DRV8317HREER [TI]

具有集成 FET 和电流检测功能、最大电压为 24V、峰值电流为 5A 的三相电机驱动器 | REE | 36 | -40 to 125;
DRV8317HREER
型号: DRV8317HREER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成 FET 和电流检测功能、最大电压为 24V、峰值电流为 5A 的三相电机驱动器 | REE | 36 | -40 to 125

电机 驱动 驱动器
文件: 总69页 (文件大小:2638K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DRV8317  
SLVSGT3 – DECEMBER 2022  
DRV8317 Three-Phase PWM Motor Driver  
1 Features  
3 Description  
Three-phase BLDC motor driver  
– Configurable slew rate for EMI mitigation  
– Programmable gain current sensing  
– Supports up to 200-kHz PWM frequency  
– Integrated shoot through protection  
4.5-V to 20-V operating voltage  
– 24-V absolute maximum voltage  
High output current capability  
DRV8317 provides three integrated MOSFET half-  
bridges for driving three-phase brushless DC (BLDC)  
motors with 5-V, 9-V, 12-V, or 18-V DC rails or 2s  
to 4s batteries. The device provides integrated three-  
phase current sensing which eliminates the need for  
external sense resistors. DRV8317 has an integrated  
LDO that provides a regulated 3.3-V rail capable of  
delivering up to 80mA for external loads like MCU,  
logic circuits, hall sensors etc.,  
– 5-A peak current drive  
Low on-state resistance MOSFETs  
– RDS(ON) (HS + LS) at TA = 25°C : 130-mΩ  
(typical)  
Ultra-low Q-current sleep mode  
– 3-µA (max.) at VVM = 12-V, TA = 25°C  
Multiple control interface options  
– 6x PWM control interface  
DRV8317 provides a configurable 6x or 3x PWM  
control scheme which can be used to implement  
sensored or sensorless field-oriented control (FOC),  
sinusoidal control, or trapezoidal control using an  
external microcontroller. DRV8317 is capable of  
driving a PWM frequency of up to 200 kHz. DRV8317  
is highly configurable either through SPI (DRV8317S)  
or pins (DRV8317H) - PWM mode, slew rate, current  
sense gain are some of the configurable features.  
– 3x PWM control interface  
Integrated current sensing  
– No external current sense resistor required  
– Three-phase current sense outputs  
SPI and hardware device variants  
– 10-MHz SPI interface variant for flexibility  
– Pin configurable variant for simplicity  
Supports 1.8-V, 3.3-V, and 5-V logic inputs  
Built-in 3.3-V ± 4.5%, 80-mA LDO regulator  
Integrated protection features  
A number of protection features including supply  
under voltage lockout (UVLO), over voltage protection  
(OVP), charge pump under voltage (CPUV), over  
current protection (OCP), over temperature warning  
(OTW) and over temperature shutdown (OTS) are  
integrated into DRV8317 to protect the device, motor,  
and system against fault events. Fault conditions are  
indicated by the nFAULT pin.  
– VM under voltage lockout (UVLO)  
– VM over voltage protection (OVP)  
– Charge pump under voltage (CPUV)  
– Over current protection (OCP)  
– Over temperature warning and shutdown  
(OTW/OTS)  
Device Variant Information(1)  
PART NUMBER  
DRV8317S(2)  
DRV8317H  
PACKAGE  
WQFN (36)  
WQFN (36)  
BODY SIZE (NOM)  
5.00 mm × 4.00 mm  
5.00 mm × 4.00 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
– Fault condition indication pin (nFAULT)  
(2) Device available for preview only.  
2 Applications  
4.5 to 20-V (24-V abs max)  
LDO out  
3.3V, up to 80mA  
Brushless-DC (BLDC) Motor Modules  
Air Purifiers  
Dishwasher Pumps  
6x / 3x PWM  
PWM input  
DRV8317S/H  
A
B
C
nSLEEP  
Charge Pump  
Vacuum Robots  
SPI  
Only on SPI variant  
Built-in Protec on  
LDO Regulator  
Washer and Dryer Pumps  
Drones and Hand-held Gimbals  
Laptop, Desktop, and Server Fans  
Coffee Machines  
MCU  
CSA out  
3x current feedback  
5-A peak output current  
nFAULT  
Integrated Current Sensing  
Figure 3-1. DRV8317S/H Simplified Schematic  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................7  
7.5 Electrical Characteristics.............................................7  
8 Detailed Description......................................................15  
8.1 Overview...................................................................15  
8.2 Functional Block Diagram.........................................16  
8.3 Feature Description...................................................18  
8.4 Device Functional Modes..........................................34  
8.5 SPI Communication.................................................. 35  
8.6 DRV8317 Registers.................................................. 37  
9 Application and Implementation..................................55  
9.1 Application Information............................................. 55  
9.2 Typical Applications.................................................. 56  
9.3 Alternate Applications............................................... 59  
10 Power Supply Recommendations..............................60  
10.1 Bulk Capacitance....................................................60  
11 Layout...........................................................................61  
11.1 Layout Guidelines................................................... 61  
11.2 Layout Example...................................................... 62  
11.3 Thermal Considerations..........................................63  
12 Device and Documentation Support..........................64  
12.1 Support Resources................................................. 64  
12.2 Trademarks.............................................................64  
12.3 Electrostatic Discharge Caution..............................64  
12.4 Glossary..................................................................64  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 64  
4 Revision History  
DATE  
REVISION  
NOTES  
April 2022  
*
Initial release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DRV8317  
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
5 Device Comparison Table  
DEVICE  
DRV8317S  
DRV8317H  
PACKAGES  
INTERFACE  
SPI  
36-pin WQFN (5-mm x 4-mm)  
Hardware (Pin)  
Table 5-1. DRV8317S vs DRV8317H Configuration Comparison  
Parameters  
DRV8317S  
DRV8317H  
PWM control mode  
Slew rate  
PWM_MODE (4 settings)  
SLEW_RATE (4 settings)  
CSA_GAIN (4 settings)  
OCP_TBLANK (4 settings)  
OCP_DEG (4 settings)  
MODE pin (2 settings)  
SLEW pin (4 settings)  
GAIN pin (4 settings)  
Fixed to 0.7-µs  
Current sense amplifier gain  
OCP blanking time  
OCP deglitch time  
Fixed to 0.6-µs  
OCP_MODE (4 settings), Configurable retry  
time  
OCP mode  
5-ms automatic retry  
Dead time  
Propagation delay  
Fixed based on SLEW_RATE setting  
Fixed based on SLEW_RATE setting  
DLYCMP_EN (2 settings)  
Fixed based on SLEW pin setting  
Fixed based on SLEW pin setting  
Disabled  
Driver delay compensation  
Spread Spectrum Clock for internal oscillator  
SSC_DIS (2 settings)  
Enabled  
VM under voltage protection always enabled.  
VM under voltage protection mode set  
by UVP_MODE (2 settings); configurable  
retry time using SLOW_TRETRY and  
FAST_TRETRY.  
VM under voltage protection always enabled.  
Auto-retry mode for VM under voltage with  
5-ms retry time.  
VM under voltage lockout  
VIN_AVDD, AVDD under voltage lockout  
CP under voltage lockout  
VIN_AVDD and AVDD under voltage  
protection always enabled. Device resets on protection always enabled. Device resets on  
VIN_AVDD and AVDD under voltage  
VIN_AVDD or AVDD under voltage.  
VIN_AVDD or AVDD under voltage.  
CP under voltage protection always enabled.  
CP under voltage protection mode set  
by UVP_MODE (2 settings); configurable  
retry time using SLOW_TRETRY and  
FAST_TRETRY.  
CP under voltage protection always enabled.  
Auto-retry mode for CP under voltage with  
5-ms retry time.  
OVP_MODE (2 settings); configurable  
retry time using SLOW_TRETRY and  
FAST_TRETRY  
VM over voltage  
SPI fault  
5-ms automatic retry  
N/A  
SPIFLT_MODE (2 settings)  
Enable/disable using OTW_FET_EN. If  
enabled, over temperature warning is  
reported on nFAULT pin and OTW_FET bit  
in OT_STS register.  
FET over temperature warning (OTW_FET)  
FET over temperature shutdown (OTS_FET)  
Disabled  
OTF_MODE (2 settings); configurable  
retry time using SLOW_TRETRY and  
FAST_TRETRY  
5-ms automatic retry  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DRV8317  
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
6 Pin Configuration and Functions  
36 35 34 33 32 31 30 29  
nSLEEP  
nFAULT  
NC  
1
2
3
4
5
6
7
8
9
10  
28 INLC  
27 INHC  
INLB  
26  
25  
24  
CPL  
CPH  
INHB  
INLA  
CP  
23 INHA  
VIN_AVDD  
VM  
AVDD  
AGND  
VM  
22  
21  
20  
VM  
Thermal Pad  
PGND  
19 PGND  
11 12 13 14 15 16 17 18  
Figure 6-1. DRV8317S 36-Pin WQFN With Exposed Thermal Pad Top View  
36 35 34 33 32 31 30 29  
nSLEEP  
nFAULT  
NC  
1
2
3
4
5
6
7
8
9
10  
28 INLC  
27 INHC  
INLB  
26  
25  
24  
CPL  
CPH  
INHB  
INLA  
CP  
23 INHA  
VIN_AVDD  
VM  
AVDD  
AGND  
VM  
22  
21  
20  
VM  
Thermal Pad  
PGND  
19 PGND  
11 12 13 14 15 16 17 18  
Figure 6-2. DRV8317H 36-Pin WQFN With Exposed Thermal Pad Top View  
Table 6-1. Pin Functions  
PIN  
36-pin package  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8317S DRV8317H  
AGND  
21  
21  
GND  
Device analog ground. Connect to a separate ground plane.(1)  
3.3V regulator output. Connect a X5R or X7R, 2.2-µF (no load) or 4.7-µF (up to  
80mA load), 6.3-V ceramic capacitor between the AVDD and AGND pins. This  
regulator can source up to 80 mA for external loads.  
AVDD  
CP  
22  
22  
PWR O  
PWR  
Charge pump output. Connect a X5R or X7R, 1-µF, 16-V ceramic capacitor between  
the CP and VM pins.  
6
6
CPH  
CPL  
5
4
5
4
PWR  
PWR  
Charge pump switching node. Connect a X5R or X7R, 100-nF, (2xVM)- rated  
ceramic capacitor between the CPH and CPL pins.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DRV8317  
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
Table 6-1. Pin Functions (continued)  
PIN  
36-pin package  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8317S DRV8317H  
Current sense amplifier power supply input/reference. Connect a X5R or X7R, 0.1-  
µF, 6.3-V ceramic capacitor between the CSAREF and AGND pins.  
CSAREF  
GAIN  
INHA  
INHB  
INHC  
INLA  
33  
23  
25  
27  
24  
26  
28  
33  
29  
23  
25  
27  
24  
26  
28  
PWR I  
Available only in hardware variant (DRV8317H). The pin is a 4-level input pin for  
current sense amplifier gain setting.  
I
I
I
I
I
I
I
High-side driver control input for OUTA. This pin controls the state of the high-side  
MOSFET in 6x/3x PWM Mode.  
High-side driver control input for OUTB. This pin controls the state of the high-side  
MOSFET in 6x/3x PWM Mode.  
High-side driver control input for OUTC. This pin controls the state of the high-side  
MOSFET in 6x/3x PWM Mode.  
Low-side driver control input for OUTA. This pin controls the state of the low-side  
MOSFET in 6x PWM Mode.  
Low-side driver control input for OUTB. This pin controls the state of the low-side  
MOSFET in 6x PWM Mode.  
INLB  
Low-side driver control input for OUTC. This pin controls the state of the low-side  
MOSFET in 6x PWM Mode.  
INLC  
Available only in hardware variant (DRV8317H). This is a 4-level input pin for PWM  
mode setting.  
MODE  
NC  
3
31  
3, 32  
2
I
O
No connect. Leave the pin floating.  
Fault indication pin. Pulled low during fault condition. Open-drain output; requires an  
external pull-up resistor to AVDD.  
nFAULT  
2
Available only in SPI variant (DRV8317S). Serial chip select. A logic low on this pin  
enables serial interface communication.  
nSCS  
32  
1
1
I
I
When this pin is logic low the device goes to a low-power sleep mode. A 15 to 50-µs  
low pulse on nSLEEP pin can be used to reset fault conditions without entering sleep  
mode.  
nSLEEP  
OUTA  
OUTB  
OUTC  
11, 12  
14, 15  
17, 18  
11, 12  
14, 15  
17, 18  
O
O
O
Half-bridge output A. Connect to motor winding.  
Half-bridge output B. Connect to motor winding.  
Half-bridge output C. Connect to motor winding.  
10, 13, 16, 10, 13, 16,  
PGND  
SCLK  
SDI  
PWR  
Device power ground. Connect to a separate ground plane.(1)  
19  
19  
Available only in SPI variant (DRV8317S). Serial clock input. Serial data is shifted  
out on the rising edge and captured on the falling edge of SCLK.  
31  
I
I
Available only in SPI variant (DRV8317S). Serial data input. Data (input) is captured  
on the falling edge of the SCLK pin (SPI devices).  
30  
29  
30  
Available only in SPI variant (DRV8317S). Serial data output. Data (output) is shifted  
out on the rising edge of the SCLK pin.  
SDO  
O
I
Available only in hardware variant (DRV8317H). This pin is a 4-level input pin for  
OUTx voltage slew rate setting.  
SLEW  
SOA  
36  
35  
34  
7
36  
35  
34  
7
O
O
Current sense amplifier output for OUTA.  
Current sense amplifier output for OUTB.  
Current sense amplifier output for OUTC.  
Input supply for AVDD LDO  
SOB  
SOC  
O
VIN_AVDD  
PWR  
Device and motor power supply. Connect to motor supply voltage; bypass to PGND  
with a 0.1-µF capacitor plus one bulk capacitor. TI recommends a capacitor voltage  
rating at least twice the normal operating voltage of the device  
VM  
8, 9, 20  
8, 9, 20  
PWR  
PWR  
Thermal  
pad  
Must be connected to AGND.  
(1) I = input, O = output, PWR = power, GND = ground, NC = no connect  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DRV8317  
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
MAX UNIT  
Power supply pin voltage (VM, VIN_AVDD)  
Power supply voltage ramp during power up (VM)  
Voltage difference between ground pins (PGND, AGND)  
Charge pump voltage (CP)  
–0.3  
24  
V
V/µs  
V
2
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0
0.3  
VM + 6  
V
Analog regulator pin voltage (AVDD)  
4
V
Logic pin input voltage (INHx, INLx, nSCS, nSLEEP, SCLK, SDI, GAIN, MODE, SLEW)  
Logic pin output voltage (SDO)  
6
V
6
V
Open drain pin output voltage (nFAULT)  
Open drain output current range (nFAULT)  
Current sense amplifier reference supply input (CSAREF)  
Current sense amplifier output (SOx)  
6
V
5
mA  
V
-0.3  
-0.3  
–1  
4
4
V
Output pin voltage (OUTA, OUTB, OUTC)  
Ambient temperature, TA  
VM + 1 (2)  
125  
V
–40  
–40  
–65  
°C  
°C  
°C  
Junction temperature, TJ  
150  
Storage tempertaure, Tstg  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime  
(2) Maximum voltage supported on OUTx pin is 24V  
7.2 ESD Ratings  
VALUE  
±2500  
±750  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
VVM  
Power supply voltage  
VVM, VVIN_AVDD  
4.5  
12  
20  
5
V
A
VVM ≥ 6 V, OUTA, OUTB, OUTC  
4.5 V ≤ VVM < 6 V, OUTA, OUTB, OUTC  
nFAULT  
(1)  
IOUT  
Peak output winding current  
3
A
VOD  
IOD  
TA  
Open drain pullup voltage  
–0.3  
5.5  
5
V
Open drain output current capability  
Operating ambient temperature  
Operating Junction temperature  
nFAULT  
mA  
°C  
°C  
–40  
–40  
125  
150  
TJ  
(1) Power dissipation and thermal limits must be observed  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
 
 
 
 
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
7.4 Thermal Information  
DRV8317  
THERMAL METRIC(1)  
REE (WQFN)  
36  
UNIT  
RθJA  
Junction-to-ambient thermal resistance (JEDEC 4-layer PCB, 6 thermal vias)  
Junction-to-case (top) thermal resistance  
36.4  
23.7  
14  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
ΨJT  
Junction-to-top characterization parameter  
0.6  
14  
ΨJB  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
RθJC(bot)  
4.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
TJ = –40°C to +150°C, VVM = 4.5 to 20 V (unless otherwise noted). Typical limits apply for TA = 25°C, VVM = 12 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLIES  
VVM = 12 V, nSLEEP = 0, TA = 25 °C  
nSLEEP = 0, TA = 125 °C  
1.7  
3
µA  
µA  
IVMQ  
VM sleep mode current  
10  
VVM = 12 V, nSLEEP = 1, INHx = INLx =  
0, SPI = 'OFF', TA = 25 °C  
8
8
10  
10  
12  
14  
mA  
mA  
mA  
mA  
IVMS  
VM standby mode current  
nSLEEP = 1, INHx = INLx = 0, SPI =  
'OFF'  
VVM = 12 V, nSLEEP = 1, fPWM = 25 kHz,  
TA = 25 °C  
10  
10  
VVM = 12 V, nSLEEP = 1, fPWM = 200  
kHz, TA = 25 °C  
IVM  
VM operating mode current  
nSLEEP =1, fPWM = 25 kHz  
nSLEEP =1, fPWM = 200 kHz  
10  
10  
12  
15  
mA  
mA  
VVM ≥ 6V, VVIN_AVDD ≥ 6V, 0 mA ≤ IAVDD  
80 mA  
VAVDD  
VAVDD  
Analog regulator voltage  
Analog regulator voltage  
3.15  
3.15  
3.3  
3.3  
3.45  
3.45  
V
V
4.5V ≤ VVM < 6V, 4.5V ≤ VVIN_AVDD < 6V,  
0 mA ≤ IAVDD ≤ 80 mA  
IAVDD  
Analog regulator external load  
Analog regulator external load  
Analog regulator current limit  
4.5V ≤ VVM < 6V, 4.5V ≤ VVIN_AVDD < 6V  
VVM ≥ 6V, VVIN_AVDD ≥ 6V  
80  
80  
mA  
mA  
mA  
uF  
uF  
V
IAVDD  
IAVDD_LIM  
VAVDD ≥ 2.7V, soft short to GND  
External load IAVDD = 0 mA  
100  
0.5  
2.35  
3
125  
2.2  
4.7  
5
150  
7.05  
7.05  
5.5  
CAVDD  
Capacitance for AVDD  
External load 0mA ≤ IAVDD ≤ 80 mA  
4.5V ≤ VVM < 6V, CP with respect to VM  
VVM ≥ 6V, CP with respect to VM  
VCP  
VCP  
Charge pump regulator voltage  
Charge pump regulator voltage  
4.5  
5
5.5  
V
VVM > VUVLO, nSLEEP = 1 to output  
ready  
tWAKE  
Wakeup time  
1
3
ms  
µs  
VCSAREF > VCSAREF_UV to SOx ready,  
when nSLEEP = 1  
tWAKE_CSA  
Wakeup time for CSA  
30  
tSLEEP  
tRST  
Turn-off time  
nSLEEP = 0 to driver tri-stated  
nSLEEP = 0 period to reset faults  
100  
200  
50  
µs  
µs  
Reset Pulse time  
15  
0
FOUR-LEVEL INPUTS (GAIN, MODE, SLEW)  
VL1 Input mode 1 voltage  
0.2*AVD  
D
Tied to AGND  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
TJ = –40°C to +150°C, VVM = 4.5 to 20 V (unless otherwise noted). Typical limits apply for TA = 25°C, VVM = 12 V  
PARAMETER  
TEST CONDITIONS  
MIN  
0.27*AV 0.4*AVD 0.545*AV  
DD DD  
0.606*AV 0.757*AV 0.909*AV  
TYP  
MAX UNIT  
VL2  
VL3  
VL4  
Input mode 2 voltage  
47 kΩ ± 5% tied to AGND  
V
V
D
Input mode 3 voltage  
Input mode 4 voltage  
Hi-Z  
DD  
DD  
DD  
0.94*AV  
DD  
Tied to AVDD  
AVDD  
V
RPU  
RPD  
Input pullup resistance  
To AVDD  
To AGND  
48  
kΩ  
kΩ  
Input pulldown resistance  
160  
DRIVER OUTPUTS  
VVM ≥ 6 V, IOUT = 1 A, TJ  
= 25°C, includes bond wire and  
metallization resistance  
130  
180  
155  
225  
25  
157  
221.5  
210  
mΩ  
mΩ  
Total MOSFET on resistance (High-side  
+ Low-side)  
RDS(ON)  
VVM ≥ 6 V, IOUT = 1 A, TJ = 125°C,  
across process, includes bond wire and  
metallization resistance  
4.5 V ≤ VVM < 6 V, IOUT = 1 A, TJ = 25°C,  
includes bond wire and metallization  
resistance  
mΩ  
Total MOSFET on resistance (High-side  
+ Low-side)  
RDS(ON)  
4.5 V ≤ VVM < 6 V, IOUT = 1 A, TJ  
= 125°C,across process, includes bond  
wire and metallization resistance  
290  
mΩ  
VVM = 12V, SLEW_RATE = 00b (SPI  
Variant) or SLEW pin tied to AGND (HW  
Variant)  
13.75  
27.5  
62.5  
80  
36.25  
72.5  
187.5  
320  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
VVM = 12V, SLEW_RATE = 01b (SPI  
Variant) or SLEW pin to 47 kΩ +/- 5%  
tied to AGND (HW Variant)  
50  
Phase pin slew rate switching low to high  
(Rising from 20 % to 80 % of VM)  
SR_RISE  
VVM = 12V, SLEW_RATE = 10b (SPI  
Variant) or SLEW pin to Hi-Z (HW  
Variant)  
125  
200  
25  
VVM = 12V, SLEW_RATE = 11b (SPI  
Variant) or SLEW pin tied to AVDD (HW  
Variant)  
VVM = 12V, SLEW_RATE = 00b (SPI  
Variant) or SLEW pin tied to AGND (HW  
Variant)  
13.75  
27.5  
62.5  
80  
48  
VVM = 12V, SLEW_RATE = 01b (SPI  
Variant) or SLEW pin to 47 kΩ +/- 5%  
tied to AGND (HW Variant)  
50  
72.5  
187.5  
Phase pin slew rate switching high to low  
(Falling from 80 % to 20 % of VM)  
SR_FALL  
VVM = 12V, SLEW_RATE = 10b (SPI  
Variant) or SLEW pin to Hi-Z (HW  
Variant)  
125  
200  
VVM = 12V, SLEW_RATE = 11b (SPI  
Variant) or SLEW pin tied to AVDD (HW  
Variant)  
320  
2
ILEAK  
ILEAK  
Leakage current OUTx  
Leakage current OUTx  
VVM = VOUTx = 20 V, Standby State  
VOUTx = 0 V, Standby State  
0.7  
-10  
mA  
µA  
-50  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DRV8317  
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
TJ = –40°C to +150°C, VVM = 4.5 to 20 V (unless otherwise noted). Typical limits apply for TA = 25°C, VVM = 12 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VVM = 12V, SLEW_RATE = 00b (SPI  
Variant) or SLEW pin tied to AGND (HW  
Variant)  
575  
1500  
750  
ns  
ns  
ns  
ns  
ns  
VVM = 12V, SLEW_RATE = 01b (SPI  
Variant) or SLEW pin to 47 kΩ +/- 5%  
tied to AGND (HW Variant)  
325  
250  
tDEAD  
Dead time (high to low / low to high)  
VVM = 12V, SLEW_RATE = 10b (SPI  
Variant) or SLEW pin to Hi-Z (HW  
Variant)  
600  
VVM = 12V, SLEW_RATE = 11b (SPI  
Variant) or SLEW pin tied to AVDD (HW  
Variant)  
250  
600  
INHx = 1 to OUTx transisition, VVM  
=
12V, SLEW = 00b (SPI Variant) or SLEW  
pin tied to AGND (HW Variant)  
1300  
1750  
INHx = 1 to OUTx transisition, VVM  
=
12V, SLEW = 01b (SPI Variant) or SLEW  
pin to 47 kΩ +/- 5% tied to AGND (HW  
Variant)  
800  
1050  
ns  
ns  
Propagation delay (high-side / low-side  
ON/OFF)  
tPD  
INHx = 1 to OUTx transisition, VVM  
=
12V, SLEW = 10b (SPI Variant) or SLEW  
pin to Hi-Z (HW Variant)  
450  
425  
600  
500  
INHx = 1 to OUTx transisition, VVM  
=
12V, SLEW = 11b (SPI Variant) or SLEW  
pin tied to AVDD (HW Variant)  
ns  
ns  
SLEW = 11b (SPI Variant) or SLEW pin  
tied to AVDD (HW Variant)  
tMIN_PULSE  
Minimum output pulse width  
500  
CURRENT SENSE AMPLIFIER  
CSA_GAIN = 00b (SPI Variant) or GAIN  
pin tied to AGND (HW Variant)  
0.25  
0.5  
V/A  
V/A  
CSA_GAIN = 01b (SPI Variant) or GAIN  
pin to 47 kΩ +/- 5% tied to AGND (HW  
Variant)  
GCSA  
Current sense gain  
CSA_GAIN = 10b (SPI Variant) or GAIN  
pin to Hi-Z (HW Variant)  
1
2
V/A  
V/A  
CSA_GAIN = 11b (SPI Variant) or GAIN  
pin tied to AVDD (HW Variant)  
GCSA_ERR  
GCSA_ERR  
GCSA_ERR  
GCSA_ERR  
GCSA_ERR  
GCSA_ERR  
Current sense gain error  
Current sense gain error  
Current sense gain error  
Current sense gain error  
Current sense gain error  
Current sense gain error  
TA = 25°C, IPHASE ≤ 2.5 A  
TA = 25°C, 2.5 A < IPHASE ≤ 4 A  
TA = 25°C, 4 A < IPHASE ≤ 5 A  
IPHASE ≤ 2.5 A  
–3  
–3.5  
–3.5  
–4.5  
–5  
3
3.5  
4.5  
4.5  
6
%
%
%
%
%
%
%
%
A
2.5 A < IPHASE ≤ 4 A  
4A < IPHASE ≤ 5 A  
–5  
8
TJ = 25°C  
–3  
3
Current sense gain error matching  
between phases A, B and C  
IMATCH  
–5  
5
FSPOS  
FSNEG  
Full scale positive current measurement  
Full scale negative current measurement  
5
–5  
A
VREF  
0.25  
VLINEAR  
SOX output voltage linear range  
0.25  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DRV8317  
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
TJ = –40°C to +150°C, VVM = 4.5 to 20 V (unless otherwise noted). Typical limits apply for TA = 25°C, VVM = 12 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TJ = 25°C, Phase current = 0 A, GCSA  
0.25 V/A  
=
=
=
=
–100  
100  
50  
mA  
mA  
mA  
mA  
TJ = 25°C, Phase current = 0 A, GCSA  
0.5 V/A  
–50  
–30  
–30  
Current sense offset low side current  
input (Room Temperature)  
IOFFSET_RT  
TJ = 25°C, Phase current = 0 A, GCSA  
1 V/A  
30  
TJ = 25°C, Phase current = 0 A, GCSA  
2 V/A  
30  
Phase current = 0 A, GCSA = 0.25 V/A  
Phase current = 0 A, GCSA = 0.5 V/A  
Phase current = 0 A, GCSA = 1 V/A  
Phase current = 0 A, GCSA = 2 V/A  
–140  
–70  
–50  
–50  
140  
70  
50  
50  
1
mA  
mA  
mA  
mA  
μs  
Current sense offset low side current  
input  
IOFFSET  
Step on SOX = 1.2 V, GCSA = 0.25 V/A  
Step on SOX = 1.2 V, GCSA = 0.5 V/A  
Step on SOX = 1.2 V, GCSA = 1 V/A  
Step on SOX = 1.2 V, GCSA = 2 V/A  
Phase current = 0 A  
1
μs  
tSET  
Settling time to ±1%, 30 pF  
1
μs  
1
μs  
VDRIFT  
Drift offset  
–360  
360 µA/  
20 µA  
ICSAREF  
CSAREF input current  
VREF = 3.0 V  
12  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DRV8317  
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
TJ = –40°C to +150°C, VVM = 4.5 to 20 V (unless otherwise noted). Typical limits apply for TA = 25°C, VVM = 12 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PROTECTION CIRCUITS  
VM rising  
VM falling  
21  
20  
22  
21  
23  
22  
V
V
VOVP  
Supply overvoltage protection (OVP)  
VOVP_HYS  
tOVP  
Supply overvoltage protection hysteresis Falling to rising threshold  
900  
1000  
1200  
mV  
Supply overvoltage protection deglitch  
time  
3
5
7
µs  
VM rising  
Supply undervoltage lockout (UVLO)  
VM falling  
4.25  
4.1  
4.4  
4.2  
4.61  
4.35  
350  
V
V
VUVLO  
VUVLO_HYS Supply undervoltage lockout hysteresis Rising to falling threshold  
140  
210  
mV  
Supply undervoltage lockout deglitch  
time  
tUVLO  
3
5
7
µs  
VM rising, VMUV_WARN_RISE = 0000b  
5.4  
6
5.62  
6.25  
6.87  
7.5  
6
6.6  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VM rising, VMUV_WARN_RISE = 0001b  
VM rising, VMUV_WARN_RISE = 0010b  
VM rising, VMUV_WARN_RISE = 0011b  
VM rising, VMUV_WARN_RISE = 0100b  
VM rising, VMUV_WARN_RISE = 0101b  
VM rising, VMUV_WARN_RISE = 0110b  
VM rising, VMUV_WARN_RISE = 0111b  
VM rising, VMUV_WARN_RISE = 1000b  
VM rising, VMUV_WARN_RISE = 1001b  
VM rising, VMUV_WARN_RISE = 1010b  
VM rising, VMUV_WARN_RISE = 1011b  
VM rising, VMUV_WARN_RISE = 1100b  
VM rising, VMUV_WARN_RISE = 1101b  
VM rising, VMUV_WARN_RISE = 1110b  
VM rising, VMUV_WARN_RISE = 1111b  
6.6  
7.25  
7.95  
8.6  
7.15  
7.8  
8.12  
8.75  
9.37  
10  
8.4  
9.3  
9
9.9  
9.6  
10.6  
11.2  
11.9  
12.55  
13.15  
14.5  
15.9  
17.1  
18.6  
VVMUV_WARN Supply (VM) undervoltage warning,  
rising  
_RISE  
10.2  
10.8  
11.35  
11.95  
13.2  
14.3  
15.5  
16.7  
10.62  
11.25  
11.87  
12.5  
13.75  
15.00  
16.25  
17.5  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DRV8317  
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
TJ = –40°C to +150°C, VVM = 4.5 to 20 V (unless otherwise noted). Typical limits apply for TA = 25°C, VVM = 12 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VM falling, VMUV_WARN_FALL =  
0000b  
5.1  
5.4  
5.75  
6.3  
V
V
VM falling, VMUV_WARN_FALL =  
0001b  
5.7  
6.0  
VM falling, VMUV_WARN_FALL =  
0010b  
6.25  
6.8  
6.6  
7.2  
7.8  
6.95  
7.6  
V
V
V
VM falling, VMUV_WARN_FALL = 0011b  
VM falling, VMUV_WARN_FALL =  
0100b  
7.4  
8.2  
VM falling VMUV_WARN_FALL = 0101b  
VM falling, VMUV_WARN_FALL = 0110b  
VM falling, VMUV_WARN_FALL = 0111b  
7.95  
8.5  
8.4  
9.0  
9.6  
8.85  
9.5  
V
V
V
VVMUV_WARN Supply (VM) undervoltage warning,  
9.05  
10.15  
falling  
_FALL  
VM falling, VMUV_WARN_FALL =  
1000b  
9.7  
10.15  
10.75  
10.2  
10.8  
11.4  
10.7  
11.4  
12  
V
V
V
VM falling, VMUV_WARN_FALL =  
1001b  
VM falling, VMUV_WARN_FALL =  
1010b  
VM falling, VMUV_WARN_FALL = 1011b  
VM falling, VMUV_WARN_FALL = 1100b  
VM falling, VMUV_WARN_FALL = 1101b  
VM falling, VMUV_WARN_FALL = 1110b  
VM falling, VMUV_WARN_FALL = 1111b  
VMUV_TDG = 00b  
11.3  
12.5  
13.5  
14.7  
15.9  
0.1  
12.0  
13.2  
14.4  
15.6  
16.8  
0.3  
12.6  
13.8  
15.3  
16.4  
17.8  
0.45  
0.8  
V
V
V
V
V
µs  
µs  
µs  
µs  
VMUV_TDG = 01b  
0.35  
0.55  
1.4  
0.6  
tVMUV_WARN_ Supply undervoltage warning deglitch  
time  
DG  
VMUV_TDG = 10b  
0.9  
1.35  
2.5  
VMUV_TDG = 11b  
2
tVMUV_WARN_ Supply undervoltage warning deglitch  
0.35  
0.6  
0.8  
µs  
time (HW variant)  
DG  
VIN_AVDD rising  
VIN_AVDD falling  
4.25  
4.1  
4.4  
4.2  
4.61  
4.35  
V
V
VVIN_AVDD_U AVDD supply input undervoltage lockout  
(VIN_AVDD_UV)  
V
VVIN_AVDD_U  
Supply undervoltage lockout hysteresis Rising to falling threshold  
140  
210  
350  
mV  
V_HYS  
Supply rising  
Supply falling  
2.64  
2.35  
2.8  
2.6  
2.95  
2.7  
V
V
Charge pump undervoltage lockout  
(above VM)  
VCPUV  
Charge pump undervoltage lockout  
hysteresis  
VCPUV_HYS  
tCPUV  
Rising to falling threshold  
160  
3
210  
5
245  
7
mV  
µs  
Charge pump undervoltage lockout  
deglitch time  
Supply rising  
Supply falling  
2.7  
2.6  
2.8  
2.7  
2.9  
2.8  
V
V
VAVDD_UV  
Analog regulator undervoltage lockout  
VAVDD_UV_H Analog regulator undervoltage lockout  
Rising to falling threshold  
80  
100  
150  
mV  
hysteresis  
YS  
IOCP  
Overcurrent protection trip point  
6
0.15  
0.45  
0.7  
9.5  
0.3  
0.7  
1
12  
0.45  
0.85  
1.25  
1.5  
A
OCP_TBLANK = 00b  
OCP_TBLANK = 01b  
OCP_TBLANK = 10b  
OCP_TBLANK = 10b  
µs  
µs  
µs  
µs  
(1)  
(1)  
tBLANK  
Overcurrent protection blanking time  
0.9  
1.2  
Overcurrent protection blanking time  
(HW Variant)  
tBLANK  
0.45  
0.7  
0.85  
µs  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DRV8317  
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
TJ = –40°C to +150°C, VVM = 4.5 to 20 V (unless otherwise noted). Typical limits apply for TA = 25°C, VVM = 12 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.3  
0.6  
0.9  
1.2  
MAX UNIT  
OCP_DEG = 00b  
0.1  
0.45  
0.85  
1.25  
1.5  
µs  
µs  
µs  
µs  
OCP_DEG = 01b  
OCP_DEG = 10b  
OCP_DEG = 11b  
0.35  
0.6  
(1)  
(1)  
tOCP  
Overcurrent protection deglitch time  
0.8  
Overcurrent protection deglitch time (HW  
Variant)  
tOCP  
0.35  
0.6  
0.85  
µs  
FAST_TRETRY = 00b  
FAST_TRETRY = 01b  
FAST_TRETRY = 10b  
FAST_TRETRY = 11b  
SLOW_TRETRY = 00b  
SLOW_TRETRY = 01b  
SLOW_TRETRY = 10b  
SLOW_TRETRY = 11b  
0.35  
0.75  
1.65  
4.35  
350  
0.5  
1
0.7  
1.3  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
tRETRY  
Overcurrent protection retry time  
Overcurrent protection retry time  
2
2.45  
5.85  
700  
5
500  
1000  
2000  
5000  
750  
1300  
2450  
5850  
tRETRY  
1650  
4350  
Overcurrent protection retry time (HW  
Variant)  
tRETRY  
4.35  
110  
15  
5
125  
20  
5.85  
140  
25  
ms  
°C  
°C  
°C  
°C  
°C  
°C  
Overtemperature warning threshold  
(FET)  
TOTW_FET  
Die temperature (TJ) Rising  
Die temperature (TJ)  
TOTW_HYS_F Overtemperature warning hysteresis  
(FET)  
ET  
Overtemperature shutdown threshold  
TOTS_FET  
(FET)  
Die temperature (TJ) Rising  
Die temperature (TJ)  
145  
14  
160  
20  
175  
25  
TOTS_HYS_FE Overtemperature shutdown hysteresis  
(FET)  
T
Overtemperature shutdown threshold  
TOTS_LDO  
(LDO)  
Die temperature (TJ) Rising  
Die temperature (TJ)  
145  
14  
160  
20  
175  
25  
TOTS_HYS_LD Overtemperature shutdown hysteresis  
(LDO)  
O
LOGIC-LEVEL INPUTS (INHx, INLx, nSLEEP, SCLK, SDI)  
VIL  
Input logic low voltage  
Input logic low voltage  
Input logic high voltage  
Input logic high voltage  
Input logic hysteresis  
Input logic hysteresis  
nSLEEP  
0
0
0.7  
0.65  
5.5  
V
V
VIL  
SDI, INLx, INHx, SCLK  
nSLEEP  
VIH  
1.7  
1.5  
200  
200  
V
VIH  
SDI, INLx, INHx, SCLK  
nSLEEP  
3.6  
V
VHYS  
VHYS  
600  
500  
mV  
mV  
SDI, INLx, INHx, SCLK  
nSLEEP, SDI, INLx, INHx, SCLK (Pin  
Voltage) = 0 V  
IIL  
Input logic low current  
–1  
1
40  
30  
µA  
µA  
µA  
nSLEEP (Pin Voltage) = 5V  
IIH  
Input logic high current  
Other pins, 3V ≤ VPIN (Pin Voltage) ≤  
3.6V  
nSLEEP  
150  
150  
30  
300  
300  
kΩ  
kΩ  
pF  
RPD  
CID  
Input pulldown resistance  
Input capacitance  
SDI, SCLK, INHx, INLx  
nSLEEP, SDI, SCLK, INHx, INLx  
LOGIC-LEVEL INPUTS (nSCS)  
VIL  
VIH  
VHYS  
IIL  
Input logic low voltage  
Input logic high voltage  
Input logic hysteresis  
Input logic low current  
Input logic high current  
0
1.5  
0.7  
3.6  
500  
95  
V
V
200  
mV  
µA  
µA  
VPIN (Pin Voltage) = 0 V  
IIH  
3V ≤ VPIN (Pin Voltage) ≤ 3.6V  
-1  
1
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DRV8317  
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
TJ = –40°C to +150°C, VVM = 4.5 to 20 V (unless otherwise noted). Typical limits apply for TA = 25°C, VVM = 12 V  
PARAMETER  
Input pullup resistance  
Input capacitance  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
RPU  
CID  
35  
48  
75  
kΩ  
pF  
30  
OPEN-DRAIN OUTPUTS (nFAULT)  
VOL  
IOH  
Output logic low voltage  
Output logic high current  
Output capacitance  
IOD = -5 mA  
0.4  
1
V
3V ≤ VOD ≤ 3.6 V  
–1  
0
µA  
pF  
COD  
30  
PUSH-PULL OUTPUTS (SDO)  
VOL  
VOH  
Output logic low voltage  
IOP = -5 mA, 3V ≤ VAVDD ≤ 3.6V  
IOP = 5 mA, 3V ≤ VAVDD ≤ 3.6V  
0.5  
3.6  
V
V
VAVDD  
-
Output logic high voltage  
0.5  
IOL  
Output logic low current  
Output logic high current  
Output capacitance  
VOP = 0 V  
VOP = 5 V  
–1  
–2  
1
2
µA  
µA  
pF  
IOH  
COD  
30  
(1) (tOCP + tBLANK) must not exceed 2.2 µs  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The DRV8317 is an integrated MOSFET driver for 3-phase motor-drive applications. The combined high-side  
and low-side FETs' on-state resistance is 130-mΩ (typical). The device reduces system component count, cost,  
and complexity by integrating three MOSFET half-bridges, gate drivers, charge pump, current sense amplifiers  
and linear regulator for external loads. In DRV8317S, a standard serial peripheral interface (SPI) provides  
a simple method for configuring the various device settings and reading fault status information through an  
external controller. In DRV8317H, a hardware (pin-based) interface allows configuring the PWM mode (6x or 3x),  
current sense amplifier gain and output slew rate through pin voltage levels.  
The gate driver architecture is designed to protect against short-circuit events and dV/dt parasitic turn-on of the  
internal power MOSFETs.  
The DRV8317 integrates three bi-directional low-side current sense amplifiers for monitoring the current through  
each of the half-bridges using a built-in current sense circuit; no external current sense resistors are needed.  
The gain of the current sense amplifiers can be adjusted through the SPI or hardware interface.  
In addition to the high level of device integration, the DRV8317 provides a wide range of integrated protection  
features. These features include power supply undervoltage lockout (UVLO), over voltage protection (OVP),  
charge pump undervoltage lockout (CPUV), over current protection (OCP), AVDD under voltage lockout  
(AVDD_UV) and over temperature warning and shutdown (OTW and OTS). Fault events are indicated by the  
nFAULT pin with detailed information available in the status registers in the SPI variant.  
The DRV8317S, DRV8317H devices are available in 0.4-mm pin pitch, WQFN surface-mount packages. The  
WQFN package size is 5.00-mm × 4.00-mm with a height of 0.8-mm.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DRV8317  
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.2 Functional Block Diagram  
VM  
+
CCP  
CP  
CVM1  
CVM2  
VM  
CPH  
CPL  
I/O Control  
Protection  
LS Predriver Power  
Supply Regulator  
Charge Pump  
CFLY  
Overcurrent  
Protection  
nSLEEP  
VM, AVDD, CP,  
VIN_AVDD UVLO  
Protection  
VIN_AVDD  
VLS  
INHA  
INLA  
VM Overvoltage  
Protection  
CVIN_AVDD1  
CVIN_AVDD2  
Regulator  
AVDD  
VM Undervoltage  
Warning  
Ext.  
Load  
CAVDD  
AVDD Linear Regulator  
AGND  
Thermal Warning  
Thermal Shutdown  
INHB  
Input  
Control  
INLB  
Predriver Stage  
CP  
Power Stage  
VM  
INHC  
HS Pre-  
driver  
INLC  
OUTA  
AVDD  
VLS  
RnFAULT  
LS Pre-  
driver  
Output  
Current  
Sense for  
Phase - A  
nFAULT  
PGND  
ISEN_A  
Digital Control  
Predriver Stage  
CP  
Power Stage  
VM  
Interface  
SCLK  
HS Pre-  
driver  
SPI  
OUTB  
SDI  
AVDD  
VLS  
LS Pre-  
driver  
SDO  
Current  
Sense for  
Phase - B  
AVDD  
PGND  
nSCS  
ISEN_B  
Predriver Stage  
CP  
Power Stage  
VM  
CSAREF  
CCSAREF  
Current Sense Amplifiers  
HS Pre-  
driver  
ISEN_A  
AV  
AV  
AV  
OUTC  
SOC  
SOB  
SOA  
VLS  
ISEN_B  
ISEN_C  
Output Offset  
Bias  
LS Pre-  
driver  
Current  
Sense for  
Phase - C  
PGND  
ISEN_C  
Thermal PAD  
PGND  
Figure 8-1. DRV8317S Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
VM  
+
CCP  
CP  
CVM1  
CVM2  
VM  
CPH  
I/O Control  
Protection  
LS Predriver Power  
Supply Regulator  
CFLY  
Charge Pump  
Overcurrent  
Protection  
CPL  
VM, AVDD, CP,  
VIN_AVDD UVLO  
Protection  
VIN_AVDD  
VLS  
nSLEEP  
CVIN_AVDD1  
CVIN_AVDD2  
VM Overvoltage  
Protection  
Regulator  
AVDD  
AGND  
INHA  
INLA  
INHB  
INLB  
INHC  
Ext.  
Load  
VM Undervoltage  
Warning  
CAVDD  
AVDD Linear Regulator  
Thermal Warning  
Thermal Shutdown  
Predriver Stage  
CP  
Power Stage  
VM  
HS Pre-  
driver  
Input  
Control  
OUTA  
INLC  
VLS  
LS Pre-  
driver  
Current  
Sense for  
Phase - A  
MODE  
SLEW  
GAIN  
PGND  
ISEN_A  
Digital Control  
Predriver Stage  
CP  
Power Stage  
VM  
HS Pre-  
driver  
OUTB  
AVDD  
VLS  
RnFAULT  
Output  
LS Pre-  
driver  
Current  
Sense for  
Phase - B  
nFAULT  
PGND  
ISEN_B  
Predriver Stage  
CP  
Power Stage  
VM  
CSAREF  
CCSAREF  
Current Sense Amplifiers  
HS Pre-  
driver  
ISEN_A  
AV  
AV  
AV  
OUTC  
SOC  
SOB  
SOA  
VLS  
ISEN_B  
ISEN_C  
Output Offset  
Bias  
LS Pre-  
driver  
Current  
Sense for  
Phase - C  
PGND  
ISEN_C  
PGND  
Thermal PAD  
Figure 8-2. DRV8317H Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DRV8317  
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.3 Feature Description  
Table 8-1 lists the recommended values of the external components for the driver.  
Table 8-1. DRV8317 External Components  
COMPONENTS  
CVM1  
PIN 1  
VM  
PIN 2  
PGND  
PGND  
AGND  
AGND  
CPL  
RECOMMENDED  
X5R or X7R, 0.1-µF, (2 x VM)-rated capacitor  
≥ 10-µF, (2 x VM)-rated electrolytic capacitor  
X5R or X7R, 0.1-µF, (2 x VIN_AVDD)-rated capacitor  
≥ 10-µF, (2 x VIN_AVDD)-rated capacitor  
X5R or X7R, 0.1-µF, (2 x VM)-rated capacitor  
X5R or X7R, 16-V, 1-µF capacitor  
CVM2  
VM  
CVIN_AVDD1  
CVIN_AVDD2  
CFLY  
VIN_AVDD  
VIN_AVDD  
CPH  
CCP  
CP  
VM  
X5R or X7R, 2.2-µF (no external load) 4.7-µF (up to  
80mA load), 6.3-V capacitor  
CAVDD  
AVDD  
AGND  
RnFAULT  
RMODE  
RSLEW  
AVDD  
MODE  
SLEW  
nFAULT  
AGND  
AGND  
AGND  
AGND  
5.1-kΩ, Pull-up resistor  
Section 8.3.3.2  
Section 8.3.3.2  
RGAIN  
GAIN  
Section 8.3.3.2  
CCSAREF  
CSAREF  
X5R or X7R, 0.1-µF, (2 x CSAREF)-rated capacitor  
8.3.1 Output Stage  
The DRV8317 consists of integrated N-channel FETs (high-side and low-side) connected in a three-phase bridge  
configuration. A doubler charge pump provides the proper gate-bias voltage to the high-side N-channel FETs  
across a wide operating (VM) voltage range in addition to providing 100% duty-cycle support. An internal linear  
regulator operating from the VM supply provides the gate-bias voltage (VLS) for the low-side N-channel FETs.  
8.3.2 Control Modes  
The DRV8317 family of devices provides three different control modes to support various commutation and  
control methods. Table 8-2 shows the various modes of the DRV8317 device.  
Table 8-2. PWM Control Modes  
PWM_MODE register  
PWM Control Mode  
MODE Pin (DRV8317H)  
(DRV8317S)  
MODE pin tied to AGND  
directly or tied to AGND via  
47-kΩ resistor  
6x PWM  
PWM_MODE = 00b  
6x direct PWM  
3x PWM  
PWM_MODE = 01b  
PWM_MODE = 10b  
PWM_MODE = 11b  
Not Available  
MODE pin floating (Hi-Z) or  
tied to AVDD  
3x direct PWM  
Not Available  
The difference between 6x PWM (or 3x PWM) and 6x direct PWM (or 3x direct PWM) is that in the direct (6x  
or 3x) PWM mode, the delay compensation logic circuit is bypassed and the inputs at INHx, INLx are directly  
passed on to the gate driver circuit. In the gate driver circuit, a dead time (tDRV_DEAD) is added before driving the  
FETs to prevent shoot through faults - this dead time is available in all the four PWM control modes.  
Note  
TI does not recommend changing the MODE pin or PWM_MODE register during power up of the  
device (during tWAKE). The MODE pin setting on DRV8317H is latched at power up, so set nSLEEP  
= 0 before changing the MODE pin configuration on the DRV8317H. In DRV8317S, set all INHx and  
INLx pins to logic low before changing the PWM_MODE register.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.3.2.1 6x PWM Mode  
In 6x PWM mode, each half-bridge supports three output states: low, high, or high-impedance (Hi-Z). To  
configure DRV8317H in 6x PWM mode, connect the MODE pin to AGND or connect the MODE pin to AGND  
via 47-kΩ resistor. To enable 6x PWM mode in DRV8317S, configure the MODE bits with PWM_MODE = 00b or  
01b. The corresponding INHx and INLx signals control the output state as listed in Table 8-3.  
Table 8-3. 6x PWM Mode Truth Table  
INHx  
INLx  
OUTx  
Hi-Z  
L
0
0
1
1
0
1
0
1
H
Hi-Z  
Figure 8-3 shows the application diagram of DRV8317 configured in 6x PWM mode.  
VM  
OUTA  
nSLEEP  
INHA  
VM  
INLA  
INHB  
Controller  
INLB  
INHC  
OUTB  
Gate  
Drive  
and  
Logic  
OCP  
BLDC  
Motor  
INLC  
VM  
OUTC  
PGND  
Figure 8-3. 6x PWM Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DRV8317  
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.3.2.2 3x PWM Mode  
In 3x PWM mode, the INHx pin controls each half-bridge and supports two output states: low or high. To  
configure DRV8317H in 3x PWM mode, connect the MODE pin to AVDD or keep the MODE pin floating (Hi-Z).  
To enable 3x PWM mode in DRV8317S, set PWM_MODE to 10b or 11b. The INLx pin is used to put the half  
bridge in the Hi-Z state. If the Hi-Z state is not required, tie all INLx pins to logic high (for example, by tying them  
to AVDD). The corresponding INHx and INLx signals control the output state as listed in Table 8-4.  
Table 8-4. 3x PWM Mode Truth Table  
INLx  
INHx  
OUTx  
Hi-Z  
L
0
1
1
X
0
1
H
Figure 8-4 shows the typical application diagram of the DRV8317 configured in 3x PWM mode.  
VM  
OUTA  
nSLEEP  
INHA  
VM  
INHB  
INHC  
Controller  
INLA  
INLB  
OUTB  
Gate  
Drive  
and  
Logic  
OCP  
BLDC  
Motor  
INLC  
VM  
AVDD  
OUTC  
PGND  
Figure 8-4. 3x PWM Mode  
8.3.3 Device Interface Modes  
The DRV8317 family of devices supports two different interface modes (SPI and hardware) to offer either  
increased simplicity (hardware interface) or greater flexibility (SPI interface). The SPI (DRV8317S) and hardware  
(DRV8317H) interface modes share the same four pins, allowing the different versions to be pin-to-pin  
compatible. Designers are encouraged to evaluate with the SPI interface version due to ease of changing  
settings, and may consider switching to the hardware interface with minimal modifications to the design.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.3.3.1 Serial Peripheral Interface (SPI)  
The SPI variant (DRV8317S) supports a serial communication bus that allows an external controller to send and  
receive data with DRV8317. This enables the external controller to configure device settings and read detailed  
fault information. The interface is a four wire interface using the SCLK, SDI, SDO, and nSCS pins which are  
described as follows:  
The SCLK (serial clock) pin is an input that accepts a clock signal to determine when data is captured and  
propagated on the SDI and SDO pins.  
The SDI (serial data in) pin is the data input.  
The SDO (serial data out) pin is the data output.  
The nSCS (serial chip select) pin is the chip select input. A logic low signal on this pin enables SPI  
communication with the DRV8317.  
For more information on the SPI, see Section 8.5.  
8.3.3.2 Hardware Interface  
The hardware variant (DRV8317H) replaces the four SPI pins with three resistor-configurable pins, namely,  
GAIN, SLEW and MODE (one of the four SPI pins is NC in hardware variant).  
PWM control mode, CSA gain and driver output slew rate can be adjusted on the hardware interface by tying  
the respective pins to AGND, AVDD, pulling down to AGND with a 47-kΩ resistor or by leaving the pin floating  
(Hi-Z). In DRV8317H, fault conditions are reported on the nFAULT pin, but detailed fault information is not  
available.  
The GAIN pin configures the gain of the current sense amplifier.  
The SLEW pin configures the slew rate of the output voltage to motor.  
The MODE pin configures the PWM control mode.  
For more information on the hardware interface, see Section 8.3.9.  
Table 8-5. Hardware Pins Decode  
Configuration  
Pin tied to AGND  
GAIN  
0.25-V/A  
0.5-V/A  
1-V/A  
SLEW  
25-V/µs  
50-V/µs  
125-V/µs  
200-V/µs  
MODE  
6x PWM mode  
6x PWM mode  
3x PWM mode  
3x PWM mode  
Pin pulled to AGND via 47-kΩ  
Pin floating (Hi-Z)  
Pin tied to AVDD  
2-V/A  
AVDD  
SPI  
Interface  
SLEW  
MODE  
SCLK  
SDI  
47-k  
AVDD  
AVDD  
Hardware  
Interface  
SDO  
nSCS  
AVDD  
AVDD  
GAIN  
Figure 8-5. DRV8317S SPI Interface  
8.3.4 AVDD Linear Voltage Regulator  
Figure 8-6. DRV8317H Hardware Interface  
A 3.3-V, 80mA linear regulator is integrated in the DRV8317 and is available to power external circuits. The  
AVDD regulator is used for powering up the internal circuits of DRV8317 and can also provide power to external  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DRV8317  
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
circuits like MCU, logic, hall sensors, LEDs for up to 80 mA. The output of the AVDD regulator should be  
bypassed near the AVDD pin with a X5R or X7R, up to 7.05µF (4.7µF typical), 6.3-V ceramic capacitor routed  
directly back to the adjacent AGND ground pin.  
The AVDD nominal, no-load output voltage is 3.3 V.  
VIN_AVDD  
REF  
+
œ
AVDD  
AGND  
External Load  
CAVDD  
Figure 8-7. AVDD Linear Regulator Block Diagram  
Use Equation 1 to calculate the power dissipated in the device by the AVDD linear regulator.  
P = (VVIN_AVDD - VAVDD) x IAVDD  
(1)  
The supply input voltage for AVDD regulator (VIN_AVDD) can be same as VM supply voltage, or lower or higher  
than VM supply voltage.  
8.3.5 Charge Pump  
The DRV8317 requires a gate-drive voltage higher than the VM power supply to enhance the high-side FETs  
fully because the output stages uses N-channel FETs for both high-side and low-side. The DRV8317 integrates a  
charge pump circuit that generates a voltage above the VM supply for this purpose.  
The charge pump requires two external capacitors for operation. See Table 8-1 for details on the capacitor value.  
The charge pump shuts down when nSLEEP is low.  
VM  
VM  
CCP  
CP  
CPH  
VM  
Charge  
Pump  
CFLY  
Control  
CPL  
Figure 8-8. DRV8317 Charge Pump  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.3.6 Slew Rate Control  
An adjustable gate-drive current to the MOSFETs allows for driver output slew rate control. The MOSFET VDS  
slew rate is a critical factor in optimizing radiated emissions, energy and duration of diode recovery spikes and  
switching voltage transients related to parasitics. This slew rate is predominantly determined by the rate of gate  
charge to the MOSFETs as shown in Figure 8-9.  
VM  
CP  
Slew Rate  
Control  
OUTx  
VLS  
Slew Rate  
Control  
PGND  
Figure 8-9. Slew Rate Control  
The slew rate of each half-bridge can be adjusted by SLEW pin in hardware variant or by SLEW_RATE register  
in SPI variant. The slew rate is calculated by the rise-time and fall-time of the voltage on OUTx pin as shown in  
Figure 8-10.  
VOUTx  
VM  
VM  
80%  
80%  
20%  
20%  
0
Time  
tfall  
trise  
Figure 8-10. Slew Rate Measurement  
8.3.7 Cross Conduction (Dead Time)  
The device is fully protected against any cross conduction of MOSFETs - during the switching of high-side and  
low-side MOSFETs, DRV8317 avoids shoot-through events by inserting a dead time (tdead). This is implemented  
by sensing the gate-source voltage (VGS) of the high-side and low-side MOSFETs and ensuring that VGS  
of high-side MOSFET has dropped below turn-off level before switching on the low-side MOSFET of same  
half-bridge (or vice-versa) as shown in Figure 8-11 and Figure 8-12. The VGS of the high-side and low-side  
MOSFETs (VGS_HS and VGS_LS) shown in Figure 8-12 are DRV8317 internal signals.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DRV8317  
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
VM  
HS Gate  
Control  
+
VGS_HS  
OUTx  
LS Gate  
Control  
+
GND  
VGS_LS  
Figure 8-11. Cross Conduction Protection  
VGS_HS  
10%  
tDEAD  
VGS_LS  
10%  
Time  
Figure 8-12. Dead Time  
8.3.8 Propagation Delay  
The propagation delay time (tpd) is measured as the time between an input logic edge to change in OUTx  
voltage. The propagation delay time includes the input deglitch delay, analog driver delay, and depends on the  
slew rate setting . The input deglitcher prevents high-frequency noise on the input pins from affecting the output  
state of the gate drivers. To support multiple control modes, a small digital delay is added as the input command  
propagates through the device.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
INx  
OUTx High  
tPD  
10%  
OUTx Low  
OUTx  
Time  
Figure 8-13. Propagation Delay  
8.3.9 Pin Diagrams  
This section presents the I/O structure of all digital input and output pins.  
8.3.9.1 Logic Level Input Pin (Internal Pulldown)  
Figure 8-14 shows the input structure for the logic levels pins INHx, INLx, nSLEEP, SCLK and SDI. The input  
can be driven with an external resistor to GND or an external logic voltage supply. It is recommended to pull  
these pins low in device sleep mode to reduce leakage current through the internal pull-down resistors.  
AVDD  
STATE  
VIH  
CONNECTION  
Tied to AVDD  
Tied to GND  
INPUT  
Logic High  
Logic Low  
VIL  
RPD  
ESD  
Figure 8-14. Logic-Level Input Pin Structure  
8.3.9.2 Logic Level Input Pin (Internal Pullup)  
Figure 8-15 shows the input structure for the logic level pin nSCS. The input can be driven with an external  
resistor to GND or an external logic voltage supply .  
AVDD  
AVDD  
STATE  
VIH  
CONNECTION  
Tied to AVDD  
Tied to GND  
INPUT  
RPU  
Logic High  
Logic Low  
VIL  
ESD  
Figure 8-15. nSCS Input Pin Structure  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.3.9.3 Open Drain Pin  
Figure 8-16 shows the structure of the open-drain output pin nFAULT. The open-drain output requires an external  
pullup resistor to a logic voltage supply to function properly.  
AVDD  
STATE  
No Fault  
Fault  
STATUS  
Pulled-Up  
RPU  
OUTPUT  
Inactive  
Active  
Pulled-Down  
ESD  
Figure 8-16. Open Drain Output Pin Structure  
8.3.9.4 Push Pull Pin  
Figure 8-17 shows the structure of the push-pull pin SDO.  
AVDD  
STATE  
VOH  
STATUS  
Pulled-Up  
Pulled-Down  
Open  
OUTPUT  
Logic High  
Logic Low  
Hi-Z  
VOL  
ESD  
Hi-Z  
Figure 8-17. Push-Pull Output Pin Structure  
8.3.9.5 Four Level Input Pin  
Figure 8-18 shows the structure of the four level input pins GAIN, MODE and SLEW on hardware interface  
devices. The input can be set by tying the pin to AGND or AVDD, leaving the pin unconnected, or connecting an  
external resistor from the pin to ground.  
CONTROL  
AVDD  
AVDD  
STATE  
VL1  
RESISTANCE  
Tied to AGND  
Setting-1  
Setting-2  
Setting-3  
Setting-4  
+
RPU  
47 k ±5%  
to AGND  
VL2  
VL3  
VL4  
+
RPD  
Hi-Z  
Tied to AVDD  
+
Figure 8-18. Four Level Input Pin Structure  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.3.10 Current Sense Amplifiers  
The DRV8317 integrates three high-performance low-side current sense amplifiers for current measurements  
using built-in current sense. Low-side current measurements are commonly used to implement overcurrent  
protection, external torque control, or brushless DC commutation with the external controller. Each amplifier  
senses the current in the corresponding half-bridge when the low-side MOSFET is conducting. The current  
sense amplifiers include features such as configurable gain (through CSA_GAIN register or GAIN pin) and an  
external voltage reference (VREF) provided through CSAREF pin.  
8.3.10.1 Current Sense Amplifier Operation  
The SOx pin on the DRV8317 provides an analog voltage proportional to the current flowing in the low side  
MOSFETs (IOUTx) multiplied by the gain setting (GCSA) of the current sense amplifier. The gain setting is  
adjustable between four different levels which can be set by the GAIN pin (hardware variant) or the CSA_GAIN  
register (SPI variant).  
Figure 8-19 shows the internal architecture of the current sense amplifiers. The current sense is implemented  
with a sense FET on each low-side FET of the DRV8317 device. This current information is converted in to a  
voltage based on the CSAREF pin (VREF) input and the CSA gain setting; this voltage is available on the SOx  
pin. The CSA output voltage can be calculated using Equation 2  
SOx = VREF/2 + (GCSA * IOUTx), wherein IOUTx is considered positive in the direction shown in Figure 8-19.  
(2)  
VM  
VREF  
OUTx  
Sense  
FET  
GAIN  
I/V Converter  
PGND  
SOx  
Figure 8-19. Integrated Current Sense Amplifier  
Figure 8-20 shows the IOUTx to CSA output transfer function. In bi-directional operation, the amplifier output for  
0-A input is set at VREF/2. Any change in the output phase current results in a corresponding change in the  
amplifier output as given in Equation 2.  
SOX (V)  
VREF  
(VREF - 0.25)  
VREF / 2  
VLINEAR  
0.25-V  
0-V  
IOUTx (A) (Current flowing out of OUTx)  
Figure 8-20. IOUTx to CSA Transfer Function  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
The amplifier has a defined linear region as shown in Figure 8-21.  
SOX  
VREF  
(VREF – 0.25) V  
IOUTx  
V
SOX(range+)  
V
SOX(off)max  
VREF/2  
V
, V  
OFF DRIFT  
0-A  
V
SOX(off)min  
V
SOX(range-)  
-IOUTx  
0.25-V  
0-V  
Figure 8-21. Bi-directional Current Sense Linear Region  
Note  
The current sense amplifiers use the external voltage reference (VREF) provided at the CSAREF pin.  
8.3.11 Protections  
The DRV8317 is protected against VM, VIN_AVDD, AVDD, CP under voltage, VM over voltage, SPI fault, OTP  
read fault, FET over current and FET, LDO over temperature events. Table 8-6 summarizes various fault details.  
Table 8-6. Fault Action and Response  
FAULT STATUS  
FAULT  
CONDITION  
CONFIGURATION  
REPORT  
PRE-DRIVER  
DIGITAL  
RECOVERY  
BITS  
Automatic:  
UVP_MODE = 00b  
nFAULT  
Hi-Z  
Latched  
Active  
SLOW_TRETRY and VVM > VUVLO  
(rising)  
VM under voltage  
lockout (VM_UV)  
VVM < VUVLO (falling)  
Automatic:  
UVP_MODE = 01b  
nFAULT  
nFAULT  
nFAULT  
Hi-Z  
Hi-Z  
Hi-Z  
Latched  
Latched  
Latched  
Active  
Active  
Active  
FAST_TRETRY and VVM > VUVLO  
(rising)  
Automatic:  
VMUV_WARN_MODE  
= 00b  
SLOW_TRETRY and VVM  
VVMUV_WARN_RISE  
>
Automatic:  
FAST_TRETRY and VVM  
VVMUV_WARN_RISE  
VMUV_WARN_MODE  
= 01b  
VM under voltage  
warning  
(VMUV_WARN)  
>
VVM  
<
VVMUV_WARN_FALL  
VMUV_WARN_MODE  
= 10b  
nFAULT  
Active  
Active  
Latched  
Active  
Active  
No action; report only mode  
VMUV_WARN_MODE  
= 11b  
VIN_AVDD under  
voltage  
(VIN_AVDD_UV)  
VVIN_AVDD  
VVIN_AVDD_UV (falling)  
<
Automatic: VVIN_AVDD > VVIN_AVDD_UV  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Reset  
Reset  
Active  
Active  
(rising)  
AVDD under  
voltage  
(AVDD_UV)  
VAVDD < VAVDD_UV  
Automatic: VAVDD > VAVDD_UV (rising)  
(falling)  
Automatic:  
SLOW_TRETRY and VCP > VCPUV  
UVP_MODE = 00b  
UVP_MODE = 01b  
nFAULT  
nFAULT  
Latched  
Latched  
Charge pump  
under voltage  
(CP_UV)  
(rising)  
VCP < VCPUV (falling)  
Automatic:  
FAST_TRETRY and VCP > VCPUV  
(rising)  
Automatic:  
SLOW_TRETRY  
OCP_MODE = 000b  
OCP_MODE = 001b  
nFAULT  
nFAULT  
Hi-Z  
Hi-Z  
Latched  
Latched  
Active  
Active  
Automatic:  
FAST_TRETRY  
Over current  
protection  
(OCP)  
IPHASE > IOCP  
Latched:  
Cleared by FLT_CLR bit or nSLEEP  
reset pulse  
OCP_MODE = 010b  
OCP_MODE = 011b  
nFAULT  
nFAULT  
Hi-Z  
Latched  
Latched  
Active  
Active  
Active  
No action; report only mode  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
Table 8-6. Fault Action and Response (continued)  
FAULT STATUS  
FAULT  
CONDITION  
CONFIGURATION  
REPORT  
PRE-DRIVER  
DIGITAL  
RECOVERY  
BITS  
Automatic:  
OVP_MODE = 00b  
nFAULT  
Hi-Z  
Latched  
Active  
SLOW_TRETRY and VVM < VOVP  
VM over voltage  
protection  
(VM_OV)  
(falling)  
VVM > VOVP (rising)  
Automatic:  
FAST_TRETRY and VVM < VOVP  
OVP_MODE = 01b  
nFAULT  
Hi-Z  
Latched  
Active  
(falling)  
SPIFLT_MODE = 0b  
SPIFLT_MODE = 1b  
nFAULT  
Active  
Active  
Latched  
Active  
Active  
No action; report only mode  
SPI fault  
(SPIFLT)  
SCLK fault and ADDR  
fault  
System (OTP  
read)  
(SYSFLT)  
Latched:  
Cleared by FLT_CLR bit or nSLEEP  
reset pulse  
OTP read parity fault  
nFAULT  
nFAULT  
nFAULT  
nFAULT  
nFAULT  
Disabled  
Hi-Z  
Latched  
Latched  
Latched  
Latched  
Latched  
Active  
Active  
Active  
Active  
Active  
Automatic:  
SLOW_TRETRY and TJ < TOTW_FET  
- TOTW_FET_HYS  
OTF_MODE = 00b  
OTF_MODE = 01b  
OTF_MODE = 00b  
OTF_MODE = 01b  
FET over  
temperature  
warning  
TJ > TOTW_FET  
Automatic:  
(OTW_FET)  
Hi-Z  
FAST_TRETRY and TJ < TOTW_FET  
TOTW_FET_HYS  
-
Automatic:  
SLOW_TRETRY and TJ < TOTS_FET  
TOTS_FET_HYS  
Hi-Z  
-
FET over  
temperature  
shutdown  
TJ > TOTS_FET  
Automatic:  
FAST_TRETRY and TJ < TOTS_FET  
TOTS_FET_HYS  
(OTS_FET)  
Hi-Z  
-
AVDD LDO over  
temperature  
shutdown  
Automatic:  
TJ < TOTS_LDO - TOTS_LDO_HYS  
TJ > TOTS_LDO  
Hi-Z  
Reset  
(OTS_LDO)  
8.3.11.1 Under Voltage Protection (UVP)  
DRV8317 has under voltage protection enabled for VM, VIN_AVDD, AVDD and CP voltage rails - these fault  
protections cannot be disabled. VM, VIN_AVDD and AVDD under voltage faults result in device reset; CP under  
voltage fault response is user configurable through UVP mode.  
VM, VIN_AVDD, AVDD Under Voltage Protection (VIN_AVDD_UV, AVDD_UV)  
If at any time, the voltage on VIN_AVDD or AVDD pin falls below the corresponding under voltage falling  
threshold (VVINAVDD_UV or VAVDD_UV), DRV8317 enters reset - in reset, FETs are in Hi-Z, pre-driver, charge  
pump, current sense amplifier and digital logic are disabled. Normal device operation resumes automatically  
after the respective rail voltage rises above the corresponding under voltage rising threshold (VVINAVDD_UV or  
VAVDD_UV) as shown in Figure 8-22.  
VVIN_AVDD, VAVDD  
VUV (max) rising  
VUV (min) rising  
VUV (max) falling  
VUV (min) falling  
DEVICE ON  
DEVICE RESET  
DEVICE ON  
Time  
Figure 8-22. VIN_AVDD, AVDD Under Voltage Protection  
VM, CP Under Voltage Protection (VM_UV, CP_UV)  
If at any time the voltage on VM or CP pin falls below the corresponding under voltage falling threshold (VVM_UV  
or VCP_UV), FETs are in Hi-Z, charge pump is disabled, nFAULT pin is driven low, FAULT and UVP in DEV_STS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DRV8317  
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
and VM_UV or CP_UV in SUP_STS are set to 1b. Normal operation resumes automatically (pre-driver, charge  
pump operation and the nFAULT pin is released) once the retry time (tRETRY) lapses after VM or CP voltage  
is above the corresponding under voltage rising threshold (VVM_UV or VCP_UV) as shown in Figure 8-23. The  
FAULT, UVP and UV_UV or CP_UV bits stay set to 1b until a clear fault command is issued either through the  
FLT_CLR bit or an nSLEEP reset pulse (tRST).  
Retry time (tRETRY) is set by,  
Slow retry time (SLOW_TRETRY) by configuring UVP_MODE to 00b  
Fast retry time (FAST_TRETRY) by configuring UVP_MODE to 01b  
IN DRV8317H, UVP_MODE is set to 01b and FAST_TRETRY is fixed at 5-ms.  
VVM, VCP  
VUV (max) rising  
VUV (min) rising  
VUV (max) falling  
VUV (min) falling  
tRETRY  
tRETRY  
FETs OFF  
FETs ON  
FETs ON  
Time  
Figure 8-23. VM, CP Under Voltage Protection  
8.3.11.2 VM Under Voltage Warn (VMUV_WARN) Protection  
DRV8317 provides user configurable thresholds (VVMUV_WARN_FALL, VVMUV_WARN_RISE) for VM under voltage  
warn protection. If at any time, voltage on VM pin falls below the VVMUV_WARN_FALL threshold, action is taken as  
per VMUV_WARN_MODE configuration. There are four settings for VMUV_WARN_MODE: automatic retry with  
slow and fast retry time, report only and disabled. The threshold for the VM under voltage warn fault condition  
to be removed is set by VVMUV_WARN_RISE. This fault can be enabled/ disabled using VMUV_WARN_EN. In  
DRV8317H, this fault is enabled by default and set to report only mode (VMUV_WARN_MODE set to 10b).  
8.3.11.2.1 VM Under Voltage Warn Automatic Retry (VMUV_WARN_MODE = 00b or 01b)  
After a VM under voltage warn event in this mode, all the FETs are in Hi-Z and the nFAULT pin is driven low.  
The FAULT, UVW bits (in DEV_STS register) and VMUV_WARN bit (in SUP_STS register) are set to 1b. Normal  
operation resumes automatically (pre-driver operation and the nFAULT pin is released) once the retry time  
(tRETRY) time lapses after the VM pin voltage rises above the VVMUV_WARN_RISE threshold as shown in Figure  
8-24. The FAULT, UVW and VMUV_WARN bits stay set to 1b until clear fault command is issued either through  
the FLT_CLR bit or an nSLEEP reset pulse (tRST).  
Retry time (tRETRY) is set by,  
Slow retry time (SLOW_TRETRY) by configuring VPWR_MODE to 00b  
Fast retry time (FAST_TRETRY) by configuring VPWR_MODE to 01b  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
VVM  
VVMU_WARN_RISE (max)  
VVMU_WARN_RISE (min)  
VVMU_WARN_FALL (max)  
VVMU_WARN_FALL (min)  
tRETRY  
tRETRY  
FETs OFF  
FETs ON  
FETs ON  
Time  
Figure 8-24. VM Under Voltage Warning  
8.3.11.2.2 VM Under Voltage Warn Report Only (VMUV_WARN_MODE = 10b)  
No protective action occurs after a VM under voltage warn event in this mode. The VM under voltage warn  
event is reported by driving the nFAULT pin low and setting the FAULT, UVW bits (in DEV_STS register) and  
VMUV_WARN bit (in SUP_STS register) to 1b. DRV8317 continues to operate as usual. The external controller  
manages the VM under voltage warn condition by acting appropriately. The reporting clears (nFAULT pin is  
released, FAULT, UVW and VMUV_WARN bits are set to 0b) when a clear fault command is issued either  
through the FLT_CLR bit or an nSLEEP reset pulse (tRST).  
8.3.11.2.3 VM Under Voltage Warn Disabled (VMUV_WARN_MODE = 11b)  
No action is taken and no reporting (nFAULT pin, status register bits) is done after a VM under voltage warn  
event in this mode.  
8.3.11.3 Over Current Protection (OCP)  
A MOSFET over current event is sensed by monitoring the current flowing through each of the FETs. If the  
current through a FET exceeds the OCP threshold (IOCP) for longer than the OCP deglitch time (tOCP), an OCP  
event is recognized and action is taken according to OCP_MODE. In order to avoid false trigger of OCP at PWM  
transitions, due to ringing in the phase voltage, there is a blanking time (tBLANK) applied after each PWM edge.  
During blanking time, OCP events are ignored.  
In DRV8317H, the tOCP is fixed at 0.6-µs (typical), tBLANK is fixed at 0.7-µs (typical) and the OCP_MODE is set  
to 001b with retry time of 5-ms. In DRV8317S, the tOCP is configured by OCP_DEG, the tBLANK is configured by  
OCP_TBLANK and the OCP_MODE can be configured in four different modes: OCP latched shutdown, OCP  
automatic retry with fast and slow retry times and OCP report only.  
Note  
(tOCP + tBLANK) should not exceed 2-µs  
8.3.11.3.1 OCP Latched Fault (OCP_MODE = 010b)  
After an OCP event in this mode, all MOSFETs are in Hi-Z and the nFAULT pin is driven low. The FAULT, OCP  
bits (in DEV_STS register) and corresponding FETs' OCP bits (in DRV_STS register) are set to 1b. Normal  
operation resumes (pre-driver operation, FAULT, OCP, corresponding FETs' OCP bits set to 0b and the nFAULT  
pin is released) when a clear fault command is issued either through the FLT_CLR bit or an nSLEEP reset pulse  
(tRST).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DRV8317  
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
Peak current due  
to deglitch time  
IOCP  
IOUTx  
tOCP  
nFAULT released  
nFAULT driven low  
nFAULT  
CLR_FLT or  
nSLEEP reset pulse  
Time  
Figure 8-25. Over Current Protection - Latched Mode  
8.3.11.3.2 OCP Automatic Retry (OCP_MODE = 000b or 001b)  
After an OCP event in this mode, all the FETs are in Hi-Z and the nFAULT pin is driven low. The FAULT, OCP  
bits (in DEV_STS register) and corresponding FETs' OCP bits (in DRV_STS register) are set to 1b. Normal  
operation resumes automatically (pre-driver operation, the nFAULT pin is released and corresponding FETs'  
OCP bits are set to 1b) after the retry time (tRETRY) time elapses. The FAULT and OCP bits stay set to 1b until  
clear fault command is issued either through the FLT_CLR bit or an nSLEEP reset pulse (tRST).  
Retry time (tRETRY) is set by,  
Slow retry time (SLOW_TRETRY) by configuring OCP_MODE to 000b  
Fast retry time (FAST_TRETRY) by configuring OCP_MODE to 001b  
Peak current due  
to deglitch time  
IOCP  
IOUTx  
tOCP  
tRETRY  
nFAULT driven low  
nFAULT released  
nFAULT  
Time  
Figure 8-26. Over Current Protection - Automatic Retry Mode  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DRV8317  
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.3.11.3.3 OCP Report Only (OCP_MODE = 011b)  
No protective action occurs after an OCP event in this mode. The over current event is reported by driving the  
nFAULT pin low and setting the FAULT, OCP bits (in DEV_STS register) and corresponding FETs' OCP bits  
(in DRV_STS register) to 1b. DRV8317 continues to operate as usual. The external controller manages the  
over current condition by acting appropriately. The reporting clears (nFAULT pin is released, FAULT, OCP, and  
corresponding FETs' OCP bits are set to 0b) when a clear fault command is issued either through the FLT_CLR  
bit or an nSLEEP reset pulse (tRST).  
8.3.11.4 VM Over Voltage Protection (OVP)  
If at any time, input supply voltage on the VM pin rises higher than the VOVP rising threshold, all the integrated  
FETs are in Hi-Z, FAULT, OVP bits (in DEV_STS register) and VM_OV (in SUP_STS register) are set to 1b and  
the nFAULT pin is driven low. Normal operation resumes automatically (pre-driver operation and the nFAULT pin  
is released) once retry time (tRETRY) lapses after VM pin voltage is below the VOVP falling threshold as shown  
inFigure 8-27. The FAULT, OVP and VM_OV bits stay set to 1b until clear fault command is issued either through  
the FLT_CLR bit or an nSLEEP reset pulse (tRST).  
Retry time (tRETRY) is set by,  
Slow retry time (SLOW_TRETRY) by configuring OVP_MODE to 00b  
Fast retry time (FAST_TRETRY) by configuring OVP_MODE to 01b  
IN DRV8317H, OVP_MODE is set to 01b and FAST_TRETRY is fixed at 5-ms.  
VVM  
VOVP (max) rising  
VOVP (min) rising  
VOVP (max) falling  
VOVP (min) falling  
tRETRY  
tRETRY  
FETs ON  
FETs OFF  
FETs ON  
nFAULT  
Time  
Figure 8-27. VM Over Voltage Protection  
8.3.11.5 SPI Fault  
In the event of a SPI transaction fault (parity, frame or bus contention error), if SPLIFLT_MODE is set to 0b,  
nFAULT is driven low, FAULT, SPIFLT bits (in DEV_STS register) and SPI_PARITY/ BUS_CNT/ FRM_ERR bits  
(in SYSIF_STS register) are set to 1b. DRV8317 continues to operate as usual. The external controller manages  
the SPI fault event by acting appropriately. The reporting clears (nFAULT pin is released, FAULT, SPIFLT, and  
SPI_PARITY/ BUS_CNT/ FRM_ERR bits are set to 0b) when a clear fault command is issued either through the  
FLT_CLR bit or an nSLEEP reset pulse (tRST).  
If SPIFLT_MODE is set to 1b, SPI fault is disabled and reporting (nFAULT, status register bits) does not happen  
on a SPI fault event.  
8.3.11.6 System (OTP Read) Fault  
DRV8317 loads the configurable register settings from the OTP on every power-up cycle. If an OTP read  
fault is encountered while configuring the registers, pre-driver is disabled, FAULT, SYSFLT bits (in DEV_STS  
register) and OTPLD_ERR bit (in SYSIF_STS register) are set to 1b and nFAULT is driven low. Normal operation  
resumes (pre-driver, FAULT, SYSFLT, OTPLD_ERR bits set to 0b and nFAULT pin is released) when a clear  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DRV8317  
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
fault command is issued either through the FLT_CLR bit or an nSLEEP reset pulse (tRST). It is advisable not to  
operate DRV8317 by issuing a clear fault command in the event of a OTP read fault since the register settings  
may be in an unknown state and may lead to unexpected device operation.  
8.3.11.7 Thermal Protection  
DRV8317 has over temperature warning (OTW) and over temperature shutdown (OTS) features for protection  
against over temperature events. OTW is available for FET protection (OTW_FET) while OTS is available for  
FET (OTS_FET) and AVDD LDO (OTS_LDO) protection.  
8.3.11.7.1 FET Over Temperature Warning (OTW_FET)  
If the FET temperature exceeds the over temperature warning (TOTW_FET) threshold, the FAULT, OTF bits (in  
DEV_STS register) and OTW_FET bit (in OT_STS register) are set to 1b and the nFAULT pin is driven low. The  
nFAULT pin is released and OTW_FET is set to 0b once retry time (tRETRY) elapses after the FET temperature  
falls below the over temperature warning (TOTW_FET - TOTW_FET_HYS) threshold. The FAULT, OTF bits stay set to  
1b until cleared through the CLR_FLT bit or an nSLEEP reset pulse (tRST).  
Retry time (tRETRY) is set by,  
Slow retry time (SLOW_TRETRY) by configuring OTF_MODE to 00b  
Fast retry time (FAST_TRETRY) by configuring OTF_MODE to 01b  
In DRV8317H, FET over temperature warning is disabled.  
8.3.11.7.2 FET Over Temperature Shutdown (OTS_FET)  
If the FET temperature exceeds the shutdown threshold (TOTS_FET), all the integrated FETs are in Hi-Z, the  
FAULT, OTF bits (in DEV_STS register) and OTS_FET bit (in OT_STS register) are set to 1b and the nFAULT  
pin is driven low. Normal operation resumes automatically (pre-driver operation, nFAULT pin is released and  
OTS_FET is set to 0b) after retry time (tRETRY) elapses, if FET temperature falls below the over temperature  
shutdown (TOTS_FET - TOTS_FET_HYS) threshold. The FAULT, OTF bits stay set to 1b until cleared through the  
CLR_FLT bit or an nSLEEP reset pulse (tRST). This feature cannot be disabled.  
Retry time (tRETRY) is set by,  
Slow retry time (SLOW_TRETRY) by configuring OTF_MODE to 00b  
Fast retry time (FAST_TRETRY) by configuring OTF_MODE to 01b  
IN DRV8317H, tRETRY period is fixed at 5-ms.  
8.3.11.7.3 LDO Over Temperature Shutdown  
If AVDD LDO temperature exceeds the LDO over temperature shutdown (TOTS_LDO) threshold, all the  
integrated FETs are in Hi-Z and device enters reset. Normal operation resumes automatically when AVDD  
LDO temperature falls below the over temperature shutdown threshold (TOTS_LDO - TOTS_LDO_HYS). This feature  
cannot be disabled.  
8.4 Device Functional Modes  
8.4.1 Functional Modes  
8.4.1.1 Sleep Mode  
The nSLEEP pin manages the state of DRV8317. When the nSLEEP pin is low, the device goes to a low-power  
sleep mode. In sleep mode MOSFETs, current sense amplifiers, charge pump, AVDD regulator and SPI bus are  
disabled. The tSLEEP time must elapse after a falling edge on the nSLEEP pin before the device goes to sleep  
mode. The device comes out of sleep mode automatically if the nSLEEP pin is pulled high. The tWAKE time must  
elapse before the device is ready for PWM inputs.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
Note  
During power up and power down of the device through the nSLEEP pin, the nFAULT pin is held low  
as the internal regulators are enabled or disabled. After the regulators have enabled or disabled, the  
nFAULT pin is automatically released. The duration that the nFAULT pin is low does not exceed the  
tSLEEP or tWAKE time.  
8.4.1.2 Operating Mode  
When the nSLEEP pin is high and the VVM voltage is greater than the VUVLO voltage, the device goes to  
operating mode. The tWAKE time must elapse before the device is ready for inputs. In this mode the charge  
pump, AVDD regulator and SPI bus are active.  
8.4.1.3 Fault Reset (FLT_CLR or nSLEEP Reset Pulse)  
In the case of latched faults, DRV8317 turns off the MOSFETs (Hi-Z) and the motor coasts to a stop.  
When the fault condition clears, the device can go to the operating state again by either setting the FLT_CLR  
bit to 1b in the SPI variant or by issuing a reset pulse on the nSLEEP pin in the hardware variant. The nSLEEP  
reset pulse (tRST) consists of a high-to-low-to-high transition on the nSLEEP pin. The low period of the sequence  
should fall with the tRST time window or else the device will start the complete shutdown sequence. The reset  
pulse has no effect on any of the regulators, device settings, or other functional blocks.  
8.5 SPI Communication  
8.5.1 Programming  
8.5.1.1 SPI Format  
SPI Format - with Parity  
The SDI input data word is 24 bits long and consists of the following format:  
1 read or write bit, W (bit B23)  
6 address bits, A (bits B22 through B17)  
Parity bit, P (bit B16)  
15 data bits with 1 parity bit, D (bits B15 through B0)  
The SDO output data word is 24 bits long. The most significant bits are status bits and the least significant 16  
bits are the data content of the register being accessed.  
Table 8-7. SDI Input Data Word Format for SPI  
PAR PAR  
R/W  
ADDRESS  
DATA  
ITY ITY  
B23 B22 B21 B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
W0 A5 A4 A3 A2 A1 A0  
P
P
D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Table 8-8. SDO Output Data Word Format  
STATUS  
DATA  
B23 B22 B21 B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
S7 S6 S5 S4 S3 S2 S1 S0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
The details of the bits used in SPI frame format are detailed below.  
Read/Write Bit (R/W): R/W (W0) bit set to 0b indicates a SPI write transaction. For a SPI read operation, R/W  
bit needs to be set to 1b.  
Address Bits (A): A SPI secondary device takes a 6-bit register address.  
Parity Bit (P): Both header and data fields of a SPI input data frame include a parity bit for single bit error  
detection - in Table 8-7, B16 is parity bit for the header field, while B15 is the parity bit for the data field. The  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DRV8317  
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
parity scheme used is even parity - the number of ones in a block of 16-bits (including the parity bit) is even.  
Data will be written to the internal registers only if the parity check is successful. Parity checks can be enabled or  
disabled by configuring the SPI_PEN bit of SYS_CTRL register. Parity checks are disabled by default.  
Note  
Though parity checks are disabled by default, TI recommends enabling parity checks to safeguard  
against single-bit errors.  
Error Handling  
Parity Error: Upon detecting a parity error, the secondary device responds in the following ways. Parity error  
gets latched and reported on nFAULT. The error status is available for read on SPI_PARITY field of SYS_STS  
register. A parity error in the header will not prevent the secondary device from responding with data. The  
SDO will be driven by the secondary device being addressed. Updates to write address pointer and the device  
registers will be ignored when parity error is detected. In a sequential write, upon detection of parity error any  
subsequent register writes will be ignored.  
Frame Error: Any incomplete SPI Frame will be reported as Frame error. Frame errors will be latched in  
FRM_ERR field of SYSIF_STS register and indicated on nFAULT.  
SPI Read/Write Sequence  
SPI Read Sequence: The SPI read transaction comprises of an 8-bit header (R/W - 1 bit, Address - 6 bits,  
and party -1 bit) followed by 16-bit dummy data words. Upon receiving the first byte of header, the secondary  
device responds with an 8-bit device status information. The read address pointer gets updated immediately  
after receiving the address field of the header. The read address from the header acts as the starting address for  
the register reads. The read address pointer gets incremented automatically upon completion of a 16-bit transfer.  
The length of data transfer is not restricted by the secondary device. The secondary device responds with data  
as long as the primary device transmits dummy words. If parity error check is enabled, the MSB of read data will  
be replaced with computed parity bit  
SPI Write Sequence: SPI write transaction comprises of an 8-bit header followed by 16-bit data words to be  
written into the register bank. Similar to a read transaction, the addressed secondary device responds with an  
8-bit device status information upon receiving the first byte of header. Once the header bytes are received,  
the write address pointer gets updated. The write address from the header acts as the starting address for  
sequential register writes. The read address pointer will retain the address of the register being read in the  
previous SPI transaction. The length of data transfer is not restricted by the secondary device. Both read and  
write address pointers will be incremented automatically upon completion of a 16-bit transfer. While receiving  
data from the primary device, the SDO will be driven with the register data addressed by read address pointer.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DRV8317  
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.6 DRV8317 Registers  
Table 8-9 lists the memory-mapped registers for the DRV8317 registers. All register offset addresses not listed in  
Table 8-9 should be considered as reserved locations and the register contents should not be modified.  
Table 8-9. DRV8317 Registers  
Offset Acronym  
Register Name  
Section  
0h  
2h  
DEV_STS  
Device Status Register  
Section 8.6.1  
Section 8.6.2  
Section 8.6.3  
Section 8.6.4  
Section 8.6.5  
Section 8.6.6  
Section 8.6.7  
Section 8.6.8  
Section 8.6.9  
Section 8.6.10  
Section 8.6.11  
Section 8.6.12  
Section 8.6.13  
Section 8.6.14  
Section 8.6.15  
Section 8.6.16  
DEV_RSTS  
OT_STS  
Device Raw Status Register  
Over Temperature Status Register  
Supply Status Register  
4h  
5h  
SUP_STS  
6h  
DRV_STS  
Driver Status Register  
7h  
SYSIF_STS  
FLT_MODE  
SYSF_CTRL  
DRVF_TCTRL  
FLT_TCTRL  
FLT_CLR  
System Interface Status Register  
Fault Mode Register  
10h  
12h  
13h  
16h  
17h  
18h  
20h  
22h  
23h  
3Fh  
System Fault Control Register  
Driver Fault Control Register  
Fault Timing Control Register  
Fault Clear Register  
VMUV_WARN_THR  
PWM_CTRL  
DRV_CTRL  
CSA_CTRL  
SYS_CTRL  
VM Under Voltage Warn Threshold Register  
PWM Control Register  
Predriver control Register  
CSA Control Register  
System Control Register  
Complex bit access types are encoded to fit into small table cells. Table 8-10 shows the codes that are used for  
access types in this section.  
Table 8-10. DRV8317 Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
R-0  
R
Read  
-0  
Returns 0s  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.6.1 DEV_STS Register (Offset = 0h) [Reset = 0280h]  
DEV_STS is shown in Figure 8-28 and described in Table 8-11.  
Return to the Table 8-9.  
Figure 8-28. DEV_STS Register  
15  
14  
13  
12  
11  
10  
9
8
PARITY  
R-0h  
RESERVED  
R-0-0h  
DNRDY_STS  
R-0-1h  
SYSFLT  
R-0h  
7
6
5
4
3
2
1
0
RESET  
R-1h  
SPIFLT  
R-0h  
OCP  
R-0h  
UVW  
R-0h  
OVP  
R-0h  
UVP  
R-0h  
OTF  
R-0h  
FAULT  
R-0h  
Table 8-11. DEV_STS Register Field Descriptions  
Bit  
15  
Field  
Type  
Reset  
Description  
PARITY  
R
0h  
Parity Bit if SPI_PEN is set to '1' otherwise reserved  
Reserved  
14-10  
9
RESERVED  
R-0  
R-0  
0h  
DNRDY_STS  
1h  
Device not ready status  
0h = Device is ready to spin motor  
1h = Device is not ready  
8
7
6
5
4
3
2
1
0
SYSFLT  
RESET  
SPIFLT  
OCP  
R
R
R
R
R
R
R
R
R
0h  
1h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
OTP read fault occurred. Status remains latched until cleared by  
write to FLT_CLR or reset pulse on nSLEEP  
0h = No OTP read fault is detected  
1h = OTP read fault detected  
Device power on status. Status remains latched until cleared by write  
to FLT_CLR or reset pulse on nSLEEP  
0h = Cleared by writing 1b to FLT_CLR bit after power-up  
1h = Device has undergone power on reset  
SPI fault status. Status remains latched until cleared by write to  
FLT_CLR or reset pulse on nSLEEP  
0h = No SPI fault is detected  
1h = SPI fault is detected  
Driver over current Status. Status remains latched until cleared by  
write to FLT_CLR or reset pulse on nSLEEP  
0h = No over current condition is detected  
1h = Over current condition is detected  
UVW  
VM under voltage warning fault status. Status remains latched until  
cleared by write to FLT_CLR or reset pulse on nSLEEP  
0h = No VM under voltage warn condition is detected  
1h = VM under voltage warn condition is detected  
OVP  
Over voltage status. Status remains latched until cleared by write to  
FLT_CLR or reset pulse on nSLEEP  
0h = No over voltage condition is detected  
1h = Over voltage condition is detected  
UVP  
Supply under voltage status. Status remains latched until cleared by  
write to FLT_CLR or reset pulse on nSLEEP  
0h = No under voltage condition is detected on VM or CP  
1h = Under voltage condition is detected on VM or CP  
OTF  
Over temperature fault status. Status remains latched until cleared  
by write to FLT_CLR or reset pulse on nSLEEP  
0h = No over temperature warning / shutdown is detected  
1h = Over temperature warning / shutdown is detected  
FAULT  
Device fault status. Status remains latched until cleared by write to  
FLT_CLR or reset pulse on nSLEEP  
0h = No fault condition is detected  
1h = Fault condition is detected  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.6.2 DEV_RSTS Register (Offset = 2h) [Reset = 0000h]  
DEV_RSTS is shown in Figure 8-29 and described in Table 8-12.  
Return to the Table 8-9.  
Figure 8-29. DEV_RSTS Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R-0-0h  
DNRDY_RSTS SYSF_RSTS  
R-0h  
R-0h  
7
6
5
4
3
2
1
0
RESERVED  
R-0-0h  
SPIF_RSTS  
R-0h  
OCP_RSTS  
R-0h  
VMUV_WRSTS  
R-0-0h  
OVP_RSTS  
R-0-0h  
UVP_RSTS  
R-0h  
OTF_RSTS  
R-0h  
RESERVED  
R-0-0h  
Table 8-12. DEV_RSTS Register Field Descriptions  
Bit  
15-10  
9
Field  
RESERVED  
Type  
R-0  
R
Reset  
Description  
0h  
Reserved  
DNRDY_RSTS  
0h  
Device not ready indicator  
0h = Device not ready to drive PWMs  
1h = Device ready to drive PWMs  
8
SYSF_RSTS  
R
0h  
OTP parity error during load, raw status. Cleared by write to  
FLT_CLR or reset pulse on nSLEEP  
0h = No parity error during OTP load  
1h = Parity error occurred during OTP load  
7
6
RESERVED  
SPIF_RSTS  
R-0  
R
0h  
0h  
Reserved  
SPI fault raw status. Cleared by write to FLT_CLR or reset pulse on  
nSLEEP  
0h = No SPI fault is detected  
1h = SPI fault is detected  
5
4
OCP_RSTS  
R
0h  
0h  
Driver OCP raw status. Auto cleared if retry is enabled in  
OCP_MODE. Can also be cleared by write to FLT_CLR or reset  
pulse on nSLEEP.  
0h = No over current condition is detected  
1h = Over current condition is detected  
VMUV_WRSTS  
R-0  
VM under voltage warning fault raw status. Auto cleared if retry is  
enabled in VMUV_WARN_MODE. Can also be cleared by write to  
FLT_CLR or reset pulse on nSLEEP.  
0h = No VM under voltage warn condition is detected (VM >  
VMUV_WARN_RISE threshold)  
1h = VM under voltage warn condition is detected (VM <  
VMUV_WARN_FALL threshold)  
3
2
1
0
OVP_RSTS  
UVP_RSTS  
OTF_RSTS  
RESERVED  
R-0  
R
0h  
0h  
0h  
0h  
Over voltage protection fault raw status. Auto cleared if retry is  
enabled in OVP_MODE. Can also be cleared by write to FLT_CLR or  
reset pulse on nSLEEP.  
0h = No over voltage condition on VM is detected  
1h = VM over voltage condition is detected  
Under voltage protection fault raw status. Auto cleared if retry is  
enabled in UVP_MODE. Can also be cleared by write to FLT_CLR or  
reset pulse on nSLEEP.  
0h = No under voltage condition is detected on VM or CP  
1h = Under voltage condition is detected on VM or CP  
R
Over temperature fault raw status. Auto cleared if retry is enabled  
in OTF_MODE. Can also be cleared by write to FLT_CLR or reset  
pulse on nSLEEP.  
0h = No over temperature warning/shutdown is detected  
1h = Over temperature warning/shutdown is detected  
R-0  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.6.3 OT_STS Register (Offset = 4h) [Reset = 0000h]  
OT_STS is shown in Figure 8-30 and described in Table 8-13.  
Return to the Table 8-9.  
Figure 8-30. OT_STS Register  
15  
14  
13  
12  
11  
10  
9
8
PARITY  
R-0h  
RESERVED  
R-0-0h  
7
6
5
4
3
2
1
0
RESERVED  
R-0-0h  
RESERVED  
R-0h  
OTW_FET  
R-0h  
OTS_FET  
R-0h  
Table 8-13. OT_STS Register Field Descriptions  
Bit  
15  
14-3  
2
Field  
Type  
Reset  
Description  
PARITY  
R
0h  
Parity Bit if SPI_PEN is set to '1' otherwise reserved  
RESERVED  
RESERVED  
OTW_FET  
R-0  
R
0h  
Reserved  
Reserved  
0h  
1
R
0h  
FET over temperature warning fault status. Auto cleared if retry is  
enabled in OTF_MODE. Can also be cleared by write to FLT_CLR or  
reset pulse on nSLEEP.  
0h = No FET over temperature warning is detected  
1h = FET over temperature warning is detected  
0
OTS_FET  
R
0h  
FET over temperature shutdown fault status. Auto cleared if retry is  
enabled in OTF_MODE. Can also be cleared by write to FLT_CLR or  
reset pulse on nSLEEP.  
0h = No FET over temperature shutdown is detected  
1h = FET over temperature shutdown is detected  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.6.4 SUP_STS Register (Offset = 5h) [Reset = 0000h]  
SUP_STS is shown in Figure 8-31 and described in Table 8-14.  
Return to the Table 8-9.  
Figure 8-31. SUP_STS Register  
15  
14  
13  
12  
11  
10  
9
8
PARITY  
R-0h  
RESERVED  
R-0-0h  
7
6
5
4
3
2
1
0
VMUV_WARN  
R-0-0h  
VM_OV  
R-0-0h  
RESERVED  
R-0-0h  
CP_UV  
R-0h  
RESERVED  
R-0-0h  
RESERVED  
R-0h  
VM_UV  
R-0-0h  
RESERVED  
R-0h  
Table 8-14. SUP_STS Register Field Descriptions  
Bit  
15  
Field  
PARITY  
Type  
Reset  
Description  
R
0h  
Parity Bit if SPI_PEN is set to '1' otherwise reserved  
Reserved  
14-8  
7
RESERVED  
R-0  
R-0  
0h  
VMUV_WARN  
0h  
VM under voltage warning fault status. This bit is not auto cleared  
even when retry is enabled in VMUV_WARN_MODE. Can be  
cleared by write to FLT_CLR or reset pulse on nSLEEP.  
0h = No VM under voltage warning is detected  
1h = VM under voltage warning is detected  
6
VM_OV  
R-0  
0h  
VM over voltage fault status. This bit is not auto cleared even when  
retry is enabled in OVP_MODE. Can be cleared by write to FLT_CLR  
or reset pulse on nSLEEP.  
0h = No VM over voltage is detected  
1h = VM over voltage is detected  
5
4
RESERVED  
CP_UV  
R-0  
R
0h  
0h  
Reserved  
Charge pump under voltage fault status. This bit is not auto cleared  
even when retry is enabled in UVP_MODE. Can be cleared by write  
to FLT_CLR or reset pulse on nSLEEP.  
0h = No charge pump under voltage is detected  
1h = Charge pump under voltage is detected  
3
2
1
RESERVED  
RESERVED  
VM_UV  
R-0  
R
0h  
0h  
0h  
Reserved  
Reserved  
R-0  
VM under voltage fault status. This bit is not auto cleared even when  
retry is enabled in UVP_MODE. Can be cleared by write to FLT_CLR  
or reset pulse on nSLEEP.  
0h = No VM under voltage is detected  
1h = VM under voltage is detected  
0
RESERVED  
R
0h  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.6.5 DRV_STS Register (Offset = 6h) [Reset = 0000h]  
DRV_STS is shown in Figure 8-32 and described in Table 8-15.  
Return to the Table 8-9.  
Figure 8-32. DRV_STS Register  
15  
14  
13  
12  
11  
10  
9
8
PARITY  
R-0h  
RESERVED  
R-0-0h  
7
6
5
4
3
2
1
0
RESERVED  
R-0-0h  
OCPC_HS  
R-0h  
OCPB_HS  
R-0h  
OCPA_HS  
R-0h  
RESERVED  
R-0-0h  
OCPC_LS  
R-0h  
OCPB_LS  
R-0h  
OCPA_LS  
R-0h  
Table 8-15. DRV_STS Register Field Descriptions  
Bit  
15  
Field  
PARITY  
Type  
Reset  
Description  
R
0h  
Parity Bit if SPI_PEN is set to '1' otherwise reserved  
Reserved  
14-7  
6
RESERVED  
OCPC_HS  
R-0  
R
0h  
0h  
Over current status on high-side MOSFET of OUTC. Auto cleared  
if retry is enabled in OCP_MODE. Can also be cleared by write to  
FLT_CLR or reset pulse on nSLEEP.  
0h = No over current detected on high-side MOSFET of OUTC  
1h = Over current detected on high-side MOSFET of OUTC  
5
4
OCPB_HS  
OCPA_HS  
R
R
0h  
0h  
Over current status on high-side MOSFET of OUTB. Auto cleared  
if retry is enabled in OCP_MODE. Can also be cleared by write to  
FLT_CLR or reset pulse on nSLEEP.  
0h = No over current detected on high-side MOSFET of OUTB  
1h = Over current detected on high-side MOSFET of OUTB  
Over current status on high-side MOSFET of OUTA. Auto cleared  
if retry is enabled in OCP_MODE. Can also be cleared by write to  
FLT_CLR or reset pulse on nSLEEP.  
0h = No over current detected on high-side MOSFET of OUTA  
1h = Over current detected on high-side MOSFET of OUTA  
3
2
RESERVED  
OCPC_LS  
R-0  
R
0h  
0h  
Reserved  
Over current status on low-side MOSFET of OUTC. Auto cleared  
if retry is enabled in OCP_MODE. Can also be cleared by write to  
FLT_CLR or reset pulse on nSLEEP.  
0h = No over current detected on low-side MOSFET of OUTC  
1h = Over current detected on low-side MOSFET of OUTC  
1
0
OCPB_LS  
OCPA_LS  
R
R
0h  
0h  
Over current status on low-side MOSFET of OUTB. Auto cleared  
if retry is enabled in OCP_MODE. Can also be cleared by write to  
FLT_CLR or reset pulse on nSLEEP.  
0h = No over current detected on low-side MOSFET of OUTB  
1h = Over current detected on low-side MOSFET of OUTB  
Over current status on low-side MOSFET of OUTA. Auto cleared if  
retry is enabled in OCP_MODE. Can also be cleared by write to  
FLT_CLR or reset pulse on nSLEEP.  
0h = No over current detected on low-side MOSFET of OUTA  
1h = Over current detected on low-side MOSFET of OUTA  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.6.6 SYSIF_STS Register (Offset = 7h) [Reset = 0000h]  
SYSIF_STS is shown in Figure 8-33 and described in Table 8-16.  
Return to the Table 8-9.  
Figure 8-33. SYSIF_STS Register  
15  
14  
13  
12  
11  
10  
9
8
PARITY  
R-0h  
RESERVED  
R-0-0h  
7
6
5
4
3
2
1
0
RESERVED  
R-0-0h  
OTPLD_ERR  
R-0h  
RESERVED  
R-0-0h  
SPI_PARITY  
R-0h  
BUS_CNT  
R-0h  
FRM_ERR  
R-0h  
Table 8-16. SYSIF_STS Register Field Descriptions  
Bit  
15  
Field  
Type  
Reset  
Description  
PARITY  
R
0h  
Parity Bit if SPI_PEN is set to '1' otherwise reserved  
Reserved  
14-5  
4
RESERVED  
OTPLD_ERR  
R-0  
R
0h  
0h  
OTP parity error during load  
0h = No OTP read error is detected  
1h = OTP read error is detected  
3
2
RESERVED  
SPI_PARITY  
R-0  
R
0h  
0h  
Reserved  
SPI parity error  
0h = No SPI Parity Error is detected  
1h = SPI Parity Error is detected  
1
0
BUS_CNT  
FRM_ERR  
R
R
0h  
0h  
SPI bus contention error  
0h = No SPI Bus Contention Error is detected  
1h = SPI Bus Contention Error is detected  
SPI frame error  
0h = No SPI Frame Error is detected  
1h = SPI Frame Error is detected  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.6.7 FLT_MODE Register (Offset = 10h) [Reset = 0015h]  
FLT_MODE is shown in Figure 8-34 and described in Table 8-17.  
Return to the Table 8-9.  
Figure 8-34. FLT_MODE Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
PARITY  
R/W-0h  
RESERVED  
R-0-0h  
VMUV_WARN_MODE  
R/W-0h  
OVP_MODE  
R/W-0h  
RESERVED  
R/W-0h  
0
7
6
5
4
3
SPIFLT_MODE  
R/W-0h  
OCP_MODE  
R/W-1h  
UVP_MODE  
R/W-1h  
OTF_MODE  
R/W-1h  
Table 8-17. FLT_MODE Register Field Descriptions  
Bit  
15  
Field  
PARITY  
Type  
R/W  
R-0  
Reset  
Description  
0h  
Parity Bit if SPI_PEN is set to '1' otherwise reserved  
Reserved  
14-13  
12-11  
RESERVED  
0h  
VMUV_WARN_MODE  
R/W  
0h  
VM under voltage warning fault mode  
0h = Report on nFAULT, latch into status register, pre-driver Hi-Z,  
auto recovery with slow retry time (in ms)  
1h = Report on nFAULT, latch into status register, pre-driver Hi-Z,  
auto recovery with fast retry time (in ms)  
2h = Report on nFAULT, latch into status register, no action on pre-  
driver  
3h = Disabled  
10-9  
OVP_MODE  
R/W  
0h  
Over voltage protection fault mode  
0h = Report on nFAULT, latch into status register, pre-driver Hi-Z,  
auto recovery with slow retry time (in ms)  
1h = Report on nFAULT, latch into status register, pre-driver Hi-Z,  
auto recovery with fast retry time (in ms)  
2h = Reserved  
3h = Reserved  
8
7
RESERVED  
R/W  
R/W  
0h  
0h  
Reserved  
SPIFLT_MODE  
SPI fault mode  
0h = Report on nFAULT, latch into status register, no action on pre-  
driver  
1h = Disabled  
6-4  
OCP_MODE  
R/W  
1h  
Over current protection fault mode  
0h = Report on nFAULT, Latch into status register, pre-driver Hi-Z,  
auto recovery with slow retry time (in ms)  
1h = Report on nFAULT, Latch into status register, pre-driver Hi-Z,  
auto recovery with fast retry time (in ms)  
2h = Report on nFAULT, Latch into status register, pre-driver Hi-Z, no  
auto recovery, wait for CLR_FLT  
3h = Report on nFAULT, Latch into status register, No action on  
pre-driver  
4h = Reserved  
5h = Reserved  
6h = Reserved  
7h = Reserved  
3-2  
UVP_MODE  
R/W  
1h  
Under voltage protection fault mode  
0h = Report on nFAULT, Latch into status register, pre-driver Hi-Z,  
auto recovery with slow retry time (in ms)  
1h = Report on nFAULT, Latch into status register, pre-driver Hi-Z,  
auto recovery with fast retry time (in ms)  
2h = Reserved  
3h = Reserved  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
Table 8-17. FLT_MODE Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1-0  
OTF_MODE  
R/W  
1h  
Over temperature fault mode  
0h = Report on nFAULT, Latch into status register, pre-driver Hi-Z,  
auto recover with Slow Retry time (in ms)  
1h = Report on nFAULT, Latch into status register, pre-driver Hi-Z,  
auto recover with Fast Retry time (in ms)  
2h = Reserved  
3h = Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: DRV8317  
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.6.8 SYSF_CTRL Register (Offset = 12h) [Reset = 0553h]  
SYSF_CTRL is shown in Figure 8-35 and described in Table 8-18.  
Return to the Table 8-9.  
Figure 8-35. SYSF_CTRL Register  
15  
14  
13  
12  
11  
10  
9
8
PARITY  
R/W-0h  
RESERVED  
R-0-0h  
DNRDY_EN  
R/W-1h  
OTW_FET_EN  
R/W-0h  
RESERVED  
R/W-1h  
7
6
5
4
3
2
1
0
VMUV_WARN_  
EN  
RESERVED  
RESERVED  
R-0-0h  
RESERVED  
RESERVED  
R-0-0h  
RESERVED  
RESERVED  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
Table 8-18. SYSF_CTRL Register Field Descriptions  
Bit  
15  
Field  
PARITY  
Type  
R/W  
R-0  
Reset  
Description  
0h  
Parity Bit if SPI_PEN is set to '1' otherwise reserved  
Reserved  
14-11  
10  
RESERVED  
DNRDY_EN  
0h  
R/W  
1h  
Device not ready fault enable  
0h = Device not ready fault is disabled  
1h = Device not ready fault is enabled  
9
OTW_FET_EN  
R/W  
0h  
FET over temperature warning fault enable  
0h = FET over temperature warning is disabled  
1h = FET over temperature warning is enabled  
8
7
RESERVED  
R/W  
R/W  
1h  
0h  
Reserved  
VMUV_WARN_EN  
VM under voltage warn fault enable  
0h = VM under voltage warning fault is disabled  
1h = VM under voltage warning fault is enabled  
6
5
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R/W  
R-0  
1h  
0h  
1h  
0h  
1h  
1h  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
4
R/W  
R-0  
3-2  
1
R/W  
R/W  
0
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.6.9 DRVF_TCTRL Register (Offset = 13h) [Reset = 0155h]  
DRVF_TCTRL is shown in Figure 8-36 and described in Table 8-19.  
Return to the Table 8-9.  
Figure 8-36. DRVF_TCTRL Register  
15  
14  
13  
12  
11  
10  
2
9
8
0
PARITY  
R/W-0h  
RESERVED  
R-0-0h  
RESERVED  
R/W-1h  
7
6
5
4
3
1
RESERVED  
OCP_DEG  
R/W-1h  
OCP_TBLANK  
R/W-1h  
VMUV_WARN_TDG  
R/W-1h  
R/W-1h  
Table 8-19. DRVF_TCTRL Register Field Descriptions  
Bit  
15  
Field  
Type  
R/W  
R-0  
Reset  
Description  
PARITY  
0h  
Parity Bit if SPI_PEN is set to '1' otherwise reserved  
14-10  
9-8  
RESERVED  
RESERVED  
RESERVED  
OCP_DEG  
0h  
Reserved  
Reserved  
Reserved  
R/W  
R/W  
R/W  
1h  
7-6  
1h  
5-4  
1h  
OCP deglitch time  
0h = 0.3 µs  
1h = 0.6 µs  
2h = 0.9 µs  
3h = 1.2 µs  
3-2  
1-0  
OCP_TBLANK  
R/W  
R/W  
1h  
1h  
OCP blanking time  
0h = 0.3 µs  
1h = 0.7 µs  
2h = 2 µs  
3h = 1.2 µs  
VMUV_WARN_TDG  
VM under voltage warning deglitch time  
0h = 0.3 µs  
1h = 0.6 µs  
2h = 0.9 µs  
3h = 2 µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.6.10 FLT_TCTRL Register (Offset = 16h) [Reset = 0003h]  
FLT_TCTRL is shown in Figure 8-37 and described in Table 8-20.  
Return to the Table 8-9.  
Figure 8-37. FLT_TCTRL Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
PARITY  
R/W-0h  
RESERVED  
R-0-0h  
7
6
5
4
3
RESERVED  
R-0-0h  
SLOW_TRETRY  
R/W-0h  
FAST_TRETRY  
R/W-3h  
Table 8-20. FLT_TCTRL Register Field Descriptions  
Bit  
15  
Field  
Type  
R/W  
R-0  
Reset  
Description  
PARITY  
0h  
Parity Bit if SPI_PEN is set to '1' otherwise reserved  
Reserved  
14-4  
3-2  
RESERVED  
0h  
SLOW_TRETRY  
R/W  
0h  
Retry time (typical) for slow recovery from fault condition  
0h = 0.5s  
1h = 1s  
2h = 2s  
3h = 5s  
1-0  
FAST_TRETRY  
R/W  
3h  
Retry time (typical) for fast recovery from fault condition  
0h = 0.5ms  
1h = 1ms  
2h = 2ms  
3h = 5ms  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.6.11 FLT_CLR Register (Offset = 17h) [Reset = 0000h]  
FLT_CLR is shown in Figure 8-38 and described in Table 8-21.  
Return to the Table 8-9.  
Figure 8-38. FLT_CLR Register  
15  
14  
13  
12  
11  
10  
2
9
8
RESERVED  
R/W-0h  
RESERVED  
R-0-0h  
7
6
5
4
3
1
0
RESERVED  
R-0-0h  
FLT_CLR  
W-0h  
Table 8-21. FLT_CLR Register Field Descriptions  
Bit  
15  
Field  
Type  
R/W  
R-0  
W
Reset  
Description  
Reserved  
Reserved  
RESERVED  
RESERVED  
FLT_CLR  
0h  
14-1  
0
0h  
0h  
Clear latched faults  
0h = No clear fault command is issued  
1h = To clear the latched fault bits. This bit automatically resets after  
being written.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.6.12 VMUV_WARN_THR Register (Offset = 18h) [Reset = 0000h]  
VMUV_WARN_THR is shown in Figure 8-39 and described in Table 8-22.  
Return to the Table 8-9.  
Figure 8-39. VMUV_WARN_THR Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
PARITY  
R/W-0h  
RESERVED  
R-0-0h  
7
6
5
4
3
2
VMUV_WARN_RTH  
R/W-0h  
VMUV_WARN_FTH  
R/W-0h  
Table 8-22. VMUV_WARN_THR Register Field Descriptions  
Bit  
15  
Field  
Type  
R/W  
R-0  
Reset  
Description  
PARITY  
0h  
Parity Bit if SPI_PEN is set to '1' otherwise reserved  
Reserved  
14-8  
7-4  
RESERVED  
VMUV_WARN_RTH  
0h  
R/W  
0h  
VM under voltage warning rising threshold  
0h = 5.62V  
1h = 6.25V  
2h = 6.87V  
3h = 7.5V  
4h = 8.12V  
5h = 8.75V  
6h = 9.37V  
7h = 10.00V  
8h = 10.62V  
9h = 11.25V  
Ah = 11.87V  
Bh = 12.5V  
Ch = 13.75V  
Dh = 15.00V  
Eh = 16.25V  
Fh = 17.5V  
3-0  
VMUV_WARN_FTH  
R/W  
0h  
VM under voltage warning falling threshold  
0h = 5.4V  
1h = 6.0V  
2h = 6.6V  
3h = 7.2V  
4h = 7.8V  
5h = 8.4V  
6h = 9.0V  
7h = 9.6V  
8h = 10.2V  
9h = 10.8V  
Ah = 11.4V  
Bh = 12.0V  
Ch = 13.2V  
Dh = 14.4V  
Eh = 15.6V  
Fh = 16.8V  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.6.13 PWM_CTRL Register (Offset = 20h) [Reset = 0000h]  
PWM_CTRL is shown in Figure 8-40 and described in Table 8-23.  
Return to the Table 8-9.  
Figure 8-40. PWM_CTRL Register  
15  
14  
13  
12  
11  
10  
9
8
0
PARITY  
R/W-0h  
RESERVED  
R-0-0h  
7
6
5
4
3
2
1
RESERVED  
R-0-0h  
SSC_DIS  
R/W-0h  
PWM_MODE  
R/W-0h  
Table 8-23. PWM_CTRL Register Field Descriptions  
Bit  
15  
Field  
Type  
R/W  
R-0  
Reset  
Description  
PARITY  
0h  
Parity Bit if SPI_PEN is set to '1' otherwise reserved  
Reserved  
14-3  
2
RESERVED  
SSC_DIS  
0h  
R/W  
0h  
Disable SSC on oscillator  
0h = SSC enabled  
1h = SSC disabled  
1-0  
PWM_MODE  
R/W  
0h  
PWM mode selection  
0h = 6x mode  
1h = 6x direct mode  
2h = 3x mode  
3h = 3x direct mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.6.14 DRV_CTRL Register (Offset = 22h) [Reset = 0003h]  
DRV_CTRL is shown in Figure 8-41 and described in Table 8-24.  
Return to the Table 8-9.  
Figure 8-41. DRV_CTRL Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
PARITY  
R/W-0h  
RESERVED  
R-0-0h  
DLY_TARGET  
R/W-0h  
7
6
5
4
3
DLYCMP_EN  
R/W-0h  
RESERVED  
R-0-0h  
SLEW_RATE  
R/W-3h  
Table 8-24. DRV_CTRL Register Field Descriptions  
Bit  
15  
Field  
PARITY  
Type  
R/W  
R-0  
Reset  
Description  
0h  
Parity Bit if SPI_PEN is set to '1' otherwise reserved  
Reserved  
14-12  
11-8  
7
RESERVED  
DLY_TARGET  
DLYCMP_EN  
0h  
R/W  
R/W  
0h  
Delay Target : DLY_TARGET * 0.2µs  
0h  
Driver Delay Compensation enable  
0h = Delay compensation disabled  
1h = Delay compensation enabled  
6-2  
1-0  
RESERVED  
SLEW_RATE  
R-0  
0h  
3h  
Reserved  
R/W  
Slew rate settings  
0h = Slew rate is 25 V/µs  
1h = Slew rate is 50 V/µs  
2h = Slew rate is 125 V/µs  
3h = Slew rate is 200 V/µs  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.6.15 CSA_CTRL Register (Offset = 23h) [Reset = 0008h]  
CSA_CTRL is shown in Figure 8-42 and described in Table 8-25.  
Return to the Table 8-9.  
Figure 8-42. CSA_CTRL Register  
15  
14  
13  
12  
11  
10  
9
8
0
PARITY  
R/W-0h  
RESERVED  
R-0-0h  
7
6
5
4
3
2
1
RESERVED  
R-0-0h  
CSA_EN  
R/W-1h  
RESERVED  
R-0-0h  
CSA_GAIN  
R/W-0h  
Table 8-25. CSA_CTRL Register Field Descriptions  
Bit  
15  
Field  
Type  
R/W  
R-0  
Reset  
Description  
PARITY  
0h  
Parity Bit if SPI_PEN is set to '1' otherwise reserved  
Reserved  
14-4  
3
RESERVED  
CSA_EN  
0h  
R/W  
1h  
Enable CSA  
0h = CSA is disabled  
1h = CSA is enabled  
2
RESERVED  
CSA_GAIN  
R-0  
0h  
0h  
Reserved  
1-0  
R/W  
CSA Gain settings  
0h = CSA gain is 0.25 V/A  
1h = CSA gain is 0.5 V/A  
2h = CSA gain is 1 V/A  
3h = CSA gain is 2 V/A  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
8.6.16 SYS_CTRL Register (Offset = 3Fh) [Reset = 5008h]  
SYS_CTRL is shown in Figure 8-43 and described in Table 8-26.  
Return to the Table 8-9.  
Figure 8-43. SYS_CTRL Register  
15  
14  
13  
12  
11  
10  
2
9
8
PARITY  
R/W-0h  
WRITE_KEY  
W-5h  
RESERVED  
R-0-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-0h  
0
7
6
5
4
3
1
REG_LOCK  
R/W-0h  
SPI_PEN  
R/W-0h  
RESERVED  
R/W-0h  
RESERVED  
R/W-1h  
RESERVED  
R/W-0h  
Table 8-26. SYS_CTRL Register Field Descriptions  
Bit  
15  
Field  
Type  
R/W  
W
Reset  
Description  
PARITY  
0h  
Parity Bit if SPI_PEN is set to '1' otherwise reserved  
14-12  
11-10  
9
WRITE_KEY  
RESERVED  
RESERVED  
RESERVED  
REG_LOCK  
5h  
0x5 : Write Key specific to this register.  
R-0  
0h  
Reserved  
Reserved  
Reserved  
R/W  
R/W  
R/W  
0h  
8
0h  
7
0h  
Register Lock Bit  
0h = Registers Unlocked  
1h = Registers Locked  
6
SPI_PEN  
R/W  
0h  
Parity Enable for SPI  
0h = Parity Disabled  
1h = Parity Enabled  
5-4  
3
RESERVED  
RESERVED  
RESERVED  
R/W  
R/W  
R/W  
0h  
1h  
0h  
Reserved  
Reserved  
Reserved  
2-0  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The DRV8317 can be used to drive brushless-DC motors. The following design procedure can be used to  
configure the DRV8317.  
VVM  
+
0.1 µF  
VM  
47 nF  
CPH  
0.1 µF  
10 µF  
0.1 µF  
CP  
VCC  
CPL  
Voltage  
Supervisor  
CSAREF  
VIN_AVDD  
Microcontroller  
+
0.1 µF  
10 µF  
ADC  
ADC  
ADC  
ADC  
External  
Load  
22 pF  
330  
330  
SOC  
SOB  
AVDD  
AGND  
Current  
Sensing  
CAVDD  
CSA  
22 pF  
330  
SOA  
22 pF  
5.1 k  
DRV8317S  
nFAULT  
nSLEEP  
GP-I  
Hall  
Sensors  
(Optional)  
Sleep Control  
OUTA  
A
B
B
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
GP-O  
GP-O  
OUTB  
OUTC  
PWM  
Control  
Module  
PWM  
Control  
Input  
GP-O  
GP-O  
GP-O  
GP-O  
SDO  
GP-I  
GP-O  
GP-O  
GP-O  
nSCS  
SCLK  
PGND  
SPI  
SPI  
SDI  
Hall Input  
GP-I  
GP-I  
GP-I  
Figure 9-1. Application Schematics (DRV8317S)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: DRV8317  
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
9.2 Typical Applications  
9.2.1 Three-Phase Brushless-DC Motor Control  
In this application, the DRV8317 is used to drive a brushless-DC motor using PWMs from an external  
microcontroller.  
9.2.1.1 Detailed Design Procedure  
Table 9-1 lists the example input parameters for the system design.  
Table 9-1. Design Parameters  
DESIGN PARAMETERS  
Supply voltage  
REFERENCE  
VVM  
EXAMPLE VALUE  
12 V  
2 A  
Motor RMS current  
IRMS  
Motor peak current  
IPEAK  
3 A  
PWM Frequency  
fPWM  
50 kHz  
200 V/µs  
12 V  
Slew Rate Setting  
SR  
VIN_AVDD supply voltage  
CSA reference voltage  
System ambient temperature  
VVIN_AVDD  
VCSA_REF  
TA  
3.0 V  
–20°C to +50°C  
9.2.1.1.1 Motor Voltage  
Brushless-DC motors are typically rated for a certain voltage (for example, 5V or 12V). The DRV8317 allows for  
a range of possible operating voltages from 4.5-V to 20-V.  
9.2.1.2 Driver Propagation Delay and Dead Time  
The propagation delay is defined as the time taken for changing input logic edges INHx and INLx (whichever  
changes first, if MCU dead time is added) to change the half-bridge output voltage (OUTx). Driver propagation  
delay (tPD) and dead time (tdead) are specified with a typical and maximum value, but not with a minimum value.  
This is because the propagation delay can be smaller than typical depending on the direction of current at  
the OUTx pin during synchronous switching. Driver propagation delay and dead time can be more than typical  
values due to slower internal turn-on of the high-side or low-side internal MOSFETs to avoid parasitic dV/dt  
coupling.  
For more information and examples of how propagation delay and dead time differs for input PWM and output  
configurations, refer to Delay and Dead Time in Integrated MOSFET Drivers .  
The dead time from the external microcontroller’s (MCU) PWM inputs (INHx, INLx) can be used as an extra  
precaution in addition to the DRV8317 internal shoot-through (cross conduction) protection. If the MCU dead  
time is less than the DRV8317 driver dead time, actual output (OUTx voltage) dead time will be decided by  
the DRV8317 dead time (tDEAD). If the MCU dead time is larger than the driver dead time, actual output (OUTx  
voltage) dead time will be decided by the MCU dead time.  
A summary of the DRV8317 delay times with respect to synchronous inputs INHx and INLx, OUTx current  
direction, and MCU dead time are listed in Table 9-2.  
Table 9-2. Summary of Delay Times in DRV8317 Depending on Logic Inputs and Output Current Direction  
OUTx Current INHx  
Direction  
INLx  
Propagation Delay Dead Time (tDEAD  
)
Inserted MCU Dead Time (tDEAD(MCU)  
)
(tPD  
)
tDEAD(MCU) ≤ tDEAD tDEAD(MCU) > tDEAD  
Out of OUTx  
Rising  
Falling  
Falling ≤ tPD (max)  
Rising ≤ tPD (typ.)  
≤ tDEAD (max)  
≤ tDEAD (typ.)  
Output dead time ≤ tDEAD Output dead time = tDEAD(MCU)  
(max)  
Output dead time ≤ tDEAD Output dead time < tDEAD(MCU)  
(typ.)  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
Table 9-2. Summary of Delay Times in DRV8317 Depending on Logic Inputs and Output Current Direction  
(continued)  
OUTx Current INHx  
Direction  
INLx  
Propagation Delay Dead Time (tDEAD  
(tPD  
)
Inserted MCU Dead Time (tDEAD(MCU)  
)
)
tDEAD(MCU) ≤ tDEAD tDEAD(MCU) > tDEAD  
Into OUTx  
Rising  
Falling  
Falling ≤ tPD (typ.)  
Rising ≤ tPD (max)  
≤ tDEAD (typ.)  
≤ tDEAD (max)  
Output dead time ≤ tDEAD Output dead time < tDEAD(MCU)  
(typ.)  
Output dead time ≤ tDEAD Output dead time = tDEAD(MCU)  
(max)  
9.2.1.3 Delay Compensation  
Differences in delays of dead time and propagation delay can cause mismatch in the output timings of PWMs,  
which can lead to duty cycle distortion. In order to accommodate differences in propagation delay between the  
conditions mentioned in Table 9-2, DRV8317 integrates a delay compensation feature.  
Delay compensation is used to match delay times for currents going into and out of phase (OUTx) by adding a  
variable delay time (tvar) to match a preset target delay time equal to the propagation delay plus driver dead time  
(tPD + tDRV_DEAD). This (tvar) setting is automatically configured by the DRV8317 when the DLYCMP_EN bit is set  
to 1b.  
9.2.1.4 Current Sensing and Output Filtering  
The SOx pins are typically sampled by an analog-to-digital converter in the MCU to calculate the phase current.  
Phase current information is used for closed-loop control such as Field-Oriented Control (FOC).  
An example calculation for phase current is shown in Equation 3.  
SOx = VREF/2 + GCSA * IOUTx  
(3)  
For example, in a system with VREF = 3-V, CSA gain = 0.5 V/A, and a SOx voltage of 1.2-V, phase current  
(IOUTx) = -0.6A.  
Sometimes high frequency noise can appear at the SOx signals based on voltage ripple at VREF, added  
inductance at the SOx traces, or routing of SOx traces near high frequency components. It is recommended to  
add a low-pass RC filter close to the MCU with cut-off frequency at least 10 times the PWM switching frequency  
for trapezoidal commutation and 100 times the PWM switching frequency for sinusoidal commutation to filter  
high frequency noise. A recommended RC filter is 330-ohms, 22-pF to add minimal parallel capacitance to the  
ADC and current mirroring circuitry without increasing the settling time of the CSA output.  
The cutoff frequency for the low-pass RC filter is in Equation 4.  
1
f =  
(4)  
c
2πRC  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: DRV8317  
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
9.2.1.5 Application Curves  
Figure 9-2. Device Power up with VM (VM, nFAULT,  
nSLEEP, AVDD)  
Figure 9-3. Device Power up with nSLEEP (VM,  
nFAULT, nSLEEP, AVDD)  
Figure 9-4. Driver PWM Operation (OUTA, OUTB,  
OUTC, I_A)  
Figure 9-5. Driver PWM Operation with Current  
Sense Feedback (INHA, OUTA, SOA, I_A)  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: DRV8317  
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
9.3 Alternate Applications  
The DRV8317 can be used to drive brushed-DC motors and solenoid loads. The following design procedure can  
be used to configure the DRV8317.  
VVM  
+
47 nF  
CPH  
0.1 µF  
VM  
0.1 µF  
10 µF  
0.1 µF  
CPL  
CP  
VCC  
Voltage  
Supervisor  
CSAREF  
VIN_AVDD  
Microcontroller  
+
0.1 µF  
10 µF  
ADC  
External  
Load  
22 pF  
330  
330  
AVDD  
AGND  
ADC  
ADC  
ADC  
SOC  
SOB  
Current  
Sensing  
CAVDD  
CSA  
22 pF  
330  
SOA  
22 pF  
5.1 k  
DRV8317H  
nFAULT  
GP-I  
Sleep Control  
nSLEEP  
OUTA  
M
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
GP-O  
GP-O  
OUTB  
OUTC  
VVM  
PWM  
Control  
Module  
PWM  
Control  
Input  
GP-O  
GP-O  
GP-O  
GP-O  
Load  
AVDD  
MODE  
SLEW  
PGND  
HW  
GAIN  
Figure 9-6. Application Schematics (DRV8317H) - Brushed-DC and Solenoid Load Drive Block Diagram  
6x PWM mode or 3x PWM mode can be used to drive brushed-DC and/or solenoid loads depending on the  
application. A Brushed-DC motor can be connected to two OUTx phases to create an integrated full H-bridge  
configuration to drive the motor in both direction.  
Solenoid loads can be connected from OUTx to VM or GND to use the DRV8317 as a push-pull driver in 6x  
PWM or 3x PWM mode. When the load is connected from OUTx to GND, the HS MOSFET sources current into  
the solenoid, and the LS MOSFET acts as a recirculation diode to recirculate current from the solenoid. When  
the load is connected from OUTx to VM, the LS MOSFET sink current from the solenoid to GND, and the HS  
MOSFET acts as a recirculation diode to recirculate current from the solenoid.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: DRV8317  
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
10 Power Supply Recommendations  
10.1 Bulk Capacitance  
Having an appropriate local bulk capacitance is an important factor in motor drive system design. It is generally  
beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.  
The amount of local capacitance needed depends on a variety of factors, including:  
The highest current required by the motor system  
The capacitance and current capability of the power supply  
The amount of parasitic inductance between the power supply and motor system  
The acceptable voltage ripple  
The type of motor used (brushed dc, brushless DC, stepper)  
The motor braking method  
The inductance between the power supply and the motor drive system limits the rate current can change from  
the power supply. If the local bulk capacitance is too small, the system responds to excessive current demands  
or dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage  
remains stable and high current can be quickly supplied.  
The data sheet generally provides a recommended value, but system-level testing is required to determine the  
appropriate sized bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
+
Motor Driver  
œ
GND  
Local  
Bulk Capacitor  
IC Bypass  
Capacitor  
Figure 10-1. Example Setup of Motor Drive System With External Power Supply  
The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases  
when the motor transfers energy to the supply.  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
The bulk capacitor should be placed to minimize the distance of the high-current path through the motor driver  
device. The connecting metal trace widths should be as wide as possible, and numerous vias should be used  
when connecting PCB layers. These practices minimize inductance and allow the bulk capacitor to deliver high  
current.  
Small-value capacitors should be ceramic, and placed closely to device pins including, AVDD, charge pump,  
CSAREF, VINAVDD and VM.  
The high-current device outputs should use wide metal traces.  
To reduce noise coupling and EMI interference from large transient currents into small-current signal paths,  
grounding should be partitioned between PGND and AGND. TI recommends connecting all non-power stage  
circuitry (including the thermal pad) to AGND to reduce parasitic effects and improve power dissipation from  
the device. Ensure grounds are connected through net-ties to reduce voltage offsets and maintain gate driver  
performance. A common ground plane can also be used for PGND and AGND to minimize inductance in the  
grounding, but it is recommended to place motor switching outputs as far away from analog and digital signals  
so motor noise does not couple into the analog and digital circuits.  
The device thermal pad should be soldered to the PCB top-layer ground plane. Multiple vias should be used to  
connect to a large bottom-layer ground plane. The use of large metal planes and multiple vias helps dissipate  
the heat that is generated in the device.  
To improve thermal performance, maximize the ground area that is connected to the thermal pad ground across  
all possible layers of the PCB. Using thick copper pours can lower the junction-to-air thermal resistance and  
improve thermal dissipation from the die surface.  
Figure 11-1 shows a recommended layout example.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: DRV8317  
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
11.2 Layout Example  
Figure 11-1. Recommended Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
11.3 Thermal Considerations  
The DRV8317 has thermal shutdown (OTS) as previously described. A die temperature in excess of 145°C  
(min.) can disable the device until the temperature drops to a safe level.  
Any tendency of the device to enter thermal shutdown is an indication of excessive power dissipation, insufficient  
heatsinking, or too high an ambient temperature.  
11.3.1 Power Dissipation and Junction Temperature Estimation  
Power Dissipation  
The power loss in DRV8317 include standby losses, LDO losses, FET conduction and switching losses, and  
diode losses. The FET conduction loss dominates the total power dissipation in DRV8317. At start-up and fault  
conditions, the output current is much higher than normal current; remember to take these peak currents and  
their duration into consideration. The total device dissipation is the power dissipated in each of the three half  
bridges added together. The maximum amount of power that the device can dissipate depends on ambient  
temperature and heatsinking. Note that RDS,ON increases with temperature, so as the device heats, the power  
dissipation increases. Take this into consideration when designing the PCB and heatsinking.  
A summary of equations for calculating each loss is listed in Table 11-1 for trapezoidal control and field-oriented  
control.  
Table 11-1. DRV8317 Power Losses for Trapezoidal and Field-oriented Control  
Loss type  
Standby power  
AVDD LDO  
Trapezoidal control  
Field-oriented control  
Pstandby = VVM x IVMS  
PLDO = (VVIN_AVDD - VAVDD) x IAVDD  
FET conduction  
PCON = 2 x (IPK(trap))2 x RDS,ON(TJ)  
PCON = 3 x (IRMS(FOC))2 x RDS,ON(TJ)  
PSW = 3 x IRMS(FOC) x VPK(FOC) x trise/fall  
fPWM  
Pdiode = 6 x IRMS(FOC) x VF(diode) x tDEAD  
fPWM  
x
x
FET switching  
PSW = IPK(trap) x VPK(trap) x trise/fall x fPWM  
Diode (dead time)  
Pdiode = 2 x IPK(trap) x VF(diode) x tDEAD x fPWM  
Note  
RDS,ON (TJ) is the on-state resistance of a single FET at operating junction temperature.  
Junction Temperature Estimation  
To calculate the junction temperature of the die from power losses, use Equation 5. Note that the thermal  
resistance RθJA depends on PCB configuration such as the numbers of PCB layers, copper thickness, ground  
plane area and the PCB size.  
T
℃ = P  
W × R  
℃/W + T ℃  
(5)  
J
LOSS  
θJA A  
Refer to BLDC integrated MOSFET thermal calculator for estimating the approximate device power dissipation  
and junction temperature at different use cases.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: DRV8317  
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
12 Device and Documentation Support  
12.1 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.2 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.3 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.4 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most-  
current data available for the designated device. This data is subject to change without notice and without  
revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: DRV8317  
 
 
 
 
 
 
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
PACKAGE OUTLINE  
REE0036A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
3
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
PIN 1 INDEX AREA  
5.1  
4.9  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
2X 2.8  
2.8  
2.6  
(0.1) TYP  
11  
18  
4X (0.41)  
32X 0.4  
10  
19  
2X  
3.6  
SYMM  
3.8  
3.6  
1
28  
0.25  
0.15  
36X  
29  
36  
PIN 1 ID  
0.1  
C A B  
SYMM  
0.5  
0.3  
0.05  
36X  
4226725/A 04/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: DRV8317  
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
EXAMPLE BOARD LAYOUT  
REE0036A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.8)  
2X (2.8)  
(2.7)  
29  
36  
36X (0.6)  
32X (0.2)  
1
28  
32X (0.4)  
(4.8)  
37  
SYMM  
(3.7)  
2X (3.6)  
2X (0.625)  
2X (0.975)  
10  
19  
(R0.05) TYP  
11  
(
0.2) TYP  
18  
2X (1.1)  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4226725/A 04/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: DRV8317  
DRV8317  
SLVSGT3 – DECEMBER 2022  
www.ti.com  
EXAMPLE STENCIL DESIGN  
REE0036A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.8)  
2X (2.8)  
6X (1.19)  
36  
29  
36X (0.6)  
1
28  
36X (0.2)  
6X  
(1.05)  
32X (0.4)  
2X (3.6)  
SYMM  
(4.8)  
2X (1.25)  
10  
19  
(R0.05)  
TYP  
11  
2X (0.7)  
18  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4226725/A 04/2021  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: DRV8317  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8317HREER  
ACTIVE  
WQFN  
REE  
36  
5000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
DRV  
8317H  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

DRV8320

最大 65V 三相智能栅极驱动器
TI

DRV8320HRTVR

最大 65V 三相智能栅极驱动器 | RTV | 32 | -40 to 125
TI

DRV8320HRTVT

最大 65V 三相智能栅极驱动器 | RTV | 32 | -40 to 125
TI

DRV8320R

具有降压稳压器的最大 65V 三相智能栅极驱动器
TI

DRV8320RHRHAR

具有降压稳压器的最大 65V 三相智能栅极驱动器 | RHA | 40 | -40 to 125
TI

DRV8320RHRHAT

具有降压稳压器的最大 65V 三相智能栅极驱动器 | RHA | 40 | -40 to 125
TI

DRV8320RSRHAR

具有降压稳压器的最大 65V 三相智能栅极驱动器 | RHA | 40 | -40 to 125
TI

DRV8320RSRHAT

具有降压稳压器的最大 65V 三相智能栅极驱动器 | RHA | 40 | -40 to 125
TI

DRV8320SRTVR

最大 65V 三相智能栅极驱动器 | RTV | 32 | -40 to 125
TI

DRV8320SRTVT

最大 65V 三相智能栅极驱动器 | RTV | 32 | -40 to 125
TI

DRV8323

具有电流分流放大器的最大 65V 三相智能栅极驱动器
TI

DRV8323HRTAR

具有电流分流放大器的最大 65V 三相智能栅极驱动器 | RTA | 40 | -40 to 125
TI