DRV8320HRTVR [TI]

最大 65V 三相智能栅极驱动器 | RTV | 32 | -40 to 125;
DRV8320HRTVR
型号: DRV8320HRTVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

最大 65V 三相智能栅极驱动器 | RTV | 32 | -40 to 125

栅极驱动 电视 驱动器
文件: 总92页 (文件大小:5456K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
DRV832x 6V 60V 三相智能栅极驱动器  
1 特性  
3 说明  
1
三个半桥栅极驱动器  
DRV832x 系列器件是适用于三相 应用的集成式栅极驱  
动器。这些器件具有三个半桥栅极驱动器,每个驱动器  
都能够驱动高侧和低侧 N 沟道功率 MOSFET。  
DRV832x 使用集成电荷泵为高侧 MOSFET 生成合适  
的栅极驱动电压,并使用线性稳压器为低侧 MOSFET  
生成合适的栅极驱动电压。此智能栅极驱动架构支持高  
1A 的峰值栅极驱动拉电流和 2A 的峰值栅极驱动灌  
电流。DRV832x 可由单个电源供电,并支持适用于栅  
极驱动器的 6V 60V,以及适用于可选降压稳压器的  
4V 60V 宽输入电源范围。  
可驱动 3 个高侧和 3 个低侧 N 沟道 MOSFET  
(NMOS)  
智能栅极驱动架构  
可调转换率控制  
10mA 1A 峰值拉电流  
20mA 2A 峰值灌电流  
集成栅极驱动器电源  
支持 100% PWM 占空比  
高侧电荷泵  
低侧线性稳压器  
6x3x1x 和独立输入 PWM 模式可简化与控制器电  
路的连接。栅极驱动器和器件的配置设置具有高度可配  
置性,可通过 SPI 或硬件 (H/W) 接口实现。DRV8323  
DRV8323R 器件集成了三个低侧电流检测放大器,  
可在驱动级的全部三个相位上进行双向电流检测。  
DRV8320R DRV8323R 器件集成了一个 600mA 降  
压稳压器。  
6V 60V 工作电压范围  
可选集成式降压稳压器  
LMR16006X SIMPLE SWITCHER®  
4V 60V 工作电压范围  
0.8V 60V600mA 输出能力  
三个可选集成式电流检测放大器 (CSA)  
可调增益(5102040 V/V)  
提供了低功耗睡眠模式,以通过关断大部分的内部电路  
实现较低的静态电流消耗。针对欠压锁定、电荷泵故  
障、MOSFET 过流、MOSFET 短路、栅极驱动器故障  
和过热等情况,提供内部保护功能。故障状况及故障详  
情可通过 SPI 器件型号的器件寄存器显示在 nFAULT  
引脚上。  
双向或单向支持  
提供有 SPI 和硬件接口  
6x3x1x 和独立的 PWM 模式  
支持 1.8V3.3V 5V 逻辑输入  
低功耗睡眠模式 (12µA)  
3.3V30mA 线性稳压器  
紧凑型 QFN 封装和尺寸  
采用电源块的高效系统设计  
集成式保护 特性  
器件信息(1)  
器件型号  
DRV8320  
封装  
WQFN (32)  
封装尺寸(标称值)  
5.00mm × 5.00mm  
6.00mm × 6.00mm  
6.00mm × 6.00mm  
7.00mm × 7.00mm  
DRV8320R  
DRV8323  
VQFN (40)  
WQFN (40)  
VQFN (48)  
VM 欠压闭锁 (UVLO)  
电荷泵欠压 (CPUV)  
DRV8323R  
MOSFET 过流保护 (OCP)  
栅极驱动器故障 (GDF)  
热警告和热关断 (OTW/OTSD)  
故障状态指示器 (nFAULT)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
6 to 60 V  
2 应用  
DRV832x  
PWM  
无刷直流 (BLDC) 电机模块和 PMSM  
Gate Drive  
Three-Phase  
Smart Gate Driver  
SPI or H/W  
M
风扇、泵和伺服驱动器  
nFAULT  
Current Sense  
600 mA  
Protection  
Current  
Sense  
电动自行车、电动踏板车和电动汽车  
无线园艺工具和电动工具、割草机  
无线真空吸尘器  
3x Sense Amplifiers  
Buck Regulator  
无人机、机器人和遥控玩具  
工业和物流机器人  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDJ3  
 
 
 
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
目录  
8.6 Register Maps......................................................... 53  
Application and Implementation ........................ 61  
9.1 Application Information............................................ 61  
9.2 Typical Application ................................................. 61  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications....................................................... 11  
7.1 Absolute Maximum Ratings .................................... 11  
7.2 ESD Ratings .......................................................... 11  
7.3 Recommended Operating Conditions..................... 12  
7.4 Thermal Information................................................ 12  
7.5 Electrical Characteristics......................................... 13  
7.6 SPI Timing Requirements ....................................... 18  
7.7 Typical Characteristics............................................ 19  
Detailed Description ............................................ 21  
8.1 Overview ................................................................. 21  
8.2 Functional Block Diagram ....................................... 22  
8.3 Feature Description................................................. 30  
8.4 Device Functional Modes........................................ 50  
8.5 Programming........................................................... 51  
9
10 Power Supply Recommendations ..................... 70  
10.1 Bulk Capacitance Sizing ....................................... 70  
11 Layout................................................................... 71  
11.1 Layout Guidelines ................................................. 71  
11.2 Layout Example .................................................... 72  
12 器件和文档支持 ..................................................... 73  
12.1 器件支持................................................................ 73  
12.2 文档支持................................................................ 73  
12.3 相关链接................................................................ 73  
12.4 接收文档更新通知 ................................................. 74  
12.5 社区资源................................................................ 74  
12.6 ....................................................................... 74  
12.7 静电放电警告......................................................... 74  
12.8 术语表 ................................................................... 74  
13 机械、封装和可订购信息....................................... 74  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (December 2017) to Revision C  
Page  
已更改 更改了.................................................................................................................................................................. 1  
Updated input labels for the INLx and INHx signals in the Layout Example imags............................................................. 72  
已添加 在器件命名规则 部分的图像中添加了 DRV835x 器件选项 ....................................................................................... 73  
Changes from Revision A (April 2017) to Revision B  
Page  
已更改 在特性中将低功耗睡眠模式电源电流从最大值 (20µA) 更改成了典型值 (12µA) ...................................................... 1  
已更改 更改了.................................................................................................................................................................. 1  
Changed the GAIN value from 45 kΩ to 47 kΩ in the test condition of the amplifier gain for the H/W device in the  
Electrical Characteristics table ............................................................................................................................................. 15  
Deleted tEN_nSCS from the SPI Slave Mode Timing Diagram................................................................................................. 18  
Added a note to the Synchronous 1x PWM Mode to define !PWM ..................................................................................... 31  
Updated the Auto Offset Calibration section ........................................................................................................................ 44  
Updated the VDS Latched Shutdown and VDS Automatic Retry sections ............................................................................. 48  
Updated the Sleep Mode section ......................................................................................................................................... 50  
Changed the address listed in the title for the Gate Drive LS Register section to the correct register address, 0x04........ 58  
已更改 the maximum Qg value for both trapezoidal and sinusoidal commutation the VVM = 8 V example of the  
Detailed Design Procedure................................................................................................................................................... 63  
已更改 IDRIVEP and IDRIVEN equations in the IDRIVE Configuration section ........................................................................... 64  
2
Copyright © 2017–2018, Texas Instruments Incorporated  
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
Changes from Original (February 2017) to Revision A  
Page  
Changed the test condition for the IBIAS parameter in the Electrical Characteristics table................................................... 16  
Changed the GHx values in the 3x PWM Mode Truth Table ............................................................................................... 31  
Changed the calibration description and added auto calibration feature description .......................................................... 44  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
5 Device Comparison Table  
CURRENT SENSE  
AMPLIFIERS  
DEVICE  
VARIANT(1)  
BUCK REGULATOR(1)  
INTERFACE(1)  
DRV8320H  
DRV8320S  
DRV8320RH  
DRV8320RS  
DRV8323H  
DRV8323S  
DRV8323RH  
DRV8323RS  
Hardware  
SPI  
DRV8320  
None  
0
3
Hardware  
SPI  
DRV8320R  
DRV8323  
600 mA  
None  
Hardware  
SPI  
Hardware  
SPI  
DRV8323R  
600 mA  
(1) For more information on the device name and device options, see the 器件命名规则 section. For additional details, see the Architecture  
for Brushless-DC Gate Drive Systems application report.  
6 Pin Configuration and Functions  
DRV8320H RTV Package  
32-Pin WQFN With Exposed Thermal Pad  
Top View  
DRV8320S RTV Package  
32-Pin WQFN With Exposed Thermal Pad  
Top View  
CPH  
VCP  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
DVDD  
AGND  
ENABLE  
NC  
CPH  
VCP  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
DVDD  
AGND  
ENABLE  
nSCS  
SCLK  
SDI  
VM  
VM  
VDRAIN  
GHA  
VDRAIN  
GHA  
Thermal  
Pad  
Thermal  
Pad  
VDS  
SHA  
IDRIVE  
MODE  
nFAULT  
SHA  
GLA  
GLA  
SDO  
SLA  
SLA  
nFAULT  
Not to scale  
Not to scale  
Pin Functions—32-Pin DRV8320 Devices  
DESCRIPTION  
PIN  
NO.  
TYPE(1)  
NAME  
DRV8320H  
DRV8320S  
AGND  
CPH  
CPL  
23  
1
23  
1
PWR  
PWR  
PWR  
Device analog ground. Connect to system ground.  
Charge pump switching node. Connect a X5R or X7R, 47-nF, VM-rated ceramic capacitor between the CPH and CPL pins.  
Charge pump switching node. Connect a X5R or X7R, 47-nF, VM-rated ceramic capacitor between the CPH and CPL pins.  
32  
32  
3.3-V internal regulator output. Connect a X5R or X7R, 1-µF, 6.3-V ceramic capacitor between the DVDD and AGND pins.  
This regulator can source up to 30 mA externally.  
DVDD  
24  
22  
24  
22  
PWR  
I
Gate driver enable. When this pin is logic low the device goes to a low-power sleep mode. An 8 to 40-µs pulse can be used  
to reset fault conditions.  
ENABLE  
GHA  
GHB  
GHC  
5
5
O
O
O
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
12  
13  
12  
13  
(1) PWR = power, I = input, O = output, NC = no connection, OD = open-drain output  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
Pin Functions—32-Pin DRV8320 Devices (continued)  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8320H  
DRV8320S  
GLA  
7
7
O
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Gate drive output current setting. This pin is a 7 level input pin set by an external resistor.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
PWM input mode setting. This pin is a 4 level input pin set by an external resistor.  
No internal connection. This pin can be left floating or connected to system ground.  
Fault indicator output. This pin is pulled logic low during a fault condition and requires an external pullup resistor.  
Serial chip select. A logic low on this pin enables serial interface communication.  
Device power ground. Connect to system ground.  
GLB  
10  
15  
19  
25  
27  
29  
26  
28  
30  
18  
21  
17  
31  
6
10  
15  
25  
27  
29  
26  
28  
30  
17  
21  
31  
20  
19  
18  
6
O
GLC  
O
IDRIVE  
INHA  
INHB  
INHC  
INLA  
INLB  
INLC  
MODE  
NC  
I
I
I
I
I
I
I
I
NC  
nFAULT  
nSCS  
PGND  
SCLK  
SDI  
OD  
I
PWR  
I
Serial clock input. Serial data is shifted out and captured on the corresponding rising and falling edge on this pin.  
Serial data input. Data is captured on the falling edge of the SCLK pin.  
I
SDO  
SHA  
OD  
Serial data output. Data is shifted out on the rising edge of the SCLK pin. This pin requires an external pullup resistor.  
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
Low-side source sense input. Connect to the low-side power MOSFET source.  
I
SHB  
11  
14  
8
11  
14  
8
I
SHC  
I
SLA  
I
SLB  
9
9
I
Low-side source sense input. Connect to the low-side power MOSFET source.  
SLC  
16  
2
16  
2
I
Low-side source sense input. Connect to the low-side power MOSFET source.  
VCP  
PWR  
Charge pump output. Connect a X5R or X7R, 1-µF, 16-V ceramic capacitor between the VCP and VM pins.  
High-side MOSFET drain sense input. Connect to the common point of the MOSFET drains.  
VDS monitor trip point setting. This pin is a 7 level input pin set by an external resistor.  
VDRAIN  
VDS  
4
4
I
I
20  
Gate driver power supply input. Connect to the bridge power supply. Connect a X5R or X7R, 0.1-µF, VM-rated ceramic and  
greater then or equal to 10-uF local capacitance between the VM and PGND pins.  
VM  
3
3
PWR  
PWR  
Thermal Pad  
Must be connected to ground  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
DRV8320RH RHA Package  
40-Pin VQFN With Exposed Thermal Pad  
Top View  
DRV8320RS RHA Package  
40-Pin VQFN With Exposed Thermal Pad  
Top View  
PGND  
CPL  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
INHB  
PGND  
CPL  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
INHB  
INLA  
INLA  
CPH  
INHA  
CPH  
INHA  
DVDD  
AGND  
ENABLE  
nSCS  
SCLK  
SDI  
VCP  
DVDD  
AGND  
ENABLE  
NC  
VCP  
VM  
VM  
Thermal  
Pad  
Thermal  
Pad  
VDRAIN  
GHA  
SHA  
VDRAIN  
GHA  
SHA  
VDS  
GLA  
IDRIVE  
MODE  
GLA  
SLA  
SLA  
SDO  
Not to scale  
Not to scale  
Pin Functions—40-Pin DRV8320R Devices  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8320RH  
DRV8320RS  
AGND  
BGND  
CB  
26  
34  
35  
3
26  
34  
35  
3
PWR  
PWR  
PWR  
PWR  
PWR  
Device analog ground. Connect to system ground.  
Buck regulator ground. Connect to system ground.  
Buck regulator bootstrap input. Connect a X5R or X7R, 0.1-µF, 16-V, capacitor between the CB and SW pins.  
CPH  
CPL  
Charge pump switching node. Connect a X5R or X7R, 47-nF, VM-rated ceramic capacitor between the CPH and CPL pins.  
Charge pump switching node. Connect a X5R or X7R, 47-nF, VM-rated ceramic capacitor between the CPH and CPL pins.  
2
2
3.3-V internal regulator output. Connect a X5R or X7R, 1-µF, 6.3-V ceramic capacitor between the DVDD and AGND pins.  
This regulator can source up to 30 mA externally.  
DVDD  
27  
25  
27  
25  
PWR  
I
Gate driver enable. When this pin is logic low the device goes to a low-power sleep mode. An 8 to 40-µs low pulse can be  
used to reset fault conditions.  
ENABLE  
FB  
40  
7
40  
7
I
Buck feedback input. A resistor divider from the buck post inductor output to this pin sets the buck output voltage.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Device ground. Connect to system ground.  
GHA  
GHB  
GHC  
GLA  
O
14  
15  
9
14  
15  
9
O
O
O
GLB  
12  
17  
19  
22  
28  
30  
32  
29  
31  
33  
21  
24  
37  
20  
12  
17  
19  
28  
30  
32  
29  
31  
33  
37  
20  
O
GLC  
O
GND  
IDRIVE  
INHA  
INHB  
INHC  
INLA  
INLB  
INLC  
MODE  
NC  
PWR  
I
Gate drive output current setting. This pin is a 7 level input pin set by an external resistor.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
PWM input mode setting. This pin is a 4 level input pin set by an external resistor.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
Fault indicator output. This pin is pulled logic low during a fault condition and requires an external pullup resistor.  
I
I
I
I
I
I
I
NC  
NC  
OD  
NC  
nFAULT  
(1) PWR = power, I = input, O = output, NC = no connection, OD = open-drain output  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
Pin Functions—40-Pin DRV8320R Devices (continued)  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8320RH  
DRV8320RS  
nSCS  
24  
I
I
Serial chip select. A logic low on this pin enables serial interface communication.  
Buck shutdown input. Enable and disable input (high voltage tolerant). Internal pullup current source. Pull lower than 1.25 V to  
disable. Float to enable. Establish input undervoltage lockout with two resistor divider.  
nSHDN  
39  
39  
PGND  
SCLK  
SDI  
1
1
PWR  
Device power ground. Connect to system ground.  
8
23  
22  
21  
8
I
Serial clock input. Serial data is shifted out and captured on the corresponding rising and falling edge on this pin.  
Serial data input. Data is captured on the falling edge of the SCLK pin.  
I
SDO  
SHA  
SHB  
SHC  
SLA  
OD  
Serial data output. Data is shifted out on the rising edge of the SCLK pin. This pin requires an external pullup resistor.  
High-side source sense input. Connect to the high-side power MOSFET source.  
I
13  
16  
10  
11  
18  
36  
4
13  
16  
10  
11  
18  
36  
4
I
High-side source sense input. Connect to the high-side power MOSFET source.  
I
High-side source sense input. Connect to the high-side power MOSFET source.  
I
Low-side source sense input. Connect to the low-side power MOSFET source.  
SLB  
I
Low-side source sense input. Connect to the low-side power MOSFET source.  
SLC  
I
Low-side source sense input. Connect to the low-side power MOSFET source.  
SW  
O
Buck switch node. Connect this pin to an inductor, diode, and the CB bootstrap capacitor.  
Charge pump output. Connect a X5R or X7R, 1-µF, 16-V ceramic capacitor between the VCP and VM pins.  
High-side MOSFET drain sense input. Connect to the common point of the MOSFET drains.  
VDS monitor trip point setting. This pin is a 7 level input pin set by an external resistor.  
Buck regulator power supply input. Place an X5R or X7R, VM-rated ceramic capacitor between the VIN and BGND pins.  
VCP  
VDRAIN  
VDS  
VIN  
PWR  
6
6
I
I
23  
38  
38  
PWR  
Gate driver power supply input. Connect to the bridge power supply. Connect a X5R or X7R, 0.1-µF, VM-rated ceramic and  
greater then or equal to 10-uF local capacitance between the VM and PGND pins.  
VM  
5
5
PWR  
PWR  
Thermal Pad  
Must be connected to ground  
DRV8323H RTA Package  
DRV8323S RTA Package  
40-Pin WQFN With Exposed Thermal Pad  
Top View  
40-Pin WQFN With Exposed Thermal Pad  
Top View  
CPL  
CPH  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
ENABLE  
GAIN  
CPL  
CPH  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
ENABLE  
nSCS  
SCLK  
SDI  
VCP  
VDS  
VCP  
VM  
IDRIVE  
MODE  
nFAULT  
VREF  
SOA  
VM  
VDRAIN  
GHA  
SHA  
VDRAIN  
GHA  
SHA  
SDO  
Thermal  
Pad  
Thermal  
Pad  
nFAULT  
VREF  
SOA  
GLA  
GLA  
SPA  
SOB  
SPA  
SOB  
SNA  
SOC  
SNA  
SOC  
Not to scale  
Not to scale  
Pin Functions—40-Pin DRV8323 Devices  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8323H  
DRV8323S  
AGND  
CAL  
32  
31  
2
32  
31  
2
PWR  
I
Device analog ground. Connect to system ground.  
Amplifier calibration input. Set logic high to internally short amplifier inputs and perform auto offset calibration.  
Charge pump switching node. Connect a X5R or X7R, 47-nF, VM-rated ceramic capacitor between the CPH and CPL pins.  
CPH  
PWR  
(1) PWR = power, I = input, O = output, NC = no connection, OD = open-drain output  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
Pin Functions—40-Pin DRV8323 Devices (continued)  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8323H  
DRV8323S  
CPL  
1
1
PWR  
PWR  
Charge pump switching node. Connect a X5R or X7R, 47-nF, VM-rated ceramic capacitor between the CPH and CPL pins.  
R 3.3-V internal regulator output. Connect a X5R or X7R, 1-µF, 6.3-V ceramic capacitor between the DVDD and AGND pins.  
This regulator can source up to 30 mA externally.  
DVDD  
33  
30  
33  
30  
Gate driver enable. When this pin is logic low the device goes to a low-power sleep mode. An 8 to 40-µs low pulse can be  
used to reset fault conditions.  
ENABLE  
I
GAIN  
GHA  
GHB  
GHC  
GLA  
29  
6
6
I
Amplifier gain setting. The pin is a 4 level input pin set by an external resistor.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Gate drive output current setting. This pin is a 7 level input pin set by an external resistor.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
PWM input mode setting. This pin is a 4 level input pin set by an external resistor.  
Fault indicator output. This pin is pulled logic low during a fault condition and requires an external pullup resistor.  
Serial chip select. A logic low on this pin enables serial interface communication.  
Device power ground. Connect to system ground.  
O
15  
16  
8
15  
16  
8
O
O
O
GLB  
13  
18  
27  
34  
36  
38  
35  
37  
39  
26  
25  
40  
7
13  
18  
34  
36  
38  
35  
37  
39  
25  
29  
40  
28  
27  
26  
7
O
GLC  
O
IDRIVE  
INHA  
INHB  
INHC  
INLA  
INLB  
INLC  
MODE  
nFAULT  
nSCS  
PGND  
SCLK  
SDI  
I
I
I
I
I
I
I
I
OD  
I
PWR  
I
Serial clock input. Serial data is shifted out and captured on the corresponding rising and falling edge on this pin.  
Serial data input. Data is captured on the falling edge of the SCLK pin.  
I
SDO  
SHA  
OD  
Serial data output. Data is shifted out on the rising edge of the SCLK pin. This pin requires an external pullup resistor.  
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
Current sense amplifier input. Connect to the low-side of the current shunt resistor.  
Current sense amplifier input. Connect to the low-side of the current shunt resistor.  
Current sense amplifier input. Connect to the low-side of the current shunt resistor.  
Current sense amplifier output.  
I
I
SHB  
14  
17  
10  
11  
20  
23  
22  
21  
14  
17  
10  
11  
20  
23  
22  
21  
SHC  
I
SNA  
I
SNB  
I
SNC  
I
SOA  
O
O
O
SOB  
Current sense amplifier output.  
SOC  
Current sense amplifier output.  
Low-side current shunt amplifier input. Connect to the low-side power MOSFET source and high-side of the current shunt  
resistor.  
SPA  
SPB  
SPC  
9
9
I
I
I
Low-side current shunt amplifier input. Connect to the low-side power MOSFET source and high-side of the current shunt  
resistor.  
12  
19  
12  
19  
Low-side current shunt amplifier input. Connect to the low-side power MOSFET source and high-side of the current shunt  
resistor.  
VCP  
3
5
3
5
PWR  
Charge pump output. Connect a X5R or X7R, 1-µF, 16-V ceramic capacitor between the VCP and VM pins.  
High-side MOSFET drain sense input. Connect to the common point of the MOSFET drains.  
VDS monitor trip point setting. This pin is a 7 level input pin set by an external resistor.  
VDRAIN  
VDS  
I
I
28  
Gate driver power supply input. Connect to the bridge power supply. Connect a X5R or X7R, 0.1-µF, VM-rated ceramic and  
greater then or equal to 10-uF local capacitance between the VM and PGND pins.  
VM  
4
4
PWR  
Current sense amplifier power supply input and reference. Connect a X5R or X7R, 0.1-µF, 6.3-V ceramic capacitor between  
the VREF and AGND pins.  
VREF  
24  
24  
PWR  
PWR  
Thermal Pad  
Must be connected to ground  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
DRV8323RH RGZ Package  
48-Pin VQFN With Exposed Thermal Pad  
Top View  
DRV8323RS RGZ Package  
48-Pin VQFN With Exposed Thermal Pad  
Top View  
FB  
PGND  
CPL  
1
36  
DVDD  
AGND  
CAL  
FB  
PGND  
CPL  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
DVDD  
AGND  
CAL  
2
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2
3
3
CPH  
4
ENABLE  
GAIN  
CPH  
4
ENABLE  
nSCS  
SCLK  
SDI  
VCP  
5
VCP  
5
VM  
6
VDS  
VM  
6
Thermal  
Pad  
Thermal  
Pad  
VDRAIN  
GHA  
SHA  
7
IDRIVE  
MODE  
nFAULT  
DGND  
VREF  
SOA  
VDRAIN  
GHA  
SHA  
7
8
8
SDO  
9
9
nFAULT  
DGND  
VREF  
SOA  
GLA  
10  
11  
12  
GLA  
10  
11  
12  
SPA  
SPA  
SNA  
SNA  
Not to scale  
Not to scale  
Pin Functions—48-Pin DRV8323R Devices  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8323RH  
DRV8323RS  
AGND  
BGND  
CAL  
35  
43  
34  
44  
4
35  
43  
34  
44  
4
PWR  
PWR  
I
Device analog ground. Connect to system ground.  
Buck regulator ground. Connect to system ground.  
Amplifier calibration input. Set logic high to internally short amplifier inputs and perform auto offset calibration.  
Buck regulator bootstrap input. Connect a X5R or X7R, 0.1-µF, 16-V, capacitor between the CB and SW pins.  
CB  
PWR  
PWR  
PWR  
PWR  
CPH  
CPL  
Charge pump switching node. Connect a X5R or X7R, 47-nF, VM-rated ceramic capacitor between the CPH and CPL pins.  
Charge pump switching node. Connect a X5R or X7R, 47-nF, VM-rated ceramic capacitor between the CPH and CPL pins.  
Device ground. Connect to system ground.  
3
3
DGND  
27  
27  
3.3-V internal regulator output. Connect a X5R or X7R, 1-µF, 6.3-V ceramic capacitor between the DVDD and AGND pins.  
This regulator can source up to 30 mA externally.  
DVDD  
36  
33  
36  
33  
PWR  
I
Gate driver enable. When this pin is logic low the device goes to a low-power sleep mode. An 8 to 40-µs low pulse can be  
used to reset fault conditions.  
ENABLE  
FB  
1
1
I
I
Buck feedback input. A resistor divider from the buck post inductor output to this pin sets the buck output voltage.  
Amplifier gain setting. The pin is a 4 level input pin set by an external resistor.  
GAIN  
GHA  
GHB  
GHC  
GLA  
32  
8
8
O
O
O
O
O
O
I
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Gate drive output current setting. This pin is a 7 level input pin set by an external resistor.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
PWM input mode setting. This pin is a 4 level input pin set by an external resistor.  
No internal connection. This pin can be left floating or connected to system ground.  
Fault indicator output. This pin is pulled logic low during a fault condition and requires an external pullup resistor.  
17  
18  
10  
15  
20  
30  
37  
39  
41  
38  
40  
42  
29  
46  
28  
17  
18  
10  
15  
20  
37  
39  
41  
38  
40  
42  
46  
28  
GLB  
GLC  
IDRIVE  
INHA  
INHB  
INHC  
INLA  
INLB  
INLC  
MODE  
NC  
I
I
I
I
I
I
I
NC  
OD  
nFAULT  
(1) PWR = power, I = input, O = output, NC = no connection, OD = open-drain output  
Copyright © 2017–2018, Texas Instruments Incorporated  
9
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
Pin Functions—48-Pin DRV8323R Devices (continued)  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8323RH  
DRV8323RS  
nSCS  
32  
I
I
Serial chip select. A logic low on this pin enables serial interface communication.  
Buck shutdown input. Enable and disable input (high voltage tolerant). Internal pullup current source. Pull lower than 1.25 V  
to disable. Float to enable. Establish input undervoltage lockout with two resistor divider.  
nSHDN  
48  
48  
PGND  
SCLK  
SDI  
2
2
PWR  
Device power ground. Connect to system ground.  
9
31  
30  
29  
9
I
Serial clock input. Serial data is shifted out and captured on the corresponding rising and falling edge on this pin.  
Serial data input. Data is captured on the falling edge of the SCLK pin.  
Serial data output. Data is shifted out on the rising edge of the SCLK pin. This pin requires an external pullup resistor.  
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
Current sense amplifier input. Connect to the low-side of the current shunt resistor.  
Current sense amplifier input. Connect to the low-side of the current shunt resistor.  
Current sense amplifier input. Connect to the low-side of the current shunt resistor.  
Current sense amplifier output.  
I
SDO  
SHA  
SHB  
SHC  
SNA  
SNB  
SNC  
SOA  
SOB  
SOC  
OD  
I
I
16  
19  
12  
13  
22  
25  
24  
23  
16  
19  
12  
13  
22  
25  
24  
23  
I
I
I
I
O
O
O
Current sense amplifier output.  
Current sense amplifier output.  
Low-side current shunt amplifier input. Connect to the low-side power MOSFET source and high-side of the current shunt  
resistor.  
SPA  
SPB  
SPC  
11  
14  
21  
11  
14  
21  
I
I
I
Low-side current shunt amplifier input. Connect to the low-side power MOSFET source and high-side of the current shunt  
resistor.  
Low-side current shunt amplifier input. Connect to the low-side power MOSFET source and high-side of the current shunt  
resistor.  
SW  
45  
5
45  
5
O
Buck switch node. Connect this pin to an inductor, diode, and the CB bootstrap capacitor.  
VCP  
VDRAIN  
VDS  
VIN  
PWR  
Charge pump output. Connect a X5R or X7R, 1-µF, 16-V ceramic capacitor between the VCP and VM pins.  
High-side MOSFET drain sense input. Connect to the common point of the MOSFET drains.  
VDS monitor trip point setting. This pin is a 7 level input pin set by an external resistor.  
7
7
I
I
31  
47  
47  
PWR  
Buck regulator power supply input. Place an X5R or X7R, VM-rated ceramic capacitor between the VIN and BGND pins.  
Gate driver power supply input. Connect to the bridge power supply. Connect a X5R or X7R, 0.1-µF, VM-rated ceramic and  
greater then or equal to 10-uF local capacitance between the VM and PGND pins.  
VM  
6
6
PWR  
Current sense amplifier power supply input and reference. Connect a X5R or X7R, 0.1-µF, 6.3-V ceramic capacitor between  
the VREF and AGND pins.  
VREF  
26  
26  
PWR  
PWR  
Thermal Pad  
Must be connected to ground  
10  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
at TA = –40°C to +125°C (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
GATE DRIVER  
Power supply pin voltage (VM)  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
65  
0.3  
V
V
V
V
V
V
Voltage differential between ground pins (AGND, BGND, DGND, PGND)  
MOSFET drain sense pin voltage (VDRAIN)  
Charge pump pin voltage (CPH, VCP)  
65  
VVM + 13.5  
VVM  
Charge pump negative-switching pin voltage (CPL)  
Internal logic regulator pin voltage (DVDD)  
3.8  
Digital pin voltage (CAL, ENABLE, GAIN, IDRIVE, INHx, INLx, MODE, nFAULT, nSCS,  
SCLK, SDI, SDO, VDS)  
–0.3  
5.75  
V
Continuous high-side gate drive pin voltage (GHx)  
Transient 200-ns high-side gate drive pin voltage (GHx)  
High-side gate drive pin voltage with respect to SHx (GHx)  
Continuous high-side source sense pin voltage (SHx)  
Transient 200-ns high-side source sense pin voltage (SHx)  
Continuous low-side gate drive pin voltage (GLx)  
Gate drive pin source current (GHx, GLx)  
Gate drive pin sink current (GHx, GLx)  
Continuous low-side source sense pin voltage (SLx)  
Transient 200-ns low-side source sense pin voltage (SLx)  
Continuous input pin voltage (SNx, SPx)  
Transient 200-ns input pin voltage (SNx, SPx)  
Reference input pin voltage (VREF)  
5(2)  
–7  
VVCP + 0.5  
VVCP + 0.5  
13.5  
V
V
V
V
V
V
A
A
V
V
V
V
V
V
–0.3  
–5(2)  
–7  
VVM + 5  
VVM + 7  
13.5  
–0.5  
Internally limited  
Internally limited  
–1  
1
–3  
–1  
3
1
3
–3  
–0.3  
–0.3  
5.75  
output pin voltage (SOx)  
VVREF + 0.3  
BUCK REGULATOR  
Power supply pin voltage (VIN)  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–2  
65  
VVIN  
7
V
V
V
V
V
V
Shutdown control pin voltage (nSHDN)  
Voltage feedback pin voltage (FB)  
Bootstrap pin voltage with respect to SW (CB)  
Switching node pin voltage (SW)  
7
VVIN  
VVIN  
Switching node pin voltage less than 30-ns transients (SW)  
DRV832x  
Operating junction temperature, TJ  
–40  
–65  
150  
150  
°C  
°C  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Continuous high-side gate pin (GHx) and phase node pin voltage (SHx) should be limited to –2 V minimum for an absolute maximum of  
65 V on VM. At 60 V and lower, the full specification of –5 V continuous on GHx and SHx is allowable.  
7.2 ESD Ratings  
VALUE  
±3000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2000  
V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±500 V  
may actually have higher performance.  
Copyright © 2017–2018, Texas Instruments Incorporated  
11  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
at TA = –40°C to +125°C (unless otherwise noted)  
MIN  
MAX  
UNIT  
GATE DRIVER  
VVM  
Power supply voltage (VM)  
6
0
60  
V
V
Input voltage (CAL, ENABLE, GAIN, IDRIVE, INHx, INLx, MODE, nSCS,  
SCLK, SDI, VDS)  
VI  
5.5  
fPWM  
Applied PWM signal (INHx, INLx)  
High-side average gate drive current (GHx)  
Low-side average gate drive current (GLx)  
External load current (DVDD)  
0
0
0
0
3
0
0
0
200(1)  
25(1)  
25(1)  
30(1)  
5.5  
kHz  
mA  
mA  
mA  
V
IGATE_HS  
IGATE_LS  
IDVDD  
VVREF  
ISO  
Reference voltage input (VREF)  
output current (SOx)  
5
mA  
V
VOD  
Open drain pullup voltage (nFAULT, SDO)  
Open drain output current (nFAULT, SDO)  
5.5  
IOD  
5
mA  
BUCK REGULATOR  
VVIN  
Power supply voltage (VIN)  
4
0
60  
60  
V
V
VnSHDN  
DRV832x  
TA  
Shutdown control input voltage (nSHDN)  
Operating ambient temperature  
–40  
125  
°C  
(1) Power dissipation and thermal limits must be observed  
7.4 Thermal Information  
DRV832x  
RTV  
(WQFN)  
RHA  
(VQFN)  
RTA  
(WQFN)  
RGZ  
(VQFN)  
THERMAL METRIC(1)  
UNIT  
32 PINS  
32.9  
15.8  
6.8  
40 PINS  
30.1  
16.7  
9.9  
40 PINS  
32.1  
11  
48 PINS  
26.6  
13.9  
9.2  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ψJT  
Junction-to-board thermal resistance  
7.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.2  
0.5  
0.1  
0.3  
ψJB  
6.8  
9.9  
7.1  
9.1  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
2.1  
2.2  
2.1  
2
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
12  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
7.5 Electrical Characteristics  
at TA = –40°C to +125°C, VVM = 6 to 60 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLIES (DVDD, VCP, VM)  
IVM  
VM operating supply current  
VVM = 24 V, ENABLE = 3.3 V, INHx/INLx = 0 V  
ENABLE = 0 V, VVM = 24 V, TA = 25°C  
ENABLE = 0 V, VVM = 24 V, TA = 125°C(1)  
ENABLE = 0 V period to reset faults  
VVM > VUVLO, ENABLE = 3.3 V to outputs ready  
ENABLE = 0 V to device sleep mode  
IDVDD = 0 to 30 mA  
10.5  
12  
14  
20  
50  
40  
1
mA  
µA  
IVMQ  
VM sleep mode supply current  
(1)  
tRST  
Reset pulse time  
Turnon time  
8
µs  
ms  
ms  
V
tWAKE  
tSLEEP  
VDVDD  
Turnoff time  
1
DVDD regulator voltage  
3
8.4  
6.3  
5.4  
4
3.3  
11  
9
3.6  
12.5  
10  
8
VVM = 13 V, IVCP = 0 to 25 mA  
VVM = 10 V, IVCP = 0 to 20 mA  
VCP operating voltage  
with respect to VM  
VVCP  
V
VVM = 8 V, IVCP = 0 to 15 mA  
7
VVM = 6 V, IVCP = 0 to 10 mA  
5
6
LOGIC-LEVEL INPUTS (CAL, ENABLE, INHx, INLx, nSCS, SCLK, SDI)  
VIL  
VIH  
VHYS  
IIL  
Input logic low voltage  
Input logic high voltage  
Input logic hysteresis  
Input logic low current  
Input logic high current  
Pulldown resistance  
Propagation delay  
0
0.8  
5.5  
V
V
1.5  
100  
mV  
µA  
µA  
kΩ  
ns  
VVIN = 0 V  
–5  
5
IIH  
VVIN = 5 V  
50  
100  
150  
70  
RPD  
tPD  
To AGND  
INHx/INLx transition to GHx/GLx transition  
FOUR-LEVEL H/W INPUTS (GAIN, MODE)  
VI1  
Input mode 1 voltage  
Input mode 2 voltage  
Input mode 3 voltage  
Input mode 4 voltage  
Pullup resistance  
Tied to AGND  
0
1.2  
2
V
V
VI2  
45 kΩ ± 5% to tied AGND  
Hi-Z  
VI3  
V
VI4  
Tied to DVDD  
3.3  
50  
84  
V
RPU  
RPD  
Internal pullup to DVDD  
Internal pulldown to AGND  
kΩ  
kΩ  
Pulldown resistance  
SEVEN-LEVEL H/W INPUTS (IDRIVE, VDS)  
VI1  
VI2  
VI3  
VI4  
VI5  
VI6  
VI7  
RPU  
RPD  
Input mode 1 voltage  
Input mode 2 voltage  
Input mode 3 voltage  
Input mode 4 voltage  
Input mode 5 voltage  
Input mode 6 voltage  
Input mode 7 voltage  
Pullup resistance  
Tied to AGND  
0
0.5  
1.1  
1.65  
2.2  
2.8  
3.3  
73  
V
V
18 kΩ ± 5% tied to AGND  
75 kΩ ± 5% tied to AGND  
Hi-Z  
V
V
75 kΩ ± 5% tied to DVDD  
18 kΩ ± 5% tied to DVDD  
Tied to DVDD  
V
V
V
Internal pullup to DVDD  
Internal pulldown to AGND  
kΩ  
kΩ  
Pulldown resistance  
73  
OPEN DRAIN OUTPUTS (nFAULT, SDO)  
VOL  
IOZ  
Output logic low voltage  
IO = 5 mA  
VO = 5 V  
0.1  
2
V
Output high impedance leakage  
–2  
µA  
(1) Specified by design and characterization data  
Copyright © 2017–2018, Texas Instruments Incorporated  
13  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = –40°C to +125°C, VVM = 6 to 60 V (unless otherwise noted)  
PARAMETER  
GATE DRIVERS (GHx, GLx)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VVM = 13 V, IVCP = 0 to 25 mA  
VVM = 10 , IVCP = 0 to 20 mA  
VVM = 8 V, IVCP = 0 to 15 mA  
VVM = 6 V, IVCP = 0 to 10 mA  
VVM = 12 V, IVGLS = 0 to 25 mA  
VVM = 10 V, IVGLS = 0 to 20 mA  
VVM = 8 V, IVGLS = 0 to 15 mA  
VVM = 6 V, IVGLS = 0 to 10 mA  
DEAD_TIME = 00b  
8.4  
6.3  
5.4  
4
11  
9
12.5  
10  
V
High-side gate drive voltage  
with respect to SHx  
(1)  
VGSH  
7
8
5
6
9
11  
12  
7.5  
5.5  
4
9
10  
V
Low-side gate drive voltage  
with respect to PGND  
(1)  
VGSL  
7
8
5
6
50  
DEAD_TIME = 01b  
100  
200  
400  
100  
500  
1000  
2000  
4000  
4000  
10  
SPI Device  
Gate drive  
dead time  
tDEAD  
DEAD_TIME = 10b  
ns  
DEAD_TIME = 11b  
H/W Device  
SPI Device  
H/W Device  
TDRIVE = 00b  
TDRIVE = 01b  
TDRIVE = 10b  
TDRIVE = 11b  
Peak current  
gate drive time  
tDRIVE  
ns  
IDRIVEP_HS or IDRIVEP_LS = 0000b  
IDRIVEP_HS or IDRIVEP_LS = 0001b  
IDRIVEP_HS or IDRIVEP_LS = 0010b  
IDRIVEP_HS or IDRIVEP_LS = 0011b  
IDRIVEP_HS or IDRIVEP_LS = 0100b  
IDRIVEP_HS or IDRIVEP_LS = 0101b  
IDRIVEP_HS or IDRIVEP_LS = 0110b  
IDRIVEP_HS or IDRIVEP_LS = 0111b  
IDRIVEP_HS or IDRIVEP_LS = 1000b  
IDRIVEP_HS or IDRIVEP_LS = 1001b  
IDRIVEP_HS or IDRIVEP_LS = 1010b  
IDRIVEP_HS or IDRIVEP_LS = 1011b  
IDRIVEP_HS or IDRIVEP_LS = 1100b  
IDRIVEP_HS or IDRIVEP_LS = 1101b  
IDRIVEP_HS or IDRIVEP_LS = 1110b  
IDRIVEP_HS or IDRIVEP_LS = 1111b  
IDRIVE = Tied to AGND  
30  
60  
80  
120  
140  
170  
190  
260  
330  
370  
440  
570  
680  
820  
1000  
10  
SPI Device  
Peak source  
gate current  
IDRIVEP  
mA  
IDRIVE = 18 kΩ ± 5% tied to AGND  
IDRIVE = 75 kΩ ± 5% tied to AGND  
30  
60  
H/W Device IDRIVE = Hi-Z  
IDRIVE = 75 kΩ ± 5% tied to DVDD  
120  
260  
570  
1000  
IDRIVE = 18 kΩ ± 5% tied to DVDD  
IDRIVE = Tied to DVDD  
14  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
Electrical Characteristics (continued)  
at TA = –40°C to +125°C, VVM = 6 to 60 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
20  
MAX UNIT  
IDRIVEN_HS or IDRIVEN_LS = 0000b  
IDRIVEN_HS or IDRIVEN_LS = 0001b  
IDRIVEN_HS or IDRIVEN_LS = 0010b  
IDRIVEN_HS or IDRIVEN_LS = 0011b  
IDRIVEN_HS or IDRIVEN_LS = 0100b  
IDRIVEN_HS or IDRIVEN_LS = 0101b  
IDRIVEN_HS or IDRIVEN_LS = 0110b  
IDRIVEN_HS or IDRIVEN_LS = 0111b  
IDRIVEN_HS or IDRIVEN_LS = 1000b  
IDRIVEN_HS or IDRIVEN_LS = 1001b  
IDRIVEN_HS or IDRIVEN_LS = 1010b  
IDRIVEN_HS or IDRIVEN_LS = 1011b  
IDRIVEN_HS or IDRIVEN_LS = 1100b  
IDRIVEN_HS or IDRIVEN_LS = 1101b  
IDRIVEN_HS or IDRIVEN_LS = 1110b  
IDRIVEN_HS or IDRIVEN_LS = 1111b  
IDRIVE = Tied to AGND  
60  
120  
160  
240  
280  
340  
380  
520  
660  
740  
880  
1140  
1360  
1640  
2000  
20  
SPI Device  
Peak sink  
gate current  
IDRIVEN  
mA  
IDRIVE = 18 kΩ ± 5% tied to AGND  
IDRIVE = 75 kΩ ± 5% tied to AGND  
60  
120  
240  
520  
1140  
2000  
10  
H/W Device IDRIVE = Hi-Z  
IDRIVE = 75 kΩ ± 5% tied to DVDD  
IDRIVE = 18 kΩ ± 5% tied to DVDD  
IDRIVE = Tied to DVDD  
Source current after tDRIVE  
Sink current after tDRIVE  
IHOLD  
Gate holding current  
mA  
50  
ISTRONG  
ROFF  
Gate strong pulldown current  
Gate hold off resistor  
GHx to SHx and GLx to PGND  
GHx to SHx and GLx to PGND  
2
A
150  
kΩ  
CURRENT SENSE AMPLIFIER (SNx, SOx, SPx, VREF)  
CSA_GAIN = 00b  
4.85  
9.7  
5
10  
5.15  
10.3  
20.6  
CSA_GAIN = 01b  
SPI Device  
H/W Device  
CSA_GAIN = 10b  
19.4  
38.8  
4.85  
9.7  
20  
CSA_GAIN = 11b  
40  
41.2  
V/V  
GCSA  
Amplifier gain  
GAIN = Tied to AGND  
5
5.15  
GAIN = 47 kΩ ± 5% tied to AGND  
GAIN = Hi-Z  
10  
10.3  
20.6  
41.2  
19.4  
38.8  
20  
GAIN = Tied to DVDD  
40  
VO_STEP = 0.5 V, GCSA = 5 V/V  
VO_STEP = 0.5 V, GCSA = 10 V/V  
VO_STEP = 0.5 V, GVSA = 20 V/V  
VO_STEP = 0.5 V, GCSA = 40 V/V  
150  
300  
600  
1200  
(1)  
tSET  
Settling time to ±1%  
ns  
VCOM  
VDIFF  
VOFF  
Common mode input range  
Differential mode input range  
Input offset error  
–0.15  
–0.3  
–4  
0.15  
0.3  
4
V
V
VSP = VSN = 0 V, CAL = 3.3 V, VREF = 3.3 V  
VSP = VSN = 0 V  
mV  
µV/°C  
(1)  
VDRIFT  
Drift offset  
10  
VVREF  
– 0.25  
VLINEAR  
SOx output voltage linear range  
0.25  
V
Copyright © 2017–2018, Texas Instruments Incorporated  
15  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = –40°C to +125°C, VVM = 6 to 60 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VSP = VSN = 0 V, CAL = 3.3 V, VREF_DIV = 0b  
VSP = VSN = 0 V, CAL = 3.3 V, VREF_DIV = 1b  
VVREF – 0.3  
VVREF / 2  
VVREF / 2  
SPI Device  
SOx output voltage  
bias  
VBIAS  
V
H/W Device VSP = VSN = 0 V, CAL = 3.3 V  
IBIAS  
SPx/SNx input bias current  
SOx output slew rate  
VREF input current  
VREF_DIV = 1b  
60-pF load  
100  
3
µA  
V/µs  
mA  
(1)  
VSLEW  
IVREF  
UGB(1)  
10  
2
VVREF = 5 V  
60-pF load  
Unity gain bandwidth  
1
MHz  
PROTECTION CIRCUITS  
VM falling, UVLO report  
VM rising, UVLO recovery  
Rising to falling threshold  
VM falling, UVLO report  
5.4  
5.6  
5.8  
200  
10  
5.8  
6
VUVLO  
VM undervoltage lockout  
V
5.6  
VUVLO_HYS  
tUVLO_DEG  
VM undervoltage hysteresis  
VM undervoltage deglitch time  
mV  
µs  
Charge pump undervoltage  
lockout  
VCPUV  
VCP falling, CPUV report  
VVM + 2.8  
V
V
Positive clamping voltage  
Negative clamping voltage  
VDS_LVL = 0000b  
15  
16.5  
–0.7  
0.06  
0.13  
0.2  
18  
VGS_CLAMP  
High-side gate clamp  
VDS_LVL = 0001b  
VDS_LVL = 0010b  
VDS_LVL = 0011b  
0.26  
0.31  
0.45  
0.53  
0.6  
VDS_LVL = 0100b  
VDS_LVL = 0101b  
VDS_LVL = 0110b  
VDS_LVL = 0111b  
SPI Device  
VDS_LVL = 1000b  
0.68  
0.75  
0.94  
1.13  
1.3  
VDS_LVL = 1001b  
VDS_LVL = 1010b  
VDS overcurrent  
trip voltage  
VVDS_OCP  
VDS_LVL = 1011b  
V
VDS_LVL = 1100b  
VDS_LVL = 1101b  
1.5  
VDS_LVL = 1110b  
1.7  
VDS_LVL = 1111b  
1.88  
0.06  
0.13  
0.26  
0.6  
VDS = Tied to AGND  
VDS = 18 kΩ ± 5% tied to AGND  
VDS = 75 kΩ ± 5% tied to AGND  
H/W Device VDS = Hi-Z  
VDS = 75 kΩ ± 5% tied to DVDD  
VDS = 18 kΩ ± 5% tied to DVDD  
VDS = Tied to DVDD  
OCP_DEG = 00b  
1.13  
1.88  
Disabled  
2
OCP_DEG = 01b  
4
VDS and VSENSE  
SPI Device  
tOCP_DEG  
overcurrent  
OCP_DEG = 10b  
6
µs  
deglitch time  
OCP_DEG = 11b  
8
H/W Device  
4
16  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
Electrical Characteristics (continued)  
at TA = –40°C to +125°C, VVM = 6 to 60 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.25  
0.5  
0.75  
1
MAX UNIT  
SEN_LVL = 00b  
SEN_LVL = 01b  
SEN_LVL = 10b  
SEN_LVL = 11b  
SPI Device  
VSENSE overcurrent  
trip voltage  
VSEN_OCP  
V
H/W Device  
SPI Device  
H/W Device  
1
TRETRY = 0b  
TRETRY = 1b  
4
ms  
μs  
Overcurrent retry  
time  
tRETRY  
50  
4
ms  
(1)  
TOTW  
Thermal warning temperature  
Thermal shutdown temperature  
Thermal hysteresis  
Die temperature, TJ  
Die temperature, TJ  
Die temperature, TJ  
130  
150  
150  
170  
20  
165  
185  
°C  
°C  
°C  
(1)  
TOTSD  
(1)  
THYS  
BUCK REGULATOR SUPPLY (VIN)  
InSHDN Shutdown supply current  
IQ  
VnSHDN = 0 V  
1
3
4
µA  
µA  
Operating quiescent current  
VVIN = 12 V, no load; not switching  
VIN Rising  
28  
VIN undervoltage lockout  
threshold  
VVIN_UVLO  
V
VIN Falling  
3
BUCK REGULATOR SHUTDOWN (nSHDN)  
VnSHDN_TH  
Rising nSHDN threshold  
1.05  
1.25  
–4.2  
–1  
1.38  
V
VnSHDN = 2.3 V  
VnSHDN = 0.9 V  
InSHDN  
Input current  
µA  
µA  
InSHDN_HYS  
Hysteresis current  
–3  
BUCK REGULATOR HIGH-SIDE MOSFET  
RDS_ON MOSFET on resistance  
BUCK REGULATOR VOLTAGE REFERENCE (FB)  
VFB Feedback voltage  
BUCK REGULATOR CURRENT LIMIT  
VVIN = 12 V, VCB to VSW = 5.8 V, TA = 25°C  
900  
mΩ  
0.747 0.765 0.782  
V
VVIN = 12 V, TA = 25°C  
1200  
1700  
ILIMIT  
Peak current limit  
mA  
BUCK REGULATOR SWITCHING (SW)  
fSW  
Switching frequency  
Maximum duty cycle  
595  
700  
805  
kHz  
DMAX  
96%  
BUCK REGULATOR THERMAL SHUTDOWN  
(1)  
TSHDN  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
170  
10  
°C  
°C  
(1)  
THYS  
Copyright © 2017–2018, Texas Instruments Incorporated  
17  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
7.6 SPI Timing Requirements(1)  
at TA = –40°C to +125°C, VVM = 6 to 60 V (unless otherwise noted)  
MIN NOM  
MAX  
UNIT  
SPI (nSCS, SCLK, SDI, SDO)  
tREADY  
tCLK  
SPI ready after enable  
SCLK minimum period  
SCLK minimum high time  
SCLK minimum low time  
SDI input data setup time  
SDI input data hold time  
SDO output data delay time  
nSCS input setup time  
nSCS input hold time  
VM > UVLO, ENABLE = 3.3 V  
1
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100  
50  
50  
20  
30  
tCLKH  
tCLKL  
tSU_SDI  
tH_SDI  
tD_SDO  
tSU_nSCS  
tH_nSCS  
tHI_nSCS  
tDIS_nSCS  
SCLK high to SDO valid  
30  
50  
50  
nSCS minimum high time before active low  
nSCS disable time nSCS high to SDO high impedance  
400  
10  
(1) Specified by design and characterization data  
tHI_nSCS tSU_nSCS  
tH_nSCS  
nSCS  
tCLK  
SCLK  
tCLKH  
tCLKL  
X
MSB  
LSB  
X
SDI  
tSU_SDI  
tH_SDI  
Z
MSB  
LSB  
Z
SDO  
tD_SDO  
tDIS_nSCS  
Figure 1. SPI Slave Mode Timing Diagram  
18  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
7.7 Typical Characteristics  
16  
14  
12  
10  
8
15  
14  
13  
12  
11  
10  
9
6
8
4
7
TA = -40èC  
TA = 25èC  
TA = 125èC  
VVM = 6 V  
VVM = 24 V  
VVM = 60 V  
2
6
0
5
0
10  
20  
30  
40  
50  
60  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage (V)  
Ambient Temperature (°C)  
D001  
D002  
Figure 2. Supply Current Over VM  
Figure 3. Supply Current Over Temperature  
24  
22  
20  
18  
16  
14  
12  
10  
8
24  
22  
20  
18  
16  
14  
12  
10  
8
6
6
VVM = 6 V  
VVM = 24 V  
VVM = 60 V  
TA = -40èC  
4
4
TA = 25èC  
2
2
TA = 125èC  
0
0
0
10  
20  
30  
40  
50  
60  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Supply Voltage (V)  
Ambient Temperature (èC)  
D003  
D004  
Figure 4. Sleep Current Over VM  
Figure 5. Sleep Current Over Temperature  
4
4
3.75  
3.5  
3.25  
3
TA = -40èC  
TA = -40èC  
TA = 25èC  
TA = 125èC  
TA = 25èC  
3.75  
3.5  
3.25  
3
TA = 125èC  
2.75  
2.5  
2.25  
2
2.75  
2.5  
2.25  
2
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Supply Voltage (V)  
Supply Voltage (V)  
D005  
D006  
0-mA load  
Figure 6. DVDD Voltage Over VM  
30-mA load  
Figure 7. DVDD Voltage Over VM  
Copyright © 2017–2018, Texas Instruments Incorporated  
19  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
12  
14  
12  
10  
8
10  
8
6
6
4
4
VVM = 6 V  
VVM = 8 V  
VVM = 10 V  
VVM = 13 V  
VVM = 6 V  
VVM = 8 V  
VVM = 10 V  
VVM = 13 V  
2
2
0
0
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Load Current (mA)  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (°C)  
D007  
D008  
0-mA load  
Figure 9. VCP Voltage Over Temperature  
Figure 8. VCP Voltage Over Load  
20  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
8 Detailed Description  
8.1 Overview  
The DRV832x family of devices is an integrated 6 to 60-V gate driver for three-phase motor drive applications.  
These devices decrease system component count, cost, and complexity by integrating three independent half-  
bridge gate drivers, charge pump, and linear regulator for the supply voltages of the high-side and low-side gate  
drivers.The device also integrates optional triple current shunt (or current sense) amplifiers and an optional  
600-mA buck regulator. A standard serial peripheral interface (SPI) provides a simple method for configuring the  
various device settings and reading fault diagnostic information through an external controller. Alternatively, a  
hardware interface (H/W) option allows for configuring the most common settings through fixed external resistors.  
The gate drivers support external N-channel high-side and low-side power MOSFETs and can drive up to 1-A  
source, 2-A sink peak currents with a 25-mA average output current. A doubler charge pump generates the  
supply voltage of the high-side gate drive. This charge pump architecture regulates the VCP output to VVM  
+
11 V. The supply voltage of the low-side gate driver is generated using a linear regulator from the VM power  
supply that regulates to 11 V. A Smart Gate Drive architecture provides the ability to dynamically adjust the  
strength of the gate drive output current which lets the gate driver control the VDS switching speed of the power  
MOSFET. This feature lets the user remove the external gate drive resistors and diodes, reducing the component  
count in the bill of materials (BOM), cost, and area of the printed circuit board (PCB). The architecture also uses  
an internal state machine to protect against short-circuit events in the gate driver, control the half-bridge dead  
time, and protect against dV/dt parasitic turnon of the external power MOSFET.  
The DRV8323 and DRV8323R devices integrate three bidirectional current sense amplifiers for monitoring the  
current level through each of the external half-bridges using a low-side shunt resistor. The gain setting of the  
current sense amplifier can be adjusted through the SPI or hardware interface. The SPI method provides  
additional flexibility to adjust the output bias point.  
The DRV8320R and DRV8323R devices integrate a 600-mA buck regulator that can be used to power an  
external controller or other logic circuits. The buck regulator is implemented as a separate internal die that can  
use either the same or a different power supply than the gate driver.  
In addition to the high level of device integration, the DRV832x family of devices provides a wide range of  
integrated protection features. These features include power supply undervoltage lockout (UVLO), charge pump  
undervoltage lockout (CPUV), VDS overcurrent monitoring (OCP), gate driver short-circuit detection (GDF), and  
overtemperature shutdown (OTW and OTSD). Fault events are indicated by the nFAULT pin with detailed  
information available in the SPI registers on the SPI device version.  
The DRV832x family of devices are available in 0.5-mm pin pitch, QFN surface-mount packages. The QFN sizes  
are 5 × 5 mm for the 32-pin package, 6 × 6 mm for the 40-pin package, and 7 × 7 mm for the 48-pin package.  
Copyright © 2017–2018, Texas Instruments Incorporated  
21  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
8.2 Functional Block Diagram  
VM  
VM  
VDRAIN  
VM  
VCP  
HS  
GHA  
SHA  
VCP  
1 F  
>10 F 0.1 F  
VCP  
Charge  
Pump  
CPH  
VGLS  
LS  
47 nF  
GLA  
SLA  
CPL  
VGLS  
VGLS  
Gate Driver  
Linear  
Regulator  
VM  
VCP  
HS  
30 mA  
DVDD  
AGND  
DVDD  
Linear  
Regulator  
GHB  
SHB  
1 F  
Power  
PGND  
VGLS  
LS  
Digital  
Core  
GLB  
SLB  
ENABLE  
INHA  
INLA  
Gate Driver  
VM  
VCP  
HS  
Smart Gate  
Drive  
GHC  
SHC  
INHB  
INLB  
Protection  
VGLS  
LS  
Control  
Inputs  
GLC  
SLC  
INHC  
INLC  
VCC  
Gate Driver  
Fault Output  
R
PU  
nFAULT  
MODE  
IDRIVE  
VDS  
Copyright © 2017, Texas Instruments Incorporated  
Figure 10. Block Diagram for DRV8320H  
22  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
Functional Block Diagram (continued)  
VM  
VM  
VDRAIN  
VM  
VCP  
HS  
GHA  
SHA  
VCP  
1 F  
>10 F 0.1 F  
VCP  
Charge  
Pump  
CPH  
VGLS  
LS  
47 nF  
GLA  
SLA  
CPL  
VGLS  
VGLS  
Gate Driver  
Linear  
Regulator  
VM  
30 mA  
DVDD  
AGND  
VCP  
HS  
DVDD  
Linear  
Regulator  
GHB  
SHB  
1 F  
Power  
PGND  
VGLS  
LS  
Digital  
Core  
GLB  
SLB  
ENABLE  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
Gate Driver  
VM  
VCP  
HS  
Smart Gate  
Drive  
GHC  
SHC  
Control  
Inputs  
Protection  
VGLS  
LS  
GLC  
SLC  
VCC  
Gate Driver  
Fault Output  
VCC  
SDI  
R
PU  
SPI  
nFAULT  
R
PU  
SDO  
SCLK  
nSCS  
Copyright © 2017, Texas Instruments Incorporated  
Figure 11. Block Diagram for DRV8320S  
Copyright © 2017–2018, Texas Instruments Incorporated  
23  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
Functional Block Diagram (continued)  
VM  
VM  
VDRAIN  
VM  
VCP  
HS  
GHA  
SHA  
VCP  
1 F  
>10 F 0.1 F  
VCP  
Charge  
Pump  
CPH  
VGLS  
LS  
47 nF  
CPL  
GLA  
SLA  
VGLS  
VGLS  
Gate Driver  
Linear  
Regulator  
VM  
30 mA  
DVDD  
VCP  
HS  
DVDD  
Linear  
Regulator  
GHB  
SHB  
1 F  
AGND  
PGND  
Power  
VGLS  
LS  
Digital  
Core  
GLB  
SLB  
ENABLE  
INHA  
Gate Driver  
INLA  
VM  
VCP  
HS  
Smart Gate  
Drive  
GHC  
SHC  
INHB  
Protection  
INLB  
Control  
Inputs  
VGLS  
LS  
GLC  
SLC  
INHC  
INLC  
VCC  
Gate Driver  
Fault Output  
MODE  
R
PU  
nFAULT  
IDRIVE  
VDS  
VIN  
VIN  
nSHDN  
BGND  
CB  
0.1 µF  
L
OUT  
SW  
600 mA  
Buck Regulator  
(LMR16006X)  
C
IN  
C
D
OUT  
OUT  
FB  
R
FB1  
R
FB2  
Copyright © 2017, Texas Instruments Incorporated  
Figure 12. Block Diagram for DRV8320RH  
24  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
Functional Block Diagram (continued)  
VM  
VM  
VDRAIN  
VM  
VCP  
HS  
GHA  
SHA  
VCP  
1 F  
>10 F 0.1 F  
VCP  
Charge  
Pump  
CPH  
VGLS  
LS  
47 nF  
GLA  
SLA  
CPL  
VGLS  
VGLS  
Gate Driver  
Linear  
Regulator  
VM  
30 mA  
DVDD  
AGND  
DVDD  
Linear  
Regulator  
VCP  
HS  
1 F  
GHB  
SHB  
Power  
PGND  
ENABLE  
VGLS  
LS  
Digital  
Core  
GLB  
SLB  
INHA  
INLA  
Gate Driver  
VM  
INHB  
INLB  
VCP  
HS  
Smart Gate  
Drive  
Control  
Inputs  
GHC  
SHC  
Protection  
INHC  
INLC  
SDI  
VGLS  
LS  
GLC  
SLC  
VCC  
VCC  
Gate Driver  
Fault Output  
SPI  
R
PU  
R
SDO  
PU  
nFAULT  
SCLK  
nSCS  
VIN  
VIN  
nSHDN  
BGND  
CB  
SW  
FB  
0.1 µF  
D
L
OUT  
600 mA  
Buck Regulator  
(LMR16006X)  
C
IN  
OUT  
C
OUT  
R
FB1  
R
FB2  
Copyright © 2017, Texas Instruments Incorporated  
Figure 13. Block Diagram for DRV8320RS  
Copyright © 2017–2018, Texas Instruments Incorporated  
25  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
Functional Block Diagram (continued)  
VM  
VM  
VDRAIN  
VM  
VCP  
HS  
GHA  
SHA  
VCP  
1 F  
>10 F 0.1 F  
VCP  
Charge  
Pump  
CPH  
VGLS  
LS  
47 nF  
GLA  
CPL  
VGLS  
VGLS  
Gate Driver  
Linear  
Regulator  
VM  
30 mA  
DVDD  
AGND  
PGND  
VCP  
HS  
DVDD  
Linear  
Regulator  
GHB  
SHB  
1 F  
Power  
VGLS  
LS  
Digital  
Core  
GLB  
ENABLE  
INHA  
Gate Driver  
INLA  
VM  
VCP  
HS  
Smart Gate  
Drive  
GHC  
SHC  
INHB  
Protection  
INLB  
Control  
Inputs  
VGLS  
LS  
GLC  
INHC  
INLC  
VCC  
PU  
Gate Driver  
Fault Output  
R
MODE  
nFAULT  
IDRIVE  
VDS  
GAIN  
VCC  
SPC  
SNC  
VREF  
AV  
AV  
AV  
R
SEN  
0.1 F  
SOC  
SOB  
SOA  
SPB  
SNB  
Output  
Offset  
Bias  
R
SEN  
SPA  
SNA  
CAL  
R
SEN  
Copyright © 2017, Texas Instruments Incorporated  
Figure 14. Block Diagram for DRV8323H  
26  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
Functional Block Diagram (continued)  
VM  
VM  
VDRAIN  
VM  
VCP  
HS  
GHA  
SHA  
VCP  
1 F  
>10 F 0.1 F  
VCP  
Charge  
Pump  
CPH  
VGLS  
LS  
47 nF  
CPL  
GLA  
VGLS  
VGLS  
Gate Driver  
Linear  
Regulator  
VM  
30 mA  
DVDD  
AGND  
VCP  
HS  
DVDD  
Linear  
Regulator  
1 F  
GHB  
Power  
SHB  
GLB  
PGND  
VGLS  
LS  
ENABLE  
Digital  
Core  
INHA  
Gate Driver  
INLA  
INHB  
INLB  
VM  
VCP  
HS  
Smart Gate  
Drive  
GHC  
Control  
Inputs  
Protection  
SHC  
GLC  
VGLS  
LS  
INHC  
INLC  
VCC  
Gate Driver  
Fault Output  
VCC  
R
SDI  
PU  
SPI  
R
PU  
nFAULT  
SDO  
SCLK  
nSCS  
VCC  
SPC  
VREF  
SOC  
SOB  
SOA  
R
AV  
AV  
AV  
SEN  
SNC  
0.1 F  
SPB  
Output  
Offset  
Bias  
R
SEN  
SNB  
SPA  
SNA  
CAL  
R
SEN  
Copyright © 2017, Texas Instruments Incorporated  
Figure 15. Block Diagram for DRV8323S  
Copyright © 2017–2018, Texas Instruments Incorporated  
27  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
Functional Block Diagram (continued)  
VM  
VM  
VDRAIN  
VM  
VCP  
HS  
GHA  
SHA  
VCP  
1 F  
>10 F 0.1 F  
VCP  
Charge  
Pump  
CPH  
VGLS  
LS  
47 nF  
GLA  
CPL  
VGLS  
VGLS  
Gate Driver  
DGND  
Linear  
Regulator  
VM  
VCP  
HS  
30 mA  
DVDD  
AGND  
PGND  
DVDD  
Linear  
Regulator  
GHB  
SHB  
1 F  
Power  
VGLS  
LS  
Digital  
Core  
GLB  
ENABLE  
INHA  
INLA  
Gate Driver  
VM  
VCP  
HS  
Smart Gate  
Drive  
GHC  
SHC  
Protection  
INHB  
INLB  
VGLS  
LS  
GLC  
Control  
Inputs  
INHC  
INLC  
VCC  
PU  
Gate Driver  
Fault Output  
R
nFAULT  
MODE  
IDRIVE  
VDS  
GAIN  
VCC  
SPC  
SNC  
VREF  
R
SEN  
AV  
AV  
AV  
0.1 F  
SOC  
SOB  
SOA  
SPB  
SNB  
Output  
Offset  
Bias  
R
SEN  
SPA  
SNA  
CAL  
R
SEN  
VIN  
VIN  
CB  
SW  
FB  
L
OUT  
R
0.1 µF  
600 mA  
C
nSHDN  
Buck Regulator  
(LMR16006X)  
C
IN  
OUT  
FB1  
D
OUT  
BGND  
R
FB2  
Copyright © 2017, Texas Instruments Incorporated  
Figure 16. Block Diagram for DRV8323RH  
28  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
Functional Block Diagram (continued)  
VM  
VM  
VM  
VDRAIN  
VCP  
HS  
VCP  
GHA  
SHA  
1 F  
>10 F 0.1 F  
VCP  
Charge  
CPH  
Pump  
47 nF  
VGLS  
LS  
CPL  
GLA  
VGLS  
DGND  
VGLS  
Linear  
Gate Driver  
Regulator  
DVDD  
AGND  
30 mA  
VM  
DVDD  
Linear  
Regulator  
VCP  
HS  
1 F  
GHB  
Power  
PGND  
SHB  
GLB  
VGLS  
LS  
ENABLE  
Digital  
Core  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
Gate Driver  
VM  
VCP  
HS  
Smart Gate  
Drive  
Control  
Inputs  
GHC  
Protection  
SHC  
GLC  
VGLS  
LS  
VCC  
Gate Driver  
Fault Output  
VCC  
PU  
SDI  
R
PU  
SPI  
R
nFAULT  
SDO  
SCLK  
nSCS  
VCC  
SPC  
SNC  
AV  
AV  
AV  
R
SEN  
VREF  
SOC  
0.1 F  
SPB  
SNB  
Output  
Offset  
Bias  
SOB  
SOA  
R
SEN  
SPA  
SNA  
CAL  
R
SEN  
VIN  
CB  
SW  
FB  
VIN  
nSHDN  
BGND  
L
OUT  
0.1 µF  
600 mA  
Buck Regulator  
(LMR16006X)  
C
OUT  
R
C
IN  
FB1  
D
OUT  
R
FB2  
Copyright © 2017, Texas Instruments Incorporated  
Figure 17. Block Diagram for DRV8323RS  
Copyright © 2017–2018, Texas Instruments Incorporated  
29  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
8.3 Feature Description  
Table 1 lists the recommended values of the external components for the gate driver and the buck regulator.  
Table 1. DRV832x External Components  
COMPONENTS  
PIN 1  
PIN 2  
RECOMMENDED  
GATE DRIVER AND SENSE AMPLIFIER  
CVM1  
CVM2  
VM  
VM  
PGND  
PGND  
X5R or X7R, 0.1-µF, VM-rated capacitor  
10 µF, VM-rated capacitor  
X5R or X7R, 16-V, 1-µF capacitor  
X5R or X7R, 47-nF, VM-rated capacitor  
X5R or X7R, 1-µF, 6.3-V capacitor  
Pullup resistor  
CVCP  
VCP  
VM  
CSW  
CPH  
CPL  
CDVDD  
RnFAULT  
RSDO  
DVDD  
VCC(1)  
VCC(1)  
IDRIVE  
VDS  
AGND  
nFAULT  
SDO  
Pullup resistor  
RIDRIVE  
RVDS  
RMODE  
RGAIN  
AGND or DVDD  
AGND or DVDD  
AGND or DVDD  
AGND or DVDD  
AGND or DGND  
SNA and PGND  
SNB and PGND  
SNC and PGND  
DRV832x hardware interface  
DRV832x hardware interface  
DRV832x hardware interface  
DRV832x hardware interface  
X5R or X7R, 0.1-μF, VREF-rated capacitor  
Sense shunt resistor  
MODE  
GAIN  
VREF  
SPA  
CVREF  
RASENSE  
RBSENSE  
RCSENSE  
BUCK REGULATOR  
CVIN  
SPB  
Sense shunt resistor  
SPC  
Sense shunt resistor  
VIN  
SW  
BGND  
CB  
X5R or X7R, 1 to 10 µF, VM-rated capacitor  
X5R or X7R, 0.1-µF, 16-V capacitor  
Schottky diode  
CBOOT  
DSW  
SW  
BGND  
OUT(2)  
BGND  
FB  
LSW  
SW  
Output inductor  
COUT  
OUT(2)  
OUT(2)  
FB  
X5R or X7R, OUT rated capacitor  
RFB1  
Resistor divider to set buck output voltage  
RFB2  
BGND  
(1) The VCC pin is not a pin on the DRV832x family of devices, but a VCC supply voltage pullup is required for the open-drain outputs,  
nFAULT and SDO. These pins can also be pulled up to DVDD.  
(2) The OUT pin is not a pin on the DRV8320R and DRV8323R devices, but is the regulated output voltage of the buck regulator after the  
output inductor.  
8.3.1 Three Phase Smart Gate Drivers  
The DRV832x family of devices integrates three, half-bridge gate drivers, each capable of driving high-side and  
low-side N-channel power MOSFETs. A doubler charge pump provides the correct gate bias voltage to the high-  
side MOSFET across a wide operating voltage range in addition to providing 100% support of the duty cycle. An  
internal linear regulator provides the gate bias voltage for the low-side MOSFETs. The half-bridge gate drivers  
can be used in combination to drive a three-phase motor or separately to drive other types of loads.  
The DRV832x family of devices implements a Smart Gate Drive architecture which allows the user to  
dynamically adjust the gate drive current without requiring external resistors to limit the gate current. Additionally,  
this architecture provides a variety of protection features for the external MOSFETs including automatic dead  
time insertion, prevent of parasitic dV/dt gate turnon, and gate fault detection.  
8.3.1.1 PWM Control Modes  
The DRV832x family of devices provides four different PWM control modes to support various commutation and  
control methods. Texas Instruments does not recommend changing the MODE pin or PWM_MODE register  
during operation of the power MOSFETs. Set all INHx and INLx pins to logic low before changing the MODE pin  
or PWM_MODE register.  
30  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
8.3.1.1.1 6x PWM Mode (PWM_MODE = 00b or MODE Pin Tied to AGND)  
In 6x PWM mode, each half-bridge supports three output states: low, high, or high-impedance (Hi-Z). The  
corresponding INHx and INLx signals control the output state as listed in Table 2.  
Table 2. 6x PWM Mode Truth Table  
INLx  
INHx  
GLx  
L
GHx  
SHx  
Hi-Z  
H
0
0
1
1
0
1
0
1
L
H
L
L
H
L
L
L
Hi-Z  
8.3.1.1.2 3x PWM Mode (PWM_MODE = 01b or MODE Pin = 47 kΩ to AGND)  
In 3x PWM mode, the INHx pin controls each half-bridge and supports two output states: low or high. The INLx  
pin is used to put the half bridge in the Hi-Z state. If the Hi-Z state is not required, tie all INLx pins to logic high.  
The corresponding INHx and INLx signals control the output state as listed in Table 3.  
Table 3. 3x PWM Mode Truth Table  
INLx  
INHx  
GLx  
L
GHx  
L
SHx  
Hi-Z  
L
0
1
1
X
0
1
H
L
L
H
H
8.3.1.1.3 1x PWM Mode (PWM_MODE = 10b or MODE Pin = Hi-Z)  
In 1x PWM mode, the DRV832x family of devices uses 6-step block commutation tables that are stored  
internally. This feature allows for a three-phase BLDC motor to be controlled using one PWM sourced from a  
simple controller. The PWM is applied on the INHA pin and determines the output frequency and duty cycle of  
the half-bridges.  
The half-bridge output states are managed by the INLA, INHB, and INLB pins which are used as state logic  
inputs. The state inputs can be controlled by an external controller or connected directly to the digital outputs of  
the Hall effect sensor from the motor (INLA = HALL_A, INHB = HALL_B, INLB = HALL_C). The 1x PWM mode  
usually operates with synchronous rectification (low-side MOSFET recirculation); however, the mode can be  
configured to use asynchronous rectification (MOSFET body diode freewheeling) on SPI devices. This  
configuration is set using the 1PWM_COM bit in the SPI registers.  
The INHC input controls the direction through the 6-step commutation table which is used to change the direction  
of the motor when Hall effect sensors are directly controlling the state of the INLA, INHB, and INLB inputs. Tie  
the INHC pin low if this feature is not required.  
The INLC input brakes the motor by turning off all high-side MOSFETs and turning on all low-side MOSFETs  
when the INLC pin is pulled low. This brake is independent of the state of the other input pins. Tie the INLC pin  
high if this feature is not required.  
Table 4. Synchronous 1x PWM Mode  
LOGIC AND HALL INPUTS  
INHC = 0  
GATE DRIVE OUTPUTS(1)  
INHC = 1  
PHASE A  
PHASE B PHASE C  
STATE  
DESCRIPTION  
INLA  
INHB  
INLB  
INLA  
INHB  
INLB  
GHA  
GLA  
GHB  
GLB  
GHC  
GLC  
Stop  
0
1
1
1
1
0
0
0
0
1
1
0
0
0
1
1
0
1
0
0
1
1
1
0
0
1
0
0
0
1
1
1
0
1
0
1
1
1
0
0
0
1
1
1
0
0
0
1
L
PWM  
L
L
!PWM  
L
L
L
L
L
Stop  
Align  
L
H
L
H
Align  
1
2
3
4
5
6
PWM  
!PWM  
L
L
H
H
B C  
A C  
A B  
C B  
C A  
B A  
PWM  
PWM  
L
!PWM  
!PWM  
L
L
L
H
L
L
L
L
H
PWM  
PWM  
L
!PWM  
!PWM  
L
L
H
L
L
L
H
PWM  
!PWM  
(1) !PWM is the inverse of the PWM signal.  
Copyright © 2017–2018, Texas Instruments Incorporated  
31  
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
DESCRIPTION  
Table 5. Asynchronous 1x PWM Mode 1PWM_COM = 1 (SPI Only)  
LOGIC AND HALL INPUTS  
INHC = 0  
GATE DRIVE OUTPUTS  
PHASE B PHASE C  
INHC = 1  
PHASE A  
STATE  
INLA  
INHB  
INLB  
INLA  
INHB  
INLB  
GHA  
GLA  
L
GHB  
GLB  
L
GHC  
GLC  
L
Stop  
0
1
1
1
1
0
0
0
0
1
1
0
0
0
1
1
0
1
0
0
1
1
1
0
0
1
0
0
0
1
1
1
0
1
0
1
1
1
0
0
0
1
1
1
0
0
0
1
L
PWM  
L
L
L
Stop  
Align  
L
L
H
L
L
H
H
H
L
Align  
1
2
3
4
5
6
L
PWM  
L
L
B C  
A C  
A B  
C B  
C A  
B A  
PWM  
PWM  
L
L
L
L
L
L
L
H
H
L
L
L
PWM  
PWM  
L
L
L
H
H
L
L
L
PWM  
L
L
Figure 18 and Figure 19 show the different possible configurations in 1x PWM mode.  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
MCU_PWM  
PWM  
MCU_PWM  
MCU_GPIO  
MCU_GPIO  
PWM  
H
STATE0  
STATE1  
STATE2  
DIR  
STATE0  
STATE1  
STATE2  
DIR  
H
BLDC Motor  
BLDC Motor  
H
MCU_GPIO  
MCU_GPIO  
MCU_GPIO  
MCU_GPIO  
nBRAKE  
MCU_GPIO  
nBRAKE  
Figure 18. 1x PWM—Simple Controller  
Figure 19. 1x PWM—Hall Effect Sensor  
8.3.1.1.4 Independent PWM Mode (PWM_MODE = 11b or MODE Pin Tied to DVDD)  
In independent PWM mode, the corresponding input pin independently controls each high-side and low-side gate  
driver. This control mode lets the DRV832x family of devices drive separate high-side and low-side loads with  
each half-bridge. These types of loads include unidirectional brushed DC motors, solenoids, and low-side and  
high-side switches. In this mode, if the system is configured in a half-bridge configuration, turning on both the  
high-side and low-side MOSFETs at the same time causes shoot-through.  
Table 6. Independent PWM Mode Truth Table  
INLx  
INHx  
GLx  
L
GHx  
L
0
0
1
1
0
1
0
1
L
H
H
L
H
H
32  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
Because the high-side and low-side VDS overcurrent monitors share the SHx sense line, using the monitors when  
both the high-side and low-side gate drivers of one half-bridge are split and being used is not possible. In this  
case, connect the SHx pin to the high-side driver and disable the VDS overcurrent monitors as shown in  
Figure 20.  
Disable  
+
V
DS œ  
VM  
VDRAIN  
VCP  
GHx  
Load  
HS  
INHx  
SHx  
VGLS  
INLx  
GLx  
LS  
Load  
Gate Driver  
Disable  
SLx/SPx  
+
V
DSœ  
Figure 20. Independent PWM High-Side and Low-Side Drivers  
If the half-bridge is used to implement only a high-side or low-side driver, using the VDS overcurrent monitors is  
still possible. Connect the SHx pin as shown in Figure 21 or Figure 22. The unused gate driver and the  
corresponding input can stay disconnected.  
+
+
V
V
DS œ  
DS œ  
VM  
VM  
VDRAIN  
VDRAIN  
VCP  
HS  
VCP  
HS  
GHx  
SHx  
GHx  
SHx  
Load  
INHx  
INLx  
INHx  
INLx  
VGLS  
LS  
VGLS  
LS  
GLx  
GLx  
Load  
Gate Driver  
SLx/SPx  
Gate Driver  
SLx/SPx  
+
+
V
V
DS œ  
DS œ  
Figure 21. One High-Side Driver  
8.3.1.2 Device Interface Modes  
Figure 22. One Low-Side Driver  
The DRV832x family of devices supports two different interface modes (SPI and hardware) to let the end  
application design for either flexibility or simplicity. The two interface modes share the same four pins, allowing  
the different versions to be pin-to-pin compatible. This compatibility lets application designers evaluate with one  
interface version and potentially switch to another with minimal modifications to their design.  
Copyright © 2017–2018, Texas Instruments Incorporated  
33  
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
8.3.1.2.1 Serial Peripheral Interface (SPI)  
The SPI devices support a serial communication bus that lets an external controller send and receive data with  
the DRV832x. This support lets the external controller configure device settings and read detailed fault  
information. The interface is a four wire interface using the SCLK, SDI, SDO, and nSCS pins which are described  
as follows:  
The SCLK pin is an input that accepts a clock signal to determine when data is captured and propagated on  
the SDI and SDO pins.  
The SDI pin is the data input.  
The SDO pin is the data output. The SDO pin uses an open-drain structure and requires an external pullup  
resistor.  
The nSCS pin is the chip select input. A logic low signal on this pin enables SPI communication with the  
DRV832x.  
For more information on the SPI, see the SPI Communication section.  
8.3.1.2.2 Hardware Interface  
Hardware interface devices convert the four SPI pins into four resistor-configurable inputs which are GAIN,  
IDRIVE, MODE, and VDS. This conversion lets the application designer configure the most common device  
settings by tying the pin logic high or logic low, or with a simple pullup or pulldown resistor. This removes the  
requirement for an SPI bus from the external controller. General fault information can still be obtained through  
the nFAULT pin.  
The GAIN pin configures the gain of the current sense amplifier.  
The IDRIVE pin configures the gate drive current strength.  
The MODE pin configures the PWM control mode.  
The VDS pin configures the voltage threshold of the VDS overcurrent monitors.  
For more information on the hardware interface, see the Pin Diagrams section.  
DVDD  
RGAIN  
DVDD  
GAIN  
SCLK  
SDI  
Hardware  
Interface  
SPI  
Interface  
DVDD  
DVDD  
IDRIVE  
MODE  
VDS  
DVDD  
VCC  
RPU  
SDO  
nSCS  
DVDD  
RVDS  
Figure 23. SPI  
8.3.1.3 Gate Driver Voltage Supplies  
Figure 24. Hardware Interface  
The voltage supply for the high-side gate driver is created using a doubler charge pump that operates from the  
VM voltage supply input. The charge pump lets the gate driver correctly bias the high-side MOSFET gate with  
respect to the source across a wide input supply voltage range. The charge pump is regulated to keep a fixed  
output voltage of VVM + 11 V and supports an average output current of 25 mA. When VVM is less than 12 V, the  
charge pump operates in full doubler mode and generates VVCP = 2 × VVM – 1.5 V when unloaded. The charge  
pump is continuously monitored for undervoltage events to prevent under-driven MOSFET conditions. The  
charge pump requires a X5R or X7R, 1-µF, 16-V ceramic capacitor between the VM and VCP pins to act as the  
storage capacitor. Additionally, a X5R or X7R, 47-nF, VM-rated ceramic capacitor is required between the CPH  
and CPL pins to act as the flying capacitor.  
34  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
VM  
VM  
1 F  
VCP  
CPH  
VM  
Charge  
Pump  
47 nF  
Control  
CPL  
Figure 25. Charge Pump Architecture  
The voltage supply of the low-side gate driver is created using a linear regulator that operates from the VM  
voltage supply input. The linear regulator lets the gate driver correctly bias the low-side MOSFET gate with  
respect to ground. The linear regulator output is fixed at 11 V and supports an output current of 25 mA.  
8.3.1.4 Smart Gate Drive Architecture  
The DRV832x gate drivers use an adjustable, complimentary, push-pull topology for both the high-side and low-  
side drivers. This topology allows for both a strong pullup and pulldown of the external MOSFET gates.  
Additionally, the gate drivers use a Smart Gate Drive architecture to provide additional control of the external  
power MOSFETs, additional steps to protect the MOSFETs, and optimal tradeoffs between efficiency and  
robustness. This architecture is implemented through two components called IDRIVE and TDRIVE which are  
described in the IDRIVE: MOSFET Slew-Rate Control section and TDRIVE: MOSFET Gate Drive Control  
section. Figure 26 shows the high-level functional block diagram of the gate driver.  
The IDRIVE gate drive current and TDRIVE gate drive time should be initially selected based on the parameters  
of the external power MOSFET used in the system and the desired rise and fall times (see the Application and  
Implementation section).  
The high-side gate driver also implements a Zener clamp diode to help protect the external MOSFET gate from  
overvoltage conditions in the case of external short-circuit events on the MOSFET.  
Copyright © 2017–2018, Texas Instruments Incorporated  
35  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
VCP  
INHx  
VM  
Control  
Inputs  
INLx  
GHx  
SHx  
Level  
Shifters  
150 k  
+
V
GS œ  
VGLS  
Digital  
Core  
GLx  
Level  
Shifters  
150 kꢀ  
SLx/SPx  
PGND  
+
V
GS œ  
Figure 26. Gate Driver Block Diagram  
8.3.1.4.1 IDRIVE: MOSFET Slew-Rate Control  
The IDRIVE component implements adjustable gate drive current to control the MOSFET VDS slew rates. The  
MOSFET VDS slew rates are a critical factor for optimizing radiated emissions, energy, and duration of diode  
recovery spikes, dV/dt gate turnon resulting in shoot-through, and switching voltage transients related to  
parasitics in the external half-bridge. The IDRIVE component operates on the principal that the MOSFET VDS  
slew rates are predominately determined by the rate of gate charge (or gate current) delivered during the  
MOSFET QGD or Miller charging region. By letting the gate driver adjust the gate current, the gate driver can  
effectively control the slew rate of the external power MOSFETs.  
The IDRIVE component lets the DRV832x family of devices dynamically switch between gate drive currents  
either through a register setting on SPI devices or the IDRIVE pin on hardware interface devices. The SPI  
devices provide 16 IDRIVE settings ranging from 10-mA to 1-A source and 20-mA to 2-A sink. Hardware interface  
devices provide 7 IDRIVE settings within the same ranges. The setting of the gate drive current is delivered to the  
gate during the turnon and turnoff of the external power MOSFET for the tDRIVE duration. After the MOSFET  
turnon or turnoff, the gate driver switches to a smaller hold IHOLD current to improve the gate driver efficiency. For  
additional details on the IDRIVE settings, see the Register Maps section for the SPI devices and the Pin  
Diagrams section for the hardware interface devices.  
8.3.1.4.2 TDRIVE: MOSFET Gate Drive Control  
The TDRIVE component is an integrated gate drive state machine that provides automatic dead time insertion  
through handshaking between the high-side and low-side gate drivers, parasitic dV/dt gate turnon prevention,  
and MOSFET gate fault detection.  
The first component of the TDRIVE state machine is automatic dead time insertion. Dead time is period of time  
between the switching of the external high-side and low-side MOSFETs to make sure that they do not cross  
conduct and cause shoot-through. The DRV832x family of devices uses VGS voltage monitors to measure the  
MOSFET gate-to-source voltage and determine the correct time to switch instead of relying on a fixed time value.  
This feature lets the dead time of the gate driver adjust for variation in the system such as temperature drift and  
variation in the MOSFET parameters. An additional digital dead time (tDEAD) can be inserted and is adjustable  
through the registers on SPI devices.  
36  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
The second component of the TDRIVE state machine is parasitic dV/dt gate turnon prevention. To implement this  
component, the TDRIVE state machine enables a strong pulldown current (ISTRONG) on the opposite MOSFET  
gate whenever a MOSFET is switching. The strong pulldown occurs for the TDRIVE duration. This feature helps  
remove parasitic charge that couples into the MOSFET gate when the voltage half-bridge switch node slews  
rapidly.  
The third component of the TDRIVE state machine implements a scheme for gate fault detection to detect pin-to-  
pin solder defects, a MOSFET gate failure, or stuck-high or stuck-low voltage condition on a MOSFET gate. This  
implementation occurs with a pair of VGS gate-to-source voltage monitors for each half-bridge gate driver. When  
the gate driver receives a command to change the state of the half-bridge, it starts to monitor the gate voltage of  
the external MOSFET. If the VGS voltage has not reached the correct threshold at the end of the tDRIVE period,,  
the gate driver reports a fault. To make sure that a false fault is not detected, a tDRIVE time should be selected  
that is longer than the time required to charge or discharge the MOSFET gate. The tDRIVE time does not increase  
the PWM time and will terminate if another PWM command is received while active. For additional details on the  
TDRIVE settings, see the Register Maps section for SPI devices. The hardware interface devices have a fixed  
tDRIVE of 4 µs.  
Figure 27 shows an example of the TDRIVE state machine in operation.  
V
INHx  
V
INLx  
V
GHx  
GHx  
tDEAD  
IHOLD  
tDEAD  
IHOLD  
I
I
t
I
I
I
STRONG  
HOLD  
DRIVE  
DRIVE  
STRONG  
HOLD  
I
I
t
I
I
DRIVE  
HOLD  
HOLD  
DRIVE  
V
GLx  
GLx  
tDEAD  
IHOLD  
tDEAD  
IHOLD  
I
I
I
t
I
STRONG  
HOLD  
STRONG  
DRIVE  
I
I
t
I
HOLD  
DRIVE  
DRIVE  
DRIVE  
Figure 27. TDRIVE State Machine  
8.3.1.4.3 Propagation Delay  
The propagation delay time (tpd) is measured as the time between an input logic edge to a detected output  
change. This time has three parts consisting of the digital input deglitcher delay, the digital propagation delay,  
and the delay through the analog gate drivers.  
The input deglitcher prevents high-frequency noise on the input pins from affecting the output state of the gate  
drivers. To support multiple control modes and dead time insertion, a small digital delay is added as the input  
command propagates through the device. Lastly, the analog gate drivers have a small delay that contributes to  
the overall propagation delay of the device.  
8.3.1.4.4 MOSFET VDS Monitors  
The gate drivers implement adjustable VDS voltage monitors to detect overcurrent or short-circuit conditions on  
the external power MOSFETs. When the monitored voltage is greater than the VDS trip point (VVDS_OCP) for  
longer than the deglitch time (tOCP), an overcurrent condition is detected and action is taken according to the  
device VDS fault mode.  
Copyright © 2017–2018, Texas Instruments Incorporated  
37  
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
The high-side VDS monitors measure the voltage between the VDRAIN and SHx pins. In devices with three  
current sense amplifiers (DRV8323 and DRV8323R), the low-side VDS monitors measure the voltage between  
the SHx and SPx pins. If the current sense amplifier is unused, tie the SP pins to the common ground point of  
the external half-bridges. On device options without the current sense amplifiers (DRV8320 and DRV8320R) the  
low-side VDS monitor measures between the SHx and SLx pins.  
For the SPI devices, the reference point of the low-side VDS monitor can be changed between the SPx and SNx  
pins if desired with the LS_REF register setting.  
The VVDS_OCP threshold is programmable from 0.06 V to 1.88 V. For additional information on the VDS monitor  
levels, see the Register Maps section for SPI devices and in the Pin Diagrams section hardware interface device.  
VM  
VM  
VDRAIN  
VDRAIN  
+
+
V
+
V
+
DS œ  
V
V
DSœ  
DSœ  
V
V
DSœ  
V
V
V
V
VDS_OCP  
VDS_OCP  
GHx  
SHx  
GLx  
GHx  
SHx  
GLx  
+
+
+
V
+
V
DSœ  
DSœ  
DSœ  
DSœ  
VDS_OCP  
VDS_OCP  
SPx  
SLx  
0
1
R
SENSE  
PGND  
SNx  
LS_REF  
(SPI Only)  
PGND  
Figure 28. DRV8320 and DRV8320R VDS Monitors  
8.3.1.4.5 VDRAIN Sense Pin  
Figure 29. DRV8323 and DRV8323R VDS Monitors  
The DRV832x family of devices provides a separate sense pin for the common point of the high-side MOSFET  
drain. This pin is called VDRAIN. This pin lets the sense line for the overcurrent monitors (VDRAIN) and the  
power supply (VM) stay separate and prevent noise on the VDRAIN sense line. This separation also lets  
implementation of a small filter on the gate driver supply (VM) or insertion of a boost converter to support lower  
voltage operation if desired. Care must still be used when designing the filter or separate supply because VM is  
still the reference point for the VCP charge pump that supplies the high-side gate drive voltage (VGSH). The VM  
supply must not drift too far from the VDRAIN supply to avoid violating the VGS voltage specification of the  
external power MOSFETs.  
8.3.2 DVDD Linear Voltage Regulator  
A 3.3-V, 30-mA linear regulator is integrated into the DRV832x family of devices and is available for use by  
external circuitry. This regulator can provide the supply voltage for a low-power MCU or other circuitry supporting  
low current. The output of the DVDD regulator should be bypassed near the DVDD pin with a X5R or X7R, 1-µF,  
6.3-V ceramic capacitor routed directly back to the adjacent AGND ground pin.  
The DVDD nominal, no-load output voltage is 3.3 V. When the DVDD load current exceeds 30 mA, the regulator  
functions like a constant-current source. The output voltage drops significantly with a current load greater than 30  
mA.  
38  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
VM  
REF  
+
œ
DVDD  
AGND  
3.3 V, 30 mA  
0.1 F  
Figure 30. DVDD Linear Regulator Block Diagram  
Use Equation 1 to calculate the power dissipated in the device by the DVDD linear regulator.  
P = VVM - VDVDD ì I  
(
)
DVDD  
(1)  
For example, at a VVM of 24 V, drawing 20 mA out of DVDD results in a power dissipation as shown in  
Equation 2.  
P = 24 V - 3.3 V ì 20 mA = 414 mW  
(
)
(2)  
8.3.3 Pin Diagrams  
Figure 31 shows the input structure for the logic level pins, INHx, INLx, CAL, ENABLE, nSCS, SCLK, and SDI.  
The input can be driven with a voltage or external resistor.  
DVDD  
STATE  
VIH  
RESISTANCE  
Tied to DVDD  
Tied to AGND  
INPUT  
Logic High  
Logic Low  
VIL  
100 k  
Figure 31. Logic-Level Input Pin Structure  
Copyright © 2017–2018, Texas Instruments Incorporated  
39  
 
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
Figure 32 shows the structure of the four level input pins, MODE and GAIN, on hardware interface devices. The  
input can be set with an external resistor.  
MODE  
GAIN  
DVDD  
STATE  
VI4  
RESISTANCE  
Tied to DVDD  
DVDD  
Independent 40 V/V  
+
50 k  
œ
Hi-Z (>500 kΩ to  
1x PWM  
3x PWM  
6x PWM  
20V/V  
10 V/V  
5 V/V  
VI3  
VI2  
VI1  
AGND)  
+
84 kꢀ  
47 kΩ ±5%  
to AGND  
œ
Tied to AGND  
+
œ
Figure 32. Four Level Input Pin Structure  
Figure 33 shows the structure of the seven level input pins, IDRIVE and VDS, on hardware interface devices.  
The input can be set with an external resistor.  
IDRIVE  
1/2 A  
VDS  
Disabled  
+
œ
STATE  
VI7  
RESISTANCE  
Tied to DVDD  
570/1140 mA 1.88 V  
+
DVDD  
DVDD  
œ
18 k± 5%  
VI6  
VI5  
VI4  
VI3  
VI2  
VI1  
to DVDD  
260/520 mA  
120/240 mA  
60/120 mA  
30/60 mA  
1.13 V  
0.60 V  
0.26 V  
0.13 V  
0.06 V  
+
75 k± 5%  
to DVDD  
73 kꢀ  
œ
Hi-Z (>500 kΩ  
to AGND)  
73 kꢀ  
+
75 k± 5%  
to AGND  
œ
18 kΩ ±5%  
to AGND  
+
Tied to AGND  
œ
+
œ
10/20 mA  
Figure 33. Seven Level Input Pin Structure  
40  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
Figure 34 shows the structure of the open-drain output pins, nFAULT and SDO. The open-drain output requires  
an external pullup resistor to function correctly.  
DVDD  
R
PU  
STATE  
No Fault  
Fault  
STATUS  
Inactive  
Active  
OUTPUT  
Active  
Inactive  
Figure 34. Open-Drain Output Pin Structure  
8.3.4 Low-Side Current Sense Amplifiers (DRV8323 and DRV8323R Only)  
The DRV8323 and DRV8323R integrate three, high-performance low-side current sense amplifiers for current  
measurements using low-side shunt resistors in the external half-bridges. Low-side current measurements are  
commonly used to implement overcurrent protection, external torque control, or brushless DC commutation with  
the external controller. All three amplifiers can be used to sense the current in each of the half-bridge legs or one  
amplifier can be used to sense the sum of the half-bridge legs. The current sense amplifiers include features  
such as programmable gain, offset calibration, unidirectional and bidirectional support, and a voltage reference  
pin (VREF). If any of the three current sense amplifiers are not being used, they can be tied off by shorting the  
SNx pin to the SPx pin and leaving the SOx pin unconnected. Remember to connect the SPx or SNx pin to the  
low-side FET source, so that the overcurrent VDS monitor is still functional  
8.3.4.1 Bidirectional Current Sense Operation  
The SOx pin on the DRV8323 and DRV8323R outputs an analog voltage equal to the voltage across the SPx  
and SNx pins multiplied by the gain setting (GCSA). The gain setting is adjustable between four different levels  
(5 V/V, 10 V/V, 20 V/V, and 40 V/V). Use Equation 3 to calculate the current through the shunt resistor.  
VVREF  
- VSOx  
2
I =  
GCSA ì RSENSE  
(3)  
R2  
R3  
R4  
R5  
R6  
SOx  
I
R1  
R1  
SPx  
SNx  
V
CC  
œ
R
SENSE  
V
+
REF  
0.1 F  
R2  
R3  
R4  
R5  
½
+
œ
Figure 35. Bidirectional Current Sense Configuration  
Copyright © 2017–2018, Texas Instruments Incorporated  
41  
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
SO (V)  
V
REF  
V
/ 2  
VREF  
V
LINEAR  
SP œ SN (V)  
Figure 36. Bidirectional Current Sense Output  
I
SP  
SO  
R
AV  
SN  
SO  
VREF  
SP œ SN  
œ0.3 V  
œI × R  
V
VREF  
œ 0.25 V  
V
SO(rangeœ)  
V
SO(off)max  
/ 2  
V
,
OFF  
0 V  
V
VREF  
V
DRIFT  
V
SO(off)min  
V
SO(range+)  
I × R  
0.3 V  
0.25 V  
0 V  
Figure 37. Bidirectional Current Sense Regions  
42  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
8.3.4.2 Unidirectional Current Sense Operation (SPI only)  
On the DRV8323 and DRV8323R SPI devices, use the VREF_DIV bit to remove the VREF divider. In this case  
the current sense amplifier operates unidirectionally and the SOx pin outputs an analog voltage equal to the  
voltage across the SPx and SNx pins multiplied by the gain setting (GCSA). Use Equation 4 to calculate the  
current through the shunt resistor.  
VVREF - VSOx  
GCSA ì RSENSE  
I =  
(4)  
R2  
R3  
R4  
R5  
R6  
SOx  
I
R1  
R1  
SPx  
SNx  
œ
R
SENSE  
+
V
CC  
R2  
R3  
R4  
R5  
V
REF  
+
0.1 F  
œ
Figure 38. Unidirectional Current-Sense Configuration  
SO (V)  
V
V
REF  
œ 0.3 V  
VREF  
V
LINEAR  
SP œ SN (V)  
Figure 39. Unidirectional Current-Sense Output  
Copyright © 2017–2018, Texas Instruments Incorporated  
43  
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
I
SP  
SN  
SO  
SO  
R
AV  
V
REF  
V
œ 0.25 V  
VREF  
V
SO(off)max  
SP œ SN  
V
,
OFF  
0 V  
V
œ 0.3 V  
VREF  
V
DRIFT  
V
SO(off)min  
V
SO(range)  
I × R  
0.3 V  
0.25 V  
0 V  
Figure 40. Unidirectional Current-Sense Regions  
8.3.4.3 Auto Offset Calibration  
To minimize DC offset, the DRV8323 and DRV8323R devices can perform an automatic offset calibration  
through the SPI registers (CSA_CAL_X) or CAL pin. When the calibration is enabled, the inputs to the amplifier  
are shorted, the load is disconnected, and the gain (GCSA) of the amplifier is changed to the 40 V/V setting. The  
amplifier then goes through an automatic trim routine to minimize the input offset. The automatic trim routine  
requires 100 µs to complete after the calibration is enabled. After this time, the inputs of the amplifier stay  
shorted, the load stays disconnected, and the gain stays at 40 V/V if further offset calibration is desired to be  
done by the external controller. To complete the offset calibration, the CSA_CAL_X registers or CAL pin should  
be taken back low. The gain is returned to the original gain setting after the device completes calibration. For the  
best results, perform offset calibration when the external MOSFETS are not switching to decrease the potential  
noise impact to the amplifier. When the current sense amplifiers go into a calibration mode, the VREF pin is set  
to bidirectional mode if the device is configured in unidirectional mode. The setting of the VREF pin affects the  
channels all three current sense amplifier, even if the CSA_CAL_X register is not set for the all channels.  
8.3.4.4 MOSFET VDS Sense Mode (SPI Only)  
The current sense amplifiers on the DRV8323 and DRV8323R SPI devices can be configured to amplify the  
voltage across the external low-side MOSFET VDS. This configuration lets the external controller measure the  
voltage drop across the MOSFET RDS(on) without the shunt resistor and then calculate the half-bridge current  
level.  
To enable this mode set the CSA_FET bit to 1. The positive input of the amplifier is then internally connected to  
the SHx pin with an internal clamp to prevent high voltage on the SHx pin from damaging the sense amplifier  
inputs. During this mode of operation, the SPx pins should stay disconnected. When the CSA_FET bit is set to 1,  
the negative reference for the low-side VDS monitor is automatically set to the SNx pin, regardless of the state of  
the state of the LS_REF bit. This setting is implemented to prevent disabling of the low-side VDS monitor.  
If the system operates in MOSFET VDS current sense mode, route the SHx and SNx pins with Kelvin connections  
across the drain and source of the external low-side MOSFETs.  
44  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
VM  
VM  
VDRAIN  
VDRAIN  
High-Side  
High-Side  
V
Monitor  
V
Monitor  
DS  
DS  
+
V
+
V
DSœ  
DSœ  
GHx  
SHx  
GHx  
SHx  
(SPI only)  
(SPI only)  
CSA_FET = 0  
CSA_FET = 1  
LS_REF = 0  
LS_REF = X  
Low-Side  
Low-Side  
V
Monitor  
DS  
V
Monitor  
DS  
+
V
+
VDS  
œ
GLx  
SPx  
DSœ  
GLx  
0
1
0
1
10 k  
10 k  
10 k  
10 kꢀ  
10 k  
10 kꢀ  
SPx  
R
SOx  
SOx  
AV  
AV  
SENSE  
SNx  
SNx  
GND  
GND  
Figure 41. Resistor Sense Configuration  
Figure 42. VDS Current Sense Mode  
When operating in MOSFET VDS current sense mode, the amplifier is enabled at the end of the tDRIVE time. At  
this time, the amplifier input is connected to the SHx pin, and the SOx output is valid. When the low-side  
MOSFET receives a signal to turn off, the amplifier inputs, SPx and SNx, are shorted together internally.  
8.3.5 Step-Down Buck Regulator  
The DRV8320R and DRV8323R have an integrated buck regulator (LMR16006) to supply power for an external  
controller or system voltage rail. The LMR16006 device is a 60-V, 600-mA, buck (step-down) regulator.  
The buck regulator has a very-low quiescent current during light loads to prolong battery life. The LMR16006  
device improves performance during line and load transients by implementing a constant-frequency current-mode  
control scheme which requires less output capacitance and simplifies frequency compensation design. The  
LMR16006 is the LMR16006X device version that uses a 0.7-MHz switching frequency.  
The LMR16006 device decreases the external component count by integrating the bootstrap recharge diode. The  
bias voltage for the integrated high-side MOSFET is supplied by a capacitor on the CB to SW pin. The bootstrap  
capacitor voltage is monitored by a UVLO circuit and turns off the high-side MOSFET when the boot voltage falls  
lower than a preset threshold.  
The LMR16006 device can operate at high duty cycles because of the boot UVLO and then refreshes the wimp  
MOSFET. The output voltage can be stepped down to as low as the 0.8-V reference. The internal soft-start  
feature minimizes inrush currents.  
For additional details, a block diagram showing the wimp MOSFET, and design information refer to the  
LMR16006 SIMPLE SWITCHER® 60 V 0.6 A Buck Regulators With High Efficiency Eco-mode data sheet.  
Copyright © 2017–2018, Texas Instruments Incorporated  
45  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
8.3.5.1 Fixed Frequency PWM Control  
The LMR16006 device has a fixed switching frequency and implements peak current-mode control. The output  
voltage is compared through external resistors on the FB pin to an internal voltage reference by an error amplifier  
which drives the internal COMP node. An internal oscillator initiates the turnon of the high-side power switch. The  
error amplifier output is compared to the high-side power switch current. When the power switch current reaches  
the level set by the internal COMP voltage, the power switch turns off. The internal COMP node voltage  
increases and decreases as the output current increases and decreases. The device implements a current limit  
by clamping the COMP node voltage to a maximum level.  
8.3.5.2 Bootstrap Voltage (CB)  
The LMR16006 device has an integrated bootstrap regulator, and requires a small ceramic capacitor between  
the CB and SW pins to provide the gate drive voltage for the high-side MOSFET. The CB capacitor is refreshed  
when the high-side MOSFET is off and the low-side diode conducts. To improve dropout, the LMR16006 device  
is designed to operate at 100% duty cycle as long as the CB to SW pin voltage is greater than 3 V. When the  
voltage from the CB to SW pin drops to less than 3 V, the high-side MOSFET turns off using a UVLO circuit  
which lets the low-side diode conduct and refresh the charge on the CB capacitor. Because the supply current  
sourced from the CB capacitor is low, the high-side MOSFET can stay on for more switching cycles than are  
required to refresh the capacitor. Therefore, the effective duty cycle of the switching regulator is high. Attention  
must be given in maximum duty-cycle applications with a light load. To make sure the SW pin can be pulled to  
ground to refresh the CB capacitor, an internal circuit charges the CB capacitor when the load is light or the  
device is working in dropout condition.  
8.3.5.3 Output Voltage Setting  
The output voltage is set using the feedback pin (FB) and a resistor divider connected to the output as shown in  
51. The voltage of the feedback pin is 0.765 V, so the ratio of the feedback resistors sets the output voltage  
according to Equation 5.  
÷
R1  
R2  
»
ÿ
VO = 0.765 V ì 1+  
Ÿ
«
(5)  
Typically the starting value of R2 is from 1 kΩ to 100 kΩ. Use Equation 6 to calculate the value of R1.  
«
VO  
»
ÿ
R1= R2 ì  
-1  
÷
Ÿ
0.765 V  
(6)  
8.3.5.4 Enable nSHDN and VIN Undervoltage Lockout  
The nSHDN pin of the LMR16006 device is an input that is tolerant of high voltages with an internal pullup circuit.  
The device can be enabled even if the nSHDN pin is floating. The regulator can also be turned on using 1.23-V  
or higher logic signals. If the use of a higher voltage is desired because of system or other constraints, a 100-kΩ  
or larger value resistor is recommended between the applied voltage and the nSHDN pin to help protect the  
device. When the nSHDN pin is pulled down to 0 V, the device turns off and goes to the lowest shutdown current  
mode. In shutdown mode the supply current decreases to approximately 1 µA. If the shutdown function is  
unused, the nSHDN pin can be tied to the VIN pin with a 100-kΩ resistor. The maximum voltage to the nSHDN  
pin should not exceed 60 V. The LMR16006 device has an internal UVLO circuit to shut down the output if the  
input voltage falls lower than an UVLO threshold level that is internally fixed. Shutting down the output in this way  
makes sure the regulator is not latched into an unknown state during low input voltage conditions. The regulator  
powers up when the input voltage exceeds the voltage level. If the UVLO voltage must be higher, use the  
nSHDN pin to adjust the system UVLO by using external resistors.  
8.3.5.5 Current Limit  
The LMR16006 device implements current-mode control which uses the internal COMP voltage to turn off the  
high-side MOSFET on a cycle-by-cycle basis. Each cycle, the switch current and internal COMP voltage are  
compared. When the peak switch current intersects the COMP voltage, the high-side switch turns off. During  
overcurrent conditions that pull the output voltage low, the error amplifier responds by driving the COMP node  
high, increasing the switch current. The error amplifier output is clamped internally causing it to function as a  
switch current limit.  
46  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
8.3.5.6 Overvoltage Transient Protection  
The LMR16006 device incorporates an overvoltage transient protection (OVTP) circuit to minimize voltage  
overshoot when recovering from output fault conditions or strong unloaded transients on power supply designs  
with low-value output capacitance. For example, when the power supply output is overloaded, the error amplifier  
compares the actual output voltage to the internal reference voltage. If the voltage of the FB pin is lower than the  
internal reference voltage for a considerable time, the output of the error amplifier responds by clamping the error  
amplifier output to a high voltage, therefore requesting the maximum output current. When the condition clears,  
the regulator output rises and the error amplifier output transitions to the steady-state duty cycle. In some  
applications, the output voltage of the power supply can respond faster than the error amplifier output can  
respond which can result in output overshoot. The OVTP feature minimizes the output overshoot when using a  
low-value output capacitor by implementing a circuit to compare the FB pin voltage to the OVTP threshold which  
is 108% of the internal voltage reference. If the FB pin voltage is greater than the OVTP threshold, the high-side  
MOSFET is disabled preventing current from flowing to the output and minimizing output overshoot. When the  
FB voltage drops lower than the OVTP threshold, the high-side MOSFET can turn on at the next clock cycle.  
8.3.5.7 Thermal Shutdown  
The device implements an internal thermal shutdown to help protect the device if the junction temperature  
exceeds 170°C (typical). The thermal shutdown forces the device to stop switching when the junction  
temperature exceeds the thermal trip threshold. When the junction temperature decreases to less than 160°C  
(typical), the device reinitiates the power-up sequence.  
8.3.6 Gate Driver Protective Circuits  
The DRV832x family of devices is protected against VM undervoltage, charge pump undervoltage, MOSFET VDS  
overcurrent, gate driver shorts, and overtemperature events.  
Table 7. Fault Action and Response (SPI Devices)  
FAULT  
CONDITION  
CONFIGURATION  
REPORT  
GATE DRIVER  
LOGIC  
RECOVERY  
VM  
undervoltage  
(UVLO)  
Automatic:  
VVM > VUVLO  
VVM < VUVLO  
nFAULT  
Hi-Z  
Disabled  
Charge pump  
undervoltage  
(CPUV)  
DIS_CPUV = 0b  
DIS_CPUV = 1b  
nFAULT  
None  
Hi-Z  
Active  
Active  
Automatic:  
VVCP > VCPUV  
VVCP < VCPUV  
Active  
Latched:  
CLR_FLT, ENABLE Pulse  
OCP_MODE = 00b  
OCP_MODE = 01b  
nFAULT  
nFAULT  
Hi-Z  
Hi-Z  
Active  
Active  
Retry:  
tRETRY  
VDS overcurrent  
(VDS_OCP)  
VDS > VVDS_OCP  
OCP_MODE = 10b  
OCP_MODE = 11b  
nFAULT  
None  
Active  
Active  
Active  
Active  
No action  
No action  
Latched:  
CLR_FLT, ENABLE Pulse  
OCP_MODE = 00b  
nFAULT  
Hi-Z  
Active  
Retry:  
tRETRY  
VSENSE  
overcurrent  
(SEN_OCP)  
OCP_MODE = 01b  
OCP_MODE = 10b  
nFAULT  
nFAULT  
None  
Hi-Z  
Active  
Active  
Active  
VSP > VSEN_OCP  
Active  
Active  
No action  
No action  
OCP_MODE = 11b or  
DIS_SEN = 1b  
Latched:  
CLR_FLT, ENABLE Pulse  
DIS_GDF = 0b  
nFAULT  
Hi-Z  
Active  
Gate driver fault  
(GDF)  
Gate voltage stuck > tDRIVE  
DIS_GDF = 1b  
OTW_REP = 0b  
None  
None  
Active  
Active  
Active  
Active  
No action  
No action  
Thermal  
warning  
(OTW)  
TJ > TOTW  
Automatic:  
TJ < TOTW – THYS  
OTW_REP = 1b  
nFAULT  
nFAULT  
Active  
Hi-Z  
Active  
Active  
Thermal  
shutdown  
(OTSD)  
Automatic:  
TJ < TOTSD – THYS  
TJ > TOTSD  
Copyright © 2017–2018, Texas Instruments Incorporated  
47  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
8.3.6.1 VM Supply Undervoltage Lockout (UVLO)  
If at any time the input supply voltage on the VM pin falls lower than the VUVLO threshold, all of the external  
MOSFETs are disabled, the charge pump is disabled, and the nFAULT pin is driven low. The FAULT and  
VM_UVLO bits are also latched high in the registers on SPI devices. Normal operation starts again (gate driver  
operation and the nFAULT pin is released) when the VM undervoltage condition clears. The VM_UVLO bit stays  
set until cleared through the CLR_FLT bit or an ENABLE pin reset pulse (tRST).  
8.3.6.2 VCP Charge Pump Undervoltage Lockout (CPUV)  
If at any time the voltage on the VCP pin (charge pump) falls lower than the VCPUV threshold voltage of the  
charge pump, all of the external MOSFETs are disabled and the nFAULT pin is driven low. The FAULT and  
CPUV bits are also latched high in the registers on SPI devices. Normal operation starts again (gate driver  
operation and the nFAULT pin is released) when the VCP undervoltage condition clears. The CPUV bit stays set  
until cleared through the CLR_FLT bit or an ENABLE pin reset pulse (tRST). Setting the DIS_CPUV bit high on  
the SPI devices disables this protection feature. On hardware interface devices, the CPUV protection is always  
enabled.  
8.3.6.3 MOSFET VDS Overcurrent Protection (VDS_OCP)  
A MOSFET overcurrent event is sensed by monitoring the VDS voltage drop across the external MOSFET RDS(on)  
.
If the voltage across an enabled MOSFET exceeds the VVDS_OCP threshold for longer than the tOCP_DEG deglitch  
time, a VDS_OCP event is recognized and action is done according to the OCP_MODE bit. On hardware  
interface devices, the VVDS_OCP threshold is set with the VDS pin, the tOCP_DEG is fixed at 4 µs, and the  
OCP_MODE bit is configured for 4-ms automatic retry but can be disabled by tying the VDS pin to DVDD. On  
SPI devices, the VVDS_OCP threshold is set through the VDS_LVL SPI register, the tOCP_DEG is set through the  
OCP_DEG SPI register, and the OCP_MODE bit can operate in four different modes: VDS latched shutdown, VDS  
automatic retry, VDS report only, and VDS disabled.  
8.3.6.3.1 VDS Latched Shutdown (OCP_MODE = 00b)  
After a VDS_OCP event in this mode, all external MOSFETs are disabled and the nFAULT pin is driven low.  
When the external MOSFETs are disabled in this way, the driver automatically uses a lower setting for the gate  
drive current instead of the programmed IDRIVE setting. This setting lets any large current that may be present  
to be switched off slowly to minimize any inductive kickback caused by parasitic capacitance in the system. The  
FAULT, VDS_OCP, and corresponding MOSFET OCP bits are latched high in the SPI registers. Normal  
operation starts again (gate driver operation and the nFAULT pin is released) when the VDS_OCP condition  
clears and a clear faults command is issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST).  
8.3.6.3.2 VDS Automatic Retry (OCP_MODE = 01b)  
After a VDS_OCP event in this mode, all the external MOSFETs are disabled and the nFAULT pin is driven low.  
When the external MOSFETs are disabled in this way, the driver automatically uses a lower setting for the gate  
drive current instead of the programmed IDRIVE setting. This setting lets any large current that may be present  
to be switched off slowly to minimize any inductive kickback caused by parasitic capacitance in the system. The  
FAULT, VDS_OCP, and corresponding MOSFET OCP bits are latched high in the SPI registers. Normal  
operation starts again automatically (gate driver operation and the nFAULT pin is released) after the tRETRY time  
elapses. The FAULT, VDS_OCP, and MOSFET OCP bits stay latched until the tRETRY period expires.  
8.3.6.3.3 VDS Report Only (OCP_MODE = 10b)  
No protective action occurs after a VDS_OCP event in this mode. The overcurrent event is reported by driving  
the nFAULT pin low and latching the FAULT, VDS_OCP, and corresponding MOSFET OCP bits high in the SPI  
registers. The gate drivers continue to operate as usual. The external controller manages the overcurrent  
condition by acting appropriately. The reporting clears (nFAULT pin is released) when the VDS_OCP condition  
clears and a clear faults command is issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST).  
8.3.6.3.4 VDS Disabled (OCP_MODE = 11b)  
No action occurs after a VDS_OCP event in this mode.  
48  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
8.3.6.4 VSENSE Overcurrent Protection (SEN_OCP)  
Half-bridge overcurrent is also monitored by sensing the voltage drop across the external current sense resistor  
with the SP pin. If at any time the voltage on the SP input of the CSA exceeds the VSEN_OCP threshold for longer  
than the tOCP_DEG deglitch time, a SEN_OCP event is recognized and action is done according to the  
OCP_MODE bit. On hardware interface devices, the VSENSE threshold is fixed at 1 V, tOCP_DEG is fixed at 4 µs,  
and the OCP_MODE for VSENSE is fixed for 4-ms automatic retry. On SPI devices, the VSENSE threshold is set  
through the SEN_LVL SPI register, the tOCP_DEG is set through the OCP_DEG SPI register, and the OCP_MODE  
bit can operate in four different modes: VSENSE latched shutdown, VSENSE automatic retry, VSENSE report only, and  
VSENSE disabled.  
8.3.6.4.1 VSENSE Latched Shutdown (OCP_MODE = 00b)  
After a SEN_OCP event in this mode, all the external MOSFETs are disabled and the nFAULT pin is driven low.  
The FAULT and SEN_OCP bits are latched high in the SPI registers. Normal operation starts again (gate driver  
operation and the nFAULT pin is released) when the SEN_OCP condition clears and a clear faults command is  
issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST).  
8.3.6.4.2 VSENSE Automatic Retry (OCP_MODE = 01b)  
After a SEN_OCP event in this mode, all the external MOSFETs are disabled and the nFAULT pin is driven low.  
The FAULT, SEN_OCP, and corresponding sense OCP bits are latched high in the SPI registers. Normal  
operation starts again automatically (gate driver operation and the nFAULT pin is released) after the tRETRY time  
elapses. The FAULT , SEN_OCP, and sense OCP bits stay latched until the tRETRY period expires.  
8.3.6.4.3 VSENSE Report Only (OCP_MODE = 10b)  
No protective action occurs after a SEN_OCP event in this mode. The overcurrent event is reported by driving  
the nFAULT pin low and latching the FAULT and SEN_OCP bits high in the SPI registers. The gate drivers  
continue to operate. The external controller manages the overcurrent condition by acting appropriately. The  
reporting clears (nFAULT released) when the SEN_OCP condition clears and a clear faults command is issued  
either through the CLR_FLT bit or an ENABLE reset pulse (tRST).  
8.3.6.4.4 VSENSE Disabled (OCP_MODE = 11b or DIS_SEN = 1b)  
No action occurs after a SEN_OCP event in this mode. The SEN_OCP bit can be disabled independently of the  
VDS_OCP bit by using the DIS_SEN SPI register.  
8.3.6.5 Gate Driver Fault (GDF)  
The GHx and GLx pins are monitored such that if the voltage on the external MOSFET gate does not increase or  
decrease after the tDRIVE time, a gate driver fault is detected. This fault may be encountered if the GHx or GLx  
pins are shorted to the PGND, SHx, or VM pins. Additionally, a gate driver fault may be encountered if the  
selected IDRIVE setting is not sufficient to turn on the external MOSFET within the tDRIVE period. After a gate drive  
fault is detected, all external MOSFETs are disabled and the nFAULT pin driven low. In addition, the FAULT,  
GDF, and corresponding VGS bits are latched high in the SPI registers. Normal operation starts again (gate  
driver operation and the nFAULT pin is released) when the gate driver fault condition clears and a clear faults  
command is issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST). On SPI devices, setting the  
DIS_GDF bit high disables this protection feature.  
Gate driver faults can indicate that the selected IDRIVE or tDRIVE settings are too low to slew the external MOSFET  
in the desired time. Increasing either the IDRIVE or tDRIVE setting can resolve gate driver faults in these cases.  
Alternatively, if a gate-to-source short occurs on the external MOSFET, a gate driver fault is reported because of  
the MOSFET gate not turning on.  
8.3.6.6 Thermal Warning (OTW)  
If the die temperature exceeds the trip point of the thermal warning (TOTW), the OTW bit is set in the registers of  
SPI devices. The device performs no additional action and continues to function. When the die temperature falls  
lower than the hysteresis point of the thermal warning, the OTW bit clears automatically. The OTW bit can also  
be configured to report on the nFAULT pin by setting the OTW_REP bit to 1 through the SPI registers.  
Copyright © 2017–2018, Texas Instruments Incorporated  
49  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
8.3.6.7 Thermal Shutdown (OTSD)  
If the die temperature exceeds the trip point of the thermal shutdown limit (TOTSD), all the external MOSFETs are  
disabled, the charge pump is shut down, and the nFAULT pin is driven low. In addition, the FAULT and TSD bits  
are latched high. Normal operation starts again (gate driver operation and the nFAULT pin is released) when the  
overtemperature condition clears. The TSD bit stays latched high indicating that a thermal event occurred until a  
clear fault command is issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST). This protection  
feature cannot be disabled.  
8.4 Device Functional Modes  
8.4.1 Gate Driver Functional Modes  
8.4.1.1 Sleep Mode  
The ENABLE pin manages the state of the DRV832x family of devices. When the ENABLE pin is low, the device  
goes to a low-power sleep mode. In sleep mode, all gate drivers are disabled, sense amplifiers (if present) are  
disabled, all external MOSFETs are disabled, the charge pump is disabled, the DVDD regulator is disabled, and  
the SPI bus is disabled. The LMR16006X buck regulator (if present) is not controlled by the ENABLE pin and can  
be operated independently of the gate driver. The tSLEEP time must elapse after a falling edge on the ENABLE pin  
before the device goes to sleep mode. The device comes out of sleep mode automatically if the ENABLE pin is  
pulled high. The tWAKE time must elapse before the device is ready for inputs.  
In sleep mode and when VVM < VUVLO, all external MOSFETs are disabled. The high-side gate pins, GHx, are  
pulled to the SHx pin by an internal resistor and the low-side gate pins, GLx, are pulled to the PGND pin by an  
internal resistor.  
NOTE  
During power up and power down of the device through the ENABLE pin, the nFAULT pin  
is held low as the internal regulators enable or disable. After the regulators have enabled  
or disabled, the nFAULT pin is automatically released. The duration that the nFAULT pin  
is low does not exceed the tSLEEP or tWAKE time.  
8.4.1.2 Operating Mode  
When the ENABLE pin is high and the VVM voltage is greater than the VUVLO voltage, the device goes to  
operating mode. The tWAKE time must elapse before the device is ready for inputs. In this mode the charge pump,  
low-side gate regulator, DVDD regulator, and SPI bus are active  
8.4.1.3 Fault Reset (CLR_FLT or ENABLE Reset Pulse)  
In the case of device latched faults, the DRV832x family of devices goes to a partial shutdown state to help  
protect the external power MOSFETs and system.  
When the fault condition clears, the device can go to the operating state again by either setting the CLR_FLT SPI  
bit on SPI devices or issuing a reset pulse to the ENABLE pin on either interface variant. The ENABLE reset  
pulse (tRST) consists of a high-to-low-to-high transition on the ENABLE pin. The low period of the sequence  
should fall with the tRST time window or else the device will start the complete shutdown sequence. The reset  
pulse has no effect on any of the regulators, device settings, or other functional blocks  
50  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
Device Functional Modes (continued)  
8.4.2 Buck Regulator Functional Modes  
8.4.2.1 Continuous Conduction Mode (CCM)  
The LMR16006 integrated buck regulator steps the input voltage down to a lower output voltage. In continuous  
conduction mode (when the inductor current never reaches zero at CCM), the buck regulator operates in two  
cycles. The power switch is connected between the VIN and SW pins. During the first cycle of operation, the  
transistor is closed and the diode is reverse biased. Energy is collected in the inductor and the load current is  
supplied by the COUT capacitor and the rising current through the inductor. During the second cycle of operation,  
the transistor is open and the diode is forward biased because the inductor current cannot instantaneously  
change direction. The energy stored in the inductor is transferred to the load and output capacitor. The ratio of  
these two cycles determines the output voltage. Equation 7 and Equation 8 define the approximate output  
voltage.  
VO  
D =  
VVIN  
where  
D is the duty cycle of the switch  
(7)  
(8)  
D' = 1-D  
(
)
The value of D and D' is required for design calculations.  
8.4.2.2 Eco-mode™ Control Scheme  
The LMR16006 device operates with the Eco-mode control scheme at light-load currents to improve efficiency by  
reducing switching and gate drive losses. The LMR16006 device is designed so that if the output voltage is  
within regulation and the peak switch current at the end of any switching cycle is less than the sleep-current  
threshold, IINDUCTOR 80 mA, the device goes to Eco-mode. For Eco-mode operation, the LMR16006 device  
senses peak current, not average or load current, so the load current when the device goes to Eco-mode is  
dependent on the input voltage, the output voltage, and the value of the output inductor. When the load current is  
low and the output voltage is within regulation, the device goes to Eco-mode and draws only 28-µA input  
quiescent current.  
8.5 Programming  
This section applies only to the DRV832x SPI devices.  
8.5.1 SPI Communication  
8.5.1.1 SPI  
On DRV832x SPI devices, an SPI bus is used to set device configurations, operating parameters, and read out  
diagnostic information. The SPI operates in slave mode and connects to a master controller. The SPI input data  
(SDI) word consists of a 16-bit word, with a 5-bit command and 11 bits of data. The SPI output data (SDO) word  
consists of 11-bit register data. The first 5 bits are don’t care bits.  
A valid frame must meet the following conditions:  
The SCLK pin should be low when the nSCS pin transitions from high to low and from low to high.  
The nSCS pin should be pulled high for at least 400 ns between words.  
When the nSCS pin is pulled high, any signals at the SCLK and SDI pins are ignored and the SDO pin is  
placed in the Hi-Z state.  
Data is captured on the falling edge of the SCLK pin and data is propagated on the rising edge of the SCLK  
pin.  
The most significant bit (MSB) is shifted in and out first.  
A full 16 SCLK cycles must occur for transaction to be valid.  
If the data word sent to the SDI pin is less than or more than 16 bits, a frame error occurs and the data word  
is ignored.  
For a write command, the existing data in the register being written to is shifted out on the SDO pin following  
Copyright © 2017–2018, Texas Instruments Incorporated  
51  
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
Programming (continued)  
the 5-bit command data.  
The SPI registers are reset to the default settings on power up, when the device is enters sleep mode, and when  
a UVLO fault occurs.  
8.5.1.1.1 SPI Format  
The SDI input data word is 16 bits long and consists of the following format:  
1 read or write bit, W (bit B15)  
4 address bits, A (bits B14 through B11)  
11 data bits, D (bits B11 through B0)  
The SDO output data word is 16 bits long and the first 5 bits are don't care bits. The data word is the content of  
the register being accessed.  
For a write command (W0 = 0), the response word on the SDO pin is the data currently in the register being  
written to.  
For a read command (W0 = 1), the response word is the data currently in the register being read.  
Table 8. SDI Input Data Word Format  
R/W  
B15  
W0  
ADDRESS  
DATA  
B5  
B14  
A3  
B13  
A2  
B12  
A1  
B11  
A0  
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
D5  
Table 9. SDO Output Data Word Format  
DON'T CARE BITS  
DATA  
B15  
X
B14  
X
B13  
X
B12  
X
B11  
X
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
nSCS  
SCLK  
SDI  
X
Z
MSB  
LSB  
LSB  
X
Z
MSB  
SDO  
Capture  
Point  
Propagate  
Point  
Figure 43. SPI Slave Timing Diagram  
52  
Copyright © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
8.6 Register Maps  
This section applies only to the DRV832x SPI devices.  
NOTE  
Do not modify reserved registers or addresses not listed in the register map (Table 10). Writing to these registers may have  
unintended effects. For all reserved bits, the default value is 0. To help prevent erroneous SPI writes from the master controller,  
set the LOCK bits to lock the SPI registers.  
Table 10. DRV832xS and DRV832xRS Register Map  
Name  
10  
9
8
7
6
5
4
3
2
1
0
Type  
Address  
DRV8320S and DRV8320RS  
Fault Status 1  
VGS Status 2  
Driver Control  
Gate Drive HS  
Gate Drive LS  
OCP Control  
Reserved  
FAULT  
SA_OC  
VDS_OCP  
SB_OC  
GDF  
UVLO  
OTW  
OTSD  
CPUV  
VDS_HA  
VGS_HA  
VDS_LA  
VGS_LA  
VDS_HB  
VGS_HB  
VDS_LB  
VGS_LB  
COAST  
VDS_HC  
VGS_HC  
BRAKE  
VDS_LC  
VGS_LC  
CLR_FLT  
R
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
SC_OC  
DIS_GDF  
R
Reserved  
DIS_CPUV  
LOCK  
OTW_REP  
PWM_MODE  
1PWM_COM  
1PWM_DIR  
RW  
RW  
RW  
RW  
RW  
RW  
IDRIVEP_HS  
IDRIVEP_LS  
IDRIVEN_HS  
CBC  
TDRIVE  
DEAD_TIME  
IDRIVEN_LS  
VDS_LVL  
TRETRY  
OCP_MODE  
OCP_DEG  
Reserved  
Reserved  
DRV8323S and DRV8323RS  
Reserved  
Fault Status 1  
VGS Status 2  
Driver Control  
Gate Drive HS  
Gate Drive LS  
OCP Control  
CSA Control  
Reserved  
FAULT  
SA_OC  
VDS_OCP  
GDF  
UVLO  
OTW  
OTSD  
CPUV  
VDS_HA  
VGS_HA  
VDS_LA  
VDS_HB  
VGS_HB  
VDS_LB  
VDS_HC  
VGS_HC  
BRAKE  
VDS_LC  
VGS_LC  
CLR_FLT  
R
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
SB_OC  
DIS_CPUV  
LOCK  
SC_OC  
DIS_GDF  
VGS_LA  
VGS_LB  
COAST  
R
Reserved  
OTW_REP  
PWM_MODE  
1PWM_COM  
1PWM_DIR  
RW  
RW  
RW  
RW  
RW  
RW  
IDRIVEP_HS  
IDRIVEP_LS  
IDRIVEN_HS  
CBC  
TDRIVE  
DEAD_TIME  
VREF_DIV LS_REF  
IDRIVEN_LS  
VDS_LVL  
TRETRY  
CSA_FET  
OCP_MODE  
CSA_GAIN  
OCP_DEG  
DIS_SEN CSA_CAL_A  
Reserved  
CSA_CAL_B  
CSA_CAL_C  
SEN_LVL  
Copyright © 2017–2018, Texas Instruments Incorporated  
53  
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
8.6.1 Status Registers  
The status registers are used to reporting warning and fault conditions. The status registers are read-only  
registers  
Complex bit access types are encoded to fit into small table cells. Table 11 shows the codes that are used for  
access types in this section.  
Table 11. Status Registers Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Reset or Default Value  
-n  
Value after reset or the default value  
8.6.1.1 Fault Status Register 1 (address = 0x00)  
The fault status register 1 is shown in Figure 44 and described in Table 12.  
Register access type: Read only  
Figure 44. Fault Status Register 1  
10  
9
8
7
6
5
4
3
2
1
0
FAULT  
R-0b  
VDS_OCP  
R-0b  
GDF  
R-0b  
UVLO  
R-0b  
OTSD  
R-0b  
VDS_HA  
R-0b  
VDS_LA  
R-0b  
VDS_HB  
R-0b  
VDS_LB  
R-0b  
VDS_HC  
R-0b  
VDS_LC  
R-0b  
Table 12. Fault Status Register 1 Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10  
FAULT  
R
0b  
Logic OR of FAULT status registers. Mirrors nFAULT pin.  
Indicates VDS monitor overcurrent fault condition  
Indicates gate drive fault condition  
9
8
7
6
5
4
3
2
1
0
VDS_OCP  
GDF  
R
R
R
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
UVLO  
Indicates undervoltage lockout fault condition  
OTSD  
Indicates overtemperature shutdown  
VDS_HA  
VDS_LA  
VDS_HB  
VDS_LB  
VDS_HC  
VDS_LC  
Indicates VDS overcurrent fault on the A high-side MOSFET  
Indicates VDS overcurrent fault on the A low-side MOSFET  
Indicates VDS overcurrent fault on the B high-side MOSFET  
Indicates VDS overcurrent fault on the B low-side MOSFET  
Indicates VDS overcurrent fault on the C high-side MOSFET  
Indicates VDS overcurrent fault on the C low-side MOSFET  
54  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
8.6.1.2 Fault Status Register 2 (address = 0x01)  
The fault status register 2 is shown in Figure 45 and described in Table 13.  
Register access type: Read only  
Figure 45. Fault Status Register 2  
10  
9
8
7
6
5
4
3
2
1
0
SA_OC  
R-0b  
SB_OC  
R-0b  
SC_OC  
R-0b  
OTW  
R-0b  
CPUV  
R-0b  
VGS_HA  
R-0b  
VGS_LA  
R-0b  
VGS_HB  
R-0b  
VGS_LB  
R-0b  
VGS_HC  
R-0b  
VGS_LC  
R-0b  
Table 13. Fault Status Register 2 Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10  
SA_OC  
SB_OC  
SC_OC  
OTW  
R
0b  
Indicates overcurrent on phase A sense amplifier (DRV8323xS)  
Indicates overcurrent on phase B sense amplifier (DRV8323xS)  
Indicates overcurrent on phase C sense amplifier (DRV8323xS)  
Indicates overtemperature warning  
9
8
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
CPUV  
Indicates charge pump undervoltage fault condition  
Indicates gate drive fault on the A high-side MOSFET  
Indicates gate drive fault on the A low-side MOSFET  
Indicates gate drive fault on the B high-side MOSFET  
Indicates gate drive fault on the B low-side MOSFET  
Indicates gate drive fault on the C high-side MOSFET  
Indicates gate drive fault on the C low-side MOSFET  
VGS_HA  
VGS_LA  
VGS_HB  
VGS_LB  
VGS_HC  
VGS_LC  
Copyright © 2017–2018, Texas Instruments Incorporated  
55  
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
8.6.2 Control Registers  
The control registers are used to configure the device. The control registers are read and write capable  
Complex bit access types are encoded to fit into small table cells. Table 14 shows the codes that are used for  
access types in this section.  
Table 14. Control Registers Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default value  
8.6.2.1 Driver Control Register (address = 0x02)  
The driver control register is shown in Figure 46 and described in Table 15.  
Register access type: Read/Write  
Figure 46. Driver Control Register  
10  
9
8
7
6
5
4
3
2
1
0
DIS  
_CPUV  
DIS  
_GDF  
OTW  
_REP  
1PWM  
_COM  
1PWM  
_DIR  
CLR  
_FLT  
Reserved  
R/W-0b  
PWM_MODE  
R/W-00b  
COAST  
R/W-0b  
BRAKE  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 15. Driver Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10  
Reserved  
R/W  
0b  
Reserved  
9
DIS_CPUV  
R/W  
R/W  
R/W  
R/W  
0b  
0b = Charge pump UVLO fault is enabled  
1b = Charge pump UVLO fault is disabled  
8
DIS_GDF  
0b  
0b = Gate drive fault is enabled  
1b = Gate drive fault is disabled  
7
OTW_REP  
PWM_MODE  
0b  
0b = OTW is not reported on nFAULT or the FAULT bit  
1b = OTW is reported on nFAULT and the FAULT bit  
6-5  
00b  
00b = 6x PWM Mode  
01b = 3x PWM mode  
10b = 1x PWM mode  
11b = Independent PWM mode  
4
1PWM_COM  
R/W  
0b  
0b = 1x PWM mode uses synchronous rectification  
1b = 1x PWM mode uses asynchronous rectification (diode  
freewheeling)  
3
2
1
1PWM_DIR  
COAST  
R/W  
R/W  
R/W  
0b  
0b  
0b  
In 1x PWM mode this bit is ORed with the INHC (DIR) input  
Write a 1 to this bit to put all MOSFETs in the Hi-Z state  
BRAKE  
Write a 1 to this bit to turn on all three low-side MOSFETs in 1x  
PWM mode.  
This bit is ORed with the INLC (BRAKE) input.  
0
CLR_FLT  
R/W  
0b  
Write a 1 to this bit to clear latched fault bits.  
This bit automatically resets after being written.  
56  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
8.6.2.2 Gate Drive HS Register (address = 0x03)  
The gate drive HS register is shown in Figure 47 and described in Table 16.  
Register access type: Read/Write  
Figure 47. Gate Drive HS Register  
10  
9
8
7
6
5
4
3
2
1
0
LOCK  
IDRIVEP_HS  
R/W-1111b  
IDRIVEN_HS  
R/W-1111b  
R/W-011b  
Table 16. Gate Drive HS Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10-8  
LOCK  
R/W  
011b  
Write 110b to lock the settings by ignoring further register writes  
except to these bits and address 0x02 bits 0-2.  
Writing any sequence other than 110b has no effect when  
unlocked.  
Write 011b to this register to unlock all registers.  
Writing any sequence other than 011b has no effect when  
locked.  
7-4  
IDRIVEP_HS  
R/W  
1111b  
0000b = 10 mA  
0001b = 30 mA  
0010b = 60 mA  
0011b = 80 mA  
0100b = 120 mA  
0101b = 140 mA  
0110b = 170 mA  
0111b = 190 mA  
1000b = 260 mA  
1001b = 330 mA  
1010b = 370 mA  
1011b = 440 mA  
1100b = 570 mA  
1101b = 680 mA  
1110b = 820 mA  
1111b = 1000 mA  
3-0  
IDRIVEN_HS  
R/W  
1111b  
0000b = 20 mA  
0001b = 60 mA  
0010b = 120 mA  
0011b = 160 mA  
0100b = 240 mA  
0101b = 280 mA  
0110b = 340 mA  
0111b = 380 mA  
1000b = 520 mA  
1001b = 660 mA  
1010b = 740 mA  
1011b = 880 mA  
1100b = 1140 mA  
1101b = 1360 mA  
1110b = 1640 mA  
1111b = 2000 mA  
Copyright © 2017–2018, Texas Instruments Incorporated  
57  
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
8.6.2.3 Gate Drive LS Register (address = 0x04)  
The gate drive LS register is shown in Figure 48 and described in Table 17.  
Register access type: Read/Write  
Figure 48. Gate Drive LS Register  
10  
9
8
7
6
5
4
3
2
1
0
CBC  
TDRIVE  
R/W-11b  
IDRIVEP_LS  
R/W-1111b  
IDRIVEN_LS  
R/W-1111b  
R/W-1b  
Table 17. Gate Drive LS Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10  
CBC  
R/W  
1b  
Cycle-by cycle operation. In retry OCP_MODE, for both  
VDS_OCP and SEN_OCP, the fault is automatically cleared  
when a PWM input is given  
9-8  
7-4  
TDRIVE  
R/W  
R/W  
11b  
00b = 500-ns peak gate-current drive time  
01b = 1000-ns peak gate-current drive time  
10b = 2000-ns peak gate-current drive time  
11b = 4000-ns peak gate-current drive time  
IDRIVEP_LS  
1111b  
0000b = 10 mA  
0001b = 30 mA  
0010b = 60 mA  
0011b = 80 mA  
0100b = 120 mA  
0101b = 140 mA  
0110b = 170 mA  
0111b = 190 mA  
1000b = 260 mA  
1001b = 330 mA  
1010b = 370 mA  
1011b = 440 mA  
1100b = 570 mA  
1101b = 680 mA  
1110b = 820 mA  
1111b = 1000 mA  
3-0  
IDRIVEN_LS  
R/W  
1111b  
0000b = 20 mA  
0001b = 60 mA  
0010b = 120 mA  
0011b = 160 mA  
0100b = 240 mA  
0101b = 280 mA  
0110b = 340 mA  
0111b = 380 mA  
1000b = 520 mA  
1001b = 660 mA  
1010b = 740 mA  
1011b = 880 mA  
1100b = 1140 mA  
1101b = 1360 mA  
1110b = 1640 mA  
1111b = 2000 mA  
58  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
8.6.2.4 OCP Control Register (address = 0x05)  
The OCP control register is shown in Figure 49 and described in Table 18.  
Register access type: Read/Write  
Figure 49. OCP Control Register  
10  
9
8
7
6
5
4
3
2
1
0
TRETRY  
R/W-0b  
DEAD_TIME  
R/W-01b  
OCP_MODE  
R/W-01b  
OCP_DEG  
R/W-01b  
VDS_LVL  
R/W-1001b  
Table 18. OCP Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10  
TRETRY  
R/W  
0b  
0b = VDS_OCP and SEN_OCP retry time is 4 ms  
1b = VDS_OCP and SEN_OCP retry time is 50 µs  
9-8  
7-6  
5-4  
3-0  
DEAD_TIME  
R/W  
R/W  
R/W  
R/W  
01b  
00b = 50-ns dead time  
01b = 100-ns dead time  
10b = 200-ns dead time  
11b = 400-ns dead time  
OCP_MODE  
OCP_DEG  
VDS_LVL  
01b  
00b = Overcurrent causes a latched fault  
01b = Overcurrent causes an automatic retrying fault  
10b = Overcurrent is report only but no action is taken  
11b = Overcurrent is not reported and no action is taken  
01b  
00b = Overcurrent deglitch time of 2 µs  
01b = Overcurrent deglitch time of 4 µs  
10b = Overcurrent deglitch time of 6 µs  
11b = Overcurrent deglitch time of 8 µs  
1001b  
0000b = 0.06 V  
0001b = 0.13 V  
0010b = 0.2 V  
0011b = 0.26 V  
0100b = 0.31 V  
0101b = 0.45 V  
0110b = 0.53 V  
0111b = 0.6 V  
1000b = 0.68 V  
1001b = 0.75 V  
1010b = 0.94 V  
1011b = 1.13 V  
1100b = 1.3 V  
1101b = 1.5 V  
1110b = 1.7 V  
1111b = 1.88 V  
Copyright © 2017–2018, Texas Instruments Incorporated  
59  
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
8.6.2.5 CSA Control Register (DRV8323x Only) (address = 0x06)  
The CSA control register is shown in Figure 50 and described in Table 19.  
Register access type: Read/Write  
This register is only available with the DRV8323x family of devices.  
Figure 50. CSA Control Register  
10  
9
8
7
6
5
4
3
2
1
0
CSA  
_FET  
VREF  
_DIV  
LS  
_REF  
CSA  
_GAIN  
DIS  
_SEN  
CSA  
_CAL_A  
CSA  
_CAL_B  
CSA  
_CAL_C  
SEN  
_LVL  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-10b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-11b  
Table 19. CSA Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
0b = Current sense amplifier positive input is SPx  
1b Current sense amplifier positive input is SHx (also  
10  
CSA_FET  
R/W  
0b  
=
automatically sets the LS_REF bit to 1)  
9
8
VREF_DIV  
R/W  
R/W  
R/W  
1b  
0b Current sense amplifier reference voltage is VREF  
(unidirectional mode)  
=
1b = Current sense amplifier reference voltage is VREF  
divided by 2  
LS_REF  
0b  
0b  
= VDS_OCP for the low-side MOSFET is measured  
across SHx to SPx  
1b = VDS_OCP for the low-side MOSFET is measured across  
SHx to SNx  
7-6  
CSA_GAIN  
10b  
00b = 5-V/V current sense amplifier gain  
01b = 10-V/V current sense amplifier gain  
10b = 20-V/V current sense amplifier gain  
11b = 40-V/V current sense amplifier gain  
5
4
DIS_SEN  
R/W  
R/W  
0b  
0b  
0b = Sense overcurrent fault is enabled  
1b = Sense overcurrent fault is disabled  
CSA_CAL_A  
0b = Normal current sense amplifier A operation  
1b  
=
Short inputs to current sense amplifier  
A
B
C
for offset  
for offset  
for offset  
calibration  
3
2
CSA_CAL_B  
CSA_CAL_C  
SEN_LVL  
R/W  
R/W  
R/W  
0b  
0b = Normal current sense amplifier B operation  
1b  
= Short inputs to current sense amplifier  
calibration  
0b  
0b = Normal current sense amplifier C operation  
1b  
= Short inputs to current sense amplifier  
calibration  
1-0  
11b  
00b = Sense OCP 0.25 V  
01b = Sense OCP 0.5 V  
10b = Sense OCP 0.75 V  
11b = Sense OCP 1 V  
60  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DRV832x family of devices is primarily used in applications for three-phase brushless DC motor control. The  
design procedures in the Typical Application section highlight how to use and configure the DRV832x family of  
devices.  
9.2 Typical Application  
9.2.1 Primary Application  
The DRV8323R SPI device is used in this application example.  
版权 © 2017–2018, Texas Instruments Incorporated  
61  
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
Typical Application (接下页)  
L
OUT  
0.8 to 60 V, 600 mA  
VCC  
VM  
COUT  
CIN  
100 k  
R
R
FB1  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
3.3 V, 30 mA  
1 µF  
FB  
DVDD  
AGND  
CAL  
FB2  
PGND  
CPL  
CPH  
VCP  
VM  
3
47 nF  
4
ENABLE  
nSCS  
SCLK  
SDI  
5
VM  
1 µF  
6
VCC  
GND  
(PAD)  
7
0.1 µF  
VCC  
VDRAIN  
GHA  
SHA  
GLA  
VDRAIN  
GHA  
SHA  
10 kꢀ  
8
SDO  
10 kꢀ  
9
nFAULT  
DGND  
VREF  
SOA  
10  
11  
12  
VCC  
GLA  
1 µF  
SPA  
SPA  
SNA  
SNA  
VM  
VM  
VM  
VM  
VM  
+
+
VDRAIN  
GHB  
SHB  
GHC  
SHC  
GHA  
SHA  
B
C
A
GLB  
SPB  
GLA  
SPA  
GLC  
SPC  
R
SENSE  
R
SENSE  
R
SENSE  
SNC  
SNA  
SNB  
51. Primary Application Schematic  
62  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
Typical Application (接下页)  
9.2.1.1 Design Requirements  
20 lists the example input parameters for the system design.  
20. Design Parameters  
EXAMPLE DESIGN PARAMETER  
Nominal supply voltage  
Supply voltage range  
REFERENCE  
EXAMPLE VALUE  
24 V  
VVM  
8 V to 45 V  
CSD18536KCS  
83 nC (typical) at VVGS = 10 V  
14 nC (typical)  
100 to 300 ns  
50 to 150 ns  
45 kHz  
MOSFET part number  
MOSFET total gate charge  
MOSFET gate to drain charge  
Target output rise time  
Qg  
Qgd  
tr  
Target output fall time  
tf  
PWM Frequency  
ƒPWM  
VVCC  
Imax  
Buck regulator output voltage  
Maximum motor current  
ADC reference voltage  
Winding sense current range  
Motor RMS current  
3.3 V  
100 A  
VVREF  
ISENSE  
IRMS  
PSENSE  
TA  
3.3 V  
–40 A to +40 A  
28.3 A  
Sense resistor power rating  
System ambient temperature  
2 W  
–20°C to +105°C  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 External MOSFET Support  
The DRV832x MOSFET support is based on the capacity of the charge pump and PWM switching frequency of  
the output. For a quick calculation of MOSFET driving capacity, use 公式 9 and 公式 10 for three phase BLDC  
motor applications.  
Trapezoidal 120° Commutation: IVCP > Qg × ƒPWM  
where  
ƒPWM is the maximum desired PWM switching frequency.  
IVCP is the charge pump capacity, which depends on the VM pin voltage.  
The multiplier based on the commutation control method, may vary based on implementation.  
(9)  
Sinusoidal 180° Commutation: IVCP > 3 × Qg × ƒPWM  
(10)  
9.2.1.2.1.1 Example  
If a system with a VVM voltage of 8 V (IVCP = 15 mA) uses a maximum PWM switching frequency of 45 kHz, then  
the charge pump can support MOSFETs using trapezoidal commutation with a Qg less than 333 nC, and  
MOSFETs using sinusoidal commutation with a Qg less than 111 nC.  
9.2.1.2.2 IDRIVE Configuration  
The strength of the gate drive current, IDRIVE, is selected based on the gate-to-drain charge of the external  
MOSFETs and the target rise and fall times at the outputs. If IDRIVE is selected to be too low for a given  
MOSFET, then the MOSFET may not turn on completely within the tDRIVE time and a gate drive fault may be  
asserted. Additionally, slow rise and fall times result in higher switching power losses. TI recommends adjusting  
these values in the system with the required external MOSFETs and motor to determine the best possible setting  
for any application.  
The IDRIVEP and IDRIVEN current for both the low-side and high-side MOSFETs are independently adjustable on  
SPI devices through the SPI registers. On hardware interface devices, both source and sink settings are selected  
at the same time on the IDRIVE pin.  
版权 © 2017–2018, Texas Instruments Incorporated  
63  
 
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
For MOSFETs with a known gate-to-drain charge Qgd, desired rise time (tr), and a desired fall time (tf), use 公式  
11 and 公式 12 to calculate the value of IDRIVEP and IDRIVEN (respectively).  
Qgd  
IDRIVEP  
>
tr  
Qgd  
tf  
(11)  
(12)  
IDRIVEN  
>
9.2.1.2.2.1 Example  
Use 公式 13 and 公式 14 to calculate the value of IDRIVEP1 and IDRIVEP2 (respectively) for a gate-to-drain charge of  
14 nC and a rise time from 100 to 300 ns.  
14 nC  
IDRIVEP1  
=
= 140 mA  
= 47 mA  
100 ns  
14 nC  
300 ns  
(13)  
(14)  
IDRIVEP2  
=
Select a value for IDRIVEP that is between 47 mA and 140 mA. For this example, the value of IDRIVEP was selected  
as 120-mA source.  
Use 公式 15 and 公式 16 to calculate the value of IDRIVEN1 and IDRIVEN2 (respectively) for a gate-to-drain charge of  
14 nC and a fall time from 50 to 150 ns.  
14 nC  
IDRIVEN1  
=
= 280 mA  
= 93 mA  
50 ns  
14 nC  
150 ns  
(15)  
(16)  
IDRIVEN2  
=
Select a value for IDRIVEN that is between 93 mA and 280 mA. For this example, the value of IDRIVEN was selected  
as 240-mA sink.  
9.2.1.2.3 VDS Overcurrent Monitor Configuration  
The VDS monitors are configured based on the worst-case motor current and the RDS(on) of the external  
MOSFETs as shown in 公式 17.  
VDS_OCP > Imax ì RDS(on)max  
(17)  
9.2.1.2.3.1 Example  
The goal of this example is to set the VDS monitor to trip at a current greater than 100 A. According to the  
CSD18536KCS 60 V N-Channel NexFET™ Power MOSFET data sheet, the RDS(on) value is 1.8 times higher at  
175°C, and the maximum RDS(on) value at a VGS of 10 V is 1.6 mΩ. From these values, the approximate worst-  
case value of RDS(on) is 1.8 × 1.6 mΩ = 2.88 mΩ.  
Using 公式 17 with a value of 2.88 mΩ for RDS(on) and a worst-case motor current of 100 A, 公式 18 shows the  
calculated the value of the VDS monitors.  
VDS _ OCP > 100 A ì 2.88 mW  
VDS _ OCP > 0.288 V  
(18)  
For this example, the value of VDS_OCP was selected as 0.31 V.  
The SPI devices allow for adjustment of the deglitch time for the VDS overcurrent monitor. The deglitch time can  
be set to 2 µs, 4 µs, 6 µs, or 8 µs.  
9.2.1.2.4 Sense Amplifier Bidirectional Configuration (DRV8323 and DRV8323R)  
The sense amplifier gain on the DRV8323, DRV8323R devices and sense resistor value are selected based on  
the target current range, VREF voltage supply, power rating of the sense resistor, and operating temperature  
range. In bidirectional operation of the sense amplifier, the dynamic range at the output is approximately  
calculated as shown in 公式 19.  
64  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
 
 
 
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
VVREF  
2
VO = V  
- 0.25 V -  
(
)
VREF  
(19)  
Use 公式 20 to calculate the approximate value of the selected sense resistor with VO calculated using 公式 19.  
VO  
2
R =  
PSENSE > IRMS ì R  
AV ì I  
(20)  
From 公式 19 and 公式 20, select a target gain setting based on the power rating of the target sense resistor.  
9.2.1.2.4.1 Example  
In this system example, the value of the VREF voltage is 3.3 V with a sense current from –40 to +40 A. The  
linear range of the SOx output is 0.25 V to VVREF – 0.25 V (from the VLINEAR specification). The differential range  
of the sense amplifier input is –0.3 to +0.3 V (VDIFF).  
3.3 V  
V = 3.3 V - 0.25 V -  
= 1.4 V  
(
)
O
2
(21)  
(22)  
(23)  
1.4 V  
AV ì 40 A  
1.4 V  
AV ì 40 A  
R =  
2 W > 28.32 ì R ç R < 2.5 mW  
2.5 mW >  
ç AV > 14  
Therefore, the gain setting must be selected as 20 V/V or 40 V/V and the value of the sense resistor must be  
less than 2.5 mΩ to meet the power rating for the sense resistor. For this example, the gain setting was selected  
as 20 V/V. The value of the resistor and worst case current can be verified that R < 2.5 mΩ and Imax = 40 A does  
not violate the differential range specification of the sense amplifier input (VSPxD).  
9.2.1.2.5 Buck Regulator Configuration (DRV8320R and DRV8323R)  
For a detailed design procedure and information on selecting the correct buck regulator external components,  
refer to the LMR16006 SIMPLE SWITCHER® 60 V 0.6 A Buck Regulators With High Efficiency Eco-mode data  
sheet.  
9.2.1.3 Application Curves  
52. Gate Drive at 20% Duty Cycle  
53. Gate Drive at 80% Duty Cycle  
版权 © 2017–2018, Texas Instruments Incorporated  
65  
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
54. BLDC Motor Commutation 1000 RPM  
55. BLDC Motor Commutation 2000 RPM  
56. IDRIVE Maximum Setting Positive Current  
57. IDRIVE Maximum Setting Negative Current  
58. IDRIVE Minimum Setting Positive Current  
59. IDRIVE Minimum Setting Negative Current  
版权 © 2017–2018, Texas Instruments Incorporated  
66  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
60. IDRIVE 260 to 520-mA Setting Negative Current  
61. IDRIVE 260 to 520-mA Setting Positive Current  
版权 © 2017–2018, Texas Instruments Incorporated  
67  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
9.2.2 Alternative Application  
In this application, one sense amplifier is used in unidirectional mode for a summing current sense scheme often  
used in trapezoidal or hall-based BLDC commutation control.  
L
OUT  
0.8 to 60 V, 600 mA  
VCC  
VM  
COUT  
CIN  
100 k  
R
R
FB1  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
3.3 V, 30 mA  
1 µF  
FB  
DVDD  
AGND  
CAL  
FB2  
PGND  
CPL  
CPH  
VCP  
VM  
3
47 nF  
4
ENABLE  
nSCS  
SCLK  
SDI  
5
VM  
1 µF  
6
VCC  
GND  
(PAD)  
7
0.1 µF  
VCC  
VDRAIN  
GHA  
SHA  
GLA  
VDRAIN  
GHA  
SHA  
10 kꢀ  
8
SDO  
10 kꢀ  
9
nFAULT  
DGND  
VREF  
SOA  
10  
11  
12  
VCC  
GLA  
1 µF  
SPA  
SPA  
SNA  
SNA  
VM  
VM  
VM  
VM  
VM  
+
+
VDRAIN  
GHB  
SHB  
GHC  
SHC  
GHA  
SHA  
B
C
A
GLB  
SPB  
GLA  
SPA  
GLC  
SPC  
R
SENSE  
SNA  
62. Alternative Application Schematic  
68  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
9.2.2.1 Design Requirements  
21 lists the example design input parameters for system design.  
21. Design Parameters  
EXAMPLE DESIGN PARAMETER  
ADC reference voltage  
Sensed current  
REFERENCE  
VVREF  
EXAMPLE VALUE  
3.3 V  
ISENSE  
IRMS  
PSENSE  
TA  
0 to 40 A  
Motor RMS current  
28.3 A  
Sense-resistor power rating  
System ambient temperature  
3 W  
–20°C to +105°C  
9.2.2.2 Detailed Design Procedure  
9.2.2.2.1 Sense Amplifier Unidirectional Configuration  
The sense amplifiers are configured to be unidirectional through the registers on SPI devices by writing a 0 to the  
VREF_DIV bit.  
The sense amplifier gain and sense resistor values are selected based on the target current range, VREF, power  
rating of the sense resistor, and operating temperature range. In unidirectional operation of the sense amplifier,  
use 公式 24 to calculate the approximate value of the dynamic range at the output.  
V = V  
- 0.25 V - 0.25 V = VVREF - 0.5 V  
(
)
O
VREF  
(24)  
Use 公式 25 to calculate the approximate value of the selected sense resistor.  
VO  
2
R =  
PSENSE > IRMS ì R  
AV ì I  
where  
VO = VVREF - 0.5 V  
(25)  
From 公式 24 and 公式 25, select a target gain setting based on the power rating of a target sense resistor.  
9.2.2.2.1.1 Example  
In this system example, the value of the VREF voltage is 3.3 V with a sense current from 0 to 40 A. The linear  
range of the SOx output for the DRV8323x device is 0.25 V to VVREF – 0.25 V (from the VLINEAR specification).  
The differential range of the sense-amplifier input is –0.3 to +0.3 V (VDIFF).  
VO = 3.3 V - 0.5 V = 2.8 V  
(26)  
(27)  
(28)  
2.8 V  
R =  
3 W > 28.32 ì R ç R < 3.75 mW  
AV ì 40 A  
2.8 V  
3.75 mW >  
ç AV > 18.7  
AV ì 40 A  
Therefore, the gain setting must be selected as 20 V/V or 40 V/V and the value of the sense resistor must be  
less than 3.75 mΩ to meet the power rating for the sense resistor. For this example, the gain setting was  
selected as 20 V/V. The value of the resistor and worst-case current can be verified that R < 3.75 mΩ and Imax  
=
40 A does not violate the differential range specification of the sense amplifier input (VSPxD).  
版权 © 2017–2018, Texas Instruments Incorporated  
69  
 
 
 
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
10 Power Supply Recommendations  
The DRV832x family of devices is designed to operate from an input voltage supply (VM) range from 6 V to 60 V.  
A 0.1-µF ceramic capacitor rated for VM must be placed as close to the device as possible. In addition, a bulk  
capacitor must be included on the VM pin but can be shared with the bulk bypass capacitance for the external  
power MOSFETs. Additional bulk capacitance is required to bypass the external half-bridge MOSFETs and  
should be sized according to the application requirements.  
10.1 Bulk Capacitance Sizing  
Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally  
beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size. The  
amount of local capacitance depends on a variety of factors including:  
The highest current required by the motor system  
The power supply's type, capacitance, and ability to source current  
The amount of parasitic inductance between the power supply and motor system  
The acceptable supply voltage ripple  
Type of motor (brushed DC, brushless DC, stepper)  
The motor startup and braking methods  
The inductance between the power supply and motor drive system will limit the rate current can change from the  
power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or  
dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage  
remains stable and high current can be quickly supplied.  
The data sheet provides a recommended minimum value, but system level testing is required to determine the  
appropriate sized bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
+
Motor Driver  
œ
GND  
Local  
Bulk Capacitor  
IC Bypass  
Capacitor  
63. Motor Drive Supply Parasitics Example  
70  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
11 Layout  
11.1 Layout Guidelines  
Bypass the VM pin to the PGND pin using a low-ESR ceramic bypass capacitor with a recommended value of  
0.1 µF. Place this capacitor as close to the VM pin as possible with a thick trace or ground plane connected to  
the PGND pin. Additionally, bypass the VM pin using a bulk capacitor rated for VM. This component can be  
electrolytic. This capacitance must be at least 10 µF.  
Additional bulk capacitance is required to bypass the high current path on the external MOSFETs. This bulk  
capacitance should be placed such that it minimizes the length of any high current paths through the external  
MOSFETs. The connecting metal traces should be as wide as possible, with numerous vias connecting PCB  
layers. These practices minimize inductance and let the bulk capacitor deliver high current.  
Place a low-ESR ceramic capacitor between the CPL and CPH pins. This capacitor should be 47 nF, rated for  
VM, and be of type X5R or X7R. Additionally, place a low-ESR ceramic capacitor between the VCP and VM pins.  
This capacitor should be 1 µF, rated for 16 V, and be of type X5R or X7R.  
Bypass the DVDD pin to the AGND pin with a 1-µF low-ESR ceramic capacitor rated for 6.3 V and of type X5R  
or X7R. Place this capacitor as close to the pin as possible and minimize the path from the capacitor to the  
AGND pin.  
The VDRAIN pin can be shorted directly to the VM pin. However, if a significant distance is between the device  
and the external MOSFETs, use a dedicated trace to connect to the common point of the drains of the high-side  
external MOSFETs. Do not connect the SLx pins directly to PGND. Instead, use dedicated traces to connect  
these pins to the sources of the low-side external MOSFETs. These recommendations offer more accurate VDS  
sensing of the external MOSFETs for overcurrent detection.  
Minimize the loop length for the high-side and low-side gate drivers. The high-side loop is from the GHx pin of  
the device to the high-side power MOSFET gate, then follows the high-side MOSFET source back to the SHx  
pin. The low-side loop is from the GLx pin of the device to the low-side power MOSFET gate, then follows the  
low-side MOSFET source back to the PGND pin.  
For additional layout guidelines and examples see the Layout Guide for the DRV832x Family of Three-Phase  
Smart Gate Drivers application report.  
11.1.1 Buck-Regulator Layout Guidelines  
Layout is a critical portion of good power supply design. The following guidelines help users design a PCB with  
the best power conversion performance, thermal performance, and minimized generation of unwanted  
electromagnetic interference (EMI):  
Place the feedback network resistors close to the FB pin and away from the inductor to minimize coupling  
noise into the feedback pin.  
Place the input bypass capacitor close to the VIN pin to decrease copper trace resistance which effects the  
input voltage ripple of the device.  
Place the inductor close to the SW pin to decrease magnetic and electrostatic noise.  
Place the output capacitor close to the junction of the inductor and the diode. The inductor, diode, and COUT  
trace should be as short as possible to decrease conducted and radiated noise and increase overall  
efficiency.  
Make the ground connection for the diode, CVIN, and COUT as small as possible and tie it to the system  
ground plane in only one spot (preferably at the COUT ground point) to minimize conducted noise in the  
system ground plane.  
For more detail on switching power supply layout considerations refer to the AN-1149 Layout Guidelines for  
Switching Power Supplies application report.  
版权 © 2017–2018, Texas Instruments Incorporated  
71  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
11.2 Layout Example  
S
S
S
G
D
D
D
D
D
D
D
D
G
S
S
S
24 SOB  
23 SOC  
22 SNC  
21 SPC  
20 GLC  
19 SHC  
18 GHC  
17 GHB  
16 SHB  
15 GLB  
14 SPB  
13 SNB  
INHA 37  
INLA 38  
INHB 39  
INLB 40  
INHC 41  
INLC 42  
D
D
D
D
G
S
S
S
Thermal Pad  
BGND 43  
CB 44  
SW 45  
NC 46  
VIN 47  
nSHDN 48  
S
S
S
G
D
D
D
D
S
S
S
G
D
D
D
D
D
D
D
D
G
S
S
S
64. Layout Example  
72  
版权 © 2017–2018, Texas Instruments Incorporated  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
www.ti.com.cn  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
12 器件和文档支持  
12.1 器件支持  
12.1.1 器件命名规则  
下图显示了说明完整器件名称的图例:  
DRV83 (2) (3) (R) (S) (RGZ) (R)  
Prefix  
Tape and Reel  
DRV83 œ Three Phase Brushless DC  
R œ Tape and Reel  
T œ Small Tape and Reel  
Package  
RTV œ 5 × 5 × 0.75 mm QFN  
RTA œ 6 x 6 × 0.75 mm QFN  
RHA œ 6 x 6 × 0.9 mm QFN  
RGZ œ 7 × 7 × 0.9 mm QFN  
Series  
2 œ 60 V device  
5 œ 100 V device  
Interface  
S œ SPI interface  
H œ Hardware interface  
Sense amplifiers  
0 œ No sense amplifiers  
3 œ 3x sense amplifiers  
Buck Regulator  
[blank] œ No buck regulator  
R œ Buck regulator  
12.2 文档支持  
12.2.1 相关文档  
德州仪器 (TI)《无刷直流栅极驱动器系统的架构》应用报告  
德州仪器 (TI)《具有高效 Eco-Mode LMR16006 SIMPLE SWITCHER® 60V 0.6A 降压稳压器》数据表  
德州仪器 (TI)DRV832x 系列三相智能栅极驱动器布局指南》应用报告  
德州仪器 (TI)AN-1149 开关电源布局指南》应用报告  
德州仪器 (TI)TI 电机栅极驱动器的 IDRIVE TDRIVE 认知》应用报告  
德州仪器 (TI)《采用 TI 智能栅极驱动技术缩减电机驱动 BOM PCB 面积》TI 技术手册  
德州仪器 (TI)《采用 TI 智能栅极驱动技术降低 EMI 辐射发射》TI 技术手册  
德州仪器 (TI)《采用 TI 智能栅极驱动技术进行电机驱动保护》TI 技术手册  
德州仪器 (TI)QFN/SON PCB 连接》应用报告  
德州仪器 (TI)《高电流电机驱动器应用中的切断 开关》应用报告  
德州仪器 (TI)《采用 BLDC 电机的高效真空吸尘器硬件设计注意事项》应用报告  
德州仪器 (TI)《采用 BLDC 电机的电动自行车硬件设计注意事项》应用报告  
德州仪器 (TI)《采用 MSP430™ 的传感器式三相 BLDC 电机控制》应用报告  
12.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
22. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
DRV8320  
DRV8320R  
DRV8323  
DRV8323R  
版权 © 2017–2018, Texas Instruments Incorporated  
73  
DRV8320, DRV8320R  
DRV8323, DRV8323R  
ZHCSG01C FEBRUARY 2017REVISED AUGUST 2018  
www.ti.com.cn  
12.4 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.6 商标  
Eco-mode, NexFET, MSP430, E2E are trademarks of Texas Instruments.  
SIMPLE SWITCHER is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.8 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
74  
版权 © 2017–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8320HRTVR  
DRV8320HRTVT  
DRV8320RHRHAR  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
VQFN  
RTV  
RTV  
RHA  
32  
32  
40  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
DRV8320H  
NIPDAU  
NIPDAU  
DRV8320H  
DRV  
8320RH  
DRV8320RHRHAT  
DRV8320RSRHAR  
DRV8320RSRHAT  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
RHA  
RHA  
RHA  
40  
40  
40  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
DRV  
8320RH  
DRV  
8320RS  
DRV  
8320RS  
DRV8320SRTVR  
DRV8320SRTVT  
DRV8323HRTAR  
DRV8323HRTAT  
DRV8323RHRGZR  
DRV8323RHRGZT  
DRV8323RSRGZR  
DRV8323RSRGZT  
DRV8323SRTAR  
DRV8323SRTAT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
VQFN  
VQFN  
VQFN  
VQFN  
WQFN  
WQFN  
RTV  
RTV  
RTA  
RTA  
RGZ  
RGZ  
RGZ  
RGZ  
RTA  
RTA  
32  
32  
40  
40  
48  
48  
48  
48  
40  
40  
NIPDAU  
Call TI | NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
DRV8320S  
DRV8320S  
DRV8323H  
DRV8323H  
DRV8323RH  
DRV8323RH  
DRV8323RS  
DRV8323RS  
DRV8323S  
DRV8323S  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8320HRTVR  
DRV8320HRTVT  
DRV8320RHRHAR  
DRV8320RHRHAT  
DRV8320RSRHAR  
DRV8320RSRHAT  
DRV8320SRTVR  
DRV8320SRTVT  
DRV8323HRTAR  
DRV8323HRTAT  
DRV8323RHRGZR  
DRV8323RHRGZT  
DRV8323RSRGZR  
DRV8323RSRGZT  
DRV8323SRTAR  
DRV8323SRTAT  
WQFN  
WQFN  
VQFN  
VQFN  
VQFN  
VQFN  
WQFN  
WQFN  
WQFN  
WQFN  
VQFN  
VQFN  
VQFN  
VQFN  
WQFN  
WQFN  
RTV  
RTV  
RHA  
RHA  
RHA  
RHA  
RTV  
RTV  
RTA  
RTA  
RGZ  
RGZ  
RGZ  
RGZ  
RTA  
RTA  
32  
32  
40  
40  
40  
40  
32  
32  
40  
40  
48  
48  
48  
48  
40  
40  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
16.4  
16.4  
16.4  
16.4  
12.4  
12.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
5.3  
5.3  
6.3  
6.3  
6.3  
6.3  
5.3  
5.3  
6.3  
6.3  
7.3  
7.3  
7.3  
7.3  
6.3  
6.3  
5.3  
5.3  
6.3  
6.3  
6.3  
6.3  
5.3  
5.3  
6.3  
6.3  
7.3  
7.3  
7.3  
7.3  
6.3  
6.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
2500  
250  
12.0  
12.0  
12.0  
12.0  
8.0  
2500  
250  
3000  
250  
8.0  
2500  
250  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
2500  
250  
2500  
250  
2500  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV8320HRTVR  
DRV8320HRTVT  
DRV8320RHRHAR  
DRV8320RHRHAT  
DRV8320RSRHAR  
DRV8320RSRHAT  
DRV8320SRTVR  
DRV8320SRTVT  
DRV8323HRTAR  
DRV8323HRTAT  
DRV8323RHRGZR  
DRV8323RHRGZT  
DRV8323RSRGZR  
DRV8323RSRGZT  
DRV8323SRTAR  
DRV8323SRTAT  
WQFN  
WQFN  
VQFN  
VQFN  
VQFN  
VQFN  
WQFN  
WQFN  
WQFN  
WQFN  
VQFN  
VQFN  
VQFN  
VQFN  
WQFN  
WQFN  
RTV  
RTV  
RHA  
RHA  
RHA  
RHA  
RTV  
RTV  
RTA  
RTA  
RGZ  
RGZ  
RGZ  
RGZ  
RTA  
RTA  
32  
32  
40  
40  
40  
40  
32  
32  
40  
40  
48  
48  
48  
48  
40  
40  
3000  
250  
346.0  
210.0  
367.0  
210.0  
367.0  
210.0  
346.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
210.0  
346.0  
185.0  
367.0  
185.0  
367.0  
185.0  
346.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
367.0  
185.0  
33.0  
35.0  
38.0  
35.0  
38.0  
35.0  
33.0  
35.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
2500  
250  
2500  
250  
3000  
250  
2500  
250  
2500  
250  
2500  
250  
2500  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHA 40  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225870/A  
www.ti.com  
PACKAGE OUTLINE  
RHA0040B  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
6.1  
5.9  
1 MAX  
C
SEATING PLANE  
0.08  
0.05  
0.00  
2X 4.5  
4.15 0.1  
(0.2) TYP  
11  
20  
36X 0.5  
10  
21  
EXPOSED  
THERMAL PAD  
2X  
4.5  
SYMM  
41  
30  
0.27  
40X  
1
0.17  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
40  
31  
SYMM  
0.05  
0.5  
0.3  
40X  
4219052/A 06/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHA0040B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.15)  
SYMM  
40X (0.6)  
40X (0.22)  
40  
31  
1
30  
(0.25) TYP  
36X (0.5)  
SYMM  
41  
(5.8)  
(0.685)  
TYP  
(1.14)  
TYP  
(
0.2) TYP  
VIA  
10  
21  
(R0.05) TYP  
20  
11  
(0.685)  
TYP  
(1.14)  
TYP  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:12X  
0.07 MIN  
ALL SIDES  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219052/A 06/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHA0040B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
9X ( 1.17)  
(1.37) TYP  
40X (0.6)  
40X (0.22)  
31  
40  
1
30  
41  
(1.37)  
TYP  
(0.25) TYP  
SYMM  
(5.8)  
36X (0.5)  
(R0.05) TYP  
10  
21  
11  
20  
METAL  
TYP  
SYMM  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 41:  
72% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4219052/A 06/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
A
7.1  
6.9  
B
(0.1) TYP  
7.1  
6.9  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
PIN 1 INDEX AREA  
(0.45) TYP  
CHAMFERED LEAD  
CORNER LEAD OPTION  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 5.5  
5.15±0.1  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
SEE SIDE WALL  
DETAIL  
SYMM  
2X  
5.5  
1
36  
0.30  
0.18  
PIN1 ID  
(OPTIONAL)  
48X  
48  
37  
SYMM  
0.1  
C A B  
C
0.5  
0.3  
48X  
0.05  
SEE LEAD OPTION  
4219044/D 02/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
5.15)  
SYMM  
(
48X (0.6)  
37  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(1.26)  
2X  
(1.065)  
(R0.05)  
TYP  
25  
12  
21X (Ø0.2) VIA  
TYP  
24  
13  
2X (1.065)  
2X (1.26)  
2X (5.5)  
LAND PATTERN EXAMPLE  
SCALE: 15X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219044/D 02/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
SYMM  
(
1.06)  
37  
48X (0.6)  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(0.63)  
2X  
(1.26)  
(R0.05)  
TYP  
25  
12  
24  
13  
2X  
(1.26)  
2X (0.63)  
2X (5.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219044/D 02/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RTA0040B  
A
6.1  
5.9  
B
PIN 1 INDEX AREA  
6.1  
5.9  
0.8 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 4.5  
4.15±0.1  
(0.2) TYP  
11  
20  
36X 0.5  
10  
21  
SYMM  
41  
2X  
4.5  
1
30  
0.28  
40X  
PIN1 IDENTIFICATION  
(OPTIONAL)  
0.16  
31  
40  
0.1  
C A B  
C
SYMM  
0.5  
0.3  
40X  
0.05  
4219112/A 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
RTA0040B  
PLASTIC QUAD FLATPACK- NO LEAD  
2X (5.8)  
2X (4.5)  
(
4.15)  
40  
31  
40X (0.6)  
40X (0.22)  
1
30  
36X (0.5)  
SYMM  
41  
2X 2X  
(4.5) (5.8)  
2X  
(0.685)  
2X  
(1.14)  
(R0.05) TYP  
10  
21  
12X (Ø0.2) VIA  
TYP  
11  
20  
2X (1.14)  
2X (0.685)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219112/A 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
RTA0040B  
PLASTIC QUAD FLATPACK- NO LEAD  
2X (5.8)  
2X (4.5)  
9X ( 1.17)  
40  
31  
40X (0.6)  
40X (0.22)  
1
30  
41  
36X (0.5)  
SYMM  
2X 2X  
(4.5) (5.8)  
2X  
(1.37)  
(R0.05) TYP  
10  
21  
EXPOSED  
METAL  
11  
20  
2X (1.37)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
71% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219112/A 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY