DRV83053PHP [TI]

具有电流分流放大器和 SPI 的最大 45V 三相智能栅极驱动器 | PHP | 48 | -40 to 125;
DRV83053PHP
型号: DRV83053PHP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电流分流放大器和 SPI 的最大 45V 三相智能栅极驱动器 | PHP | 48 | -40 to 125

放大器 栅极驱动 接口集成电路 驱动器
文件: 总54页 (文件大小:2181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DRV8305  
ZHCSE35 AUGUST 2015  
DRV8305 具有分流放大器和稳压器的三相栅极驱动器  
1 特性  
2 应用  
1
4.4V 45V 工作电压范围  
三相无刷直流 (BLDC) 电机和永磁同步电机  
(PMSM)  
1.25A/1A 峰值栅极驱动器电流  
持续正压通气 (CPAP) 和泵  
机器人和遥控 (RC) 玩具  
电动工具  
可编程的独立高速 (HS)/低速 (LS) 转换率/斜率控制  
支持 100% 占空比的电荷泵栅极驱动器  
三个集成分流放大器  
工业自动化  
50mA 集成低压降稳压器 (LDO)3.3V/5V 选项)  
可控制 3 个脉宽调制 (PWM) 6 PWM 输入,  
频率最高可达 200kHz  
3 说明  
DRV8305 是一款针对三相电机驱动应用的栅极驱动器  
集成电路 (IC)。 该器件提供了三个经高精度调节和温  
度补偿的半桥驱动器,每个驱动器能够驱动一个高侧和  
低侧 N MOSFET。  
内置用于单 PWM 情况的换向表  
可编程死区时间  
金属氧化物半导体场效应晶体管 (MOSFET) 击穿保  
MOSFET 的可编程 VDS 保护  
支持电池反向保护  
支持 3.3V/5V 数字接口  
SPI 接口  
电荷泵驱动器支持占空比为 100% 的低压操作。 该栅  
极驱动器还能够处理最高达 45V 的负载突降脉冲。  
栅极驱动器在切换时使用自动握手,以防止发生电流击  
穿。 该器件可精确感测高侧和低侧 MOSFET 的  
耐热增强型 48 引脚四方扁平无引线 (QFN) 封装  
(7mm × 7mm)  
VDS,以在过流状态期间保护外部 MOSFET。  
保护特性  
DRV8305 提供三个分流放大器进行精确的电流测量,  
支持增益可调节的双向电流感测。  
VM 欠压锁定 (UVLO2)  
逻辑欠压 (UVLO1)  
电荷泵欠压 (CPUVL)  
过热警告和关断  
看门狗定时器  
DRV8305 具有一个集成稳压器和控制器,可满足微控  
制器 (MCU) 或附加系统的电源要求。  
SPI 提供详细的故障报告以及灵活的参数设置,例如针  
对分流放大器的增益选项、栅极驱动器的转换率控制以  
及多种保护功能。  
器件信息 (1)  
部件号  
DRV8305  
封装  
封装尺寸(标称值)  
HTQFP (48)  
7.00mm x 7.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCX2  
 
 
 
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
简化电路原理图  
4.4 to 45 V  
DRV8305  
EN_GATE  
PWM  
Gate Drive  
Sense  
3-Phase  
Brushless  
Pre-Driver  
SPI  
M
LDO  
Shunt Amps  
nFAULT  
Shunt Amps  
Protection  
2
版权 © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
目录  
7.4 Device Functional Modes........................................ 29  
7.5 Programming........................................................... 31  
7.6 Register Maps......................................................... 32  
Application and Implementation ........................ 40  
8.1 Application Information............................................ 40  
8.2 Typical Application ................................................. 41  
Power Supply Recommendations...................... 45  
9.1 Bulk Capacitance ................................................... 45  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics........................................... 8  
6.6 SPI Timing Requirements (Slave Mode Only)........ 14  
6.7 Typical Characteristics............................................ 15  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ....................................... 17  
7.3 Feature Description................................................. 18  
8
9
10 Layout................................................................... 46  
10.1 Layout Guidelines ................................................. 46  
10.2 Layout Example .................................................... 46  
11 器件和文档支持 ..................................................... 47  
11.1 社区资源................................................................ 47  
11.2 ....................................................................... 47  
11.3 静电放电警告......................................................... 47  
11.4 Glossary................................................................ 47  
12 机械、封装和可订购信息....................................... 47  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 8 月  
*
首次发布。  
Copyright © 2015, Texas Instruments Incorporated  
3
 
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
5 Pin Configuration and Functions  
PHP Package  
48-Pin HTQFP  
Top View  
GHA  
SHA  
SLA  
GLA  
GLB  
SLB  
SHB  
GHB  
GHC  
SHC  
SLC  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
EN_GATE  
INHA  
2
3
4
INLA  
INHB  
INLB  
INHC  
INLC  
5
6
POWER PAD  
(GND)  
7
8
nFAULT  
nSCS  
SDI  
9
10  
11  
12  
SDO  
SCLK  
GLC  
Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
Enables the gate driver and current shunt amplifiers; internal  
pulldown  
1
EN_GATE  
I
Enable gate  
2
3
4
5
6
7
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
I
I
I
I
I
I
Bridge PWM input  
Bridge PWM input  
Bridge PWM input  
Bridge PWM input  
Bridge PWM input  
Bridge PWM input  
PWM input signal for bridge A high-side  
PWM input signal for bridge A low-side  
PWM input signal for bridge B high-side  
PWM input signal for bridge B low-side  
PWM input signal for bridge C high-side  
PWM input signal for bridge C low-side  
When low indicates a fault has occurred; open drain; external  
pullup to MCU power supply needed (1 kΩ to 10 kΩ)  
8
nFAULT  
OD  
Fault indicator  
9
nSCS  
SDI  
I
I
SPI chip select  
SPI input  
Select/enable for SPI; active low  
SPI input signal  
10  
11  
12  
SDO  
SCLK  
O
I
SPI output  
SPI clock  
SPI output signal; referred to VREG  
SPI clock signal  
VREG and MCU watchdog fault indication; open drain; external  
pullup to MCU power supply needed (1 kΩ to 10 kΩ)  
13  
PWRGD  
OD  
Power Good  
4
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
Pin Functions (continued)  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
14  
45  
GND  
P
P
Device ground  
Must be connected to ground  
PPAD  
5.0 V analog internal supply regulator; bypass to GND with a 6.3-  
V, 1-µF ceramic capacitor  
15  
AVDD  
Analog regulator  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
SO1  
SO2  
SO3  
SN3  
SP3  
SN2  
SP2  
SN1  
SP1  
GLC  
SLC  
SHC  
GHC  
GHB  
SHB  
SLB  
GLB  
GLA  
SLA  
SHA  
GHA  
O
O
O
I
Current amplifier output  
Current amplifier output  
Current amplifier output  
Output of current sense amplifier 1  
Output of current sense amplifier 2  
Output of current sense amplifier 3  
Current amplifier negative input Negative input of current sense amplifier 3  
Current amplifier positive input Positive input of current sense amplifier 3  
Current amplifier negative input Negative input of current sense amplifier 2  
Current amplifier positive input Positive input of current sense amplifier 2  
Current amplifier negative input Negative input of current sense amplifier 1  
I
I
I
I
I
Current amplifier positive input  
Low-side gate driver  
Positive input of current sense amplifier 1  
Low-side gate driver output for half-bridge C  
Low-side source connection for half-bridge C  
High-side source connection for half-bridge C  
High-side gate driver output for half-bridge C  
High-side gate driver output for half-bridge B  
High-side source connection for half-bridge B  
Low-side source connection for half-bridge B  
Low-side gate driver output for half-bridge B  
Low-side gate driver output for half-bridge A  
Low-side source connection for half-bridge A  
High-side source connection for half-bridge A  
High-side gate driver output for half-bridge A  
O
I
Low-side source connection  
High-side source connection  
High-side gate driver  
I
O
O
I
High-side gate driver  
High-side source connection  
Low-side source connection  
Low-side gate driver  
I
O
O
I
Low-side gate driver  
Low-side source connection  
High-side source connection  
High-side gate driver  
I
O
Internal voltage regulator for low-side gate driver; connect 1-µF  
capacitor to GND  
37  
38  
VCP_LSD  
VCPH  
P
P
Low-side gate driver regulator  
High-side gate driver regulator  
Internal voltage regulator for high-side gate driver; connect 2.2-µF  
capacitor to PVDD  
39  
40  
CP2H  
CP2L  
P
P
Flying capacitor for charge pump; connect 0.047-µF capacitor  
between CP2H and CP2L  
Charge pump flying capacitor  
External Components  
COMPONENT  
CPVDD  
PIN 1  
PVDD  
PIN 2  
GND  
GND  
GND  
PVDD  
GND  
CP1L  
CP2L  
GND  
PVDD  
RECOMMENDED  
4.7-µF ceramic capacitor rated for 50 V  
1.0-µF ceramic capacitor rated for 6.3 V  
1.0-µF ceramic capacitor rated for 6.3 V  
2.2-µF ceramic capacitor rated for 16 V  
1.0-µF ceramic capacitor rated for 16 V  
0.047-µF ceramic capacitor rated for 16 V  
0.047-µF ceramic capacitor rated for 16 V  
1.0-µF ceramic capacitor rated for 6.3 V  
100-series resistor  
CAVDD  
AVDD  
CDVDD  
DVDD  
CVCPH  
VCPH  
CVCP_LSD  
CCP1  
VCP_LSD  
CP1H  
CCP2  
CP2H  
CVREG  
VREG  
RVDRAIN  
RnFAULT  
VDRAIN  
nFAULT  
(1)  
VCC  
1 to 10 kpulled up the MCU power supply  
(1) VCC is not a pin on the DRV8305, but a VCC supply voltage pullup is required for open-drain output nFAULT  
Copyright © 2015, Texas Instruments Incorporated  
5
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range referenced with respect to GND (unless otherwise noted)  
(1)  
MIN  
MAX  
45  
UNIT  
V
Power supply voltage (PVDD)  
–0.3  
0
Power supply voltage ramp rate (VM)  
2
V/µs  
V
Charge pump voltage (CP1H,CP1L, CP2L,CP2H, VCPH, VCP_LSD)  
High side gate driver voltage (GHA, GHB, GHC)  
Low-side gate driver voltage (GHA, GHB, GHC)  
High side gate driver source pin voltage (SHA, SHB, SHC)  
Low-side gate driver source pin voltage (SLA, SLB, SLC)  
–0.3  
–3  
PVDD + 12  
57  
12  
45  
5
V
–2  
V
–5  
V
–3  
V
Internal phase clamp pin voltage difference {(GHA-SHA), (GHB-SHB), (GHC-SHC),  
(GLA-SLA), (GLB-SLB), (GLC-SLC)}  
–0.3  
15  
45  
V
Drain pin voltage drain (VDRAIN)  
–0.3  
–20  
V
mA  
mA  
V
Max source current (VDRAIN) – limit current with external series resistor  
Max sink current (VDRAIN)  
2
Voltage difference between supply and VDRAIN (PVDD-VDRAIN)  
–10  
10  
Control pin voltage range (INHA, INLA, INHB, INLB, INHC, INLC, EN_GATE, SCLK,  
SDI, SCS, SDO, nFAULT, PWRGD)  
–0.3  
5.5  
V
Open drain pins skink current (nFAULT, PWRGD)  
Wake pin voltage (WAKE)  
7
mA  
V
–0.3  
45  
Wake pin sink current (WAKE) – limit with external series resistor  
Sense amp voltage (SPA, SNA, SPB, SNB, SPC, SNC)  
Externally applied reference voltage (VREG) – when vreg_vref = 1  
Externally applied reference sink current (VREG) – when vreg_vref = 1  
Operating ambient temperature, TA  
1
mA  
V
–2  
5
–0.3  
5.5  
100  
125  
150  
150  
V
µA  
°C  
°C  
°C  
–40  
–40  
–55  
Operating junction temperature, TJ  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
(1)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001  
Charged-device model (CDM), per JEDEC specification JESD22-C101  
Electrostatic  
discharge  
V(ESD)  
V
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.4  
MAX  
UNIT  
V
(1)  
VPVDD  
VPVDD  
Power supply voltage range  
45  
(2)  
Power supply voltage range for voltage regulator operation  
4.3  
45  
V
Power supply voltage ramp rate (PVDD = 0 to 20 V rising <3-mA pin sink  
current)  
VPVDDRAMP  
1
V/µs  
VPVDD-SH_X  
ISRC_VCPH  
Total voltage drop from PVDD to SH_X pins  
4.5  
10  
V
External load on VCPH pin (current limit resistor in series to load)  
mA  
Maximum external capacitive load on shunt amplifier (no external resistor on  
output, excluding internal pin capacitance)  
CO_OPA  
60  
pF  
InFAULT  
Fgate  
IGATE  
TA  
nFAULT sink current (VnFAULT = 0.3 V)  
7
200  
30  
mA  
kHz  
mA  
°C  
Operating switching frequency of gate driver  
Total average gate driver current (HS + LS) – charge pump limited  
Operating ambient temperature  
-40  
125  
(1) IC is fully functional and tested in the range 4.4 to 45 V.  
(2) Subject to thermal dissipation limits.  
6.4 Thermal Information  
DRV8305  
(1)  
THERMAL METRIC  
PHP (HTQFP)  
UNIT  
48 PINS  
26.6  
12.9  
7.6  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
0.3  
ψJB  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
7.5  
RθJC(bot)  
0.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2015, Texas Instruments Incorporated  
7
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
MAX UNIT  
6.5 Electrical Characteristics  
PVDD = 4.4 to 45 V, TJ = –40°C to 150°C, unless specified under test condition  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
POWER SUPPLIES (PVDD, DVDD, AVDD)  
4.4  
4.3  
45  
V
VPVDD  
PVDD operating voltage  
VREG (voltage regulator) operational  
45  
PVDD operating supply  
current  
EN_GATE = enabled; LDO reg =  
enabled at no load; outputs HiZ  
IPVDD_Operating  
IPVDD_Standby  
IPVDD_Sleep  
15  
4
mA  
PVDD standby supply  
current  
EN_GATE = disabled; LDO reg =  
enabled at no load  
7
mA  
EN_GATE = disabled; LDO reg =  
disabled; ready for WAKE  
PVDD sleep supply current  
60  
5
175  
μA  
PVDD = 5.3 to 45 V  
4.85  
5.15  
VAVDD  
VDVDD  
Internal regulator voltage  
Internal regulator voltage  
V
V
PVDD –  
0.22  
PVDD = 4.4 to 5.3 V  
PVDD  
3.3  
VOLTAGE REGULATOR (VREG)  
VSET –  
(0.03 ×  
VSET)  
VSET +  
(0.03 ×  
VSET)  
PVDD = 5.3 to 45 V  
VSET  
PVDD – 0.4  
V
VREG DC output voltage  
PVDD = 4.3 to 5.3 V; 5-V regulator  
PVDD  
V
VVREG  
VSET –  
(0.03 ×  
VSET)  
VSET +  
(0.03 ×  
VSET)  
PVDD = 4.3 to 5.3 V; 3.3-V regulator  
VSET  
10  
VLineReg  
VLoadReg  
Line regulation ΔVOUT/ΔVIN 5.3 V VIN 12 V; IO = 1 mA  
30 mV  
Load regulation  
100 µA IOUT 50 mA  
ΔVOUT/ΔIOUT  
30 mV  
IOUT = 100 µA; 3.3 V  
Dropout voltage  
0.05  
0.2  
0.1  
V
Vdo  
IOUT = 50 mA; 3.3 V  
0.4  
LOGIC-LEVEL INPUTS (INHA, INLA, INHB, INLB, INHC, INLC, EN_GATE, SCLK, nSCS)  
VIL  
Input logic low voltage  
Input logic high voltage  
Internal pull down resistor  
0
2
0.8  
5
V
V
VIH  
RPD  
To GND  
100  
kΩ  
CONTROL OUTPUTS (nFAULT, SDO, PWRGD)  
VOL  
VOH  
IOH  
Output logic low voltage  
Output logic high voltage  
Output logic high leakage  
IO = 5 mA  
0.5  
1
V
V
2.4  
–1  
VO = 3.3 V  
μA  
HIGH VOLTAGE TOLERANT LOGIC INPUT (WAKE)  
VIL_WAKE  
VIH_WAKE  
Output logic low voltage  
Output logic high voltage  
1.1  
1.41  
1.75  
V
V
1.42  
GATE DRIVE OUTPUT (GHA, GHB, GHC, GLA, GLB, GLC)  
VPVDD = 8 to 45 V; IGATE < 30 mA, CVCPH  
= 2.2 μF, CCP1/CP2 = 0.047 μF, CVCP_LSD  
= 1 μF  
9
7.2  
5
10  
10.5  
9
VPVDD = 5.5 to 8 V; IGATE < 6 mA, CVCPH  
= 2.2 μF, CCP1/CP2 = 0.047 μF, CVCP_LSD  
= 1 μF  
High side gate driver Vgs  
voltage  
VGHS  
V
VPVDD = 4.4 to 5.5 V; IGATE < 6 mA,  
CVCPH = 2.2 μF, CCP1/CP2 = 0.047 μF,  
CVCP_LSD = 1 μF  
7.2  
8
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
Electrical Characteristics (continued)  
PVDD = 4.4 to 45 V, TJ = –40°C to 150°C, unless specified under test condition  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VPVDD = 8 to 45 V; IGATE < 30 mA, CVCPH  
= 2.2 μF, CCP1/CP2 = 0.047 μF, CVCP_LSD  
= 1 μF  
9
10  
10.5  
VPVDD = 5.5 to 8 V; IGATE < 6 mA, CVCPH  
= 2.2 μF, CCP1/CP2 = 0.047 μF, CVCP_LSD  
= 1 μF  
Low-side gate driver Vgs  
voltage  
VGLS  
9
8
10.5  
9
V
VPVDD = 4.4 to 5.5 V; IGATE < 6 mA,  
CVCPH = 2.2 μF, CCP1/CP2 = 0.047 μF,  
CVCP_LSD = 1 μF  
PEAK CURRENT DRIVE TIMES  
TDRIVEP = 00; TDRIVEN = 00  
TDRIVEP = 01; TDRIVEN = 01  
TDRIVEP = 10; TDRIVEN = 10  
TDRIVEP = 11; TDRIVEN = 11  
220  
440  
Peak sink or source current  
drive time  
tDRIVE  
ns  
880  
1660  
HIGH SIDE (GHA, GHB, GHC) PEAK CURRENT GATE DRIVE  
IDRIVEP_HS = 0000  
0.01  
0.02  
0.03  
0.04  
0.05  
0.06  
0.07  
0.125  
0.25  
0.5  
IDRIVEP_HS = 0001  
IDRIVEP_HS = 0010  
IDRIVEP_HS = 0011  
IDRIVEP_HS = 0100  
IDRIVEP_HS = 0101  
IDRIVEP_HS = 0110  
IDRIVEP_HS = 0111  
IDRIVEP_HS = 1000  
IDRIVEP_HS = 1001  
IDRIVEP_HS = 1010  
IDRIVEP_HS = 1011  
IDRIVEP_HS = 1100, 1101, 1110, 1111  
IDRIVEN_HS = 0000  
IDRIVEN_HS = 0001  
IDRIVEN_HS = 0010  
IDRIVEN_HS = 0011  
IDRIVEN_HS = 0100  
IDRIVEN_HS = 0101  
High side peak source  
current  
IDRIVEP_HS  
A
0.75  
1
0.05  
0.02  
0.03  
0.04  
0.05  
0.06  
0.07  
0.08  
0.25  
0.5  
IDRIVEN_HS  
High side peak sink current IDRIVEN_HS = 0110  
IDRIVEN_HS = 0111  
A
IDRIVEN_HS = 1000  
IDRIVEN_HS = 1001  
0.75  
1
IDRIVEN_HS = 1010  
IDRIVEN_HS = 1011  
1.25  
0.06  
IDRIVEN_HS = 1100, 1101, 1110, 1111  
Copyright © 2015, Texas Instruments Incorporated  
9
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
PVDD = 4.4 to 45 V, TJ = –40°C to 150°C, unless specified under test condition  
PARAMETER  
LOW SIDE (GLA, GLB, GLC) PEAK CURRENT GATE DRIVE  
IDRIVEP_HS = 0000  
TEST CONDITIONS  
MIN  
TYP  
0.01  
0.02  
0.03  
0.04  
0.05  
0.06  
0.07  
0.125  
0.25  
0.5  
IDRIVEP_HS = 0001  
IDRIVEP_HS = 0010  
IDRIVEP_HS = 0011  
IDRIVEP_HS = 0100  
IDRIVEP_HS = 0101  
IDRIVEP_HS = 0110  
IDRIVEP_HS = 0111  
IDRIVEP_HS = 1000  
IDRIVEP_HS = 1001  
IDRIVEP_HS = 1010  
IDRIVEP_HS = 1011  
IDRIVEP_HS = 1100, 1101, 1110, 1111  
Low-side peak source  
current  
IDRIVEP_LS  
A
0.75  
1
0.05  
LOW SIDE (GLA, GLB, GLC) PEAK CURRENT GATE DRIVE  
IDRIVEN_HS = 0000  
0.02  
0.03  
0.04  
0.05  
0.06  
0.07  
0.08  
0.25  
0.5  
IDRIVEN_HS = 0001  
IDRIVEN_HS = 0010  
IDRIVEN_HS = 0011  
IDRIVEN_HS = 0100  
IDRIVEN_HS = 0101  
IDRIVEN_HS = 0110  
IDRIVEN_HS = 0111  
IDRIVEN_HS = 1000  
IDRIVEN_HS = 1001  
IDRIVEN_HS = 1010  
IDRIVEN_HS = 1011  
IDRIVEN_HS = 1100, 1101, 1110, 1111  
IDRIVEN_LS  
Low-side peak sink current  
A
0.75  
1
1.25  
0.06  
GATE PULL DOWN, MOTOR OFF STATE (BRIDGE IN HI-Z)  
Gate pull down resistance,  
SLEEP, under voltage and  
sleep mode  
2 V < PVDD < PVDD_UVLO2  
GHX to GND; GLX to GND  
RSLEEP_PD  
2000  
750  
50  
Gate pull down resistance,  
STANDBY, standby mode  
PVDD > PVDD_UVLO2; EN_GATE =  
low;  
GHX to GND; GLX to GND  
RSTANDBY_PD  
(Parallel with ISTANDBY_PD  
)
Gate pull down current,  
OPERATING, operating  
mode  
PVDD > PVDD_UVLO2; EN_GATE =  
high;  
GHX to SHX; GLX to SLX  
IOPERATING_PD  
mA  
GATE PULL DOWN, MOTOR ON STATE (IDRIVE/tdrive)  
PVDD > PVDD_UVLO2; EN_GATE =  
high;  
GHX to SHX; GLX to SLX  
Gate pull down current,  
holding  
IHOLD  
50  
mA  
A
PVDD > PVDD_UVLO2; EN_GATE =  
high;  
GHX to SHX; GLX to SLX  
Gate pull down current,  
strong  
IPULLDOWN  
1.25  
10  
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
Electrical Characteristics (continued)  
PVDD = 4.4 to 45 V, TJ = –40°C to 150°C, unless specified under test condition  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
GATE TIMING  
Positive input falling to  
GHS_x falling  
tpd_lf-O  
PVDD = 12 V; CL = 1 nF; 50% to 50%  
PVDD = 12 V; CL = 1 nF; 50% to 50%  
200  
200  
280  
ns  
ns  
ns  
Positive input rising to  
GHS_x rising  
tpd_lr-O  
td_min  
Minimum dead time after  
hand shaking  
DEAD_TIME = 000  
DEAD_TIME = 001  
DEAD_TIME = 010  
DEAD_TIME = 011  
DEAD_TIME = 100  
DEAD_TIME = 101  
DEAD_TIME = 110  
DEAD_TIME = 111  
35  
52  
88  
440  
880  
1760  
3520  
5280  
Dead time in addition to  
td_min  
tdtp  
ns  
Propagation delay matching  
between high-side and low-  
side  
tPD_MATCH  
tDT_MATCH  
50  
50  
ns  
ns  
Dead time matching  
CURRENT SHUNT AMPLIFIER  
GAIN_CSx = 00  
GAIN_CSx = 01  
GAIN_CSx = 10  
GAIN_CSx = 11  
10  
20  
40  
80  
GCSA  
Current sense amplifier gain  
V/V  
Current sense amplifier gain  
error  
GERR  
Input differential > 0.025 V  
–3%  
3%  
Settling time to 1%; no blanking; TJ = -  
40 – 150°C, GCSA = 10; Vstep = 0.46 V  
300  
600  
1.2  
ns  
Settling time to 1%; no blanking; TJ = -  
40 – 150°C, GCSA = 20; Vstep = 0.46 V  
Current sense amplifier  
settling time  
tSETTLING  
Settling time to 1%; no blanking; TJ = -  
40 – 150°C, GCSA = 40; Vstep = 0.46 V  
µs  
Settling time to 1%; no blanking; TJ = -  
40 – 150°C, GCSA = 80; Vstep = 0.46 V  
2.4  
VIOS  
DC input offset  
GCSA = 10; input shorted; RTI  
–4  
4
mV  
VVREF_ERR  
VDRIFTOS  
IBIAS  
Reference buffer error (DC) Internal or external VREF  
–2%  
2%  
Input offset error drift  
Input bias current  
GCSA = 10; input shorted; RTI  
VIN_COM = 0; SOx open  
10  
1
µV/C  
µA  
100  
IBIAS (SNx-SPx); VIN_COM = 0; SOx  
open  
IOFFSET  
Input bias current offset  
µA  
VIN_COM  
VIN_DIFF  
Common input mode range  
Differential input range  
–0.15  
-0.48  
0.15  
0.48  
V
V
External input resistance matched; DC;  
GCSA = 10  
60  
60  
80  
80  
Common mode rejection  
ration  
CMRR  
dB  
dB  
External input resistance matched; 20  
kHz; GCSA = 10  
DC (<120 Hz); GCSA = 10  
20 kHz; GCSA = 10  
150  
90  
PSRR  
Power supply rejection ratio  
VSWING  
VSLEW  
Output voltage swing  
Output slew rate  
PVDD > 5.3 V  
0.3  
5.2  
4.7  
V
GCSA = 10; RL = 0 ; CL = 60 pF  
10  
V/µs  
Copyright © 2015, Texas Instruments Incorporated  
11  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
PVDD = 4.4 to 45 V, TJ = –40°C to 150°C, unless specified under test condition  
PARAMETER  
TEST CONDITIONS  
SOx shorted to ground  
MIN  
TYP  
MAX UNIT  
IVO  
Output short circuit current  
20  
mA  
Unity gain bandwidth  
product  
UGB  
GCSA = 10  
2
MHz  
VOLTAGE PROTECTION  
VAVDD_UVLO AVDD undervoltage Fault  
Relative to GND  
3.3  
3.5  
VSET-10%  
VSET-20%  
VSET-30%  
VSET-30%  
V
V
VREG_UV_LEVEL = 00  
VREG_UV_LEVEL = 01  
VREG_UV_LEVEL = 10  
VREG_UV_LEVEL = 11  
VVREG_UV  
VREG undervoltage Fault  
VREG undervoltage monitor  
deglitch time  
VVREG_UV_DGL  
VPVDD_UVFL  
1.5  
2
µs  
V
PVDD falling  
PVDD rising  
PVDD falling  
PVDD rising  
PVDD falling  
PVDD rising  
PVDD falling  
PVDD rising  
7.7  
7.9  
8.1  
8.3  
4.1  
4.3  
4.4  
4.6  
36  
Undervoltage protection  
Warning, PVDD  
Undervoltage protection  
lockout, PVDD  
VPVDD_UVLO1  
V
V
4.2  
4.4  
Undervoltage protection  
Fault, PVDD  
VPVDD_UVLO2  
33.5  
32.5  
Overvoltage protection  
Warning, PVDD  
VPVDD_OVFL  
VVCPH_UVFL  
VVCPH_UVLO  
V
V
V
35  
Charge pump under voltage  
protection Warning, VCPH  
Relative to PVDD  
8
Relative to PVDD, SET_VCPH_UV = 0  
Relative to PVDD, SET_VCPH_UV = 1  
4.5  
4.2  
4.9  
4.6  
Charge pump under voltage  
protection Fault, VCPH  
Low-side charge pump  
VVCP_LSD_UVLO under voltage Fault,  
VCP_LSD  
Relative to PVDD  
6.4  
14  
7.5  
18  
V
Charge pump over voltage  
protection FAULT, VCPH  
VVCPH_OVLO  
Relative to PVDD  
Relative to GND  
V
V
Charge pump over voltage  
protection FAULT, VCPH  
VVCPH_OVLO_ABS  
60  
TEMPERATURE PROTECTION  
Junction temperature for  
OTW_CLR  
resetting over temperature  
140  
155  
175  
°C  
°C  
°C  
(OT) warning(1)  
Junction temperature for  
over temperature warning  
and resetting over  
OTW_SET/  
OTSD_CLR  
temperature shutdown(1)  
Junction temperature for  
over temperature  
shutdown(1)  
OTSD_SET  
Junction temperature flag  
setting 1 (no warning)(1)  
TEMPFLAG1  
TEMPFLAG2  
TEMPFLAG3  
TEMPFLAG4  
105  
125  
135  
175  
°C  
°C  
°C  
°C  
Junction temperature flag  
setting 2 (no warning)(1)  
Junction temperature flag  
setting 3 (no warning)(1)  
Junction temperature flag  
setting 4 (no warning)(1)  
(1) Specified by design and characterization data  
12  
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
Electrical Characteristics (continued)  
PVDD = 4.4 to 45 V, TJ = –40°C to 150°C, unless specified under test condition  
PARAMETER  
PROTECTION CONTROL  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Delay, error event to all  
gates low  
tpd,E-L  
24  
7
µs  
µs  
Delay, error event to  
nFAULTx low  
tpd,E-SD  
FET CURRENT PROTECTION (VDS SENSING)  
VDS_LEVEL = 00000  
0.06  
0.068  
0.076  
0.086  
0.097  
0.109  
0.123  
0.138  
0.155  
0.175  
0.197  
0.222  
0.25  
VDS_LEVEL = 00001  
VDS_LEVEL = 00010  
VDS_LEVEL = 00011  
VDS_LEVEL = 00100  
VDS_LEVEL = 00101  
VDS_LEVEL = 00110  
VDS_LEVEL = 00111  
VDS_LEVEL = 01000  
VDS_LEVEL = 01001  
VDS_LEVEL = 01010  
VDS_LEVEL = 01011  
VDS_LEVEL = 01100  
VDS_LEVEL = 01101  
VDS_LEVEL = 01110  
VDS_LEVEL = 01111  
VDS_LEVEL = 10000  
VDS_LEVEL = 10001  
VDS_LEVEL = 10010  
VDS_LEVEL = 10011  
VDS_LEVEL = 10100  
VDS_LEVEL = 10101  
VDS_LEVEL = 10110  
VDS_LEVEL = 10111  
VDS_LEVEL = 11000  
VDS_LEVEL = 11001  
VDS_LEVEL = 11010  
VDS_LEVEL = 11011  
VDS_LEVEL = 11100  
VDS_LEVEL = 11101  
VDS_LEVEL = 11110  
VDS_LEVEL = 11111  
TVDS = 00  
0.282  
0.317  
0.358  
0.403  
0.454  
0.511  
0.576  
0.648  
0.73  
Drain-source voltage  
VDS_TRIP  
V
protection limit  
0.822  
0.926  
1.043  
1.175  
1.324  
1.491  
1.679  
1.892  
2.131  
2.131  
0
TVDS = 01  
1.75  
tVDS  
VDS sense deglitch time  
VDS sense blanking time  
µs  
µs  
TVDS = 10  
3.5  
TVDS = 11  
7
TBLANK = 00  
0
TBLANK = 01  
1.75  
tBLANK  
TBLANK = 10  
3.5  
TBLANK = 11  
7
Copyright © 2015, Texas Instruments Incorporated  
13  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
PVDD = 4.4 to 45 V, TJ = –40°C to 150°C, unless specified under test condition  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
nFAULT pin reporting pulse  
stretch length for VDS event  
tVDS_PULSE  
56  
µs  
PHASE SHORT PROTECTION  
VSNSOCP_TRIP Phase short protection limit Fixed voltage  
2
V
6.6 SPI Timing Requirements (Slave Mode Only)  
MIN  
NOM  
MAX  
UNIT  
ms  
ns  
tSPI_READY  
tCLK  
SPI read after power on  
Minimum SPI clock period  
Clock high time  
PVDD > VPVDD_UVLO1  
5
10  
100  
40  
40  
20  
30  
tCLKH  
ns  
tCLKL  
Clock low time  
ns  
tSU_SDI  
tHD_SDI  
tD_SDO  
tHD_SDO  
tSU_SCS  
tHD_SCS  
tHI_SCS  
SDI input data setup time  
SDI input data hold time  
ns  
ns  
SDO output data delay time, CLK high to SDO valid CL = 20 pF  
SDO output hold time  
20  
ns  
40  
50  
ns  
SCS setup time  
ns  
SCS hold time  
50  
ns  
SCS minimum high time before SCS active low  
SCS access time, SCS low to SDO out of high impedance  
SCS disable time, SCS high to SDO high impedance  
400  
ns  
10  
10  
ns  
tACC  
tDIS  
ns  
Figure 1. SPI Slave Mode Timing Definition  
14  
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
Figure 2. SPI Slave Mode Timing Diagram  
6.7 Typical Characteristics  
6
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
30  
25  
T A = 40°C  
T A = 25°C  
20  
T A = 125°C  
15  
10  
5
T A = 40°C  
T A = 25°C  
T A = 125°C  
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
PVDD (V)  
PVDD (V)  
D001  
D002  
Figure 3. Standby Current  
Figure 4. Operating Current  
200  
180  
160  
140  
120  
100  
80  
12  
10  
8
6
4
60  
40  
T A = 40°C  
T A = 40°C  
T A = 25°C  
T A = 125°C  
2
T A = 25°C  
20  
T A = 125°C  
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
PVDD (V)  
PVDD (V)  
D003  
D004  
Figure 5. Sleep Current  
Figure 6. VCPH Voltage  
Copyright © 2015, Texas Instruments Incorporated  
15  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DRV8305 is a 4.4-V to 45-V gate driver IC for three-phase motor driver applications. This device reduces  
external component count by integrating three half-bridge drivers, three current shunt amplifiers, and a LDO. The  
DRV8305 provides overcurrent, overtemperature, and undervoltage protection. Fault conditions are indicated by  
the nFAULT pin and specific fault indication can be read back from the SPI registers.  
Adjustable dead time control and peak gate drive current allows for finely tuning the switching of the external  
MOSFETs. Internal hand-shaking is used to prevent FET shoot through.  
VDS sensing of the external MOSFETs allows for the DRV8305 to detect overcurrent conditions and respond  
appropriately. Individual MOSFET overcurrent conditions are reported through the SPI status registers.  
There are three versions of DRV8305 with separate part numbers:  
DRV8305N – VREG pin is used as input that supplies the reference for the CSA and SPI.  
DRV83053 – VREG is a 3.3-V LDO output pin.  
DRV83055 – VREG is a 5.0-V LDO output pin.  
16  
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
7.2 Functional Block Diagram  
DVDD  
AVDD  
VCP_LSD  
VCPH  
DVDD  
LDO  
AVDD  
LDO  
Low Side  
Gate Drive  
LDO  
VCPH  
High Side Gate Drive  
2-Stage Charge Pump  
PVDD  
VREG  
WAKE  
VREG  
PVDD  
VDRAIN  
VREG  
LDO  
VDRAIN  
PWRGD  
VDRAIN  
VCPH  
HS  
GHA  
SHA  
GLA  
SLA  
+
-
VDS  
VDS  
EN_GATE  
INHA  
VCP_LSD  
LS  
+
-
INLA  
Phase A Pre-Driver  
PVDD  
INHB  
VDRAIN  
VCPH  
HS  
Digital  
Inputs  
and  
GHB  
SHB  
GLB  
SLB  
+
-
VDS  
VDS  
INLB  
Outputs  
Core Logic  
INHC  
VCP_LSD  
LS  
+
-
INLC  
Control  
Configuration  
Timing  
nFAULT  
Phase B Pre-Driver  
PVDD  
VDRAIN  
VCPH  
HS  
GHC  
SHC  
GLC  
SLC  
+
-
VDS  
VDS  
SCLK  
nSCS  
SDI  
Protection  
VCP_LSD  
LS  
+
-
SPI  
Thermal  
Sensor  
Voltage  
Monitoring  
SDO  
Phase C Pre-Driver  
VREG  
AVDD  
AVDD  
AVDD  
SN1  
Current  
Sense  
Amplifier 1  
SO1  
SO2  
SO3  
Ref/k  
SP1  
SN2  
VREG  
Current  
Sense  
Amplifier 2  
Ref/k  
SP2  
SN3  
VREG  
Current  
Sense  
Amplifier 3  
Ref/k  
SP3  
GND GND  
PowerPAD  
Copyright © 2015, Texas Instruments Incorporated  
17  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Three-Phase Gate Driver  
The DRV8305 provides three half-bridge drivers, each driver is capable of driving two N-type MOSFETs, one for  
the high side and one for the low side.  
Both the high side (GHX to SHX) and the low side (GLX to SLX) are implemented as floating gate drivers.  
The gate driver uses a charge pump architecture which enables an extended voltage operating range to support  
a variety of application requirements.  
7.3.2 Operating Modes  
The DRV8305 can be operated in three modes, to support various commutation schemes.  
Table 1 shows six independent PWM inputs with the truth table.  
Table 1. 6-PWM Truth Table  
INHX  
INLX  
GHX  
GLX  
1
1
0
0
1
0
1
0
L
H
L
L
L
H
L
L
Three independent high-side PWM inputs (low-side complimentary PWMs generated internally).  
In this mode all activity on INLA, INLB and INLC is ignored.  
Table 2. 3-PWM Truth Table  
INHX  
INLX  
X
GHX  
H
GLX  
L
1
0
X
L
H
One single PWM that uses internally stored 6-step block commutation tables. In this mode of operation,  
DRV8305 can be operated using a single PWM sourced from a low cost microcontroller. The PWM is applied  
on pin PWM_IN (INHA) from the microcontroller along with three GPIO pins PHC_0 (INLA), PHC_1 (INHB),  
PHC_2 (INLB) that serve to set the bits of a three bit register. The PWM may be operated from 0-100% duty  
cycle. The three bit register is used to select the state of each of the phases for a total of eight states  
including an align and stop state. The 1-PWM mode tables will use all the applicable settings from the control  
registers as set up by the user.  
An additional and optional GPIO (INHC) can be used to facilitate the insertion of dwell states or phase current  
overlap states between the six commutation steps. This may be used to reduce acoustic noise and improve  
motion through the reduction of abrupt current direction changes when switching between states. INHC must  
be high when the states are changed and the dwell state will exist until INHC is taken low. If the dwell states  
are not being used, the INHC pin can be simply tied low.  
In this mode all activity on INLC is always ignored.  
The commutation tables ( Table 3 and Table 4) may be selected through the appropriate SPI register.  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
Table 3. 1-PWM Active Freewheeling  
INLA : INHB : INLB : INHC  
AH  
AL  
BH  
BL  
CH  
CL  
AB  
0110  
0101  
0100  
1101  
1100  
1001  
1000  
1011  
1010  
0011  
0010  
0111  
1110  
0000  
PWM  
PWM  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
PWM  
PWM  
PWM  
PWM  
LOW  
!PWM  
!PWM  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
PWM  
PWM  
PWM  
PWM  
PWM  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
!PWM  
!PWM  
!PWM  
!PWM  
!PWM  
LOW  
HIGH  
HIGH  
LOW  
LOW  
PWM  
PWM  
PWM  
PWM  
PWM  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
!PWM  
!PWM  
!PWM  
!PWM  
!PWM  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
AB_CB  
CB  
CB_CA  
CA  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
CA_BA  
BA  
BA_BC  
BC  
BC_AC  
AC  
!PWM  
!PWM  
!PWM  
!PWM  
LOW  
AC_AB  
Align  
Stop  
Table 4. 1-PWM Diode Freewheeling  
INLA : INHB : INLB : INHC  
AH  
AL  
BH  
BL  
CH  
CL  
AB  
0110  
0101  
0100  
1101  
1100  
1001  
1000  
1011  
1010  
0011  
0010  
0111  
1110  
0000  
PWM  
PWM  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
PWM  
PWM  
PWM  
PWM  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
PWM  
PWM  
PWM  
PWM  
PWM  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
PWM  
PWM  
PWM  
PWM  
PWM  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
AB_CB  
CB  
CB_CA  
CA  
CA_BA  
BA  
BA_BC  
BC  
BC_AC  
AC  
AC_AB  
Align  
Stop  
7.3.3 Charge Pump  
A regulated triple charge pump scheme is used to create sufficient VGS to drive standard FETs under low voltage  
operation.  
The high-side FETs are directly driven by the tripler charge pump output while the low-side FETs are driven by a  
voltage that is internally regulated but derived from the tripler charge pump. This allows both the high side and  
low side to maintain sufficient VGS through low voltage transients. This topology also supports 100% duty cycle  
operation.  
Between 4.4 to 18 V the charge pump regulates the voltage in tripler mode; beyond 4.4 to 18 V, it switches over  
to doubler mode until the operating max voltage. The charge pump is monitored for undervoltage and  
overvoltage conditions to prevent underdriven or overdriven FET conditions.  
7.3.4 Gate Driver Architecture  
The DRV8305 gate driver is a complimentary push-pull topology for both the high-side and the low-side drivers.  
The peak currents for the drivers are adjustable; their benefits are described in detail in the Slew Rate/Slope  
Control section.  
Copyright © 2015, Texas Instruments Incorporated  
19  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
The gate driver is implemented as constant current sources for up to 80 mA (sink)/70 mA (source) currents in  
order to maintain the accuracy required for precise slew rate control. Beyond that, resistors are switched to  
create the desired settings up to 1.25 A (sink)/1 A (source).  
7.3.5 IDRIVE/TDRIVE  
The DRV8305 gate driver has an integrated state machine (TDRIVE/IDRIVE scheme) to protect against high  
current events on the outputs (shorts or inadvertent clamp activation) and also dV/dt turn on due to switching on  
the phase nodes.  
When changing the state of the gate driver, the peak current (source or sink, IDRIVE) is applied for a fixed period  
of time (TDRIVE) until the gate capacitances are charged or discharged completely. After this time has expired, a  
fixed current source of IHOLD is used to hold the gate at the desired state (pulled up or pulled down).  
INHX  
GHX (V)  
tDRIVEP  
tDRIVEN  
IDRIVEP  
IHOLD  
GHX (mA)  
-IHOLD  
-IPULLDOWN  
-IPULLDOWN  
IDRIVEN  
tDEAD  
`
IDRIVEP  
IHOLD  
IHOLD  
GLX (mA)  
- IHOLD  
-IPULLDOWN  
IDRIVEN  
tDRIVEN  
tDRIVEP  
GLX  
INLX  
Figure 7. TDRIVE/IDRIVE Waveforms  
This fixed TDRIVE time ensures that under abnormal circumstances like a short on the FET gate, or the  
inadvertent turning on of a FET VGS clamp, the high peak current through the DRV8305 gate drivers is limited to  
the energy of the peak current during TDRIVE. Limiting this energy helps to prevent the gate driver from  
damage.  
20  
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
Select a TDRIVE time that is longer than the time needed to charge or discharge the gate capacitances. IDRIVE  
and TDRIVE are selected based on the size of external FETs used and the desired rise and fall times. These  
registers must be configured so that the FET gates are charged completely during TDRIVE. If IDRIVE and  
TDRIVE are too low for a given FET, then the FET may not turn on completely. TI suggests to adjust these  
values in-system with the required external FETs to determine the best possible setting for any application.  
Note that TDRIVE will not increase the PWM time and will simply terminate if a PWM command is received while  
it is active. A good starting point is to select a TDRIVE that is about 2× longer than the external FET switching  
rise (turn ON) and fall (turn OFF) times.  
The IDRIVE/TDRIVE state machine protects against dV/dt turn on of a FET due to switching of the phase nodes.  
A strong pulldown current source of value IPULLDOWN is switched on between (GHX to SHX) or (GLX to SLX),  
every time an opposing FET is commanded to turn on.  
7.3.6 Slew Rate/Slope Control  
Control of the FET VDS rise and fall times during the Miller region of the FET is one of the most important  
parameters for optimizing emitted radiations and power. The rise and fall times also influence the energy and  
duration of the diode recovery inductive spikes and also dV/dt turn on of the LS FET.  
The ability of a driver to control the rise and fall times across the entire range of gate drive temperature, voltage,  
and process variation is essential to design robust systems. The key control knob is the ability to turn on and turn  
off the external FET with the least amount of variation.  
The DRV8305 uses temperature compensated constant current sources up to 80-mA (sink) and 70-mA (source)  
current. The current source architecture helps eliminate the temperature, process, and load-dependent variation  
associated with internal and external series limiting resistors.  
For higher currents, internal series resistors are used to minimize the power losses associated with mirroring  
such large currents.  
The 12 settings that are available on the DRV8305 allow the user to optimize the system using only SPI  
commands. This flexibility allows the system designer to tune the performance of the driver for different operating  
conditions through software alone.  
The slew rate settings may be set separately for source and sink values and can also be set separately for the  
high-side FETs (the high sides of all three phases share the same setting) and the low-side FETs (the low sides  
of all three phases share the same settings)  
7.3.7 Current Shunt Amplifiers  
The DRV8305 includes three high performance low-side current shunt amplifiers for accurate current  
measurement. The current amplifiers provide output bias up to 2.5 V to support bidirectional current sensing.  
Current shunt amplifier has following features:  
Each of the three current sense amplifiers can be programmed and calibrated independently.  
The independent current shunt amplifiers may be used either for sensing current through individual phase  
shunt resistors or the total current delivered to the motor through a single shunt resistor.  
Programmable gain: four gain settings through SPI command  
Internally or externally provided reference voltage to set output bias for amplifiers. Reference voltage is  
internally sourced from DRV8305 voltage regulator VREG, if also used to power microcontroller. It can  
alternatively be applied externally on the VREG pin.  
Programmable output bias scaling. The scaling factor k can be programmed through SPI to be equal to, half  
or a fourth of the reference voltage.  
Programmable blanking time (delay) of the amplifier outputs. The blanking time is implemented from any  
rising or falling edge (any of the outputs) of the internal gate driver gate signals. The blanking time is applied  
to all three current sense amplifiers equally. In case the current sense amplifiers are already being blanked  
when another gate driver rising or falling edge is seen, the blanking interval will be restarted at the edge.  
Note that the blanking time options do not include delay from internal amplifier loading or delays from the  
trace or component loads on the amplifier output. The programmable blanking time may be overridden to  
have no delay (default value).  
Minimize DC offset and drift through temperature with DC calibrating through SPI command. When DC  
calibration is enabled, device will short input of current shunt amplifier and disconnect the load. DC calibrating  
Copyright © 2015, Texas Instruments Incorporated  
21  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
can be done at anytime, even when the FET is switching because the load is disconnected. For best result,  
perform the DC calibrating during switching off period when no load is present to reduce the potential noise  
impact to the amplifier.  
The output of current shunt amplifier can be calculated as:  
VVREF  
VO  
 
 Gu SN  SP  
X  
X
k
where  
VREF is the reference voltage.  
G is the gain of the amplifier.  
k = 2, or 4  
SNx and SPx are the inputs of channel x. SPx should connect to resistor ground for the best common mode  
rejection.  
(1)  
Figure 8 shows current amplifier simplified block diagram.  
S 4  
400  
S 3  
S 2  
S 1  
200 kO  
100 kO  
50 kO  
DC _ CAL(SPI)  
DC _ CAL(SPI)  
k = 2, 4  
SN  
5 kO  
5 kO  
AVDD  
_
S5  
100 O  
SO  
+
SP  
S 1  
S 2  
S 3  
50 kO  
100 kO  
200 kO  
400 kO  
S 4  
VREF/k  
VREF  
AVDD  
_
+
Figure 8. Current Shunt Amplifier Simplified Block Diagram  
7.3.8 Internal Regulators (DVDD and AVDD)  
The DRV8305 has two internal regulators, DVDD and AVDD, that power internal circuits. These regulators  
cannot be used to drive external loads and may not be supplied externally.  
DVDD is the voltage regulator for the internal logic circuits and is maintained at a value of about 3.3 V through  
the entire operating range of the device. DVDD is derived from the PVDD supply.  
22  
Copyright © 2015, Texas Instruments Incorporated  
 
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
AVDD is the voltage regulator that provides the voltage rail for the internal analog circuit blocks including the  
current sense amplifiers. AVDD is derived from the PVDD voltage supply.  
Because the allowed operating range of the device permits operation below the nominal value of AVDD, this  
regulator operates in two regimes: namely a linear regulating regime and a dropout region. In the dropout region,  
the AVDD will simply track the PVDD voltage minus a voltage drop.  
If the device is expected to operate within the dropout region, take care while selecting current sense amplifier  
components and settings to accommodate this reduced voltage rail.  
7.3.9 Voltage Regulator Output for Driving External Loads (VREG)  
The DRV8305 integrates an LDO voltage regulator (VREG) that is dedicated for driving external loads like an  
MCU directly. The two versions of the device provide different voltages: DRV83053 provides 3.3 V, DRV83055  
provides 5.0 V. Because the user can supply microcontroller and other system power from the DRV8305, the  
user does not need to add an external regulator IC for system power.  
The DRV8305 voltage regulator is standalone, uncommitted, and is not used internally.  
The DRV8305 voltage regulator also features a PWRGD pin to protect against brownouts on externally driven  
devices. The PWRGD pin is often tied to a reset pin on a microcontroller to ensure that the microcontroller is  
always reset when the voltage is outside of its recommended operation area.  
When the voltage output of the LDO drops or exceeds the set threshold (programmable).  
The PWRGD pin will go low for a period of 64 µs.  
After the 64-µs period has expired, the LDO voltage will be checked and PWRGD will be held low until the  
LDO voltage has recovered.  
The voltage regulator also has undervoltage protection implemented for both the input voltage (PVDD) and  
output voltage (VREG).  
7.3.10 Protection Features  
Fault / Warning Classes and Recovery summarizes the protection features, fault responses, and recovery  
sequences.  
7.3.10.1 Fault and Protection Handling  
The DRV8305 handles fault (latched fault) and warnings (unlatched faults) separately. Both latched and  
unlatched faults are reported in status registers and can be read through SPI.  
A latched nFAULT pin indicates an error event has occurred that has caused part of the gate driver to shut  
down and force outputs to a safe state (external FETs in high impedance).  
A latched fault is indicated by the nFAULT pin going low (and staying low) and reporting the details of the  
fault in the status registers (0x02 and 0x03). The appropriate recovery sequence must be performed in  
order to reset the latched fault. In addition, the register (0x01) contains a single status bit if any latched  
faults are detected.  
The nFAULT pin will stay low until the appropriate recovery sequence is performed.  
TI recommends to inspect the system and board when a latched nFAULT faults occurs.  
An unlatched warning on nFAULT pin indicates that an event that requires a warning to be communicated has  
occurred.  
An unlatched fault is indicated by the nFAULT pin going low for a period of 64 µs, reporting the warning  
and then recovering back high for a period of 64 µs before reporting any subsequent errors.  
When a warning has been read by SPI through the warning register (0x01), that same warning will not be  
reported through nFAULT again unless that warning or condition passes and then reoccurs.  
However, the SPI registers will continue to report the latest status of the condition even after it has been  
cleared by the read, that is, if the condition has cleared, then the warning will clear in the SPI registers.  
Note that if the microprocessor does not read the warning, then the nFAULT pin will continue to toggle.  
In case another warning or warnings are received during the 64-µs period but after the warning register  
has been read, then after the expiration of 64 µs, the nFAULT pin will go high for another 64 µs and then  
report those warning or warnings by going low for another 64 µs.  
If a latched fault occurs during a period where nFAULT is low, then the nFAULT pin will stay low.  
Copyright © 2015, Texas Instruments Incorporated  
23  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
Note that nFAULT is an open-drain signal and must be pulled up through an external resistor.  
7.3.10.2 Shoothrough Protection  
DRV8305 integrates analog and digital monitors to prevent shoot-through in the external FETs.  
An Internal handshake through analog comparators is performed between high-side and low-side FETs  
during switching transition.  
A minimum dead time (digital) of 40 ns is always inserted after a successful handshake. This digital dead-time  
is programmable and is in addition to the time taken for the handshake.  
7.3.10.3 VDS Sensing – External FET Protection and Reporting (OC Event)  
To protect the external FETs from damage due to high currents, VDS sensing circuitry is implemented in the  
DRV8305.  
The VDS sensing is implemented for both the high-side and low-side MOSFET through these pins:  
High-side MOSFET: VDS measured between VDRAIN and SHX pins  
Low-side MOSFET: VDS measured between SHX and SLX pins  
Based on RDS(on) of the power MOSFETs and the maximum allowed IDS, a voltage threshold can be calculated,  
which when exceeded, triggers the VDS protection feature.  
This voltage threshold level is programmable through SPI command and may be programmed during operation if  
needed.  
The VDS protection logic also has an adjustable blanking time and deglitch time to prevent false trips.  
VDS blanking time (tBLANK): This time is inserted digitally and is programmable. The tBLANK time is a delay inserted  
at each output after that particular output has been commanded to turn ON. During tBLANK time, the VDS  
comparators are not being monitored in order to prevent false trips when the FETs first turn ON.  
VDS deglitch time (tVDS): This time is inserted digitally and is programmable. The tVDS time is a delay inserted after  
the VDS sensing comparators have tripped to when the protection logic is informed that a VDS event has  
occurred.  
Note that the dead time and blanking time are overlapping counters as shown in Figure 9  
INx_x  
Gx_x  
tDead  
1
tBLANK  
Input Signal  
2
3
tdeglitch  
Output Slew  
1
2
Expiration of Blanking  
3
Figure 9. VDS Protection Timing  
Three overcurrent responses are possible depending on the configuration option selected through SPI.  
VDS event latch shutdown mode  
When a VDS event occurs, device will pull all outputs low in order to take all six external FETs into high-  
impedance mode. The Fault will be reported on nFAULT and details of the FET that reported the fault can be  
read back through SPI.  
VDS event Reporting only mode  
In this mode, VDS event will be reported on the nFAULT pin and the SPI register. Gate drivers will continue  
to operate.  
VDS event disable mode  
Device ignores all the VDS event detections and does not report them.  
24  
Copyright © 2015, Texas Instruments Incorporated  
 
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
7.3.10.4 Low-Side Source Monitoring (SNS_OCP)  
The DRV8305 monitors the voltage on the SLX pins for high-current events like phase shorts that may cause the  
voltage on those pins to exceed 2 V. The device will put the FETs into a high-impedance state to avoid damage.  
7.3.11 Undervoltage Reporting and Undervoltage Lockout (UVLO) Protection  
The DRV8305 implements appropriate undervoltage responses in order to protect the system. Fault / Warning  
Classes and Recovery lists the details of the monitors and their response and recovery sequences.  
Under-voltage is monitored on PVDD, AVDD, VCPH, and VCP_LSD.  
The UVLO protection fault may be completely disabled for the PVDD undervoltage condition using a SPI register  
command. In this case, the fault is still reported in the register.  
The UVLO protection may never be completely disabled for the VCPH or VCP_LSD in OPERATING mode  
because this may indicate a short condition that could damage the DRV8305.  
7.3.11.1 Battery Overvoltage Protection (PVDD_OV)  
The DRV8305 implements appropriate overvoltage responses in order to protect the system.  
PVDD is monitored for overvoltage conditions. If the overvoltage threshold is tripped, a warning is issued and the  
event is reported in the status registers. The device takes no action.  
7.3.11.2 Charge Pump Overvoltage Protection (VCPH_OV/VCP_LSD_OV)  
If VCPH or VCP_LSD exceed the overvoltage threshold due to potential issue related to the charge pumps (for  
example, short of external charge pump capacitor or charge pump, an overvoltage fault is triggered).  
7.3.11.3 Overtemperature (OT) Warning and Protection  
A multi-level temperature detection circuit is implemented:  
Flag Level 1: Level 1 overtemperature flag. No warning is reported on nFAULT. A real-time register bit is set  
to indicate flag and can be read through SPI.  
Flag Level 2: Level 2 overtemperature flag. No warning is reported on nFAULT. A real-time register bit is set  
to indicate flag and can be read through SPI.  
Flag Level 3: Level 3 overtemperature flag. No warning is reported on nFAULT. A real-time register bit is set  
to indicate flag and can be read through SPI.  
Flag Level 4: Level 4 overtemperature flag. No warning is reported on nFAULT. A real-time register bit is set  
to indicate flag and can be read through SPI.  
Warning Level: Overtemperature warning only. Warning is reported on nFAULT for 64 µs and can be read  
through SPI.  
Fault Level: Overtemperature fault and latched shut down of gate driver and charge pump Fault will be  
reported to nFAULT pin.  
SPI operation is still available and register settings will be retained in the device during OTSD operation as long  
as PVDD is still within defined operation range.  
The details of the fault will be reported into a register that can be read back through SPI.  
7.3.11.4 dV/dt Protection  
The DRV8305 gate driver implements a strong pulldown scheme for preventing dV/dt turn on of external FETs.  
After a FET has been turned off using the selected sink slew rate setting, the internal state machine will turn on a  
stronger pulldown if it senses that the opposite FET on that phase has been commanded to turn on. This allows  
the systems designer to decouple the optimum slew rate setting selection for EMI and power from the pull down  
required to prevent dV/dt turn on.  
7.3.11.5 VGS Protection  
The DRV8305 gate driver uses a multilevel level protection scheme to protect the external FET from VGS  
voltages that may damage the gate of the external FET.  
Copyright © 2015, Texas Instruments Incorporated  
25  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
The device integrates VGS clamps inside the gate driver that will turn on when the GHX voltage exceeds SHX  
voltage by a value that could be damaging to the FETs. If the voltage continues to rise, in spite of the clamps  
turning on, the TDRIVE architecture ensures that the energy through the clamps is limited. If the high VGS  
voltage is due to an abnormal condition on the charge pump, the charge pump overvoltage fault will trip in order  
to protect the FETs from damage.  
7.3.11.6 Gate Driver Faults  
The DRV8305 protects against abnormal short to battery or short to ground conditions on the gate driver outputs  
that could result in an incorrect state of the gate driver outputs. The gate driver integrates VGS comparators that  
check the status of the gate driver output against the commanded PWM signal to ensure that they match. This  
comparison occurs shortly after the expiration of the TDRIVE time. If the comparison indicates a mismatch, a  
gate driver fault is indicated.  
7.3.11.7 Reverse Battery Protection  
The VCPH pin on the DRV8305 is designed to be able to supply an external load of up to 10 mA. This feature  
allows implementation of an external reverse battery protection scheme using a MOS and a BJT. The MOS gate  
can be driven through VCP through a current limiting resistor to limit the current drawn from VCP. The current  
limit resistor must be sized not to exceed the maximum external load on VCPH.  
The VDRAIN pin (sense) may also be protected against negative transients on it by use of a current limiting  
resistor. The current limit resistor must be sized not to exceed the maximum current load on the VDRAIN pin.  
BATTERY  
CP2H CP2L  
CP1H  
CP1L  
VCPH  
PVDD  
PVDD  
VDRAIN  
Figure 10. Typical Scheme for Reverse Battery Protection Using VCPH  
26  
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
7.3.11.8 MCU Watchdog  
An MCU watchdog function may be enabled to ensure that the external controller that is instructing the DRV8305  
is active and not in an unknown state.  
SPI Watchdog must be enabled by writing a 1 to the WD_EN bit through SPI (default is disabled = 0).  
When the SPI watchdog is enabled, an internal timer starts to countdown to an interval set by WD_dly bit.  
To reset the watchdog, the address 0x01 (Status register) must be read by the microcontroller within the interval  
set by the register WD_dly.  
If the timer is allowed to expire without the address 0x01 being read, the WD fault will get enabled.  
Response to this fault is as follows:  
A Latched + PWRGD fault occurs on the DRV8305 and gate drivers are put into a safe state. The appropriate  
recovery sequence must be performed.  
PWRGD pin is taken low for 64 µs and then back high in order to reset the microcontroller.  
nFAULT is asserted  
WD_EN bit is cleared  
Report that the watchdog had expired through SPI bit WD_FAULT  
TI recommends that if the watchdog function is being used, the MCU software routine reads the status  
registers as part of its recovery or power-up routine in order to know whether a WD_FAULT had previously  
occurred.  
Note that the fault results in clearing of the WD_EN bit and it will have to be set again to resume watchdog  
functionality.  
7.3.12 Pin Control Functions  
7.3.12.1 EN_GATE  
EN_GATE low is used to put the gate driver into standby mode. Note that EN_GATE has no effect on the LDO  
voltage regulator. When EN_GATE is low, the device will always put the MOSFET output stage to high  
impedance as long as PVDD is still present. EN_GATE is also used to reset the IC.  
It is not possible to enter SLEEP mode without taking EN_GATE low and entering STANDBY mode first.  
TI recommends to take EN_GATE for at least greater than 25 µs when it is asserted low to go into standby  
mode.  
7.3.12.2 SPI Pins  
SDO pin has to be tri-state, so a data bus line can be connected to multiple SPI slave devices. SCS pin is active  
low. When SCS is high, SDO is at high-impendence mode.  
Ensure that SDO pin is always configured in the system as an output from DRV8305.  
SDO pin must never be driven to ensure correct operation of DRV8305. SDO is referrenced to the VREG  
voltage.  
Copyright © 2015, Texas Instruments Incorporated  
27  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
Table 5. Fault / Warning Device Status  
OUTPUTS  
VOLTAGE  
REGULATOR  
O – OPERATING  
SD – SHUTDOWN  
CHARGE PUMP  
PD – PULL  
AVDD / DVDD  
O – OPERATING O – OPERATING  
SD – SHUTDOWN SD – SHUTDOWN  
CONDITION  
CLASS  
DOWN  
O – OPERATING  
PVDD undervoltage (VPVDD_UVLO1  
falling  
)
)
None  
PD  
PD  
SD  
SD  
SD  
O
SD  
O
PVDD undervoltage (VPVDD_UVLO2  
falling  
Latched  
PVDD undervoltage (VPVDD_UVFL  
falling  
)
Warning  
Warning  
Warning  
O
O
O
O
O
O
O
O
O
O
O
O
PVDD overvoltage (VPVDD_OVFL) rising  
Charge pump undervoltage  
(VVCPH_UVFL) falling  
Charge pump undervoltage  
(VVCPH_UVLO / VVCP_LSD_UVLO  
Latched  
Latched  
PD  
PD  
SD  
SD  
O
O
O
O
)
Charge pump overvoltage  
(VVCPH_OVLO, VVCPH_OVLO_ABS  
AVDD undervoltage  
TEMP FLAG 1/2/3/4  
OT warning (OTW)  
)
Latched  
Real time  
Warning  
Latched  
Latched  
PD  
O
SD  
O
SD  
O
O
O
O
O
O
O
O
O
OT shutdown (OTS)  
PD  
PD  
SD  
O
O
VDS event – latch mode (FETxx_VDS)  
O
VDS event – report mode  
(FETxx_VDS)  
Report only  
Not reported  
O
O
O
O
O
O
O
O
VDS event – disable mode  
(FETxx_VDS)  
SNS OCP  
Latched  
Latched  
PD  
PD  
O
O
O
O
O
Gate driver fault VGS event  
MCU watchdog  
SD  
Latched +  
PWRGD  
PD  
PD  
O
O
O
O
O
O
VREG_UV  
Latched +  
PWRGD  
28  
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
7.3.13 Fault / Warning Classes and Recovery  
7.3.13.1 Reg 09h CLR_FLTS  
When CLR_FLTS bit is set to 1, all expired faults (latch/warn) will be cleared from the SPI status register. Also,  
the nFAULT pin will be released on the event of an expired Latched fault. CLR_FLTS provides a software reset  
option to DRV8305. The effect on nFAULT pin and SPI status registers is the same as pulling EN_GATE pin low  
and taking it HIGH.  
CLR_FLTS bit self clears to 0 after SPI status register is reset and nFAULT pin is released.  
Table 6. Fault / Warning Reporting and Handling  
CLASS  
Latched  
Warning  
nFAULT  
PWRGD  
SPI REPORT  
DEVICE RECOVERY SEQUENCE  
SPI REPORT  
RECOVERY  
Toggle EN_GATE (Faults clear on  
rising edge of EN_GATE)  
OR  
Bit clears only on  
successful fault  
recovery  
Low  
No action  
Yes  
Write Reg 09h CLR_FLTS bit set 1  
Read SPI status register 0x01 to  
acknowledge warning (otherwise  
nFAULT will continue to toggle)  
Bit clears on register  
read only if condition  
has passed  
Toggles with 64-  
µs period  
No action  
No action  
Yes  
Yes  
Read SPI status register 0x01 to  
acknowledge warning (otherwise  
nFAULT will continue to toggle)  
Bit clears on register  
read only if condition  
has passed  
Report only (VDS Toggles with 64-  
mode)  
µs period  
Read SPI register to capture real  
time status  
Bit clears after  
condition has passed  
Real time  
No action  
No action  
No action  
No action  
Yes  
No  
Not reported  
None  
None  
Toggle EN_GATE (Faults clear on  
rising edge of EN_GATE)  
OR  
Bit clears only on  
successful fault  
recovery  
Latched +  
PWRGD  
Low for minimum  
of 64 µs  
Low  
Yes  
Write Reg 09h CLR_FLTS bit set 1  
7.4 Device Functional Modes  
7.4.1 Power-Up and Operating States Hardware Configuration for VREG/VREF  
Hardware configuration is not required. Voltage regulator voltage (3.3 or 5 V or disabled) is based on orderable  
part number.  
7.4.1.1 POWER Up  
During power-up, all internal circuits are enabled. The VREG will also be enabled based on the hardware  
configuration (see Voltage Regulator Control (address = 0xB) section). All gate drive outputs are held low and  
the nFAULT pin is taken low by the IC while power up is being executed.  
7.4.1.2 STANDBY State  
After the startup sequence is completed and the PVDD voltage is above VPVDD_UVLO2, the DRV8305 will indicate  
successful and fault-free power up of all circuits by releasing the nFAULT pin.  
The device will also enter STANDBY state any time that EN_GATE is taken low or a latched fault occurs.  
Gate driver always has control of the power FETs even in STANDBY state.  
TI recommends to set up the device control registers through SPI in the STANDBY state.  
7.4.1.3 OPERATING State  
Normal operation of the gate driver and current shunt amplifiers can be initiated by taking EN_GATE from a low  
state to a high state. In this state the charge pump is powered up and the driver is ready for operation.  
Copyright © 2015, Texas Instruments Incorporated  
29  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
7.4.1.4 SLEEP State  
The SLEEP state is invoked by issuing a SLEEP command through SPI. After the SLEEP command is received,  
the VREG and the gate driver safely power down internally after a programmable delay.  
The DRV8305 can then only be enabled through the WAKE pin which is a high-voltage-tolerant input pin.  
For the DRV8305 to be brought out of SLEEP, the WAKE pin must be at a voltage greater than 3 V. This allows  
the WAKE to be driven, for example, directly by the battery through a switch, through the inhibit pin (INH) on  
standard LIN interface or through standard digital logic. The WAKE pin will only react to a wake-up command if  
PVDD > VPVDD_UVLO2  
.
After the DRV8305 is out of SLEEP mode, all activity on the WAKE pin is ignored.  
SLEEP state erases the values in the SPI control registers. TI does not recommend to write through SPI in  
SLEEP state.  
30  
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
7.5 Programming  
7.5.1 SPI Communication  
7.5.1.1 SPI  
SPI is used to set device configuration, operating parameters, and read out diagnostic information. The  
DRV8305 SPI operates in slave mode.  
The SPI input data (SDI) word consists of a 16-bit word with 11-bit data and 5-bit (MSB) command. The SPI  
output data (SDO) word consists of 11-bit register data. (The first 5 bits (MSB) are to be ignored.)  
A valid frame must meet following conditions:  
Clock must be low when nSCS goes low.  
It should have 16 full clock cycles.  
Clock must be low when nSCS goes high.  
Data is always shifted out on the rising edge of the clock in the same frame following the 5-bit MSB.  
Data is always sampled on the falling edge of the clock in the same frame following the 5-bit MSB.  
When SCS is asserted high, any signals at the SCLK and SDI pins are ignored, and SDO is forced into a high-  
impedance state. When SCS transitions from HIGH to LOW, SDO is enabled and the SPI response word loads  
into the shift register based on 5-bit command.  
The SCLK pin must be low when SCS transitions low. While SCS is low, at each rising edge of the clock, the  
response bit is serially shifted out on the SDO pin with MSB shifted out first.  
While SCS is low, at each falling edge of the clock, the new control bit is sampled on the SDI pin. The SPI  
command bits are decoded to determine the register address and access type (read or write). The MSB will be  
shifted in first. If the word sent to SDI is less than 16 bits or more than 16 bits, it is considered a frame error and  
the data will not be written into the destination address. If it is a write command, the data will be ignored.  
For a write command, the existing data in the register being written to is shifted out on SDO following the 5-bit  
MSB.  
SCS should be taken high for at least 500 ns between frames.  
7.5.1.2 SPI Format  
SPI input data control word is 16-bit long, consisting of:  
1 read or write bit W [15]  
4 address bits A [14:11]  
11 data bits D [10:0]  
SPI output data response word is 11-bit long (first 5 bits are ignored) and its content is the content of the register  
being accessed  
For a Write transaction: The response word is the data currently in the register being written to.  
For a Read Command: The response word is the data currently in the register being read.  
Table 7. SPI Input Data Control Word Format  
R/W  
B15  
W0  
ADDRESS  
DATA  
B5  
Word Bit  
B14  
A3  
B13  
A2  
B12  
A1  
B11  
A0  
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
Command  
D5  
Table 8. SPI Output Data Response Word Format  
DATA  
Word Bit  
B15  
X
B14  
X
B13  
X
B12  
X
B11  
X
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
Command  
Copyright © 2015, Texas Instruments Incorporated  
31  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
7.6 Register Maps  
Table 9. Register Map  
ADDRESS  
0x1  
NAME  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OTW  
Warning & Watch  
Dog  
FAULT  
Reserved  
TEMP_FLAG4  
FETHB_VDS  
OTS  
PVDD_UVFL  
FETLB_VDS  
Reserved  
PVDD_OVFL  
FETHC_VDS  
VREG_UV  
VDS_STATUS  
FETLC_VDS  
AVDD_UVLO  
VCPH_UVFL  
Reserved  
TEMP_FLAG1  
Reserved  
TEMP_FLAG2  
SNS_C_OCP  
VCPH_UVLO  
TEMP_FLAG3  
SNS_B_OCP  
VCPH_OVLO  
0x2  
OV/VDS Faults  
IC Faults  
FETHA_VDS  
PVDD_UVLO2  
FETLA_VDS  
WD_FAULT  
SNS_A_OCP  
VCPH_OVLO_A  
BS  
0x3  
VCP_LSD_UVLO  
Reserved  
Gate drvier VGS  
Faults  
0x4  
0x5  
0x6  
FETHA_VGS  
Reserved  
FETLA_VGS  
TDRIVEN[1]  
TDRIVEP[1]  
FETHB_VGS  
TDRIVEN[0]  
TDRIVE[0]  
FETLB_VGS  
IDRIVEN_HS[3]  
IDRIVEN_LS[3]  
FETHC_VGS  
IDRIVEN_HS[2]  
IDRIVEN_LS[2]  
FETLC_VGS  
IDRIVEN_HS[1]  
IDRIVEN_LS[1]  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
HS Gate Driver  
Control  
IDRIVEN_HS[0]  
IDRIVEN_LS[0]  
IDRIVEP_HS[3]  
IDRIVEP_LS[3]  
IDRIVEP_HS[2]  
IDRIVEP_LS[2]  
IDRIVEP_HS[1]  
IDRIVEP_LS[1]  
IDRIVEP_HS[0]  
IDRIVEP_LS[0]  
LS Gate Driver  
Control  
Reserved  
Gate Drive  
Control  
0x7  
0x8  
0x9  
Reserved  
Reserved  
FLIP_OTS  
COMM_OPTION  
Reserved  
PWM_MODE[1]  
Reserved  
PWM_MODE[0]  
Reserved  
DEAD_TIME[2]  
Reserved  
DEAD_TIME[1]  
Reserved  
DEAD_TIME[0]  
Reserved  
TBLANK[1]  
Reserved  
WD_EN  
TBLANK[0]  
Reserved  
SLEEP  
TVDS[1]  
Reserved  
CLR_FLTS  
TVDS[0]  
Reserved  
Reserved  
DISABLE  
VPVDD_UVLO2  
DIS_GDRV  
FAULT  
EN_SNS_CLAM  
P
IC Operation  
WD_DLY[1]  
WD_DLY[0]  
DIS_SNS_OCP  
SET_VCPH_UV  
Shunt Amplifier  
Control  
0xA  
0xB  
0xC  
DC_CAL_CH3  
Reserved  
DC_CAL_CH2  
DC_CAL_CH1  
CS_BLANK[1]  
Reserved  
CS_BLANK[0]  
Reserved  
GAIN_CS3[1]  
Reserved  
GAIN_CS3[0]  
SLEEP_DLY[1]  
VDS_LEVEL[1]  
GAIN_CS2[1]  
SLEEP_DLY[0]  
VDS_LEVEL[0]  
GAIN_CS2[0]  
GAIN_CS1[1]  
GAIN_CS1[0]  
Voltage  
Regulator Control  
DIS_VREG_PW VREG_UV_LEVE VREG_UV_LEVE  
VREF_SCALE[1] VREF_SCALE[0]  
Reserved Reserved  
RGD  
L[1]  
L[0]  
VDS Sense  
Control  
Reserved  
VDS_LEVEL[4]  
VDS_LEVEL[3]  
VDS_LEVEL[2]  
VDS_MODE[2]  
VDS_MODE[1]  
VDS_MODE[0]  
32  
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
7.6.1 Read / Write Bit  
The MSB bit of SDI word (W0) is read/write bit. When W0 = 0, input data is a write command; when W0 = 1,  
input data is a read command, and the register value will send out on the same word cycle from SDO from D10  
to D0.  
7.6.2 Status Registers  
Status registers are used to report warning, fault conditions and provide a means to prevent timing out of the  
watchdog timer. Status registers are read only registers.  
7.6.3 0x1 Warning and Watchdog Reset  
Table 10. Warning and Watchdog Reset Register Description  
BIT  
R/W  
NAME  
DEFAULT  
DESCRIPTION  
10  
R
FAULT  
0x0  
0 - Warning,  
1 - Latched fault  
9
8
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
R
R
Reserved  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
TEMP_Flag4  
PVDD_UVFL  
PVDD_OVFL  
VDS_STATUS  
VCHP_UVFL  
TEMP_Flag1  
TEMP_Flag2  
TEMP_Flag3  
OTW  
Temperature flag setting for about 175°C  
PVDD undervoltage flag warning  
PVDD overvoltage flag warning  
Real time or of all VDS sensors (0x2[D10:5])  
Charge pump undervoltage flag warning  
Temperature flag setting for about 105°C  
Temperature flag setting for about 125°C  
Temperature flag setting for about 135°C  
Overtemperature warning  
7.6.4 0x2 OV/VDS Faults  
Table 11. OV/VDS Faults Register Description  
BIT  
10  
9
R/W  
R
NAME  
DEFAULT  
0x0  
DESCRIPTION  
FETHA_VDS  
FETLA_VDS  
FETHB_VDS  
FETLB_VDS  
FETHC_VDS  
FETLC_VDS  
Reserved  
VDS monitor fault for high-side FET A  
VDS monitor fault for low-side FET A  
VDS monitor fault for high-side FET B  
VDS monitor fault for low-side FET B  
VDS monitor fault for high-side FET C  
VDS monitor fault for low-side FET C  
R
0x0  
8
R
0x0  
7
R
0x0  
6
R
0x0  
5
R
0x0  
4:3  
2
R
0x0  
R
SNS_C_OCP  
SNS_B_OCP  
SNS_A_OCP  
0x0  
Sense C overcurrent protection flag  
Sense B overcurrent protection flag  
Sense A overcurrent protection flag  
1
R
0x0  
0
R
0x0  
Copyright © 2015, Texas Instruments Incorporated  
33  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
7.6.5 0x3 IC Faults  
Table 12. IC Faults Register Description  
BIT  
10  
9
R/W  
R
NAME  
DEFAULT  
0x0  
DESCRIPTION  
PVDD_UVLO2  
WD_FAULT  
OTS  
PVDD undervoltage 2 fault  
Watchdog fault  
R
0x0  
8
R
0x0  
Overtemperature fault  
7
R
Reserved  
0x0  
6
R
VREG_UV  
0x0  
VREG undervoltage fault  
5
R
AVDD_UVLO  
VCP_LSD_UVLO  
Reserved  
0x0  
AVDD undervoltage fault  
4
R
0x0  
Charge pump low-side gate driver fault  
3
R
0x0  
2
R
VCPH_UVLO  
VCPH_OVLO  
VCPH_OVLO_ABS  
0x0  
Charge pump high-side undervoltage 2 fault  
Charge pump high-side overvoltage fault  
Charge pump high-side overvoltage ABS fault  
1
R
0x0  
0
R
0x0  
7.6.6 0x4 Gate Driver VGS Faults  
Table 13. Gate Driver VGS Faults Register Description  
BIT  
10  
9
R/W  
R
NAME  
DEFAULT  
0x0  
DESCRIPTION  
FETHA_VGS  
FETLA_VGS  
FETHB_VGS  
FETLB_VGS  
FETHC_VGS  
FETLC_VGS  
Reserved  
VGS monitor fault for high-side FET A  
VGS monitor fault for low-side FET A  
VGS monitor fault for high-side FET B  
VGS monitor fault for low-side FET B  
VGS monitor fault for high-side FET C  
VGS monitor fault for low-side FET C  
R
0x0  
8
R
0x0  
7
R
0x0  
6
R
0x0  
5
R
0x0  
4:0  
R
0x0  
34  
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
7.6.7 Control Registers  
Control registers are used to set the user parameter for DRV8305. The default values are shown in bold.  
Control registers may be read and do not clear on read or EN_GATE resets  
Control registers are cleared to default values on power up  
Control registers are cleared to default values when the device enters SLEEP mode  
7.6.7.1 HS Gate Driver Control (address = 0x5)  
Table 14. HS Gate Driver Control Register Description  
BIT  
10  
R/W  
R/W  
R/W  
NAME  
DEFAULT  
0x0  
DESCRIPTION  
Reserved  
TDRIVEN  
9:8  
0x3  
High-side gate driver peak source time  
b'00 - 250 ns  
b'01 - 500 ns  
b'10 - 1000 ns  
b'11 - 2000 ns  
7:4  
3:0  
R/W  
R/W  
IDRIVEN_HS  
IDRIVEP_HS  
0x4  
0x4  
High-side gate driver peak sink current  
b'0000 - 20 mA b'0001 - 30 mA b'0010 - 40 mA b'0011 - 50 mA  
b'0100 - 60 mA b'0101 - 70 mA b'0110 - 80 mA b'0111 - 0.25 A  
b'1000 - 0.50 A b'1001 - 0.75 A b'1010 - 1.00 A b'1011 - 1.25 A  
b'1100 - 60 mA b'1101 - 60 mA b'1110 - 60 mA b'1111 - 60 mA  
High-side gate driver peak source current  
b'0000 - 10 mA b'0001 - 20 mA b'0010 - 30 mA b'0011 - 40 mA  
b'0100 - 50 mA b'0101 - 60 mA b'0110 - 70 mA b'0111 - 0.125 A  
b'1000 - 0.25 A b'1001 - 0.50 A b'1010 - 0.75 A b'1011 - 1.00 A  
b'1100 - 50 mA b'1101 - 50 mA b'1110 - 50 mA b'1111 - 50 mA  
7.6.7.2 LS Gate Driver Control (address = 0x6)  
Table 15. LS Gate Driver Control Register Description  
BIT  
10  
R/W  
R/W  
R/W  
NAME  
DEFAULT  
0x0  
DESCRIPTION  
Reserved  
TDRIVEP  
9:8  
0x3  
Low-side gate driver peak source time  
b'00 - 250 ns  
b'01 - 500 ns  
b'10 - 1000 ns  
b'11 - 2000 ns  
7:4  
3:0  
R/W  
R/W  
IDRIVEN_LS  
IDRIVEP_LS  
0x4  
0x4  
Low-side gate driver peak sink current  
b'0000 - 20 mA b'0001 - 30 mA b'0010 - 40 mA b'0011 - 50 mA  
b'0100 - 60 mA b'0101 - 70 mA b'0110 - 80 mA b'0111 - 0.25 A  
b'1000 - 0.50 A b'1001 - 0.75 A b'1010 - 1.00 A b'1011 - 1.25 A  
b'1100 - 60 mA b'1101 - 60 mA b'1110 - 60 mA b'1111 - 60 mA  
Low-side gate driver peak source current  
b'0000 - 10 mA b'0001 - 20 mA b'0010 - 30 mA b'0011 - 40 mA  
b'0100 - 50 mA b'0101 - 60 mA b'0110 - 70 mA b'0111 - 0.125 A  
b'1000 - 0.25 A b'1001 - 0.50 A b'1010 - 0.75 A b'1011 - 1.00 A  
b'1100 - 50 mA b'1101 - 50 mA b'1110 - 50 mA b'1111 - 50 mA  
Copyright © 2015, Texas Instruments Incorporated  
35  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
7.6.7.3 Gate Drive Control (address = 0x7)  
Table 16. Gate Drive Control Register Description  
BIT  
10  
9
R/W  
R/W  
R/W  
NAME  
DEFAULT  
0x0  
DESCRIPTION  
Reserved  
COMM_OPTION  
0x1  
Rectification control (PWM_MODE = b'10 only)  
b'0 - diode freewheeling  
b'1 - active freewheeling  
8:7  
R/W  
PWM_MODE  
0x0  
PWM Mode  
b'00 - PWM with 6 independent inputs  
b'01 - PWM with 3 independent inputs  
b'10 - PWM with one input  
b'11 - PWM with 6 independent inputs  
6:4  
3:2  
R/W  
R/W  
DEAD_TIME  
TBLANK  
0x1  
0x1  
Dead time  
b'000 - 40 ns  
b'011 - 500 ns  
b'110 - 4000 ns  
b'001 - 60 ns  
b'100 - 1000 ns  
b'111 - 6000 ns  
b'010 - 100 ns  
b'101 - 2000 ns  
VDS sense blanking  
b'00 - 0 µs  
b'01 - 2 µs  
b'10 - 4 µs  
b'11 - 8 µs  
1:0  
R/W  
TVDS  
0x2  
VDS sense deglitch  
b'00 - 0 µs  
b'01 - 2 µs  
b'10 - 4 µs  
b'11 - 8 µs  
36  
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
7.6.7.4 IC Operation (address = 0x9)  
Table 17. IC Operation Register Description  
BIT  
R/W  
NAME  
DEFAULT  
DESCRIPTION  
10  
R/W  
Flip_OTS  
0x0  
Enable OTS  
b'0 - Disable OTS  
b'1 - Enable OTS  
9
8
7
R/W  
R/W  
R/W  
DIS_VPVDD_UVLO2  
DIS_GDRV_FAULT  
EN_SNS_CLAMP  
0x0  
0x0  
0x0  
Disable PVDD_UVLO2 fault and reporting  
b'0 - PVDD_UVLO2 enabled  
b'1 - PVDD_UVLO2 disabled  
Disable gate driver fault and reporting  
b'0 - Gate driver fault enabled  
b'1 - Gate driver fault disabled  
Enable sense amplifier clamp  
b'0 - sense amplifier clamp is not enabled  
b'1 - sense amplifier clamp is enabled limiting output to about  
3.3 V  
6:5  
R/W  
WD_DLY  
0x1  
Watch dog delay  
b'00 - 10 ms  
b'01 - 20 ms  
b'10 - 50 ms  
b'11 - 100 ms  
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
DIS_SNS_OCP  
WD_EN  
0x0  
0x0  
0x0  
0x0  
0x0  
Disable SNS overcurrent protection fault and reporting  
b'0 - SNS OCP enabled  
b'1 - SNS OCP disabled  
Watch dog enable  
b'0 - Watch dog disabled  
b'1 - Watch dog enabled  
SLEEP  
Put device into sleep mode  
b'0 - Device awake  
b'1 - Device asleep  
CLR_FLTS  
SET_VCPH_UV  
Clear faults  
b'0 - Normal operation  
b'1 - Clear fault bits  
Set charge pump undervoltage threshold level  
b'0 - 4.9 V  
b'1 - 4.6 V  
Copyright © 2015, Texas Instruments Incorporated  
37  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
7.6.7.5 Shunt Amplifier Control (address = 0xA)  
Table 18. Shunt Amplifier Control Register Description  
BIT  
R/W  
NAME  
DEFAULT  
DESCRIPTION  
10  
R/W  
DC_CAL_CH3  
0x1  
DC Calibration of CS amplifier 3  
b'0 - Normal operation  
b'1 - DC calibration mode  
9
R/W  
R/W  
R/W  
DC_CAL_CH2  
DC_CAL_CH1  
CS_BLANK  
0x1  
0x1  
0x0  
DC Calibration of CS amplifier 2  
b'0 - Normal operation  
b'1 - DC calibration mode  
8
DC Calibration of CS amplifier 1  
b'0 - Normal operation  
b'1 - DC calibration mode  
7:6  
Current shunt amplifier blanking time  
b'00 - 0 ns  
b'01 - 500 ns  
b'10 - 2.5 µs  
b'11 - 10 µs  
5:4  
3:2  
1:0  
R/W  
R/W  
R/W  
GAIN_CS3  
GAIN_CS2  
GAIN_CS1  
0x0  
0x0  
0x0  
Gain of CS amplifier 3  
b'00 - 10 V/V  
b'01 - 20 V/V  
b'10 - 40 V/V  
b'11 - 80 V/V  
Gain of CS amplifier 2  
b'00 - 10 V/V  
b'01 - 20 V/V  
b'10 - 40 V/V  
b'11 - 80 V/V  
Gain of CS amplifier 1  
b'00 - 10 V/V  
b'01 - 20 V/V  
b'10 - 40 V/V  
b'11 - 80 V/V  
7.6.7.6 Voltage Regulator Control (address = 0xB)  
Table 19. Voltage Regulator Control Register Description  
BIT  
10  
R/W  
R/W  
R/W  
NAME  
DEFAULT  
0x0  
DESCRIPTION  
Reserved  
9:8  
VREF_SCALING  
0x1  
VREF Scaling  
b'00 - RSVD  
b'01 - k = 2  
b'10 - k = 4  
b'11 - RSVD  
7:5  
4:3  
R/W  
R/W  
Reserved  
0x0  
0x1  
SLEEP_DLY  
Delay to power down VREG after SLEEP  
b'00 - 0 µs  
b'01 - 10 µs  
b'10 - 50 µs  
b'11 - 1 ms  
2
R/W  
R/W  
DIS_VREG_PWRGD  
VREG_UV_LEVEL  
0x0  
0x2  
0:1  
VREG undervoltage set point  
b'00 - VSET-10%  
b'01 - VSET-20%  
b'10 - VSET-30%  
b'11 - VSET-30%  
38  
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
7.6.7.7 VDS Sense Control (address = 0xC)  
Table 20. VDS Sense Control Register Description  
BIT  
10:8  
7:3  
R/W  
R/W  
R/W  
NAME  
DEFAULT  
0x0  
DESCRIPTION  
Reserved  
VDS_LEVEL  
0x19  
VDS comparator threshold  
b'00000 - 0.060 b'00001 - 0.068 b'00010 - 0.076 b'00011 - 0.086  
V
V
V
V
b'00100 - 0.097 b'00101 - 0.109 b'00110 - 0.123 b'00111 - 0.138  
V
V
V
V
b'01000 - 0.155 b'01001 - 0.175 b'01010 -  
0.197V  
b'01011 - 0.222  
V
V
V
b'01100 - 0.250 b'01101 - 0.282 b'01110 - 0.317 b'01111 - 0.358  
V
V
V
V
b'10000 - 0.403 b'10001 - 0.454 b'10010 - 0.511 b'10011 - 0.576  
V
V
V
V
b'10100 - 0.648 b'10101 - 0.730 b'10110 - 0.822 b'10111 - 0.926  
V
V
V
V
b'11000 - 1.043 b'11001 - 1.175 b'11010 - 1.324 b'11011 - 1.491  
V
V
V
V
b'11100 - 1.679 b'11101 - 1.892 b'11110 - 2.131 b'11111 - 2.131  
V
V
V
V
2:0  
R/W  
VDS_MODE  
0x0  
VDS mode  
b'000 - Latched shut down when over-current detected  
b'001 - Report only when over current detected  
b'010 - VDS protection disabled (no overcurrent sensing or reporting)  
Copyright © 2015, Texas Instruments Incorporated  
39  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV8305 is a gate driver IC designed to drive a 3-phase BLDC motor in combination with external power  
MOSFETs. The device provides a high level of integration with three half-bridge gate drivers, three current shunt  
amplifiers, adjustable slew rate control, logic LDO, and a suite of protection features.  
40  
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
8.2 Typical Application  
The following design is a common application of the DRV8305.  
PVDD  
4.7µF  
PVDD  
1 µF  
VCC  
2.2 µF  
0.1 µF  
0.1 µF  
1 µF  
MCU  
PVDD  
PVDD  
PVDD  
1 µF  
VCC  
POWER  
GPIO  
GH_A  
SH_A  
GH_B  
SH_B  
GH_C  
SH_C  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
EN_GATE  
INHA  
INLA  
GH_A  
SH_A  
SL_A  
GL_A  
GL_B  
SL_B  
SH_B  
GH_B  
GH_C  
SH_C  
SL_C  
GL_C  
GH_A  
SH_A  
GL_A  
SL_A  
GL_B  
SL_B  
SH_B  
GH_B  
GH_C  
SH_C  
SL_C  
GL_B  
VCC  
VCC  
VCC  
2
3
PWR_PAD (0) - GND  
PWM  
4
INHB  
INLB  
5
VCC  
GL_A  
GL_B  
GL_C  
6
INHC  
INLC  
DRV8305  
7
10 k  
SL_A  
SN1  
SL_B  
SN2  
SL_C  
SN3  
8
GPIO  
SPI  
nFAULT  
nSCS  
SDI  
9
1000 pF  
SP1  
1000 pF  
SP2  
1000 pF  
SP3  
10  
11  
12  
SDO  
SCLK  
VCC  
PVDD  
10 kꢀ  
VCC  
GPIO  
1 µF  
+
+
PVDDSENSE  
PVDDSENSE  
ASENSE  
ADC  
BSENSE  
CSENSE  
Figure 11. Typical Application Schematic  
Copyright © 2015, Texas Instruments Incorporated  
41  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
8.2.1 Design Requirements  
Table 21. Design Parameters  
DESIGN PARAMETER  
Supply voltage  
REFERENCE  
PVDD  
MR  
VALUE  
12 V  
Motor winding resistance  
Motor winding inductance  
Motor poles  
0.5 Ω  
ML  
0.28 mH  
16 poles  
2000 RPM  
6
MP  
Motor rated RPM  
Number of MOSFETs switching  
Switching frequency  
IDRIVEP  
MRPM  
NSW  
fSW  
45 kHz  
50 mA  
60 mA  
36 nC  
IDRIVEP  
IDRIVEN  
Qg  
IDRIVEN  
MOSFET QG  
MOSFET QGD  
QGD  
9 nC  
MOSFET RDS(on)  
Target full-scale current  
Sense resistor  
RDS(on)  
IMAX  
4.1 mΩ  
30 A  
RSENSE  
VDS_LVL  
VBIAS  
Gain  
0.005 Ω  
0.197 V  
1.65 V  
10 V/V  
VDS trip level  
Amplifier bias  
Amplifier gain  
8.2.2 Detailed Design Procedure  
8.2.2.1 Gate Drive Average Current  
The gate drive supply (VCP) of the DRV8305 is capable of delivering up to 30 mA (RMS) of current to the  
external power MOSFETs. The charge pump directly supplies the high-side N-channel MOSFETs and a 10-V  
LDO powered from VCP supplies the low-side N-channel MOSFETs. The designer can determine the  
approximate RMS load on the gate drive supply through the following equation.  
Gate Drive RMS Current = MOSFET Qg × Number of Switching MOSFETs × Switching Frequency  
(2)  
Example: 36 nC (QG) × 6 (NSW) × 45 kHz (fSW) = 9.72 mA  
Note that this is only a first-order approximation.  
8.2.2.2 MOSFET Slew Rates  
The rise and fall times of the external power MOSFET can be adjusted through the use of the DRV8305 IDRIVE  
setting. A higher IDRIVE setting will charge the MOSFET gate more rapidly where a lower IDRIVE setting will  
charge the MOSFET gate more slowly. System testing requires fine tuning to the desired slew rate, but a rough  
first-order approximation can be calculated as shown in the following.  
MOSFET Slew Rate = MOSFET QGD / IDRIVE Setting  
(3)  
Example: 9 nC (QGD) / 50 mA (IDRIVEP) = 180 ns  
8.2.2.3 Overcurrent Protection  
The DRV8305 provides overcurrent protection for the external power MOSFETs through the use of VDS  
monitors for both the high-side and low-side MOSFETs. These are intended for protecting the MOSFET in  
overcurrent conditions and are not for precise current regulation.  
The overcurrent protection works by monitoring the VDS voltage drop of the external MOSFETs and comparing it  
against the internal VDS_LEVEL set through the SPI registers. The high-side VDS is measured across the  
VDRAIN and SH_X pins. The low-side VDS is measured across the SH_X and SL_X pins. If the VDS voltage  
exceeds the VDS_LEVEL value, the DRV8305 will take action according to the VDS_MODE register.  
The overcurrent trip level can be determined with the MOSFET RDS(on) and the VDS_LEVEL setting.  
Overcurrent Trip = VDS Level (VDS_LVL) / MOSFET RDS(on) (RDS(on)  
)
(4)  
42  
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
Example: 0.197 V (VDS_LVL) / 4.1 m(RDS(ON)) = 48 A  
8.2.2.4 Current Sense Amplifiers  
The DRV8305 provides three bidirectional low-side current shunt amplifiers. These can be used to sense the  
current flowing through each half-bridge. If individual half-bridge sensing is not required, a single current shunt  
amplifier can be used to measure the sum of the half-bridge current. Use this simple procedure to correctly  
configure the current shunt amplifiers.  
1. Determine the peak current that the motor will demand (IMAX). This demand depends on the motor  
parameters and the application requirements. IMAX in this example is 14 A.  
2. Determine the available voltage output range for the current shunt amplifiers. This will be the ± voltage  
around the amplifier bias voltage (VBIAS). In this case VBIAS = 1.65 V and a valid output voltage is 0 to 3.3  
V. This gives an output range of ±1.65 V.  
3. Determine the sense resistor value and amplifier gain settings. The sense resistor value and amplifier gain  
have common tradeoffs. The larger the sense resistor value, the better the resolution of the half-bridge  
current. This comes at the cost of additional power dissipated from the sense resistor. A larger gain value  
allows for the use of a smaller resolution, but at the cost of increased noise in the output signal and a longer  
settling time. This example uses a 5-msense resistor and the minimum gain setting of the DRV8305 (10  
V/V). These values allow the current shunt amplifiers to measure ±33 A across the sense resistor.  
Copyright © 2015, Texas Instruments Incorporated  
43  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
8.2.3 Application Curves  
Figure 12. Gate Drive 20% Duty Cycle  
Figure 13. Gate Drive 80% Duty Cycle  
Figure 14. Motor Spinning 1000 RPM  
Figure 15. Motor Spinning 2000 RPM  
44  
Copyright © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
9 Power Supply Recommendations  
9.1 Bulk Capacitance  
Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally  
beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.  
The amount of local capacitance needed depends on a variety of factors, including the:  
Highest current required by the motor system  
Power supply’s capacitance and ability to source or sink current  
Amount of parasitic inductance between the power supply and motor system  
Acceptable voltage ripple  
Type of motor used (brushed DC, brushless DC, stepper)  
Motor braking method  
The inductance between the power supply and motor drive system will limit the rate current can change from the  
power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or  
dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage  
remains stable and high current can be quickly supplied.  
The data sheet generally provides a recommended value, but system-level testing is required to determine the  
appropriate-sized bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
Motor  
Driver  
+
±
GND  
Local  
IC Bypass  
Bulk Capacitor  
Capacitor  
Figure 16. Example Setup of Motor Drive System With External Power Supply  
The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases  
when the motor transfers energy to the supply.  
Copyright © 2015, Texas Instruments Incorporated  
45  
DRV8305  
ZHCSE35 AUGUST 2015  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Use the following layout recommendations when designing a PCB for the DRV8305.  
The DVDD and AVDD 1-μF bypass capacitors should connect directly to the adjacent GND pin to minimize  
loop impedance for the bypass capacitor.  
The CP1 and CP2 0.047-μF flying capacitors should be placed directly next to the DRV8305 charge pump  
pins.  
The VCPH 2.2-μF and VCP_LSD 1-μF bypass capacitors should be placed close to their corresponding pins  
with a direct path back to the DRV8305 GND net.  
The PVDD 4.7-μF bypass capacitor should be placed as close as possible to the DRV8305 PVDD supply pin.  
Use the proper footprint as shown in the 机械、封装和可订购信息 section.  
Minimize the loop length for the high-side and low-side gate drivers. The high-side loop is from the DRV8305  
GH_X to the power MOSFET and returns through SH_X. The low-side loop is from the DRV8305 GL_X to the  
power MOSFET and returns through SL_X.  
10.2 Layout Example  
Figure 17. Layout Recommendation  
46  
版权 © 2015, Texas Instruments Incorporated  
DRV8305  
www.ti.com.cn  
ZHCSE35 AUGUST 2015  
11 器件和文档支持  
11.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.2 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
47  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV83053PHP  
DRV83053PHPR  
DRV83055PHP  
DRV83055PHPR  
DRV8305NPHP  
DRV8305NPHPR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
PHP  
PHP  
PHP  
PHP  
PHP  
PHP  
48  
48  
48  
48  
48  
48  
250  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
DRV83053  
1000 RoHS & Green  
250 RoHS & Green  
1000 RoHS & Green  
250 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
DRV83053  
DRV83055  
DRV83055  
DRV8305N  
DRV8305N  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
PHP 48  
7 x 7, 0.5 mm pitch  
TQFP - 1.2 mm max height  
QUAD FLATPACK  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226443/A  
www.ti.com  
PACKAGE OUTLINE  
PHP0048G  
PowerPADTM HTQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
7.2  
6.8  
B
NOTE 3  
37  
48  
PIN 1 ID  
1
36  
7.2  
6.8  
9.2  
TYP  
8.8  
NOTE 3  
12  
25  
13  
24  
A
0.27  
48X  
44X 0.5  
0.17  
0.08  
C A B  
4X 5.5  
1.2 MAX  
C
SEATING PLANE  
SEE DETAIL A  
0.08  
(0.13)  
TYP  
13  
24  
12  
25  
0.25  
(1)  
GAGE PLANE  
5.17  
3.89  
49  
0.75  
0.45  
0.15  
0.05  
0 -7  
A
16  
36  
DETAIL A  
TYPICAL  
1
48  
37  
5.17  
3.89  
4X (0.109) NOTE 5  
4225861/A 4/2020  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MS-026.  
5. Feature may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PHP0048G  
PowerPADTM HTQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
6.5)  
NOTE 10  
(5.17)  
SYMM  
48  
37  
SOLDER MASK  
DEFINED PAD  
48X (1.6)  
1
36  
48X (0.3)  
SYMM  
49  
(5.17)  
(1.1 TYP)  
(8.5)  
44X (0.5)  
12  
25  
(R0.05) TYP  
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
13  
24  
(1.1 TYP)  
SEE DETAILS  
(8.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4225861/A 4/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
10. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PHP0048G  
PowerPADTM HTQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(5.17)  
BASED ON  
0.125 THICK STENCIL  
SEE TABLE FOR  
SYMM  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
48  
37  
48X (1.6)  
1
36  
48X (0.3)  
(8.5)  
(5.17)  
SYMM  
49  
BASED ON  
0.125 THICK  
STENCIL  
44X (0.5)  
12  
25  
(R0.05) TYP  
METAL COVERED  
BY SOLDER MASK  
24  
13  
(8.5)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
5.78 X 5.78  
5.17 X 5.17 (SHOWN)  
4.72 X 4.72  
0.125  
0.150  
0.175  
4.37 X 4.37  
4225861/A 4/2020  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY