI Device)  
VDS_OCP  
V
0.9  
1.8  
Disabled  
Copyright © 2017–2018, Texas Instruments Incorporated  
9
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
at VVM = 6 to 38 V over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VDS tied to AGND  
MIN  
TYP  
0.15  
0.24  
0.4  
MAX UNIT  
VDS 18 kΩ (±5%) to AGND  
VDS 75 kΩ (±5%) to AGND  
VDS Hi-Z ( > 500 kΩ to AGND)  
VDS 75 kΩ (±5%) to DVDD  
VDS 18 kΩ (±5%) to DVDD  
VDS tied to DVDD  
VDS overcurrent trip voltage  
(HW Device)  
VDS_OCP  
0.6  
V
0.9  
1.8  
Disabled  
0.25  
0.5  
SEN_LVL = 00b  
SEN_LVL = 01b  
VSENSE overcurrent trip  
voltage (SPI Device)  
VSEN_OCP  
V
SEN_LVL = 10b  
0.75  
1
SEN_LVL = 11b  
VSENSE overcurrent trip  
voltage (HW Device)  
VSEN_OCP  
tOCP_DEG  
tRETRY  
tRETRY  
1
V
VDS and VSENSE overcurrent  
deglitch time  
4.5  
µs  
TRETRY = 0b  
TRETRY = 1b  
4
ms  
µs  
Overcurrent retry time (SPI  
Device)  
500  
Overcurrent retry time (HW  
Device)  
4
140  
170  
20  
ms  
°C  
°C  
°C  
(1)  
TOTW  
Thermal warning temperature Die temperature (Tj)  
120  
150  
Thermal shutdown  
Die temperature (Tj)  
temperature  
(1)  
TOTSD  
(1)  
THYS  
Thermal hysteresis  
Die temperature (Tj)  
6.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
SPI (nSCS, SCLK, SDI, SDO)  
tREADY  
tCLK  
SPI ready after after enable  
SCLK minimum period  
VM > UVLO, ENABLE = 3.3 V  
1
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
200  
100  
100  
40  
tCLKH  
SCLK minimum high time  
SCLK minimum low time  
SDI input data setup time  
SDI input data hold time  
SDO output data delay time  
nSCS input setup time  
tCLKL  
tSU_SDI  
tHD_SDI  
tDLY_SDO  
tSU_nSCS  
tHD_nSCS  
tHI_nSCS  
tEN_nSCS  
tDIS_nSCS  
60  
SCLK high to SDO valid  
60  
100  
100  
600  
nSCS input hold time  
nSCS minimum high time before active low  
nSCS enable time  
nSCS low to SDO out of high impedance  
nSCS high to SDO high impedance  
20  
20  
nSCS disable delay time  
10  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
tHI_nSCS  
tSU_nSCS  
tHD_nSCS  
tCLK  
tCLKH  
tCLKL  
X
MSB  
LSB  
X
tSU_SDI tHD_SDI  
Z
MSB  
LSB  
Z
tDIS_nSCS  
tEN_nSCS tDLY_SDO  
1. SPI Slave-Mode Timing Diagram  
6.7 Typical Characteristics  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
VVM = 6 V  
VVM = 12 V  
VVM = 24 V  
VVM = 38 V  
TA = -40èC  
1
0
TA = 25èC  
TA = 125èC  
0
5
10  
15  
20  
25  
30  
35  
40  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage (V)  
Temperature (èC)  
D001  
D002  
2. Supply Current Over Supply Voltage  
3. Supply Current Over Temperature  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TA = -40èC  
TA = 25èC  
TA = 125èC  
VVM = 6 V  
VVM = 12 V  
VVM = 24 V  
VVM = 38 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
5
10  
15  
20  
25  
30  
35  
40  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage (V)  
Temperature (èC)  
D003  
D004  
4. Sleep Current Over Supply Voltage  
5. Sleep Current Over Temperature  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
3.5  
3.4  
3.3  
3.2  
3.1  
3
3.5  
3.4  
3.3  
3.2  
3.1  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.9  
2.8  
2.7  
2.6  
2.5  
TA = -40èC  
TA = 25èC  
TA = 125èC  
TA = -40èC  
TA = 25èC  
TA = 125èC  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Supply Voltage (V)  
Supply Voltage (V)  
D005  
D006  
IDVDD = 0 mA  
IDVDD = 30 mA  
6. DVDD Voltage Over Supply Voltage  
7. DVDD Voltage Over Supply Voltage  
12  
10  
8
12  
10  
8
6
6
4
4
VVM = 6 V  
VVM = 8 V  
VVM = 10 V  
VVM = 12 V  
VVM = 6 V  
VVM = 8 V  
VVM = 10 V  
VVM = 12 V  
2
2
0
0
0
3
6
9
12  
15  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Load Current (mA)  
Temperature (èC)  
D007  
D008  
8. VCP Voltage Over Load  
9. VCP Voltage Over Temperature  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
7 Detailed Description  
7.1 Overview  
The DRV8304 device is an integrated 6-V to 38-V gate driver for 3-phase motor-drive applications. The device  
reduces system component count, cost, and complexity by integrating three independent half-bridge gate drivers,  
charge pump, and linear regulator for the high-side and low-side gate-driver supply voltages. A standard serial  
peripheral interface (SPI) provides a simple method for configuring the various device settings and reading fault  
diagnostic information through an external controller. Alternatively, a hardware interface (H/W) option allows for  
configuring the most commonly used settings through fixed external resistors.  
The gate drivers support external N-channel high-side and low-side power MOSFETs and can drive up to 150-  
mA source, 300-mA sink peak currents with a 15-mA average output current. The high-side gate-drive supply  
voltage is generated using a doubler charge-pump architecture that regulates the VCP output to VVM + 10 V. The  
low-side gate-drive supply voltage is generated using a linear regulator from the VM power supply that regulates  
to 10 V. A smart gate-drive (SGD) architecture provides the ability to dynamically adjust the output gate-drive  
current strength allowing for the gate driver to control the power MOSFET VDS switching speed. This feature  
allows for the removal of external gate-drive resistors and diodes reducing bill of materials (BOM) component  
count, cost, and printed circuit board (PCB) area. The architecture also uses an internal state machine to protect  
against gate-drive short-circuit events, control the half-bridge dead time, and protect against dV/dt parasitic  
turnon of the external power MOSFET.  
The DRV8304 device integrates three, bidirectional current-shunt amplifiers for monitoring the current level  
through each of the external half-bridges using a low-side shunt resistor. The gain setting of the shunt amplifier  
can be adjusted through the SPI (DRV8304S) or hardware (DRV8304H) interface with the SPI providing  
additional flexibility to adjust the output bias point.  
In addition to the high level of device integration, the DRV8304 device provides a wide range of integrated  
protection features. These features include power-supply undervoltage lockout (UVLO), charge-pump  
undervoltage lockout (CPUV), VDS overcurrent monitoring (OCP), gate-driver short-circuit detection (GDF), and  
overtemperature shutdown (OTW and OTSD). Fault events are indicated by the nFAULT pin with detailed  
information available in the SPI registers on the SPI device version.  
The DRV8304 device is available in 0.5-mm pin pitch, VQFN surface-mount packages. The VQFN package size  
is 6 mm × 6 mm.  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
7.2 Functional Block Diagram  
VM  
+
1 F  
bulk  
VM  
VDRAIN  
VM  
Power  
VCP  
HS  
1 F  
VCP  
GHA  
SHA  
HS  
LS  
VCP  
CPH  
Charge  
Pump  
VGLS  
LS  
22 nF  
CPL  
GLA  
30 mA  
DVDD  
AGND  
3.3-V LDO  
VGLS LDO  
1 F  
Gate Driver  
PGND  
ENABLE  
INHA  
VM  
VCP  
GHB  
SHB  
HS  
HS  
INLA  
INHB  
INLB  
Digital  
Core  
VGLS  
LS  
GLB  
LS  
Gate Driver  
INHC  
INLC  
Control  
Inputs  
MODE  
IDRIVE  
VDS  
VM  
VCP  
GHC  
SHC  
HS  
HS  
GAIN  
CAL  
VGLS  
LS  
GLC  
LS  
Gate Driver  
Outputs  
nFAULT  
SPC  
RSENSE  
AV  
VCC  
SNC  
SPB  
VREF  
0.1 µF  
AV  
RSENSE  
SNB  
SPA  
SOC  
SOB  
SOA  
Output Offset  
Bias  
AV  
RSENSE  
SNA  
CAL  
PPAD  
10. Block Diagram for DRV8304H  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
Functional Block Diagram (接下页)  
VM  
+
1 F  
bulk  
VM  
VM  
VDRAIN  
VM  
Power  
VCP  
HS  
1 F  
VCP  
CPH  
GHA  
SHA  
HS  
LS  
VCP  
Charge  
Pump  
VGLS  
LS  
22 nF  
CPL  
GLA  
30 mA  
DVDD  
AGND  
3.3-V LDO  
VGLS LDO  
1 F  
Gate Driver  
PGND  
ENABLE  
INHA  
VM  
VCP  
GHB  
HS  
HS  
INLA  
INHB  
INLB  
SHB  
GLB  
Digital  
Core  
VGLS  
LS  
LS  
Control  
Inputs  
Gate Driver  
INHC  
INLC  
VM  
VCP  
Outputs  
GHC  
nFAULT  
SCLK  
HS  
HS  
SHC  
GLC  
VGLS  
LS  
LS  
SPI  
SDI  
Gate Driver  
SDO  
SPC  
nSCS  
RSENSE  
AV  
VCC  
SNC  
VREF  
SPB  
0.1 µF  
AV  
RSENSE  
SNB  
SOC  
SOB  
SOA  
SPA  
AV  
RSENSE  
Output Offset  
Bias  
SNA  
CAL  
PPAD  
11. Block Diagram for DRV8304S  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
7.3 Feature Description  
1 lists the recommended values of the external components for the gate driver.  
1. DRV8304 Gate-Driver External Components  
COMPONENTS  
CVM1  
PIN 1  
VM  
PIN 2  
PGND  
RECOMMENDED  
X5R or X7R, 0.1-µF, VM-rated capacitor  
10 µF, VM-rated capacitor  
CVM2  
VM  
PGND  
CVCP  
VCP  
VM  
X5R or X7R, 16-V, 1-µF capacitor  
CSW  
CPH  
CPL  
X5R or X7R, 22-nF, VM-rated capacitor  
X5R or X7R, 1-µF, 6.3-V capacitor  
CDVDD  
RnFAULT  
RSDO  
DVDD  
VCC(1)  
VCC(1)  
IDRIVE  
VDS  
AGND  
nFAULT  
5.1-kΩ, Pullup resistor  
SDO  
5.1-kΩ, Pullup resistor, DRV8304 SPI device  
DRV8304 hardware interface  
RIDRIVE  
RVDS  
RMODE  
RGAIN  
AGND or DVDD  
AGND or DVDD  
AGND or DVDD  
AGND or DVDD  
AGND or DGND  
SNA and PGND  
SNB and PGND  
SNC and PGND  
DRV8304 hardware interface  
MODE  
GAIN  
VREF  
SPA  
DRV8304 hardware interface  
DRV8304 hardware interface  
CVREF  
X5R or X7R, 0.1-µF, VREF-rated capacitor (Optional)  
Sense shunt resistor based on current regulation limit  
Sense shunt resistor based on current regulation limit  
Sense shunt resistor based on current regulation limit  
RASENSE  
RBSENSE  
RCSENSE  
SPB  
SPC  
(1) The VCC pin is not a pin on the DRV8304 device, but a VCC supply voltage pullup is required for the open-drain output nFAULT and  
SDO. These pins can also be pulled up to DVDD.  
7.3.1 3-Phase Smart Gate Drivers  
The DRV8304 device integrates three, half-bridge gate drivers, each capable of driving high-side and low-side N-  
channel power MOSFETs. A doubler charge pump provides the proper gate-bias voltage to the high-side  
MOSFET across a wide operating-voltage range in addition to providing 100% duty-cycle support. An internal  
linear regulator provides the gate-bias voltage for the low-side MOSFETs. The half-bridge gate drivers can be  
used in combination to drive a 3-phase motor or separately to drive other types of loads.  
The DRV8304 device implements a smart gate-drive architecture which allows the user to dynamically adjust the  
gate drive current without requiring external gate current limiting resistors. Additionally, this architecture provides  
a variety of protection features for the external MOSFETs including automatic dead-time insertion, parasitic dV/dt  
gate turnon prevention, and gate-fault detection.  
7.3.1.1 PWM Control Modes  
The DRV8304 device provides four different PWM-control modes to support various commutation and control  
methods. Texas Instruments does not recommend changing the MODE pin or PWM_MODE register during  
operation of the power MOSFETs.  
7.3.1.1.1 6x PWM Mode (PWM_MODE = 00b or MODE Pin Tied to AGND)  
In this mode, each half-bridge supports three output states: low, high, or high-impedance (Hi-Z). The  
corresponding INHx and INLx signals control the output state as listed in 2.  
2. 6x PWM Mode Truth Table  
INLx  
INHx  
GLx  
L
GHx  
SHx  
Hi-Z  
H
0
0
1
1
0
1
0
1
L
H
L
L
H
L
L
L
Hi-Z  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
7.3.1.1.2 3x PWM Mode (PWM_MODE = 01b or MODE Pin = 47 kΩ to AGND)  
In this mode, the INHx pin controls each half-bridge and supports two output states: low or high. The INLx pin is  
used to change the half-bridge to high impedance. If the high-impedance (Hi-Z) sate is not required, tie all INLx  
pins logic high. The corresponding INHx and INLx signals control the output state as listed in 3.  
3. 3x PWM Mode Truth Table  
INLx  
INHx  
GLx  
L
GHx  
L
SHx  
Hi-Z  
L
0
1
1
X
0
1
H
L
L
H
H
7.3.1.1.3 1x PWM Mode (PWM_MODE = 10b or MODE Pin = Hi-Z)  
In this mode, the DRV8304 device uses 6-step block commutation tables that are stored internally. This feature  
allows for a 3-phase BLDC motor to be controlled using a single PWM sourced from a simple controller. The  
PWM is applied on the INHA pin and determines the output frequency and duty cycle of the half-bridges.  
The half-bridge output states are managed by the INLA, INHB, and INLB pins which are used as state logic  
inputs. The state inputs can be controlled by an external controller or connected directly to hall sensor digital  
outputs from the motor (INLA = HALL_A, INHB = HALL_B, INLB = HALL_C). The 1x PWM mode normally  
operates with synchronous rectification, however it can be configured to use asynchronous diode freewheeling  
rectification on the SPI device. This configuration is set using the 1PWM_COM bit through the SPI registers.  
The INHC input controls the direction through the 6-step commutation table which is used to change the direction  
of the motor when hall sensors are directly controlling the INLA, INHB, and INLB state inputs. Tie the INHC pin  
low if this feature is not required.  
The INLC input brakes the motor by turning off all high-side MOSFETs and turning on all low-side MOSFETs  
when it is pulled low. This brake is independent of the states of the other input pins. Tie the INLC pin high if this  
feature is not required.  
4. Synchronous 1x PWM Mode  
LOGIC AND HALL INPUTS  
INHC = 0  
GATE-DRIVE OUTPUTS  
PHASE B PHASE C  
INHC = 1  
PHASE A  
STATE  
DESCRIPTION  
INLA  
INHB  
INLB  
INLA  
INHB  
INLB  
GHA  
GLA  
GHB  
GLB  
GHC  
GLC  
Stop  
0
1
1
1
1
0
0
0
0
1
1
0
0
0
1
1
0
1
0
0
1
1
1
0
0
1
0
0
0
1
1
1
0
1
0
1
1
1
0
0
0
1
1
1
0
0
0
1
L
PWM  
L
L
!PWM  
L
L
L
L
L
Stop  
Align  
L
H
L
H
Align  
1
2
3
4
5
6
PWM  
!PWM  
L
L
H
H
B C  
A C  
A B  
C B  
C A  
B A  
PWM  
PWM  
L
!PWM  
!PWM  
L
L
L
H
L
L
L
L
H
PWM  
PWM  
L
!PWM  
!PWM  
L
L
H
L
L
L
H
PWM  
!PWM  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
 
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
DESCRIPTION  
5. Asynchronous 1x PWM Mode 1PWM_COM = 1 (SPI Only)  
LOGIC AND HALL INPUTS  
INHC = 0  
GATE-DRIVE OUTPUTS  
PHASE B PHASE C  
INHC = 1  
PHASE A  
STATE  
INLA  
INHB  
INLB  
INLA  
INHB  
INLB  
GHA  
GLA  
L
GHB  
GLB  
L
GHC  
GLC  
L
Stop  
0
1
1
1
1
0
0
0
0
1
1
0
0
0
1
1
0
1
0
0
1
1
1
0
0
1
0
0
0
1
1
1
0
1
0
1
1
1
0
0
0
1
1
1
0
0
0
1
L
PWM  
L
L
L
Stop  
Align  
L
L
H
L
L
H
H
H
L
Align  
1
2
3
4
5
6
L
PWM  
L
L
B C  
A C  
A B  
C B  
C A  
B A  
PWM  
PWM  
L
L
L
L
L
L
L
H
H
L
L
L
PWM  
PWM  
L
L
L
H
H
L
L
L
PWM  
L
L
12 and 13 show the different possible configurations in 1x PWM mode.  
DRV8304  
DRV8304  
H
INHA  
INLA  
H
PWM  
MCU_PWM  
INHA  
M
PWM  
MCU_PWM  
MCU_GPIO  
M
STATE0  
INLA  
INHB  
INLB  
INHC  
INLC  
H
STATE0  
STATE1  
INHB  
INLB  
STATE1  
STATE2  
MCU_GPIO  
MCU_GPIO  
STATE2  
DIR  
INHC  
INLC  
DIR  
MCU_GPIO  
MCU_GPIO  
MCU_GPIO  
MCU_GPIO  
nBRAKE  
nBRAKE  
13. 1x PWM—Hall Sensor  
12. 1x PWM—Simple Controller  
7.3.1.1.4 Independent PWM Mode (PWM_MODE = 11b or MODE Pin Tied to DVDD)  
In this mode, the corresponding input pin independently controls each high-side and low-side gate driver. This  
control mode allows for the DRV8304 device to drive separate high-side and low-side loads with each half-  
bridge. These types of loads include unidirectional brushed DC motors, solenoids, and low-side and high-side  
switches. In this mode, if the system is configured in a half-bridge configuration, simultaneously turning on both  
the high-side and low-side MOSFETs causes shoot-through current in external MOSFETs and can cause them  
to damage.  
6. Independent PWM Mode Truth Table  
INLx  
INHx  
GLx  
L
GHx  
L
0
0
1
1
0
1
0
1
L
H
H
L
H
H
18  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
Because the high-side and low-side VDS overcurrent monitors share the SHx sense line, using the monitors if  
both the high-side and low-side gate drivers of one half-bridge are split and being used is not possible. In this  
case, connect the SHx pin to the high-side driver and disable the VDS overcurrent monitors as shown in 14.  
Disable  
+
V
DS œ  
VM  
VDRAIN  
VCP  
GHx  
HS  
INHx  
INLx  
Load  
SHx  
GLx  
VGLS  
LS  
Load  
Gate Driver  
Disable  
SPx  
+
V
DSœ  
14. Independent PWM High-Side and Low-Side Drivers  
If the half-bridge is used to implement only a high-side or low-side driver, using the VDS overcurrent monitors is  
still possible. Connect the SHx pin as shown in 15 or 16. The unused gate driver and the corresponding  
input can be left disconnected.  
+
+
V
V
DS œ  
DS œ  
VM  
VM  
VDRAIN  
VDRAIN  
VCP  
HS  
VCP  
HS  
GHx  
SHx  
GHx  
SHx  
Load  
INHx  
INLx  
INHx  
INLx  
VGLS  
LS  
VGLS  
LS  
GLx  
SPx  
GLx  
SPx  
Load  
Gate Driver  
Gate Driver  
+
+
V
V
DS œ  
DS œ  
16. Single Low-Side Driver  
15. Single High-Side Driver  
7.3.1.2 Device Interface Modes  
The DRV8304 device supports two different interface modes (SPI and hardware) to allow the end application to  
design for either flexibility or simplicity. The two interface modes share the same four pins, allowing the different  
versions to be pin-to-pin compatible. This allows for application designers to evaluate with one interface version  
and potentially switch to another with minimal modifications to their design.  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
 
 
 
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
7.3.1.2.1 Serial Peripheral Interface (SPI)  
The SPI device supports a serial communication bus that allows for an external controller to send and receive  
data with the DRV8304 device. This bus allows for the external controller to configure device settings and read  
detailed fault information. The interface is a four wire interface using the SCLK, SDI, SDO, and nSCS pins.  
The SCLK pin is an input which accepts a clock signal to determine when data is captured and propagated on  
SDI and SDO.  
The SDI pin is the data input.  
The SDO pin is the data output. The SDO pin uses an open-drain structure and requires an external pullup  
resistor.  
The nSCS pin is the chip select input. A logic low signal on this pin enables SPI communication with the  
DRV8304 device.  
For more information on the SPI, see the SPI Communication section.  
7.3.1.2.2 Hardware Interface  
The hardware interface device converts the four SPI pins into four resistor configurable inputs, GAIN, IDRIVE,  
MODE, and VDS. This option allows for the application designer to configure the most commonly used device  
settings by tying the pin logic high or logic low, or with a simple pullup or pulldown resistor. This configuration  
removes the requirement for a SPI bus from the external controller. General fault information can still be obtained  
through the nFAULT pin.  
The GAIN pin configures the current shunt-amplifier gain.  
The IDRIVE pin configures the gate-drive current strength.  
The MODE pin configures the PWM control mode.  
The VDS pin configures the voltage threshold of the VDS overcurrent monitors.  
For more information on the hardware interface, see the Pin Diagrams section.  
DVDD  
RGAIN  
DVDD  
GAIN  
SCLK  
SDI  
Hardware  
Interface  
SPI  
DVDD  
DVDD  
IDRIVE  
MODE  
VDS  
DVDD  
VCC  
RPU  
SDO  
nSCS  
DVDD  
RVDS  
18. Hardware Interface  
17. SPI  
7.3.1.3 Gate Driver Voltage Supplies  
The high-side gate-drive voltage supply is created using a doubler charge pump that operates from the VM  
voltage supply input. The charge pump allows the gate driver to properly bias the high-side MOSFET gate with  
respect to the source across a wide input supply-voltage range. The charge pump is regulated to maintain a fixed  
output voltage of VVM + 10 V and supports an average output current of 15 mA. When VVM is less than 12 V, the  
charge pump operates in full doubler mode and generates VVCP = 2 × VVM – 1.5 V when unloaded. The charge  
pump is continuously monitored for undervoltage to prevent under-driven MOSFET conditions. The charge pump  
requires a X5R or X7R, 1-µF, 16-V ceramic capacitor between the VM and VCP pins to act as the storage  
capacitor. Additionally, a X5R or X7R, 22-nF, VM-rated ceramic capacitor is required between the CPH and CPL  
pins to act as the flying capacitor.  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
VM  
VM  
1 F  
VCP  
CPH  
VM  
Charge  
Pump  
22 nF  
Control  
CPL  
19. Charge Pump Architecture  
The low-side gate-drive voltage is created using a linear regulator that operates from the VM voltage supply  
input. The linear regulator allows the gate driver to properly bias the low-side MOSFET gate with respect to  
ground. The linear regulator output is fixed at 10 V and supports an output current of 15 mA.  
7.3.1.4 Smart Gate-Drive Architecture  
The DRV8304 gate drivers use an adjustable, complimentary, push-pull topology for both the high-side and low-  
side drivers. This topology allows for both a strong pullup and pulldown of the external MOSFET gates.  
Additionally, the gate drivers use a smart gate-drive architecture to provide additional control of the external  
power MOSFETs, take additional steps to protect the MOSFETs, and allow for optimal tradeoffs between  
efficiency and robustness. This architecture is implemented through two components called IDRIVE and TDRIVE  
which are detailed in the IDRIVE: MOSFET Slew-Rate Control section and TDRIVE: MOSFET Gate Drive  
Control section. 20 shows the high-level functional block diagram of the gate driver.  
The IDRIVE gate-drive current and TDRIVE gate-drive time should be initially selected based on the parameters of  
the external power MOSFET used in the system and the desired rise and fall times (see the Application and  
Implementation section).  
The high-side gate driver also implements a Zener clamp diode to help protect the external MOSFET gate from  
overvoltage conditions in the case of external short-circuit events on the MOSFET.  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
VCP  
INHx  
INLx  
VM  
GHx  
SHx  
Level  
Shifters  
150 k  
Logic  
VGLS  
GLx  
Level  
Shifters  
150 kꢀ  
PGND  
20. Gate Driver Block Diagram  
7.3.1.4.1 IDRIVE: MOSFET Slew-Rate Control  
The IDRIVE component implements adjustable gate-drive current to control the MOSFET VDS slew rates. The  
MOSFET VDS slew rates are a critical factor for optimizing radiated emissions, energy and duration of diode  
recovery spikes, dV/dt gate turnon leading to shoot-through, and switching voltage transients related to parasitics  
in the external half-bridge. IDRIVE operates on the principal that the MOSFET VDS slew rates are predominately  
determined by the rate of gate charge (or gate current) delivered during the MOSFET Qgd or Miller charging  
region. By allowing the gate driver to adjust the gate current, it can effectively control the slew rate of the external  
power MOSFETs.  
IDRIVE allows the DRV8304 device to dynamically switch between gate drive currents either through a register  
setting on the SPI device or the IDRIVE pin on hardware interface device. The SPI and hardware devices  
provide 7 IDRIVE settings ranging from 15-mA to 150-mA source and 30-mA to 300-mA sink. The gate-drive  
current setting is delivered to the gate during the turnon and turnoff of the external power MOSFET for the tDRIVE  
duration. After the MOSFET turnon or turnoff, the gate driver switches to a smaller hold current (IHOLD) to improve  
the gate driver efficiency. Additional details on the IDRIVE settings are described in the Register Maps section for  
the SPI device and in the Pin Diagrams section for the hardware interface device.  
7.3.1.4.2 TDRIVE: MOSFET Gate Drive Control  
The TDRIVE component is an integrated gate-drive state machine that provides automatic dead-time insertion  
through switching handshaking, parasitic dV/dt gate turnon prevention, and MOSFET gate-fault detection.  
The first component of the TDRIVE state machine is automatic dead-time insertion. Dead time is the period of  
time between the switching of the external high-side and low-side MOSFETs to ensure that they do not cross  
conduct and cause shoot-through. The DRV8304 device uses the VGS voltage monitors to measure the MOSFET  
gate-to-source voltage and determine the proper time to switch instead of relying on a fixed time value. This  
feature allows the gate-driver dead time to adjust for variation in the system such a temperature drift and  
variation in the MOSFET parameters. An additional digital dead time (tDEAD) can be inserted and is adjustable  
through the registers on the SPI device.  
The second component focuses on parasitic dV/dt gate turnon prevention. To implement this, the TDRIVE state  
machine enables a strong pulldown current (ISTRONG) on the opposite MOSFET gate whenever a MOSFET is  
switching. The strong pulldown happens for the tDRIVE duration. This feature helps remove parasitic charge that  
couples into the MOSFET gate when the half-bridge switch-node voltage slews rapidly.  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
The third component implements a gate-fault detection scheme to detect pin-to-pin solder defects, a MOSFET  
gate failure, or a MOSFET gate stuck-high or stuck-low voltage condition. This implementation is done with a pair  
of VGS gate-to-source voltage monitors for each half-bridge gate driver. When the gate driver receives a  
command to change the state of the half-bridge it begins to monitor the gate voltage of the external MOSFET. If,  
at the end of the tDRIVE period, the VGS voltage has not reached the proper threshold, the gate driver reports a  
fault. To ensure that a false fault is not detected, a tDRIVE time should be selected that is longer than the time  
required to charge or discharge the MOSFET gate. The tDRIVE time does not increase the PWM time and will  
terminate if another PWM command is received while active. Additional details on the TDRIVE settings are  
described in the Register Maps section for SPI device and in the Pin Diagrams section for hardware interface  
device.  
If the mode is set to independent PWM mode, then the IDRIVE current is automatically set  
for the IHOLD period.  
21 shows an example of the TDRIVE state machine in operation.  
VINHx  
tPD  
tPD  
VINLx  
tDEAD  
tDEAD  
VGHx  
IDRIVE  
IHOLD  
IHOLD  
ISTRONG  
ISTRONG  
IGHx  
IHOLD  
IDRIVE  
tDEAD  
tDEAD  
VGLx  
IDRIVE  
IHOLD  
ISTRONG  
ISTRONG  
IGLx  
IHOLD  
IHOLD  
IDRIVE  
tDRIVE  
tDRIVE  
21. TDRIVE State Machine  
7.3.1.4.3 Gate Drive Clamp  
A clamping structure limits the gate-drive output voltage to the VGS,CLAMP voltage to help protect the external  
high-side MOSFETs from gate overvoltage damage. The positive voltage clamp is realized using a series of  
diodes. The negative voltage clamp uses the body diodes of the internal pulldown gate driver as shown in 22.  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
 
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
VGHS  
VM  
IREVERSE  
GHx  
VGS > VCLAMP  
ICLAMP  
SHx  
Predriver  
VGS negative  
VGLS  
GLx  
RSENSE  
PGND  
22. Gate Drive Clamp  
7.3.1.4.4 Propagation Delay  
The propagation delay time (tpd) is measured as the time between an input logic edge to a detected output  
change. This time comprises three parts consisting of the digital input deglitcher delay, the digital propagation  
delay, and the delay through the analog gate drivers.  
The input deglitcher prevents high-frequency noise on the input pins from affecting the output state of the gate  
drivers. To support multiple control modes and dead-time insertion, a small digital delay is added as the input  
command propagates through the device. Lastly, the analog gate drivers have a small delay that contributes to  
the overall propagation delay of the device.  
In order for the output to change state during normal operation, one MOSFET must first be turned off. The  
MOSFET gate is ramped down according to the IDRIVE setting, and the observed propagation delay ends when  
the MOSFET gate falls below the threshold voltage.  
7.3.1.4.5 MOSFET VDS Monitors  
The gate drivers implement adjustable VDS voltage monitors to detect overcurrent or short-circuit conditions on  
the external power MOSFETs. When the monitored voltage is greater than the VDS trip point (VVDS_OCP) for  
longer than the deglitch time (tOCP), an overcurrent condition is detected and action is taken according to the  
device VDS fault mode.  
The high-side VDS monitors measure the voltage between the VDRAIN and SHx pins and the low-side VDS  
monitors measure the voltage between the SHx and SPx pins. If the current shunt amplifier is unused, tie the SP  
pins to the common ground point of the external half-bridges.  
For the SPI device, the reference point of the low-side VDS monitor can be changed between the SPx and SNx  
pins if desired with the LS_REF register setting.  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
The VVDS_OCP threshold is programmable from 0.15 V to 1.8 V. Additional information on the VDS monitor levels  
are described in the Register Maps section for the SPI device and in the Pin Diagrams section hardware  
interface device.  
DRV8304  
High-Side VDS OCP Monitor  
VM  
VDRAIN  
+
œ
GHx  
+
VDS,OCP  
œ
SHx  
Low-Side VDS OCP Monitor  
GLx  
+
œ
SPX  
+
0
1
VDS,OCP  
RSENSE  
œ
SNX  
LS_REF  
(DRV8304S only)  
23. DRV8304 VDS Monitors  
7.3.1.4.6 VDRAIN Sense Pin  
The DRV8304 device provides a separate sense pin for the common point of the high-side MOSFET drain. This  
pin is called VDRAIN. This pin allows the sense line for the overcurrent monitors (VDRAIN) and the power supply  
(VM) to remain separate and prevent noise on the VDRAIN sense line. This separation also allows for a small  
filter to be implemented on the gate driver supply (VM) or to insert a boost converter to support lower voltage  
operation if desired. Care must still be taken when the filter or separate supply is designed because the VM  
supply is still the reference point for the VCP charge pump that supplies the high-side gate drive voltage (VGSH).  
The VM supply must not drift to far from the VDRAIN supply to avoid violating the VGS voltage specification of the  
external power MOSFETs.  
7.3.2 DVDD Linear Voltage Regulator  
A 3.3-V, 30-mA linear regulator is integrated into the DRV8304 device and is available for use by external  
circuitry. This regulator can provide the supply voltage for a low-power microcontroller or other low-current  
supporting circuitry. The output of the DVDD regulator should be bypassed near the DVDD pin with a X5R or  
X7R, 1-µF, 6.3-V ceramic capacitor routed directly back to the adjacent AGND ground pin.  
The DVDD nominal, no-load output voltage is 3.3 V. When the DVDD load current exceeds 30 mA, the regulator  
functions like a constant-current source. The output voltage drops significantly with a current load greater than 30  
mA.  
VM  
+
œ
REF  
3.3 V, 30 mA  
maximum  
DVDD  
AGND  
1 F  
24. DVDD Linear Regulator Block Diagram  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
Use 公式 1 to calculate the power dissipated in the device because of the DVDD linear regulator.  
P = VVM - VDVDD ì I  
(
)
DVDD  
(1)  
For example, at VVM = 24 V, drawing 20 mA out of DVDD results in a power dissipation as shown in 公式 2.  
P = 24 V - 3.3 V ì 20 mA = 414 mW  
(
)
(2)  
7.3.3 Pin Diagrams  
25 shows the input structure for the logic-level pins, INHx, INLx, CAL, nSCS, SCLK, and SDI. The input can  
be driven with a voltage or external resistor.  
DVDD  
STATE  
VIH  
RESISTANCE  
Tied to DVDD  
Tied to AGND  
INPUT  
Logic High  
Logic Low  
VIL  
RPD  
25. Logic-Level Input Pin Structure (INHx, INLx, CAL, nSCS, SCLK, and SDI)  
26 shows the input structure for the logic-level ENABLE pin. The input can be driven with a voltage or external  
resistor. The ENABLE pin is latched when the device is powered-up.  
5 V  
RPU2  
Latch  
VEXT  
STATE  
VIH  
RESISTANCE  
Tied to VEXT  
Tied to AGND  
INPUT  
RPU1  
Logic High  
Logic Low  
VIL  
26. Logic-Level Input Pin Structure (ENABLE)  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
 
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
27 shows the structure of the four-level input pins, MODE and GAIN, on the hardware interface device. The  
input can be set with an external resistor. The MODE and GAIN pins are latched when the device is powered-up.  
MODE  
GAIN  
DVDD  
STATE  
VI4  
RESISTANCE  
Tied to DVDD  
DVDD  
Independent  
40 V/V  
+
RPU  
œ
Hi-Z (>500 kΩ to  
1x PWM  
3x PWM  
6x PWM  
20V/V  
10 V/V  
5 V/V  
VI3  
VI2  
VI1  
AGND)  
+
RPD  
47 kΩ ±5%  
to AGND  
œ
Tied to AGND  
+
œ
27. Four-Level Input Pin Structure (MODE and GAIN)  
28 shows the structure of the seven-level input pins, IDRIVE and VDS, on the hardware interface device. The  
input can be set with an external resistor. The IDRIVE and VDS pins are latched when the device is powered-up.  
IDRIVE  
VDS  
150/300 mA  
Disabled  
+
œ
STATE  
VI7  
RESISTANCE  
Tied to DVDD  
135/270 mA  
105/210 mA  
90/180 mA  
60/120 mA  
45/90 mA  
1.8 V  
0.9 V  
0.6 V  
0.4 V  
0.24 V  
0.15 V  
+
DVDD  
DVDD  
œ
18 k± 5%  
to DVDD  
VI6  
VI5  
VI4  
VI3  
VI2  
VI1  
+
75 k± 5%  
to DVDD  
RPU  
œ
Hi-Z (>500 kΩ  
to AGND)  
DVDD  
+
RPD  
75 k± 5%  
to AGND  
œ
Latch  
18 kΩ ±5%  
to AGND  
+
Tied to AGND  
œ
+
œ
15/30 mA  
28. Seven-Level Input Pin Structure (IDRIVE and VDS)  
29 shows the structure of the open-drain output pin, nFAULT. The open-drain output requires an external  
pullup resistor to function properly.  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
 
 
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
DVDD  
R
PU  
STATE  
No Fault  
Fault  
STATUS  
OUTPUT  
Active  
Inactive  
Active  
Inactive  
29. Open-Drain Output Pin Structure  
7.3.4 Low-Side Current-Shunt Amplifiers  
The DRV8304 device integrates three, high-performance low-side current-shunt amplifiers for current  
measurements using low-side shunt resistors in the external half-bridges. Low-side current measurements are  
commonly used to implement overcurrent protection, external torque control, or brushless DC commutation with  
the external controller. All three amplifiers can be used to sense the current in each of the half-bridge legs or one  
amplifier can be used to sense the sum of the half-bridge legs. The current shunt amplifiers include features such  
as programmable gain, offset calibration, unidirectional and bidirectional support, and a voltage reference pin  
(VREF).  
7.3.4.1 Bidirectional Current Sense Operation  
The SOx pin on the DRV8304 outputs an analog voltage equal to the voltage across the SPx and SNx pins  
multiplied by the gain setting (GCSA) as shown in 30. The gain setting is adjustable between four different  
levels (5 V/V, 10 V/V, 20 V/V, and 40 V/V). Use 公式 3 to calculate the current through the shunt resistor.  
VVREF  
- VSOx  
2
I =  
GCSA ì RSENSE  
(3)  
R2  
R3  
R4  
R5  
R6  
SOx  
I
R1  
R1  
SPx  
SNx  
V
CC  
œ
R
SENSE  
V
+
REF  
0.1 F  
R2  
R3  
R4  
R5  
½
+
œ
30. Bidirectional Current-Sense Configuration  
31 and 32 show the detail of the amplifier operational range. In bi-directional operation, the amplifier output  
for 0-V input is set at VREF / 2. Any change in the differential input results in a corresponding change in the  
output times the CSA_GAIN factor. The amplifier has a defined linear region in which it can maintain operation.  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
SO (V)  
VREF  
VREF / 2  
VLINEAR  
SP œ SN (V)  
31. Bidirectional Current-Sense Output  
I
SP  
SO  
R
AV  
SN  
SO  
VREF  
SP œ SN  
œ0.3 V  
œI × R  
V
VREF  
œ 0.25 V  
V
SO(rangeœ)  
V
SO(off)max  
/ 2  
V
,
OFF  
0 V  
V
VREF  
V
DRIFT  
V
SO(off)min  
V
SO(range+)  
I × R  
0.3 V  
0.25 V  
0 V  
32. Bidirectional Current Sense Regions  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
7.3.4.2 Unidirectional Current Sense Operation (SPI only)  
On the DRV8304 SPI device, use the VREF_DIV bit to remove the VREF divider. In this case the shunt amplifier  
operates unidirectionally and the SOx outputs an analog voltage equal to the voltage across the SPx and SNx  
pins multiplied by the gain setting (GCSA). Use 公式 4 to calculate the current through the shunt resistor.  
V
- 0.3 - V  
SOX  
(
)
(
)
VREF  
I =  
G
CSA ì RSENSE  
(
)
(4)  
R2  
R3  
R4  
R5  
R6  
SOx  
I
R1  
R1  
SPx  
SNx  
œ
R
SENSE  
+
V
CC  
R2  
R3  
R4  
R5  
0.3 V  
V
REF  
+
+
-
0.1 F  
œ
33. Unidirectional Current-Sense Configuration  
34 and 35 show the detail of the amplifier operational range. In unidirectional operation, the amplifier output  
for 0-V input is set at VREF – 0.3 V. In this operating mode the amplifier output only responds to a positive  
current through the shunt resistor. The amplifier has a defined linear region in which it can maintain operation.  
SO (V)  
V
REF  
V
œ 0.3 V  
VREF  
V
LINEAR  
SP œ SN (V)  
34. Unidirectional Current-Sense Output  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
I
SP  
SN  
SO  
SO  
R
AV  
V
REF  
V
VREF  
œ 0.25 V  
V
SO(off)max  
SP œ SN  
V
,
OFF  
0 V  
V
œ 0.3 V  
VREF  
V
DRIFT  
V
SO(off)min  
V
SO(range)  
I × R  
0.3 V  
0.25 V  
0 V  
35. Unidirectional Current-Sense Regions  
7.3.4.3 Offset Calibration  
The DRV8304 device provides an auto calibration feature to minimize the amplifier input offset on power up or  
during an ENABLE reset pulse to account for temperature and device variation. Auto calibration is performed on  
both the hardware and SPI device options. The auto calibration begins immediately after the VREF pin crosses  
the minimum operational VREF voltage and completes in several µs (max 500 µs). During auto calibration, the  
inputs to the amplifier are disconnected from SPX and SNX pin and shorted internally. After auto calibration the  
amplifiers are ready for operation.  
For the SPI device option, auto calibration can also be performed during run time by setting the AUTOCAL bit. If  
the AUTOCAL bit is already set once, then the user must reset the bit and again set it to perform the auto-  
calibration. The user must wait for at least 500 µs before another write to ensure a successful calibration. The  
user is recommended not to sample CSA outputs during the AUTOCAL operation.  
In addition to this, the device also supports an external calibration through the SPI registers (SPI_CAL) in SPI  
device or through CAL pin in hardware device variant. When the calibration is enabled (CAL pin or SPI_CAL),  
the inputs to the amplifier are shorted internally, and the amplifier voltage can be observed though SOX pin for  
doing the external calibration. For the best results, perform offset calibration when the external MOSFETS are  
not switching to reduce the potential noise impact to the amplifier. DC calibration can be done at any time, even  
when the half-bridges are operating. 36 shows a diagram of the calibration mode  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
R2  
R3  
R4  
R5  
R6  
SOx  
CAL  
CAL  
SPX  
SNX  
œ
R
SENSE  
+
V
REF  
CAL  
CAL  
R2  
R3  
R4  
R5  
1/2  
+
œ
36. Amplifier Calibration Mode  
7.3.5 Gate-Driver Protection Circuits  
The DRV8304 device is fully protected against VM undervoltage, charge pump undervoltage, MOSFET VDS  
overcurrent, gate driver shorts, and overtemperature events.  
7. Fault Action and Response  
FAULT  
CONDITION  
CONFIGURATION  
REPORT  
GATE DRIVER  
LOGIC  
RECOVERY  
VM  
undervoltage  
(UVLO)  
Automatic:  
VVM > VUVLO  
VVM < VUVLO  
nFAULT  
Hi-Z  
Disabled  
Charge pump  
undervoltage  
(CPUV)  
DIS_CPUV = 0b  
DIS_CPUV = 1b  
nFAULT  
None  
Hi-Z  
Active  
Active  
Automatic:  
VVCP > VCPUV  
VVCP < VCPUV  
Active  
Latched:  
CLR_FLT, ENABLE Pulse  
OCP_MODE = 00b  
OCP_MODE = 01b  
nFAULT  
nFAULT  
Hi-Z  
Hi-Z  
Active  
Active  
Retry:  
tRETRY  
VDS overcurrent  
(VDS_OCP)  
VDS > VVDS_OCP  
OCP_MODE = 10b  
OCP_MODE = 11b  
nFAULT  
None  
Active  
Active  
Active  
Active  
No action  
No action  
Latched:  
CLR_FLT, ENABLE Pulse  
OCP_MODE = 00b  
nFAULT  
Hi-Z  
Active  
Retry:  
tRETRY  
VSENSE  
overcurrent  
(SEN_OCP)  
OCP_MODE = 01b  
OCP_MODE = 10b  
nFAULT  
nFAULT  
None  
Hi-Z  
Active  
Active  
Active  
VSP > VSEN_OCP  
Active  
Active  
No action  
No action  
OCP_MODE = 11b or  
DIS_SEN = 1b  
Latched:  
CLR_FLT, ENABLE Pulse  
DIS_GDF = 0b  
DIS_GDF = 1b  
OTW_REP = 1b  
OTW_REP = 0b  
nFAULT  
None  
Hi-Z  
Active  
Active  
Active  
Active  
Gate driver fault  
(GDF)  
Gate voltage stuck > tDRIVE  
Active  
Active  
Active  
No action  
Automatic:  
TJ < TOTW – THYS  
Thermal  
warning  
(OTW)  
nFAULT  
None  
TJ > TOTW  
No action  
Thermal  
shutdown  
(OTSD)  
Automatic:  
TJ < TOTSD – THYS  
TJ > TOTSD  
nFAULT  
Hi-Z  
Active  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
7.3.5.1 VM Supply Undervoltage Lockout (UVLO)  
If at any time the input supply voltage on the VM pin falls below the VUVLO threshold, all of the external MOSFETs  
are disabled, the charge pump is disabled, and the nFAULT pin is driven low. The FAULT and VM_UVLO bits  
are also latched high in the registers on the SPI device. Normal operation resumes (gate driver operation and the  
nFAULT pin is released) when the VM undervoltage condition is removed. The VM_UVLO bit remains set until  
cleared through the CLR_FLT bit or an ENABLE pin reset pulse (tRST).  
7.3.5.2 VCP Charge-Pump Undervoltage Lockout (CPUV)  
If at any time the voltage on the VCP pin (charge pump) falls below the VCPUV threshold voltage of the charge  
pump, all of the external MOSFETs are disabled and the nFAULT pin is driven low. The FAULT and CPUV bits  
are also latched high in the registers on the SPI device. Normal operation resumes (gate-driver operation and the  
nFAULT pin is released) when the VCP undervoltage condition is removed. The CPUV bit remains set until  
cleared through the CLR_FLT bit or an ENABLE pin reset pulse (tRST). Setting the DIS_CPUV bit high on the SPI  
device disables this protection feature. On the hardware interface device, the CPUV protection is always  
enabled.  
7.3.5.3 MOSFET VDS Overcurrent Protection (VDS_OCP)  
A MOSFET overcurrent event is sensed by monitoring the VDS voltage drop across the external MOSFET RDS(on)  
.
If the voltage across an enabled MOSFET exceeds the VVDS_OCP threshold for longer than the tOCP_DEG deglitch  
time, a VDS_OCP event is recognized and action is taken according to the OCP_MODE. On hardware interface  
devices, the VVDS_OCP threshold is set with the VDS pin, the tOCP_DEG is fixed at 4.5 µs, and the OCP_MODE is  
configured for 4-ms automatic retry. Moreover, the VDS_OCP can be disabled by tying the VDS pin to DVDD.  
On SPI devices, the VVDS_OCP threshold is set through the VDS_LVL SPI register, and the OCP_MODE bit can  
operate in four different modes: VDS latched shutdown, VDS automatic retry, VDS report only, and VDS disabled.  
7.3.5.3.1 VDS Latched Shutdown (OCP_MODE = 00b)  
After a VDS_OCP event in this mode, all the external MOSFETs are disabled and the nFAULT pin is driven low.  
The FAULT, VDS_OCP, and corresponding MOSFET OCP bits are latched high in the SPI registers. Normal  
operation resumes (gate driver operation and the nFAULT pin is released) when the VDS_OCP condition is  
removed and a clear faults command is issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST).  
7.3.5.3.2 VDS Automatic Retry (OCP_MODE = 01b)  
After a VDS_OCP event in this mode, all the external MOSFETs are disabled and the nFAULT pin is driven low.  
The FAULT, VDS_OCP, and corresponding MOSFET OCP bits are latched high in the SPI registers. Normal  
operation resumes automatically (gate driver operation and the nFAULT pin is released) after the tRETRY time  
elapses. The FAULT, VDS_OCP, and MOSFET OCP bits remain latched until the tRETRY period expires.  
7.3.5.3.3 VDS Report Only (OCP_MODE = 10b)  
No protective action occurs after a VDS_OCP event in this mode. The overcurrent event is reported by driving  
the nFAULT pin low and latching the FAULT, VDS_OCP, and corresponding MOSFET OCP bits high in the SPI  
registers. The gate drivers continue to operate normally. The external controller manages the overcurrent  
condition by acting appropriately. The reporting clears (nFAULT pin is released) when the VDS_OCP condition is  
removed and a clear faults command is issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST).  
7.3.5.3.4 VDS Disabled (OCP_MODE = 11b)  
No action occurs after a VDS_OCP event in this mode.  
7.3.5.4 VSENSE Overcurrent Protection (SEN_OCP)  
Half-bridge overcurrent is also monitored by sensing the voltage drop across the external current-sense resistor  
with the SPX pin. If at any time, the voltage on the SP input of the current-sense amplifier exceeds the VSEN_OCP  
threshold for longer than the tOCP_DEG deglitch time, a SEN_OCP event is recognized and action is done  
according to the OCP_MODE bit. On the hardware interface device, the VSENSE threshold is fixed at 1 V, tOCP_DEG  
is fixed at 4 µs, and the OCP_MODE bit for VSENSE is fixed for 4-ms automatic retry. On the SPI device, the  
VSENSE threshold is set through the SEN_LVL SPI register and the OCP_MODE bit can operate in four different  
modes: VSENSE latched shutdown, VSENSE automatic retry, VSENSE report only, and VSENSE disabled.  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
7.3.5.4.1 VSENSE Latched Shutdown (OCP_MODE = 00b)  
After a SEN_OCP event in this mode, all the external MOSFETs are disabled and the nFAULT pin is driven low.  
The FAULT and SEN_OCP bits are latched high in the SPI registers. Normal operation resumes (gate driver  
operation and the nFAULT pin is released) when the SEN_OCP condition is removed and a clear faults  
command is issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST).  
7.3.5.4.2 VSENSE Automatic Retry (OCP_MODE = 01b)  
After a SEN_OCP event in this mode, all the external MOSFETs are disabled and the nFAULT pin is driven low.  
The FAULT, SEN_OCP, and corresponding sense OCP bits are latched high in the SPI registers. Normal  
operation resumes automatically (gate driver operation and the nFAULT pin is released) after the tRETRY time  
elapses. The FAULT, SEN_OCP, and sense OCP bits remain latched until the tRETRY period expires.  
7.3.5.4.3 VSENSE Report Only (OCP_MODE = 10b)  
No protective action occurs after a SEN_OCP event in this mode. The overcurrent event is reported by driving  
the nFAULT pin low and latching the FAULT and SEN_OCP bits high in the SPI registers. The gate drivers  
continue to operate. The external controller manages the overcurrent condition by acting appropriately. The  
reporting clears (nFAULT released) when the SEN_OCP condition is removed and a clear faults command is  
issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST).  
7.3.5.4.4 VSENSE Disabled (OCP_MODE = 11b or DIS_SEN = 1b)  
No action occurs after a SEN_OCP event in this mode. The SEN_OCP bit can be disabled independently of the  
VDS_OCP bit by using the DIS_SEN SPI register.  
7.3.5.5 Gate Driver Fault (GDF)  
The GHx and GLx pins are monitored such that if the voltage on the external MOSFET gate does not increase or  
decrease after the tDRIVE time, a gate driver fault is detected. This fault might be encountered if the GHx or GLx  
pins are shorted to the PGND, SHx, or VM pins. Additionally, a gate driver fault might be encountered if the  
selected IDRIVE setting is not sufficient to turn on the external MOSFET within the tDRIVE period. After a gate drive  
fault is detected, all external MOSFETs are disabled and the nFAULT pin is driven low. In addition, the FAULT,  
GDF, and corresponding VGS bits are latched high in the SPI registers. Normal operation resumes (gate driver  
operation and the nFAULT pin is released) when the gate-driver fault condition is removed and a clear fault  
command is issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST). On the SPI device, setting  
the DIS_GDF_UVLO bit high disables this protection feature.  
Gate driver faults can indicate that the selected IDRIVE or tDRIVE settings are too low to slew the external MOSFET  
in the desired time. Increasing either the IDRIVE or tDRIVE setting can resolve a gate driver fault in these cases.  
Alternatively, if a gate-to-source short occurs on the external MOSFET, a gate driver fault is reported because of  
the MOSFET gate not turning on.  
7.3.5.6 Thermal Warning (OTW)  
If the die temperature exceeds the trip point of the thermal warning (TOTW), the OTW bit is set in the registers of  
the SPI device. The device performs no additional action and continues to function. When the die temperature  
decreases below the hysteresis point of the thermal warning, the OTW bit clears automatically. The OTW bit can  
also be configured to report on the nFAULT pin by setting the OTW_REP bit to 1b through the SPI registers.  
7.3.5.7 Thermal Shutdown (OTSD)  
If the die temperature exceeds the trip point of the thermal shutdown limit (TOTSD), all the external MOSFETs are  
disabled, the charge pump is shut down, and the nFAULT pin is driven low. In addition, the FAULT and TSD bits  
are latched high. Normal operation resumes (gate driver operation and the nFAULT pin is released) when the  
overtemperature condition is removed. The TSD bit remains latched high indicating that a thermal event occurred  
until a clear fault command is issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST). This  
protection feature cannot be disabled.  
34  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
7.4 Device Functional Modes  
7.4.1 Gate Driver Functional Modes  
7.4.1.1 Sleep Mode  
The ENABLE pin manages the state of the DRV8304 device. When the ENABLE pin is low, the device enters a  
low-power sleep mode. In sleep mode, all gate drivers are disabled, all external MOSFETs are disabled, the  
charge pump is disabled, the DVDD regulator is disabled, and the SPI bus is disabled. The tSLEEP time must  
elapse after a falling edge on the ENABLE pin before the device enters sleep mode. The device comes out of  
sleep mode automatically if the ENABLE pin is pulled high. The tWAKE time must elapse before the device is  
ready for inputs.  
In sleep mode and when VVM < VUVLO, all external MOSFETs are disabled. The high-side gate pins, GHx, are  
pulled to the SHx pin by an internal resistor and the low-side gate pins, GLx, are pulled to the PGND pin by an  
internal resistor.  
During power up and power down of the device through the ENABLE pin, the nFAULT pin  
is held low as the internal regulators enable or disable. After the regulators have enabled  
or disabled, the nFAULT pin is automatically released. The duration that the nFAULT pin  
is low does not exceed the tSLEEP or tWAKE time.  
7.4.1.2 Operating Mode  
When the ENABLE pin is high and VVM > VUVLO, the device enters operating mode. The tWAKE time must elapse  
before the device is ready for inputs. In this mode the charge pump, low-side gate regulator, DVDD regulator,  
and SPI bus are active and hardware inputs are latched.  
If the ENABLE pin is left floating, the device will be in Operating Mode.  
7.4.1.3 Fault Reset (CLR_FLT or ENABLE Reset Pulse)  
In the case of device latched faults, the DRV8304 device enters a partial shutdown state to help protect the  
external power MOSFETs and system.  
When the fault condition has been removed the device can reenter the operating state by either setting the  
CLR_FLT SPI bit on the SPI device or issuing a result pulse to the ENABLE pin on either interface variant. The  
ENABLE reset pulse (tRST) consists of a high-to-low-to-high transition on the ENABLE pin. The low period of the  
sequence should fall with the tRST time window or else the device will begin the complete shutdown sequence.  
The reset pulse has no effect on any of the regulators, device settings, or other functional blocks  
7.5 Programming  
This section applies only to the DRV8304 SPI device.  
7.5.1 SPI Communication  
7.5.1.1 SPI  
On the DRV8304 SPI device, an SPI bus is used to set device configurations, operating parameters, and read  
out diagnostic information. The SPI operates in slave mode and connects to a master controller. The SPI input  
data (SDI) word consists of a 16-bit word, with a 5-bit command and 11 bits of data. The SPI output data (SDO)  
word consists of 11-bit register data. The first 5 bits are don’t care bits.  
A valid frame must meet the following conditions:  
The SCLK pin should be low when the nSCS pin transitions from high to low and from low to high.  
The nSCS pin should be pulled high for at least 400 ns between words.  
When the nSCS pin is pulled high, any signals at the SCLK and SDI pins are ignored and the SDO pin is  
版权 © 2017–2018, Texas Instruments Incorporated  
35  
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
Programming (接下页)  
placed in the Hi-Z state.  
Data is captured on the falling edge of the SCLK pin and data is propagated on the rising edge of the SCLK  
pin.  
The most significant bit (MSB) is shifted in and out first.  
A full 16 SCLK cycles must occur for the transaction to be valid.  
If the data word sent to the SDI pin is less than or more than 16 bits, a frame error occurs and the data word  
is ignored.  
For a write command, the existing data in the register being written to is shifted out on the SDO pin following  
the 5-bit command data.  
7.5.1.1.1 SPI Format  
The SDI input data word is 16 bits long and consists of the following format:  
1 read or write bit, W (bit B15)  
4 address bits, A (bits B14 through B11)  
11 data bits, D (bits B11 through B0)  
The SDO output data word is 16 bits long and the first 5 bits are don't care bits. The data word is the content of  
the register being accessed.  
For a write command (W0 = 0), the response word on the SDO pin is the data currently in the register being  
written to.  
For a read command (W0 = 1), the response word is the data currently in the register being read.  
8. SDI Input Data Word Format  
R/W  
B15  
W0  
ADDRESS  
DATA  
B5  
B14  
A3  
B13  
A2  
B12  
A1  
B11  
A0  
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
D5  
9. SDO Output Data Word Format  
DON'T CARE BITS  
DATA  
B15  
X
B14  
X
B13  
X
B12  
X
B11  
X
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
nSCS  
SCLK  
SDI  
X
Z
MSB  
LSB  
X
SDO  
MSB  
LSB  
Z
Capture  
Point  
Propagate  
Point  
37. SPI Slave Timing Diagram  
36  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
7.6 Register Maps  
This section applies only to the DRV8304 SPI device.  
Do not modify reserved registers or addresses not listed in the register map (10). Writing to these registers may have  
unintended effects. For all reserved bits, the default value is 0. To help prevent erroneous SPI writes from the master controller,  
set the LOCK bits to lock the SPI registers.  
10. DRV8304S Register Map  
Name  
10  
9
8
7
6
5
4
3
2
1
0
Type  
R
Address  
0h  
Fault Status 1  
VGS Status 2  
Driver Control  
Gate Drive HS  
Gate Drive LS  
OCP Control  
CSA Control  
Reserved  
FAULT  
SA_OC  
Reserved  
VDS_OCP  
SB_OC  
GDF  
UVLO  
OTSD  
CPUV  
VDS_HA  
VGS_HA  
VDS_LA  
VGS_LA  
1PWM_COM  
VDS_HB  
VGS_HB  
1PWM_DIR  
Reserved  
Reserved  
VDS_LB  
VGS_LB  
COAST  
VDS_HC  
VGS_HC  
BRAKE  
VDS_LC  
VGS_LC  
CLR_FLT  
SC_OC  
DIS_GDF  
OTW  
R
1h  
DIS_CPUV  
LOCK  
OTW_REP  
Reserved  
Reserved  
PWM_MODE  
RW  
RW  
RW  
RW  
RW  
RW  
2h  
IDRIVEP_HS  
IDRIVEP_LS  
OCP_ACT  
DIS_SEN  
IDRIVEN_HS  
IDRIVEN_LS  
VDS_LVL  
3h  
CBC  
TDRIVE  
DEAD_TIME  
VREF_DIV LS_REF  
4h  
TRETRY  
Reserved  
OCP_MODE  
CSA_GAIN  
Reserved  
5h  
SPI_CAL  
AUTOCAL  
Reserved  
SEN_LVL  
6h  
Reserved  
7h  
版权 © 2017–2018, Texas Instruments Incorporated  
37  
 
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
7.6.1 Status Registers (DRV8304S Only)  
The status registers are used to reporting warning and fault conditions. The status registers are read-only  
registers  
Complex bit access types are encoded to fit into small table cells. 11 shows the codes that are used for  
access types in this section.  
11. Status Registers Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Reset or Default Value  
-n  
Value after reset or the default  
value  
7.6.1.1 Fault Status Register 1 (Address = 0x00) [reset = 0x00]  
The fault status register 1 is shown in 38 and described in 12.  
Register access type: Read only  
38. Fault Status Register 1  
10  
9
8
7
6
5
4
3
2
1
0
FAULT  
R-0b  
VDS_OCP  
R-0b  
GDF  
R-0b  
UVLO  
R-0b  
OTSD  
R-0b  
VDS_HA  
R-0b  
VDS_LA  
R-0b  
VDS_HB  
R-0b  
VDS_LB  
R-0b  
VDS_HC  
R-0b  
VDS_LC  
R-0b  
12. Fault Status Register 1 Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10  
FAULT  
R
0b  
Logic OR of FAULT status registers. Mirrors nFAULT pin.  
Indicates VDS monitor overcurrent fault condition  
Indicates gate drive fault condition  
9
8
7
6
5
4
3
2
1
0
VDS_OCP  
GDF  
R
R
R
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
UVLO  
Indicates undervoltage lockout fault condition  
OTSD  
Indicates overtemperature shutdown  
VDS_HA  
VDS_LA  
VDS_HB  
VDS_LB  
VDS_HC  
VDS_LC  
Indicates VDS overcurrent fault on the A high-side MOSFET  
Indicates VDS overcurrent fault on the A low-side MOSFET  
Indicates VDS overcurrent fault on the B high-side MOSFET  
Indicates VDS overcurrent fault on the B low-side MOSFET  
Indicates VDS overcurrent fault on the C high-side MOSFET  
Indicates VDS overcurrent fault on the C low-side MOSFET  
38  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
7.6.1.2 Fault Status Register 2 (Address = 0x01) [reset = 0x00]  
The fault status register 2 is shown in 39 and described in 13.  
Register access type: Read only  
39. Fault Status Register 2  
10  
9
8
7
6
5
4
3
2
1
0
SA_OC  
R-0b  
SB_OC  
R-0b  
SC_OC  
R-0b  
OTW  
R-0b  
CPUV  
R-0b  
VGS_HA  
R-0b  
VGS_LA  
R-0b  
VGS_HB  
R-0b  
VGS_LB  
R-0b  
VGS_HC  
R-0b  
VGS_LC  
R-0b  
13. Fault Status Register 2 Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10  
SA_OC  
SB_OC  
SC_OC  
OTW  
R
0b  
Indicates overcurrent on phase A sense amplifier (DRV8304S)  
Indicates overcurrent on phase B sense amplifier (DRV8304S)  
Indicates overcurrent on phase C sense amplifier (DRV8304S)  
Indicates overtemperature warning  
9
8
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
CPUV  
Indicates charge pump undervoltage fault condition  
Indicates gate drive fault on the A high-side MOSFET  
Indicates gate drive fault on the A low-side MOSFET  
Indicates gate drive fault on the B high-side MOSFET  
Indicates gate drive fault on the B low-side MOSFET  
Indicates gate drive fault on the C high-side MOSFET  
Indicates gate drive fault on the C low-side MOSFET  
VGS_HA  
VGS_LA  
VGS_HB  
VGS_LB  
VGS_HC  
VGS_LC  
版权 © 2017–2018, Texas Instruments Incorporated  
39  
 
 
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
7.6.2 Control Registers (DRV8304S Only)  
The control registers are used to configure the device. The control registers are read and write capable  
Complex bit access types are encoded to fit into small table cells. 14 shows the codes that are used for  
access types in this section.  
14. Control Registers Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
7.6.2.1 Driver Control Register (Address = 0x02) [reset = 0x00]  
The driver control register is shown in 40 and described in 15.  
Register access type: Read/Write  
40. Driver Control Register  
10  
9
8
7
6
5
4
3
2
1
0
DIS  
_CPUV  
DIS  
_GDF  
OTW  
_REP  
1PWM  
_COM  
1PWM  
_DIR  
CLR  
_FLT  
Reserved  
R/W-0b  
PWM_MODE  
R/W-00b  
COAST  
R/W-0b  
BRAKE  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
15. Driver Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10  
Reserved  
R/W  
0b  
Reserved  
9
DIS_CPUV  
R/W  
R/W  
R/W  
R/W  
0b  
0b = Charge-pump undervoltage lockout fault is enabled  
1b = Charge-pump undervoltage lockout fault is disabled  
8
DIS_GDF  
0b  
0b = Gate drive fault is enabled  
1b = Gate drive fault is disabled  
7
OTW_REP  
PWM_MODE  
0b  
0b = OTW is not reported on nFAULT or the FAULT bit  
1b = OTW is reported on nFAULT and the FAULT bit  
6-5  
00b  
00b = 6x PWM Mode  
01b = 3x PWM mode  
10b = 1x PWM mode  
11b = Independent PWM mode  
4
1PWM_COM  
R/W  
0b  
0b = 1x PWM mode uses synchronous rectification  
1b = 1x PWM mode uses asynchronous rectification (diode  
freewheeling)  
3
2
1
1PWM_DIR  
COAST  
R/W  
R/W  
R/W  
0b  
0b  
0b  
In 1x PWM mode this bit is ORed with the INHC (DIR) input  
Write a 1b to this bit to put all MOSFETs in the Hi-Z state  
BRAKE  
Write a 1b to this bit to turn on all three low-side MOSFETs in 1x  
PWM mode.  
This bit is ORed with the INLC (BRAKE) input.  
0
CLR_FLT  
R/W  
0b  
Write a 1b to this bit to clear latched fault bits.  
This bit automatically resets after being written.  
40  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
7.6.2.2 Gate Drive HS Register (Address = 0x03) [reset = 0x377]  
The gate drive HS register is shown in 41 and described in 16.  
Register access type: Read/Write  
41. Gate Drive HS Register  
10  
9
8
7
6
5
4
3
2
1
0
LOCK  
Reserved  
R/W-0b  
IDRIVEP_HS  
R/W-111b  
Reserved  
R/W-0b  
IDRIVEN_HS  
R/W-111b  
R/W-011b  
16. Gate Drive HS Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10-8  
LOCK  
R/W  
011b  
Write 110b to lock the settings by ignoring further register writes  
except to these bits and address 0x02h bits 0-2.  
Writing any sequence other than 110b has no effect when  
unlocked.  
Write 011b to this register to unlock all registers.  
Writing any sequence other than 011b has no effect when  
locked.  
7
Reserved  
R/W  
R/W  
0b  
Reserved  
6-4  
IDRIVEP_HS  
111b  
000b = 15 mA  
001b = 15 mA  
010b = 45 mA  
011b = 60 mA  
100b = 90 mA  
101b = 105 mA  
110b = 135 mA  
111b = 150 mA  
3
Reserved  
R/W  
R/W  
0b  
Reserved  
2-0  
IDRIVEN_HS  
111b  
000b = 30 mA  
001b = 30 mA  
010b = 90 mA  
011b = 120 mA  
100b = 180 mA  
101b = 210 mA  
110b = 270 mA  
111b = 300 mA  
版权 © 2017–2018, Texas Instruments Incorporated  
41  
 
 
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
7.6.2.3 Gate Drive LS Register (Address = 0x04) [reset = 0x777]  
The gate drive LS register is shown in 42 and described in 17.  
Register access type: Read/Write  
42. Gate Drive LS Register  
10  
9
8
7
6
5
4
3
2
1
0
CBC  
TDRIVE  
R/W-11b  
Reserved  
R/W-0b  
IDRIVEP_LS  
R/W-111b  
Reserved  
R/W-0b  
IDRIVEN_LS  
R/W-111b  
R/W-1b  
17. Gate Drive LS Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10  
CBC  
R/W  
1b  
In retry OCP_MODE, for both VDS_OCP and SEN_OCP, the  
fault is automatically cleared when a PWM input is given  
9-8  
TDRIVE  
R/W  
11b  
00b = 500-ns peak gate-current drive time  
01b = 1000-ns peak gate-current drive time  
10b = 2000-ns peak gate-current drive time  
11b = 4000-ns peak gate-current drive time  
7
Reserved  
R/W  
R/W  
0b  
Reserved  
6-4  
IDRIVEP_LS  
111b  
000b = 15 mA  
001b = 15 mA  
010b = 45 mA  
011b = 60 mA  
100b = 90 mA  
101b = 105 mA  
110b = 135 mA  
111b = 150 mA  
3
Reserved  
R/W  
R/W  
0b  
Reserved  
2-0  
IDRIVEN_LS  
111b  
000b = 30 mA  
001b = 30 mA  
010b = 90 mA  
011b = 120 mA  
100b = 180 mA  
101b = 210 mA  
110b = 270 mA  
111b = 300 mA  
42  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
7.6.2.4 OCP Control Register (Address = 0x05) [reset = 0x145]  
The OCP control register is shown in 43 and described in 18.  
Register access type: Read/Write  
43. OCP Control Register  
10  
9
8
7
6
5
4
3
2
1
0
TRETRY  
R/W-0b  
DEAD_TIME  
R/W-01b  
OCP_MODE  
R/W-01b  
OCP_ACT  
R/W-0b  
Reserved  
R/W-00b  
VDS_LVL  
R/W-101b  
18. OCP Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10  
TRETRY  
R/W  
0b  
0b = VDS_OCP and SEN_OCP retry time is 4 ms  
1b = VDS_OCP and SEN_OCP retry time is 50 µs  
9-8  
7-6  
5
DEAD_TIME  
R/W  
R/W  
R/W  
01b  
01b  
0b  
00b = 50-ns dead time  
01b = 100-ns dead time  
10b = 200-ns dead time  
11b = 400-ns dead time  
OCP_MODE  
OCP_ACT  
00b = Overcurrent causes a latched fault  
01b = Overcurrent causes an automatic retrying fault  
10b = Overcurrent is report only but no action is taken  
11b = Overcurrent is not reported and no action is taken  
0b = All three half-bridges are shutdown in response to  
VDS_OCP and SEN_OCP  
1b  
= Associated half-bridge is shutdown in response to  
VDS_OCP and SEN_OCP  
4-3  
2-0  
Reserved  
VDS_LVL  
R/W  
R/W  
00b  
Reserved  
101b  
000b = 0.15 V  
001b = 0.24 V  
010b = 0.40V  
011b = 0.51 V  
100b = 0.60 V  
101b = 0.90 V  
110b = 1.8 V  
111b = VDS Disabled  
版权 © 2017–2018, Texas Instruments Incorporated  
43  
 
 
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
7.6.2.5 CSA Control Register (Address = 0x06) [reset = 0x283]  
The CSA control register is shown in 44 and described in 19.  
Register access type: Read/Write  
44. CSA Control Register  
10  
9
8
7
6
5
4
3
2
1
0
SEN_LVL  
VREF  
_DIV  
LS  
_REF  
DIS  
_SEN  
SPI  
_CAL  
AUTO  
CAL  
Reserved  
R/W-0b  
CSA_GAIN  
R/W-10b  
Reserved  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-11b  
19. CSA Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10  
Reserved  
R/W  
0b  
Reserved  
9
VREF_DIV  
R/W  
1b  
0b = Sense amplifier reference voltage is VREF (unidirectional  
mode)  
1b = Sense amplifier reference voltage is VREF divided by 2  
8
LS_REF  
R/W  
0b  
0b  
= VDS_OCP for the low-side MOSFET is measured  
across SHx to SPx  
1b = VDS_OCP for the low-side MOSFET is measured across  
SHx to SNx  
7-6  
CSA_GAIN  
R/W  
10b  
00b = 5-V/V shunt amplifier gain  
01b = 10-V/V shunt amplifier gain  
10b = 20-V/V shunt amplifier gain  
11b = 40-V/V shunt amplifier gain  
5
4
3
DIS_SEN  
SPI_CAL  
AUTOCAL  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b = Sense overcurrent fault is enabled  
1b = Sense overcurrent fault is disabled  
0b = Disable sense amplifier CAL function  
1b = Enable sense amplifier CAL function  
0b = AUTOCAL operation remains disabled in run mode  
1b = Perform AUTOCAL operation  
2
Reserved  
SEN_LVL  
R/W  
R/W  
0b  
Reserved  
1-0  
11b  
00b = Sense OCP 0.25 V  
01b = Sense OCP 0.5 V  
10b = Sense OCP 0.75 V  
11b = Sense OCP 1 V  
44  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV8304 device is primarily used in 3-phase brushless DC motor control applications. The design  
procedures in the Typical Application section highlight how to use and configure the DRV8304 device.  
8.2 Typical Application  
8.2.1 Primary Application  
In this application the amplifiers are configured to sense bi-directional currents in each of the three half-bridge  
legs.  
Power and Charge Pump  
VM  
3.3 V, 30 mA  
DVDD  
AGND  
VM  
GND  
1 µF  
Three Phase Inverter  
VM  
GND  
Gate Driver  
VDD  
GND  
BLDC Motor  
GHA  
SHA  
GLA  
Power  
GPIO  
ENABLE  
CAL  
nFAULT  
GP-O  
GP-O  
GP-I  
GHB  
SHB  
GLB  
PWM1, PWW2  
PWM3, PWM4  
PWM5, PWM6  
INHA, INLA  
INHB,INLB  
INHC, INLC  
PWM  
Module  
GHC  
SHC  
GLC  
Smart Gate Drive  
150 mA, 300 mA  
(Fully Protected)  
SCLK  
SPI  
SCLK  
SDI  
SDO  
nSCS  
MODE  
IDRIVE  
VDS  
SDI  
(DAC and External  
Resistor for H/W I/F)  
SDO  
nSCS  
GAIN  
SOA  
SOB  
SOC  
SPA, SNA  
SPV, SNB  
SPC, SNC  
Analog to Digital  
Converters  
3x ADC  
Microcontroller  
DRV8304  
45. Primary Application Schematic  
版权 © 2017–2018, Texas Instruments Incorporated  
45  
 
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
Typical Application (接下页)  
8.2.1.1 Design Requirements  
20 lists the example input parameters for the system design.  
20. Design Parameters  
EXAMPLE DESIGN PARAMETER  
Nominal supply voltage  
Supply voltage range  
REFERENCE  
EXAMPLE VALUE  
24 V  
8 V to 38 V  
VVM  
MOSFET part number  
CSD18514Q5A  
29 nC (typical) at VVGS = 10 V  
5 nC (typical)  
100 to 300 ns  
50 to 150 ns  
45 kHz  
MOSFET total gate charge  
MOSFET gate to drain charge  
Target output rise time  
Target output fall time  
Qg  
Qgd  
tr  
tf  
PWM frequency  
ƒPWM  
Imax  
ISENSE  
IRMS  
PSENSE  
TA  
Maximum motor current  
Winding sense current range  
Motor RMS current  
50 A  
–20 A to +20 A  
14.14 A  
Sense resistor power rating  
System ambient temperature  
2 W  
–20°C to +105°C  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 External MOSFET Support  
The DRV8304 MOSFET support is based on the charge-pump capacity and output PWM switching frequency.  
For a quick calculation of MOSFET driving capacity, use 公式 5 and 公式 6 for three phase BLDC motor  
applications.  
Trapezoidal 120° Commutation:IVCP > Qg ׃PWM  
Sinusoidal 180° Commutation:IVCP > 3 × Qg ׃PWM  
(5)  
where  
ƒPWM is the maximum desired PWM switching frequency.  
IVCP is the charge pump capacity, which depends on the VM pin voltage.  
The multiplier based on the commutation control method, may vary based on implementation.  
(6)  
8.2.1.2.1.1 Example  
If a system at VVM = 8 V (IVCP = 15 mA) uses a maximum PWM switching frequency of 45 kHz, then the charge  
pump can support MOSFETs using trapezoidal commutation with a Qg < 333 nC, and MOSFETs with sinusoidal  
commutation Qg < 111 nC. When the VM voltage (VVM) is 8 V, the maximum DRV8304 gate-drive voltage (VGSH  
)
is 7.3 V. Therefore, at 7.3-V gate drive, the target FET (part number CSD18514Q5A) only has a gate charge of  
approximately 22 nC. Therefore, with this FET, the system can have an adequate margin.  
8.2.1.2.2 IDRIVE Configuration  
The gate drive current strength, IDRIVE, is selected based on the gate-to-drain charge of the external MOSFETs  
and the target rise and fall times at the outputs. If IDRIVE is selected to be too low for a given MOSFET, then the  
MOSFET may not turn on completely within the tDRIVE time and a gate drive fault may be asserted. Additionally,  
slow rise and fall times will lead to higher switching power losses. TI recommends adjusting these values in  
system with the required external MOSFETs and motor to determine the best possible setting for any application.  
The IDRIVEP and IDRIVEN current for both the low-side and high-side MOSFETs are independently adjustable on  
the SPI device through the SPI registers. On hardware interface devices, both source and sink settings are  
selected simultaneously on the IDRIVE pin.  
For MOSFETs with a known gate-to-drain charge (Qgd), desired rise time (tr), and a desired fall time (tf), use 公式  
7 and 公式 8 to calculate the value of IDRIVEP and IDRIVEN (respectively).  
46  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
Qgd  
tr  
IDRIVEP  
>
(7)  
(8)  
Qgd  
tf  
IDRIVEN  
>
8.2.1.2.2.1 Example  
Use 公式 9 and 公式 10 to calculate the value of IDRIVEP1 and IDRIVEP2 (respectively) for a gate to drain charge of  
5 nC and a rise time from 100 to 300 ns.  
5 nC  
IDRIVEP1  
=
= 50 mA  
100 ns  
5 nC  
(9)  
IDRIVEP2  
=
= 16.67 mA  
300 ns  
(10)  
Select a value for IDRIVEP that is between 16.67 mA and 50 mA. For this example, the value of IDRIVEP was  
selected as 45-mA source.  
Use 公式 11 and 公式 12 to calculate the value of IDRIVEN1 and IDRIVEN2 (respectively) for a gate to drain charge of  
5 nC and a fall time from 50 to 150 ns.  
5 nC  
IDRIVEN1  
=
= 100 mA  
50 ns  
(11)  
(12)  
5 nC  
IDRIVEN2  
=
= 33.33 mA  
150 ns  
Select a value for IDRIVEN that is between 33.33 mA and 100 mA. For this example, the value of IDRIVEN was  
selected as 90-mA sink.  
8.2.1.2.3 VDS Overcurrent Monitor Configuration  
The VDS monitors are configured based on the worst-case motor current and the RDS(on) of the external  
MOSFETs as shown in 公式 13.  
VDS_OCP > Imax ì RDS(on)max  
(13)  
8.2.1.2.3.1 Example  
The goal of this example is to set the VDS monitor to trip at a current greater than 50 A. According to the  
CSD18514Q5A 40 V N-Channel NexFET™ Power MOSFET data sheet, the RDS(on) value is 1.8 times higher at  
175°C, and the maximum RDS(on) value at a VGS of 10 V is 4.9 mΩ. From these values, the approximate worst-  
case value of RDS(on) is 1.8 × 4.9 mΩ = 8.82 mΩ.  
Using 公式 13 with a value of 8.82 mΩ for RDS(on) and a worst-case motor current of 50 A, 公式 14 shows the  
calculated the value of the VDS monitors.  
VDS _ OCP > 50 A ì 8.82 mW  
VDS _ OCP > 0.441 V  
(14)  
For this example, the value of VDS_OCP was selected as 0.51 V.  
The deglitch time for the VDS overcurrent monitor is fixed at 4.5 µs.  
8.2.1.2.4 Sense-Amplifier Bidirectional Configuration  
The sense-amplifier gain and the sense-resistor value on the DRV8304 device are selected based on the target  
current range, VREF voltage supply, sense-resistor power rating, and operating temperature range. In  
bidirectional operation of the sense amplifier, the dynamic range at the output is approximately calculated as  
shown in 公式 15.  
VVREF  
VO = V  
- 0.25 V -  
(
)
VREF  
2
(15)  
47  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
 
 
 
 
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
Use 公式 16 to calculate the approximate value of the selected sense resistor with VO calculated using 公式 15.  
VO  
2
R =  
PSENSE > IRMS ì R  
AV ì I  
(16)  
From 公式 15 and 公式 16, select a target gain setting based on the power rating of the target-sense resistor.  
8.2.1.2.4.1 Example  
In this system example, the value of the VREF voltage is 3.3 V with a sense current from –20 to +20 A. The  
linear range of the SOx output is 0.25 V to VVREF – 0.25 V (from the VLINEAR specification). The differential range  
of the sense amplifier input is –0.3 to +0.3 V (VDIFF).  
3.3 V  
V = 3.3 V - 0.25 V -  
= 1.4 V  
(
)
O
2
(17)  
(18)  
(19)  
1.4 V  
AV ì 20 A  
1.4 V  
AV ì 20 A  
R =  
2 W > 14.142 ì R ç R < 10 mW  
10 mW >  
ç AV > 7  
Therefore, the gain setting must be selected as 10 V/V or 20 V/V and the value of the sense resistor must be  
less than 10 mΩ to meet the power requirement for the sense resistor. For this example, the gain setting was  
selected as 10 V/V. The value of the resistor and worst case current can be verified that R < 10 mΩ and Imax  
=
20 A does not violate the differential range specification of the sense amplifier input (VSPxD).  
I
SP  
SO  
R
AV  
SN  
SO  
VREF  
SP œ SN  
VVREF œ 0.25 V  
œ0.3 V  
œI × R  
VSO(rangeœ)  
VSO(off)max  
VVREF / 2  
VSO(off)min  
VOFF  
VDRIFT  
,
0 V  
VSO(range+)  
I × R  
0.3 V  
0.25 V  
0 V  
46. Sense Amplifier Configuration  
48  
版权 © 2017–2018, Texas Instruments Incorporated  
 
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
8.2.1.3 Application Curves  
47. IDRIVE Maximum Setting  
48. IDRIVE Minimum Setting  
49. Gate Drive 80% Duty Cycle  
50. Gate Drive 20% Duty Cycle  
51. Motor Operation at 80% PWM Duty  
52. Motor Operation at 20% PWM Duty  
版权 © 2017–2018, Texas Instruments Incorporated  
49  
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
53. Motor Starting With PWM Duty Change  
54. Motor Starting With Supply Voltage Change  
55. Motor Performance at Speed Change  
56. Motor Performance at Load Change  
50  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
8.2.2 Alternative Application  
In this application, a single-sense amplifier is used in unidirectional mode for a summing current-sense scheme  
often used in trapezoidal or hall-based BLDC commutation control.  
VM  
Power and Charge Pump  
3.3 V, 30 mA  
DVDD  
AGND  
VM  
GND  
1 F  
Three Phase Inverter  
VM  
GND  
Gate Driver  
VDD  
GND  
BLDC Motor  
GHA  
SHA  
GLA  
Power  
GPIO  
GP-O  
GP-O  
GP-I  
ENABLE  
CAL  
nFAULT  
GHB  
SHB  
GLB  
PWM1, PWW2  
PWM3, PWM4  
PWM5, PWM6  
INHA, INLA  
INHB,INLB  
INHC, INLC  
PWM  
Module  
GHC  
SHC  
GLC  
Smart Gate Drive  
150 mA, 300 mA  
(Fully Protected)  
SCLK  
SPI  
SCLK  
SDI  
SDO  
nSCS  
MODE  
IDRIVE  
VDS  
Current Sense  
SDI  
(DAC and External  
Resistor for H/W I/F)  
SDO  
nSCS  
GAIN  
Analog-to-Digital  
Converters  
SOA  
SOB  
SOC  
SPA, SNA  
SPV, SNB  
SPC, SNC  
1x ADC  
CSA Output  
Single Channel  
Microcontroller  
DRV8304  
57. Alternative Application Schematic  
8.2.2.1 Design Requirements  
21 lists the example design input parameters for system design.  
21. Design Parameters  
EXAMPLE DESIGN PARAMETER  
ADC reference voltage  
Sensed current  
REFERENCE  
VVREF  
EXAMPLE VALUE  
3.3 V  
0 to 20 A  
14.14 A  
ISENSE  
IRMS  
PSENSE  
TA  
Motor RMS current  
Sense-resistor power rating  
System ambient temperature  
3 W  
–20°C to +125°C  
8.2.2.2 Detailed Design Procedure  
8.2.2.2.1 Sense-Amplifier Unidirectional Configuration  
The sense amplifiers are configured to be unidirectional through the registers on the SPI device by writing a 0b to  
the VREF_DIV bit.  
The sense-amplifier gain and sense resistor values are selected based on the target current range, VREF,  
sense-resistor power rating, and operating temperature range. In unidirectional operation of the sense amplifier,  
use 公式 20 to calculate the approximate value of the dynamic range at the output.  
V = V  
- 0.25 V - 0.25 V = VVREF - 0.5 V  
(
)
O
VREF  
(20)  
Use 公式 21 to calculate the approximate value of the selected sense resistor.  
VO  
2
R =  
PSENSE > IRMS ì R  
AV ì I  
where  
版权 © 2017–2018, Texas Instruments Incorporated  
51  
 
 
 
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
VO = VVREF - 0.5 V  
(21)  
From 公式 20 and 公式 21, select a target gain setting based on the power rating of a target sense resistor.  
8.2.2.2.1.1 Example  
In this system example, the value of VREF is 3.3 V with a sense current from 0 to 40 A. The linear range of the  
SOx output for the DRV8304 device is 0.25 V to VVREF – 0.25 V (from the VLINEAR specification). The differential  
range of the sense-amplifier input is –0.3 to +0.3 V (VDIFF).  
VO = 3.3 V - 0.5 V = 2.8 V  
(22)  
(23)  
(24)  
2.8 V  
R =  
3 W > 14.142 ì R ç R < 15 mW  
AV ì 20 A  
2.8 V  
15 mW >  
ç AV > 9.3  
AV ì 20 A  
Therefore, the gain setting must be selected as 10 V/V or 20 V/V and the value of the sense resistor must be  
less than 15 mΩ to meet the power requirement for the sense resistor. For this example, the gain setting was  
selected as 20 V/V. The value of the resistor and worst-case current can be verified that R < 15 mΩ and Imax  
=
20 A does not violate the differential range specification of the sense amplifier input (VSPxD).  
I
SP  
SO  
R
AV  
SN  
SO  
V
REF  
V
VREF  
œ 0.25 V  
V
SO(off)max  
SP œ SN  
V
,
OFF  
0 V  
V
œ 0.3 V  
VREF  
V
DRIFT  
V
SO(off)min  
V
SO(range)  
I × R  
0.3 V  
0.25 V  
0 V  
58. Sense Amplifier Configuration  
52  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
9 Power Supply Recommendations  
The DRV8304 device is designed to operate from an input voltage supply (VM) range from 6 V to 38 V. A 0.1-µF  
ceramic capacitor rated for VM must be placed as close to the device as possible. In addition, a bulk capacitor  
must be included on the VM pin but can be shared with the bulk bypass capacitance for the external power  
MOSFETs. Additional bulk capacitance is required to bypass the external half-bridge MOSFETs and should be  
sized according to the application requirements.  
9.1 Bulk Capacitance Sizing  
Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally  
beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size. The  
amount of local capacitance depends on a variety of factors including:  
The highest current required by the motor system  
The power supply's type, capacitance, and ability to source current  
The amount of parasitic inductance between the power supply and motor system  
The acceptable supply voltage ripple  
Type of motor (brushed DC, brushless DC, stepper)  
The motor startup and braking methods  
The inductance between the power supply and motor drive system will limit the rate current can change from the  
power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or  
dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage  
remains stable and high current can be quickly supplied.  
The data sheet provides a recommended minimum value, but system level testing is required to determine the  
appropriate sized bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
+
Motor Driver  
œ
GND  
Local  
Bulk Capacitor  
IC Bypass  
Capacitor  
59. Motor Drive Supply Parasitics Example  
版权 © 2017–2018, Texas Instruments Incorporated  
53  
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Bypass the VM pin to the PGND pin using a low-ESR ceramic bypass capacitor with a recommended value of  
0.1 µF. Place this capacitor as close to the VM pin as possible with a thick trace or ground plane connected to  
the PGND pin. Additionally, bypass the VM pin using a bulk capacitor rated for VM. This component can be  
electrolytic. This capacitance must be at least 10 µF.  
Additional bulk capacitance is required to bypass the high current path on the external MOSFETs. This bulk  
capacitance should be placed such that it minimizes the length of any high current paths through the external  
MOSFETs. The connecting metal traces should be as wide as possible, with numerous vias connecting PCB  
layers. These practices minimize inductance and allow the bulk capacitor to deliver high current.  
Place a low-ESR ceramic capacitor between the CPL and CPH pins. This capacitor should be 22 nF, rated for  
VM, and be of type X5R or X7R. Additionally, place a low-ESR ceramic capacitor between the VCP and VM pins.  
This capacitor should be 1 µF, rated for 16 V, and be of type X5R or X7R.  
Bypass the DVDD pin to the AGND pin with a 1-µF low-ESR ceramic capacitor rated for 6.3 V and of type X5R  
or X7R. Place this capacitor as close to the pin as possible and minimize the path from the capacitor to the  
AGND pin.  
The VDRAIN pin can be shorted directly to the VM pin. However, if a significant distance is between the device  
and the external MOSFETs, use a dedicated trace to connect to the common point of the drains of the high-side  
external MOSFETs. Do not connect the SNx pins directly to the PGND pin. Instead, use dedicated traces to  
connect these pins to the sources of the low-side external MOSFETs. These recommendations allow for more  
accurate VDS sensing of the external MOSFETs for overcurrent detection.  
Minimize the loop length for the high-side and low-side gate drivers. The high-side loop is from the GHx pin of  
the device to the high-side power MOSFET gate, then follows the high-side MOSFET source back to the SHx  
pin. The low-side loop is from the GLx pin of the device to the low-side power MOSFET gate, then follows the  
low-side MOSFET source back to the PGND pin.  
54  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
10.2 Layout Example  
S
S
S
G
D
D
D
D
G
N
D
GND  
D
D
D
D
G
S
S
S
GND  
GND  
31  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
CAL  
AGND  
SNC  
SPC  
GLC  
SHC  
GHC  
GHB  
SHB  
GLB  
SPB  
SNB  
32  
D
D
D
D
G
S
S
S
33  
DVDD  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
PGND  
DVDD  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
34  
35  
36  
37  
38  
39  
40  
DRV8304RH  
A
Thermal Pad  
S
S
S
G
D
D
D
D
GND  
GND  
S
S
S
G
D
D
D
D
GND  
G
S
S
S
D
D
D
D
GND  
60. Layout Example  
版权 © 2017–2018, Texas Instruments Incorporated  
55  
DRV8304  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
请参阅以下 TI 设计以获取开发支持:  
效率大于 95% 且适用于无刷直流伺服驱动器的 10.8V/30W 4.3cm2 功率级参考设计 TI 设计  
11.1.1 器件命名规则  
下图显示了说明完整器件名称的图例:  
(4)  
(RHA) (R)  
(H)  
DRV830  
Prefix  
Tape and Reel  
DRV83 œ Brushless-DC three-phase  
R œ Tape and Reel (higher SPQ)  
T œ Small Tape and Reel  
Package  
RHA œ 6 × 6 × 0.9 mm QFN  
Series  
4 œ 40 V device  
Interface  
S œ SPI  
H œ Hardware  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)AN-1149 开关电源布局指南》应用报告  
德州仪器 (TI)BOOSTXL-DRV8304H EVM 用户指南》用户指南  
德州仪器 (TI)BOOSTXL-DRV8304x EVM GUI 用户指南》用户指南  
德州仪器 (TI)BOOSTXL-DRV8304x EVM 传感器式软件用户指南》用户指南  
德州仪器 (TI)BOOSTXL-DRV8304x EVM 无传感器软件用户指南》用户指南  
德州仪器 (TI)《轻松实现无刷直流电机 - 传感器式电机控制》TI 技术手册  
德州仪器 (TI)《使用 TI 智能栅极驱动器轻松实现无刷直流 (BLDC) 电机的场定向控制 (FOC)TI 技术手册  
德州仪器 (TI)《采用 BLDC 电机的高效真空吸尘器硬件设计注意事项》应用报告  
德州仪器 (TI)《采用 BLDC 电机的电动自行车硬件设计注意事项》应用报告  
德州仪器 (TI)《工业电机驱动解决方案指南》  
德州仪器 (TI)《开关电源布局指南》应用报告  
德州仪器 (TI)《采用 TI 智能栅极驱动技术进行电机驱动保护》TI 技术手册  
德州仪器 (TI)QFN/SON PCB 连接》应用报告  
德州仪器 (TI)《采用 TI 智能栅极驱动技术缩减电机驱动 BOM PCB 面积》TI 技术手册  
德州仪器 (TI)《采用 TI 智能栅极驱动技术降低 EMI 辐射发射》TI 技术手册  
德州仪器 (TI)《采用 MSP430™ 的传感器式三相 BLDC 电机控制》应用报告  
德州仪器 (TI)TI 电机栅极驱动器的 IDRIVE TDRIVE 认知》应用报告  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
56  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8304  
www.ti.com.cn  
ZHCSI91B NOVEMBER 2017REVISED JULY 2018  
社区资源 (接下页)  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
设计支持  
11.5 商标  
NexFET, MSP430, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2018, Texas Instruments Incorporated  
57  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8304HRHAR  
DRV8304HRHAT  
DRV8304SRHAR  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
RHA  
RHA  
RHA  
40  
40  
40  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
DRV8304H  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
DRV8304H  
DRV8304S  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Jun-2022  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8304HRHAR  
DRV8304HRHAT  
DRV8304SRHAR  
VQFN  
VQFN  
VQFN  
RHA  
RHA  
RHA  
40  
40  
40  
2500  
250  
330.0  
180.0  
330.0  
16.4  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
1.1  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV8304HRHAR  
DRV8304HRHAT  
DRV8304SRHAR  
VQFN  
VQFN  
VQFN  
RHA  
RHA  
RHA  
40  
40  
40  
2500  
250  
367.0  
210.0  
367.0  
367.0  
185.0  
367.0  
35.0  
35.0  
35.0  
2500  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHA 40  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225870/A  
www.ti.com  
PACKAGE OUTLINE  
RHA0040E  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.15  
5.85  
A
B
PIN 1 INDEX AREA  
6.15  
5.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 4.5  
3.52 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.1) TYP  
11  
20  
10  
21  
SYMM  
41  
2X 4.5  
2.62 0.1  
30  
36X 0.5  
1
0.30  
0.18  
40X  
31  
40  
PIN 1 ID  
0.1  
C A B  
0.5  
0.3  
0.05  
40X  
4219054/A 04/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHA0040E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.52)  
SYMM  
SEE SOLDER MASK  
DETAIL  
31  
40  
40X (0.6)  
40X (0.24)  
1
30  
36X (0.5)  
(2.62)  
41  
SYMM  
(5.8)  
(1.06)  
(
0.2) TYP  
VIA  
(R0.05) TYP  
21  
10  
11  
20  
(0.6)  
TYP  
(0.91)  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219054/A 04/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHA0040E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.2)  
31  
40  
40X (0.6)  
30  
40X (0.24)  
1
36X (0.5)  
(0.675)  
(5.8)  
41  
SYMM  
6X (1.15)  
(R0.05) TYP  
21  
10  
20  
11  
SYMM  
6X (1)  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 15X  
EXPOSED PAD 41  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219054/A 04/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DRV8304HRHAR

具有电流分流放大器的 40V(最大值)三相智能栅极驱动器 | RHA | 40 | -40 to 125
TI

DRV8304HRHAT

具有电流分流放大器的 40V(最大值)三相智能栅极驱动器 | RHA | 40 | -40 to 125
TI

DRV8304SRHAR

具有电流分流放大器的 40V(最大值)三相智能栅极驱动器 | RHA | 40 | -40 to 125
TI

DRV8305

具有电流分流放大器和 SPI 的最大 45V 三相智能栅极驱动器
TI

DRV8305-Q1

汽车类 12V 电池三相智能栅极驱动器(0 级和 1 级)
TI

DRV83053PHP

具有电流分流放大器和 SPI 的最大 45V 三相智能栅极驱动器 | PHP | 48 | -40 to 125
TI

DRV83053PHPR

具有电流分流放大器和 SPI 的最大 45V 三相智能栅极驱动器 | PHP | 48 | -40 to 125
TI

DRV83053QPHPQ1

汽车类 12V 电池三相智能栅极驱动器(0 级和 1 级) | PHP | 48 | -40 to 125
TI

DRV83053QPHPRQ1

汽车类 12V 电池三相智能栅极驱动器(0 级和 1 级) | PHP | 48 | -40 to 125
TI

DRV83055PHP

具有电流分流放大器和 SPI 的最大 45V 三相智能栅极驱动器 | PHP | 48 | -40 to 125
TI

DRV83055PHPR

具有电流分流放大器和 SPI 的最大 45V 三相智能栅极驱动器 | PHP | 48 | -40 to 125
TI

DRV83055QPHPQ1

汽车类 12V 电池三相智能栅极驱动器(0 级和 1 级) | PHP | 48 | -40 to 125
TI