DRV8353RHRGZR [TI]

具有降压稳压器和电流分流放大器的最大 102V 三相智能栅极驱动器 | RGZ | 48 | -40 to 125;
DRV8353RHRGZR
型号: DRV8353RHRGZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有降压稳压器和电流分流放大器的最大 102V 三相智能栅极驱动器 | RGZ | 48 | -40 to 125

放大器 栅极驱动 驱动器 稳压器
文件: 总98页 (文件大小:5137K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
DRV835x 100V 三相智能栅极驱动器  
1 特性  
3 说明  
1
9V 100V 三半桥栅极驱动器  
DRV835x 系列器件均为高度集成的栅极驱动器,适用  
于三相无刷直流 (BLDC) 电机 应用标准。这些 应用 包  
BLDC 电机的场定向控制 (FOC)、正弦电流控制和  
梯形电流控制。该器件型号提供了可选的集成式分流放  
大器以支持不同的电机控制方案,还提供了降压稳压  
器,以为栅极驱动器或外部控制器供电。  
可选的集成降压稳压器  
可选的三个低侧电流分流放大器  
智能栅极驱动架构  
可调转换率控制,可实现优异的 EMI 性能  
GS 握手和最小死区时间插入,可避免发生击穿  
V
50mA 1A 峰值拉电流  
100mA 2A 峰值灌电流  
通过强下拉能力减小 dV/dt  
DRV835x 通过采用智能栅极驱动 (SGD) 架构减少了  
MOSFET 压摆率控制和保护电路通常所需要的外部组  
件数量。SGD 架构还可优化死区时间以防止击穿问  
题,在通过 MOSFET 压摆率控制技术降低电磁干扰  
(EMI) 方面带来了灵活性,并可通过 VGS 监控器防止  
栅极短路问题。强大的栅极下拉电路有助于防止不必要  
dV/dt 寄生栅极开启事件。  
集成栅极驱动器电源  
高侧倍增电荷泵可实现 100% PWM 占空比控制  
低侧线性稳压器  
集成 LM5008A 降压稳压器  
6V 95V 工作电压范围  
该系列器件支持各种 PWM 控制模式(6x3x1x 和  
独立模式),可简化与外部控制器的连接。这些模式可  
减少电机驱动器 PWM 控制信号所需的控制器输出数  
量。该系列器件还包括 1x PWM 模式,因此可通过内  
部阻塞换向表轻松对 BLDC 电机进行传感器式梯形控  
制。  
2.5V 75V350mA 输出能力  
集成三个电流分流放大器  
可调增益(5102040 V/V)  
双向或单向支持  
6x3x1x 和独立 PWM 模式  
支持 120° 有传感器运行  
器件信息(1)  
提供 SPI 或硬件接口  
器件型号  
DRV8350  
封装  
WQFN (32)  
封装尺寸(标称值)  
5.00mm × 5.00mm  
7.00mm × 7.00mm  
6.00mm × 6.00mm  
7.00mm × 7.00mm  
低功耗睡眠模式(VVM = 48V 时为 20µA)  
集成式保护 特性  
DRV8350R  
DRV8353  
VQFN (48)  
WQFN (40)  
VQFN (48)  
VM 欠压锁定 (UVLO)  
栅极驱动电源欠压 (GDUV)  
MOSFET VDS 过流保护 (OCP)  
MOSFET 击穿保护  
DRV8353R  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
栅极驱动器故障 (GDF)  
简化原理图  
热警告和热关断 (OTW/OTSD)  
故障状态指示器 (nFAULT)  
9 to 75 V  
7 to 100 V  
Drain  
Sense  
DRV835x  
2 应用  
PWM  
Three-Phase  
Smart Gate Driver  
SPI or H/W  
三相无刷直流 (BLDC) 电机模块  
M
Gate Drive  
风扇、风机和泵  
nFAULT  
Current Sense  
350 mA  
Protection  
Current  
Sense  
电动自行车、电动踏板车和电动汽车  
电动和园艺工具、割草机  
无人机、机器人和遥控玩具  
工厂自动化和纺织机  
3x Shunt Amplifiers  
Buck Regulator  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDY6  
 
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
目录  
8.6 Register Maps......................................................... 56  
Application and Implementation ........................ 65  
9.1 Application Information............................................ 65  
9.2 Typical Application ................................................. 65  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications....................................................... 10  
7.1 Absolute Maximum Ratings .................................... 10  
7.2 ESD Ratings .......................................................... 11  
7.3 Recommended Operating Conditions..................... 11  
7.4 Thermal Information................................................ 11  
7.5 Electrical Characteristics......................................... 12  
7.6 SPI Timing Requirements ....................................... 18  
7.7 Typical Characteristics............................................ 19  
Detailed Description ............................................ 21  
8.1 Overview ................................................................. 21  
8.2 Functional Block Diagram ....................................... 22  
8.3 Feature Description................................................. 30  
8.4 Device Functional Modes........................................ 53  
8.5 Programming........................................................... 54  
9
10 Power Supply Recommendations ..................... 77  
10.1 Bulk Capacitance Sizing ....................................... 77  
11 Layout................................................................... 78  
11.1 Layout Guidelines ................................................. 78  
11.2 Layout Example .................................................... 79  
12 器件和文档支持 ..................................................... 80  
12.1 器件支持................................................................ 80  
12.2 文档支持................................................................ 80  
12.3 相关链接................................................................ 81  
12.4 接收文档更新通知 ................................................. 81  
12.5 社区资源................................................................ 81  
12.6 ....................................................................... 81  
12.7 静电放电警告......................................................... 81  
12.8 Glossary................................................................ 81  
13 机械、封装和可订购信息....................................... 81  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (August 2018) to Revision A  
Page  
已更改 将文档状态更改为生产数据......................................................................................................................................... 1  
已删除 从 DRV8350 DRV8353 器件中删除了仅供预览的标注 .......................................................................................... 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
5 Device Comparison Table  
DEVICE  
VARIANT  
DRV8350H  
DRV8350S  
DRV8350RH  
DRV8350RS  
DRV8353H  
DRV8353S  
DRV8353RH  
DRV8353RS  
SHUNT AMPLIFIERS  
BUCK REGULATOR  
INTERFACE  
Hardware (H)  
SPI (S)  
DRV8350  
None  
350 mA (R)  
None  
0
Hardware (H)  
SPI (S)  
DRV8350R  
DRV8353  
Hardware (H)  
SPI (S)  
3
Hardware (H)  
SPI (S)  
DRV8353R  
350 mA (R)  
6 Pin Configuration and Functions  
DRV8350H RTV Package  
32-Pin WQFN With Exposed Thermal Pad  
Top View  
DRV8350S RTV Package  
32-Pin WQFN With Exposed Thermal Pad  
Top View  
CPH  
VM  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
INLA  
CPH  
VM  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
INLA  
INHA  
INHA  
VDRAIN  
VCP  
ENABLE  
NC  
VDRAIN  
VCP  
ENABLE  
nSCS  
SCLK  
SDI  
Thermal  
Pad  
Thermal  
Pad  
GHA  
VDS  
GHA  
SHA  
IDRIVE  
MODE  
nFAULT  
SHA  
GLA  
GLA  
SDO  
SLA  
SLA  
nFAULT  
Not to scale  
Not to scale  
Pin Functions—32-Pin DRV8350 Devices  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8350H  
DRV8350S  
Charge pump switching node. Connect a X5R or X7R, 47-nF, VDRAIN-rated ceramic capacitor between the CPH and CPL  
pins.  
CPH  
1
1
PWR  
PWR  
PWR  
I
Charge pump switching node. Connect a X5R or X7R, 47-nF, VDRAIN-rated ceramic capacitor between the CPH and CPL  
pins.  
CPL  
32  
29  
22  
32  
29  
22  
5-V internal regulator output. Connect a X5R or X7R, 1-µF, 6.3-V ceramic capacitor between the DVDD and GND pins. This  
regulator can source up to 10 mA externally.  
DVDD  
ENABLE  
Gate driver enable. When this pin is logic low the device goes to a low power sleep mode. An 8 to 40-µs pulse can be used  
to reset fault conditions.  
GHA  
GHB  
GHC  
GLA  
GLB  
5
5
O
O
O
O
O
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
12  
13  
7
12  
13  
7
10  
10  
(1) PWR = power, I = input, O = output, NC = no connection, OD = open-drain  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Pin Functions—32-Pin DRV8350 Devices (continued)  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8350H  
DRV8350S  
GLC  
15  
30  
19  
23  
25  
27  
24  
26  
28  
18  
21  
17  
6
15  
30  
23  
25  
27  
24  
26  
28  
17  
21  
20  
19  
18  
6
O
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Device primary ground. Connect to system ground.  
GND  
IDRIVE  
INHA  
INHB  
INHC  
INLA  
INLB  
INLC  
MODE  
NC  
PWR  
I
Gate drive output current setting. This pin is a 7 level input pin set by an external resistor.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
PWM input mode setting. This pin is a 4 level input pin set by an external resistor.  
No internal connection. This pin can be left floating or connected to system ground.  
I
I
I
I
I
I
I
NC  
nFAULT  
nSCS  
SCLK  
SDI  
OD  
Fault indicator output. This pin is pulled logic low during a fault condition and requires an external pullup resistor.  
Serial chip select. A logic low on this pin enables serial interface communication.  
I
I
Serial clock input. Serial data is shifted out and captured on the corresponding rising and falling edge on this pin.  
Serial data input. Data is captured on the falling edge of the SCLK pin.  
I
SDO  
SHA  
OD  
Serial data output. Data is shifted out on the rising edge of the SCLK pin. This pin requires an external pullup resistor.  
High-side source sense input. Connect to the high-side power MOSFET source.  
I
SHB  
11  
14  
8
11  
14  
8
I
High-side source sense input. Connect to the high-side power MOSFET source.  
SHC  
I
High-side source sense input. Connect to the high-side power MOSFET source.  
SLA  
I
Low-side source sense input. Connect to the low-side power MOSFET source.  
SLB  
9
9
I
Low-side source sense input. Connect to the low-side power MOSFET source.  
SLC  
16  
4
16  
4
I
Low-side source sense input. Connect to the low-side power MOSFET source.  
VCP  
PWR  
Charge pump output. Connect a X5R or X7R, 1-µF, 16-V ceramic capacitor between the VCP and VDRAIN pins.  
High-side MOSFET drain sense input and charge pump reference. Connect to the common point of the MOSFET drains.  
VDS monitor trip point setting. This pin is a 7 level input pin set by an external resistor.  
11-V internal regulator output. Connect a X5R or X7R, 1-µF, 16-V ceramic capacitor between the VGLS and GND pins.  
VDRAIN  
VDS  
3
3
I
I
20  
31  
31  
VGLS  
PWR  
Gate driver power supply input. Connect to either VDRAIN or separate gate driver supply voltage. Connect a X5R or X7R,  
0.1-µF, VM-rated ceramic and greater then or equal to 10-uF local capacitance between the VM and GND pins.  
VM  
2
2
PWR  
DRV8350RH RGZ Package  
DRV8350RS RGZ Package  
48-Pin VQFN With Exposed Thermal Pad  
Top View  
48-Pin VQFN With Exposed Thermal Pad  
Top View  
GND  
VGLS  
CPL  
1
36  
INHB  
INLA  
GND  
VGLS  
CPL  
1
36  
INHB  
INLA  
2
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
3
INHA  
ENABLE  
NC  
3
INHA  
ENABLE  
nSCS  
SCLK  
SDI  
CPH  
VM  
4
CPH  
VM  
4
5
5
VDRAIN  
VCP  
6
VDS  
VDRAIN  
VCP  
6
Thermal  
Pad  
Thermal  
Pad  
7
IDRIVE  
MODE  
nFAULT  
AGND  
NC  
7
GHA  
SHA  
8
GHA  
SHA  
8
SDO  
9
9
nFAULT  
AGND  
NC  
GLA  
10  
11  
12  
GLA  
10  
11  
12  
SLA  
SLA  
NC  
NC  
NC  
NC  
Not to scale  
Not to scale  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
Pin Functions—48-Pin DRV8350R Devices  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8350RH  
DRV8350RS  
AGND  
BST  
27  
45  
27  
45  
PWR  
PWR  
Device analog ground. Connect to system ground.  
Buck regulator bootstrap input. Connect a X5R or X7R, 0.01-µF, 16-V, capacitor between the BST and SW pins.  
Charge pump switching node. Connect a X5R or X7R, 47-nF, VDRAIN-rated ceramic capacitor between the CPH and CPL  
pins.  
CPH  
4
4
PWR  
Charge pump switching node. Connect a X5R or X7R, 47-nF, VDRAIN-rated ceramic capacitor between the CPH and CPL  
pins.  
CPL  
3
3
PWR  
PWR  
PWR  
DGND  
DVDD  
41  
40  
41  
40  
Device digital ground. Connect to system ground.  
5-V internal regulator output. Connect a X5R or X7R, 1-µF, 6.3-V ceramic capacitor between the DVDD and DGND pins. This  
regulator can source up to 10 mA externally.  
Gate driver enable. When this pin is logic low the device goes to a low power sleep mode. An 8 to 40-µs low pulse can be  
used to reset fault conditions.  
ENABLE  
33  
33  
I
FB  
48  
8
48  
8
I
Buck feedback input. A resistor divider from the buck post inductor output to this pin sets the buck output voltage.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Device primary ground. Connect to system ground.  
GHA  
GHB  
GHC  
GLA  
GLB  
GLC  
GND  
IDRIVE  
INHA  
INHB  
INHC  
INLA  
INLB  
INLC  
MODE  
NC  
O
17  
18  
10  
15  
20  
1
17  
18  
10  
15  
20  
1
O
O
O
O
O
PWR  
30  
34  
36  
38  
35  
37  
39  
29  
12  
13  
22  
23  
24  
25  
26  
32  
28  
46  
47  
9
34  
36  
38  
35  
37  
39  
12  
13  
22  
23  
24  
25  
26  
28  
32  
46  
47  
31  
30  
29  
9
I
Gate drive output current setting. This pin is a 7 level input pin set by an external resistor.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
PWM input mode setting. This pin is a 4 level input pin set by an external resistor.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
No internal connection. This pin can be left floating or connected to system ground.  
Fault indicator output. This pin is pulled logic low during a fault condition and requires an external pullup resistor.  
Serial chip select. A logic low on this pin enables serial interface communication.  
Current limit off time set input. Connect a resistor between RCL and GND.  
I
I
I
I
I
I
I
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
nFAULT  
nSCS  
RCL  
RT/SD  
SCLK  
SDI  
OD  
I
I
I
On time set and remote shutdown input. Connect a resistor between RT/SD and VIN.  
Serial clock input. Serial data is shifted out and captured on the corresponding rising and falling edge on this pin.  
Serial data input. Data is captured on the falling edge of the SCLK pin.  
I
I
SDO  
SHA  
SHB  
SHC  
SLA  
OD  
Serial data output. Data is shifted out on the rising edge of the SCLK pin. This pin requires an external pullup resistor.  
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
Low-side source sense input. Connect to the low-side power MOSFET source.  
Low-side source sense input. Connect to the low-side power MOSFET source.  
Low-side source sense input. Connect to the low-side power MOSFET source.  
Buck switch node. Connect this pin to an inductor, diode, and the CB bootstrap capacitor.  
I
I
16  
19  
11  
14  
21  
42  
16  
19  
11  
14  
21  
42  
I
I
SLB  
I
SLC  
SW  
I
O
7-V internal regulator output. Gate supply for buck switch. Connect a X5R or X7R, 0.47-µF, 16-V ceramic capacitor between  
the VCC and GND pins.  
VCC  
44  
44  
PWR  
VCP  
7
6
7
6
PWR  
Charge pump output. Connect a X5R or X7R, 1-µF, 16-V ceramic capacitor between the VCP and VDRAIN pins.  
High-side MOSFET drain sense input and charge pump reference. Connect to the common point of the MOSFET drains.  
VDS monitor trip point setting. This pin is a 7 level input pin set by an external resistor.  
VDRAIN  
VDS  
I
I
31  
2
2
VGLS  
PWR  
11-V internal regulator output. Connect a X5R or X7R, 1-µF, 16-V ceramic capacitor between the VGLS and GND pins.  
(1) PWR = power, I = input, O = output, NC = no connection, OD = open-drain  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Pin Functions—48-Pin DRV8350R Devices (continued)  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8350RH  
DRV8350RS  
VIN  
VM  
43  
43  
PWR  
PWR  
Buck regulator power supply input. Place an X5R or X7R, VM-rated ceramic capacitor between the VIN and GND pins.  
Gate driver power supply input. Connect to either VDRAIN or separate gate driver supply voltage. Connect a X5R or X7R,  
0.1-µF, VM-rated ceramic and greater then or equal to 10-uF local capacitance between the VM and GND pins.  
5
5
DRV8353H RTA Package  
DRV8353S RTA Package  
40-Pin WQFN With Exposed Thermal Pad  
Top View  
40-Pin WQFN With Exposed Thermal Pad  
Top View  
CPL  
CPH  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
GAIN  
VDS  
CPL  
CPH  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
nSCS  
SCLK  
SDI  
2
VM  
3
IDRIVE  
MODE  
nFAULT  
AGND  
VREF  
SOA  
VM  
VDRAIN  
VCP  
4
VDRAIN  
VCP  
SDO  
5
nFAULT  
AGND  
VREF  
SOA  
Thermal  
Pad  
Thermal  
Pad  
GHA  
SHA  
6
GHA  
SHA  
7
GLA  
8
GLA  
SPA  
9
SOB  
SPA  
SOB  
SNA  
10  
SOC  
SNA  
SOC  
Not to scale  
Not to scale  
Pin Functions—40-Pin DRV8353 Devices  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8353H  
DRV8353S  
AGND  
CPH  
25  
25  
2
PWR  
PWR  
Device analog ground. Connect to system ground.  
Charge pump switching node. Connect a X5R or X7R, 47-nF, VDRAIN-rated ceramic capacitor between the CPH and CPL  
pins.  
2
1
Charge pump switching node. Connect a X5R or X7R, 47-nF, VDRAIN-rated ceramic capacitor between the CPH and CPL  
pins.  
CPL  
1
PWR  
PWR  
I
5-V internal regulator output. Connect a X5R or X7R, 1-µF, 6.3-V ceramic capacitor between the DVDD and GND pins. This  
regulator can source up to 10 mA externally.  
DVDD  
ENABLE  
38  
31  
38  
31  
Gate driver enable. When this pin is logic low the device goes to a low power sleep mode. An 8 to 40-µs low pulse can be  
used to reset fault conditions.  
GAIN  
GND  
GHA  
GHB  
GHC  
GLA  
30  
39  
6
39  
6
I
Amplifier gain setting. The pin is a 4 level input pin set by an external resistor.  
Device power ground. Connect to system ground.  
PWR  
O
O
O
O
O
O
I
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Gate drive output current setting. This pin is a 7 level input pin set by an external resistor.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
15  
16  
8
15  
16  
8
GLB  
13  
18  
28  
32  
34  
36  
13  
18  
32  
34  
36  
GLC  
IDRIVE  
INHA  
INHB  
INHC  
I
I
I
(1) PWR = power, I = input, O = output, NC = no connection, OD = open-drain  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
Pin Functions—40-Pin DRV8353 Devices (continued)  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8353H  
DRV8353S  
INLA  
INLB  
INLC  
MODE  
nFAULT  
nSCS  
SCLK  
SDI  
33  
35  
37  
27  
26  
7
33  
35  
37  
26  
30  
29  
28  
27  
7
I
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
PWM input mode setting. This pin is a 4 level input pin set by an external resistor.  
Fault indicator output. This pin is pulled logic low during a fault condition and requires an external pullup resistor.  
Serial chip select. A logic low on this pin enables serial interface communication.  
Serial clock input. Serial data is shifted out and captured on the corresponding rising and falling edge on this pin.  
Serial data input. Data is captured on the falling edge of the SCLK pin.  
Serial data output. Data is shifted out on the rising edge of the SCLK pin. This pin requires an external pullup resistor.  
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
Shunt amplifier input. Connect to the low-side of the current shunt resistor.  
Shunt amplifier input. Connect to the low-side of the current shunt resistor.  
Shunt amplifier input. Connect to the low-side of the current shunt resistor.  
Shunt amplifier output.  
I
I
I
OD  
I
I
I
SDO  
SHA  
OD  
I
I
SHB  
14  
17  
10  
11  
20  
23  
22  
21  
14  
17  
10  
11  
20  
23  
22  
21  
SHC  
SNA  
I
I
SNB  
I
SNC  
SOA  
SOB  
SOC  
I
O
O
O
Shunt amplifier output.  
Shunt amplifier output.  
Low-side source sense and shunt amplifier input. Connect to the low-side power MOSFET source and high-side of the  
current shunt resistor.  
SPA  
SPB  
SPC  
9
9
I
I
I
Low-side source sense and shunt amplifier input. Connect to the low-side power MOSFET source and high-side of the  
current shunt resistor.  
12  
19  
12  
19  
Low-side source sense and shunt amplifier input. Connect to the low-side power MOSFET source and high-side of the  
current shunt resistor.  
VCP  
5
4
5
4
PWR  
Charge pump output. Connect a X5R or X7R, 1-µF, 16-V ceramic capacitor between the VCP and VDRAIN pins.  
High-side MOSFET drain sense input and charge pump reference. Connect to the common point of the MOSFET drains.  
VDS monitor trip point setting. This pin is a 7 level input pin set by an external resistor.  
VDRAIN  
VDS  
I
I
29  
40  
40  
VGLS  
PWR  
11-V internal regulator output. Connect a X5R or X7R, 1-µF, 16-V ceramic capacitor between the VGLS and GND pins.  
Gate driver power supply input. Connect to either VDRAIN or separate gate driver supply voltage. Connect a X5R or X7R,  
0.1-µF, VM-rated ceramic and greater then or equal to 10-uF local capacitance between the VM and GND pins.  
VM  
3
3
PWR  
PWR  
Shunt amplifier power supply input and reference. Connect a X5R or X7R, 0.1-µF, 6.3-V ceramic capacitor between the  
VREF and AGND pins.  
VREF  
24  
24  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
DRV8353RH RGZ Package  
48-Pin VQFN With Exposed Thermal Pad  
Top View  
DRV8353RS RGZ Package  
48-Pin VQFN With Exposed Thermal Pad  
Top View  
GND  
VGLS  
CPL  
1
36  
INHB  
INLA  
GND  
VGLS  
CPL  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
INHB  
2
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2
INLA  
3
INHA  
ENABLE  
nSCS  
SCLK  
SDI  
3
INHA  
CPH  
4
CPH  
4
ENABLE  
GAIN  
VM  
5
VM  
5
VDRAIN  
VCP  
6
VDRAIN  
VCP  
6
VDS  
Thermal  
Pad  
Thermal  
Pad  
7
7
IDRIVE  
MODE  
nFAULT  
AGND  
VREF  
SOA  
GHA  
SHA  
8
SDO  
GHA  
SHA  
8
9
nFAULT  
AGND  
VREF  
SOA  
9
GLA  
10  
11  
12  
GLA  
10  
11  
12  
SPA  
SPA  
SNA  
SNA  
Not to scale  
Not to scale  
Pin Functions—48-Pin DRV8353R Devices  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8353RH  
DRV8353RS  
AGND  
BST  
27  
45  
27  
45  
PWR  
PWR  
Device analog ground. Connect to system ground.  
Buck regulator bootstrap input. Connect a X5R or X7R, 0.01-µF, 16-V, capacitor between the BST and SW pins.  
Charge pump switching node. Connect a X5R or X7R, 47-nF, VDRAIN-rated ceramic capacitor between the CPH and CPL  
pins.  
CPH  
4
4
PWR  
Charge pump switching node. Connect a X5R or X7R, 47-nF, VDRAIN-rated ceramic capacitor between the CPH and CPL  
pins.  
CPL  
3
3
PWR  
PWR  
PWR  
DGND  
DVDD  
41  
40  
41  
40  
Device ground. Connect to system ground.  
5-V internal regulator output. Connect a X5R or X7R, 1-µF, 6.3-V ceramic capacitor between the DVDD and DGND pins.  
This regulator can source up to 10 mA externally.  
Gate driver enable. When this pin is logic low the device goes to a low power sleep mode. An 8 to 40-µs low pulse can be  
used to reset fault conditions.  
ENABLE  
33  
33  
I
FB  
48  
32  
1
48  
1
I
Buck feedback input. A resistor divider from the buck post inductor output to this pin sets the buck output voltage.  
Amplifier gain setting. The pin is a 4 level input pin set by an external resistor.  
GAIN  
GND  
GHA  
GHB  
GHC  
GLA  
I
PWR  
Device power ground. Connect to system ground.  
8
8
O
O
O
O
O
O
I
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
High-side gate driver output. Connect to the gate of the high-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Low-side gate driver output. Connect to the gate of the low-side power MOSFET.  
Gate drive output current setting. This pin is a 7 level input pin set by an external resistor.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
High-side gate driver control input. This pin controls the output of the high-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
Low-side gate driver control input. This pin controls the output of the low-side gate driver.  
PWM input mode setting. This pin is a 4 level input pin set by an external resistor.  
Fault indicator output. This pin is pulled logic low during a fault condition and requires an external pullup resistor.  
17  
18  
10  
15  
20  
30  
34  
36  
38  
35  
37  
39  
29  
28  
17  
18  
10  
15  
20  
34  
36  
38  
35  
37  
39  
28  
GLB  
GLC  
IDRIVE  
INHA  
INHB  
INHC  
INLA  
INLB  
INLC  
MODE  
nFAULT  
I
I
I
I
I
I
I
OD  
(1) PWR = power, I = input, O = output, NC = no connection, OD = open-drain  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
Pin Functions—48-Pin DRV8353R Devices (continued)  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8353RH  
DRV8353RS  
nSCS  
RCL  
RT/SD  
SCLK  
SDI  
46  
47  
9
32  
46  
47  
31  
30  
29  
9
I
Serial chip select. A logic low on this pin enables serial interface communication.  
Current limit off time set input. Connect a resistor between RCL and GND.  
On time set and remote shutdown input. Connect a resistor between RT/SD and VIN.  
Serial clock input. Serial data is shifted out and captured on the corresponding rising and falling edge on this pin.  
Serial data input. Data is captured on the falling edge of the SCLK pin.  
Serial data output. Data is shifted out on the rising edge of the SCLK pin. This pin requires an external pullup resistor.  
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
High-side source sense input. Connect to the high-side power MOSFET source.  
Shunt amplifier input. Connect to the low-side of the current shunt resistor.  
Shunt amplifier input. Connect to the low-side of the current shunt resistor.  
Shunt amplifier input. Connect to the low-side of the current shunt resistor.  
Shunt amplifier output.  
I
I
I
I
SDO  
SHA  
SHB  
SHC  
SNA  
SNB  
SNC  
SOA  
SOB  
SOC  
OD  
I
I
16  
19  
12  
13  
22  
25  
24  
23  
16  
19  
12  
13  
22  
25  
24  
23  
I
I
I
I
O
O
O
Shunt amplifier output.  
Shunt amplifier output.  
Low-side source sense and shunt amplifier input. Connect to the low-side power MOSFET source and high-side of the  
current shunt resistor.  
SPA  
SPB  
11  
14  
11  
14  
I
I
Low-side source sense and shunt amplifier input. Connect to the low-side power MOSFET source and high-side of the  
current shunt resistor.  
Low-side source sense and shunt amplifier input. Connect to the low-side power MOSFET source and high-side of the  
current shunt resistor.  
SPC  
SW  
21  
42  
44  
21  
42  
44  
I
O
Buck switch node. Connect this pin to an inductor, diode, and the CB bootstrap capacitor.  
7-V internal regulator output. Gate supply for buck switch. Connect a X5R or X7R, 0.47-µF, 16-V ceramic capacitor between  
the VCC and GND pins.  
VCC  
PWR  
VCP  
7
6
7
6
PWR  
Charge pump output. Connect a X5R or X7R, 1-µF, 16-V ceramic capacitor between the VCP and VDRAIN pins.  
High-side MOSFET drain sense input and charge pump reference. Connect to the common point of the MOSFET drains.  
VDS monitor trip point setting. This pin is a 7 level input pin set by an external resistor.  
VDRAIN  
VDS  
I
31  
2
2
I
VGLS  
VIN  
PWR  
PWR  
11-V internal regulator output. Connect a X5R or X7R, 1-µF, 16-V ceramic capacitor between the VGLS and GND pins.  
Buck regulator power supply input. Place an X5R or X7R, VM-rated ceramic capacitor between the VIN and BGND pins.  
43  
43  
Gate driver power supply input. Connect to either VDRAIN or separate gate driver supply voltage. Connect a X5R or X7R,  
0.1-µF, VM-rated ceramic and greater then or equal to 10-uF local capacitance between the VM and GND pins.  
VM  
5
5
PWR  
PWR  
Shunt amplifier power supply input and reference. Connect a X5R or X7R, 0.1-µF, 6.3-V ceramic capacitor between the  
VREF and AGND pins.  
VREF  
26  
26  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
at TA = –40°C to +125°C (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
GATE DRIVER  
Power supply pin voltage (VM)  
–0.3  
–0.3  
–0.3  
0
80  
V
V
Voltage differential between ground pins (AGND, BGND, DGND, PGND)  
MOSFET drain sense pin voltage (VDRAIN)  
MOSFET drain sense pin voltage slew rate (VDRAIN)  
Charge pump pin voltage (CPH, VCP)  
0.3  
102  
V
2
VVDRAIN + 16  
VVDRAIN  
18  
V/µs  
V
–0.3  
–0.3  
–0.3  
–0.3  
Charge-pump negative-switching pin voltage (CPL)  
Low-side gate drive regulator pin voltage (VGLS)  
Internal logic regulator pin voltage (DVDD)  
V
V
5.75  
V
Digital pin voltage (ENABLE, GAIN, IDRIVE, INHx, INLx, MODE, nFAULT, nSCS, SCLK, SDI, SDO,  
VDS)  
–0.3  
5.75  
V
Continuous high-side gate drive pin voltage (GHx)  
Transient 200-ns high-side gate drive pin voltage (GHx)  
High-side gate drive pin voltage with respect to SHx (GHx)  
Continuous high-side source sense pin voltage (SHx)  
Continuous high-side source sense pin voltage (SHx)  
Transient 200-ns high-side source sense pin voltage (SHx)  
Continuous low-side gate drive pin voltage (GLx)  
Transient 200-ns low-side gate drive pin voltage (GLx)  
Gate drive pin source current (GHx, GLx)  
Gate drive pin sink current (GHx, GLx)  
Continuous low-side source sense pin voltage (SLx)  
Transient 200-ns low-side source sense pin voltage (SLx)  
Continuous shunt amplifier input pin voltage (SNx, SPx)  
Transient 200-ns shunt amplifier input pin voltage (SNx, SPx)  
Reference input pin voltage (VREF)  
5(2)  
–10  
VVCP + 0.3  
VVCP + 0.3  
16  
V
V
V
V
V
V
V
V
A
A
V
V
V
V
V
V
–0.3  
–5(2)  
–5(2)  
–10  
102  
VVDRAIN + 5  
VVDRAIN + 10  
VVGLS + 0.3  
VVGLS + 0.3  
–1.0  
–5.0  
Internally limited Internally limited  
Internally limited Internally limited  
–1  
–5  
1
5
–1  
1
5
–5  
–0.3  
–0.3  
5.75  
Shunt amplifier output pin voltage (SOx)  
BUCK REGULATOR  
VVREF + 0.3  
Power supply pin voltage (VIN)  
–0.3  
–0.3  
–0.3  
–0.3  
–1  
100  
114  
14  
V
V
V
V
V
V
V
Bootstrap pin voltage (BST)  
Bootstrap pin voltage with respect to SW (BST)  
Bootstrap pin voltage with respect to VCC (BST)  
Switching node pin voltage (SW)  
100  
VVIN  
14  
Internal regulator pin voltage (VCC)  
–0.3  
–0.3  
Input pin voltage (FB, RCL, RT/SD)  
7
DRV835x  
Ambient temperature, TA  
–40  
–40  
–65  
125  
150  
150  
°C  
°C  
°C  
Junction temperature, TJ  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) VDRAIN pin voltage with respect to high-side gate pin (GHx) and phase node pin voltage (SHx) should be limited to 102 V maximum.  
This will limit the GHx and SHx pin negative voltage capability when VDRAIN is greater than 92 V.  
10  
Copyright © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
7.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2000  
V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±500 V  
may actually have higher performance.  
7.3 Recommended Operating Conditions  
at TA = –40°C to +125°C (unless otherwise noted)  
MIN  
MAX  
UNIT  
GATE DRIVER  
VVM  
Gate driver power supply voltage (VM)  
9
7
0
0
0
0
0
0
3
0
0
0
75  
100  
5.5  
V
V
VVDRAIN  
VI  
Charge pump reference and drain voltage sense (VDRAIN)  
Input voltage (ENABLE, GAIN, IDRIVE, INHx, INLx, MODE, nSCS, SCLK, SDI, VDS)  
Applied PWM signal (INHx, INLx)  
V
fPWM  
200(1)  
kHz  
V/ns  
mA  
mA  
mA  
V
tSH  
Switch-node slew rate range (SHx)  
2
IGATE_HS  
IGATE_LS  
IDVDD  
VVREF  
ISO  
High-side average gate-drive current (GHx)  
Low-side average gate-drive current (GLx)  
External load current (DVDD)  
25(1)  
25(1)  
10(1)  
5.5  
Reference voltage input (VREF)  
Shunt amplifier output current (SOx)  
5
mA  
V
VOD  
Open drain pullup voltage (nFAULT, SDO)  
Open drain output current (nFAULT, SDO)  
5.5  
IOD  
5
mA  
BUCK REGULATOR  
VVIN  
Power supply voltage (VIN)  
6
95  
V
DRV835x  
TA  
TJ  
Operating ambient temperature  
Operating junction temperature  
–40  
–40  
125  
150  
°C  
°C  
(1) Power dissipation and thermal limits must be observed.  
7.4 Thermal Information  
DRV8350  
RTV (WQFN)  
32 PINS  
29.2  
DRV8353  
RTA (WQFN)  
40 PINS  
26.1  
DRV835xR  
THERMAL METRIC(1)  
RGZ (VQFN)  
48 PINS  
24.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
15.2  
13.1  
12.0  
9.2  
8.4  
7.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
0.1  
0.1  
ψJB  
9.2  
8.4  
7.1  
RθJC(bot)  
1.2  
1.1  
0.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2018–2019, Texas Instruments Incorporated  
11  
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
7.5 Electrical Characteristics  
at TA = –40°C to +125°C, VVM = 9 to 75 V, VVDRAIN = 9 to 100 V, VVIN = 48 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (DVDD, VCP, VGLS, VM)  
IVM  
VM operating supply current  
VVM = VVDRAIN = 48 V, ENABLE = 3.3 V, INHx/INLx = 0 V  
VVM = VVDRAIN = 48 V, ENABLE = 3.3 V, INHx/INLx = 0 V  
ENABLE = 0 V, VVM = VVDRAIN = 48 V, TA = 25°C  
ENABLE = 0 V, VVM = VVDRAIN = 48 V, TA = 125°C  
ENABLE = 0 V period to reset faults  
VVM > VUVLO, ENABLE = 3.3 V to outputs ready  
ENABLE = 0 V to device sleep mode  
IDVDD = 0 to 10 mA  
8.5  
1.9  
20  
13  
4
mA  
mA  
IVDRAIN  
VDRAIN operating supply current  
40  
ISLEEP  
Sleep mode supply current  
µA  
100  
40  
tRST  
Reset pulse time  
Turnon time  
5
µs  
ms  
ms  
V
tWAKE  
tSLEEP  
VDVDD  
1
Turnoff time  
1
DVDD regulator voltage  
4.75  
9
5
10.5  
10  
5.25  
12  
VVM = 15 V, IVCP = 0 to 25 mA  
VVM = 12 V, IVCP = 0 to 20 mA  
7.5  
6
11.5  
9.5  
8.5  
16  
VCP operating voltage  
with respect to VDRAIN  
VVCP  
V
V
VVM = 10 V, IVCP = 0 to 15 mA  
8
VVM = 9 V, IVCP = 0 to 10 mA  
5.5  
13  
10  
8
7.5  
14.5  
11.5  
9.5  
8.5  
VVM = 15 V, IVGLS = 0 to 25 mA  
VVM = 12 V, IVGLS = 0 to 20 mA  
12.5  
10.5  
9.5  
VGLS operating voltage  
with respect to GND  
VVGLS  
VVM = 10 V, IVGLS = 0 to 15 mA  
VVM = 9 V, IVGLS = 0 to 10 mA  
7
LOGIC-LEVEL INPUTS (ENABLE, INHx, INLx, nSCS, SCLK, SDI)  
VIL  
VIH  
VHYS  
IIL  
Input logic low voltage  
Input logic high voltage  
Input logic hysteresis  
Input logic low current  
Input logic high current  
Pulldown resistance  
Propagation delay  
0
0.8  
5.5  
V
V
1.5  
100  
mV  
µA  
µA  
kΩ  
ns  
VVIN = 0 V  
–5  
5
IIH  
VVIN = 5 V  
50  
100  
200  
70  
RPD  
tPD  
To GND  
INHx/INLx transition to GHx/GLx transition  
FOUR-LEVEL H/W INPUTS (GAIN, MODE)  
VI1  
Input mode 1 voltage  
Input mode 2 voltage  
Input mode 3 voltage  
Input mode 4 voltage  
Pullup resistance  
Tied to GND  
0
1.9  
3.1  
5
V
V
VI2  
47 kΩ ± 5% to tied GND  
Hi-Z  
VI3  
V
VI4  
Tied to DVDD  
V
RPU  
RPD  
Internal pullup to DVDD  
Internal pulldown to GND  
50  
84  
kΩ  
kΩ  
Pulldown resistance  
SEVEN-LEVEL H/W INPUTS (IDRIVE, VDS)  
VI1  
VI2  
VI3  
VI4  
VI5  
VI6  
VI7  
RPU  
RPD  
Input mode 1 voltage  
Input mode 2 voltage  
Input mode 3 voltage  
Input mode 4 voltage  
Input mode 5 voltage  
Input mode 6 voltage  
Input mode 7 voltage  
Pullup resistance  
Tied to GND  
0
0.8  
1.7  
2.5  
3.3  
4.2  
5
V
V
18 kΩ ± 5% tied to GND  
75 kΩ ± 5% tied to GND  
Hi-Z  
V
V
75 kΩ ± 5% tied to DVDD  
18 kΩ ± 5% tied to DVDD  
Tied to DVDD  
V
V
V
Internal pullup to DVDD  
Internal pulldown to GND  
73  
kΩ  
kΩ  
Pulldown resistance  
73  
OPEN DRAIN OUTPUTS (nFAULT, SDO)  
VOL  
IOZ  
Output logic low voltage  
IO = 5 mA  
VO = 5 V  
0.125  
2
V
Output high impedance leakage  
–2  
µA  
12  
Copyright © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
Electrical Characteristics (continued)  
at TA = –40°C to +125°C, VVM = 9 to 75 V, VVDRAIN = 9 to 100 V, VVIN = 48 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GATE DRIVERS (GHx, GLx)  
VVM = 15 V, IVCP = 0 to 25 mA  
9
7.5  
6
10.5  
10  
12  
11.5  
9.5  
VVM = 12 , IVCP = 0 to 20 mA  
VVM = 10 V, IVCP = 0 to 15 mA  
VVM = 9 V, IVCP = 0 to 10 mA  
VVM = 15 V, IVGLS = 0 to 25 mA  
VVM = 12 V, IVGLS = 0 to 20 mA  
VVM = 10 V, IVGLS = 0 to 15 mA  
VVM = 9 V, IVGLS = 0 to 10 mA  
DEAD_TIME = 00b  
High-side gate drive voltage  
with respect to SHx  
VGSH  
V
8
5.5  
9.5  
9
7.5  
8.5  
11  
12.5  
12  
10.5  
9
Low-side gate drive voltage  
with respect to PGND  
VGSL  
V
7.5  
6.5  
10.5  
9.5  
8
50  
DEAD_TIME = 01b  
100  
200  
400  
100  
500  
1000  
2000  
4000  
4000  
50  
SPI Device  
H/W Device  
SPI Device  
H/W Device  
Gate drive  
dead time  
tDEAD  
DEAD_TIME = 10b  
ns  
DEAD_TIME = 11b  
TDRIVE = 00b  
TDRIVE = 01b  
TDRIVE = 10b  
TDRIVE = 11b  
Peak current  
gate drive time  
tDRIVE  
ns  
IDRIVEP_HS or IDRIVEP_LS = 0000b  
IDRIVEP_HS or IDRIVEP_LS = 0001b  
IDRIVEP_HS or IDRIVEP_LS = 0010b  
IDRIVEP_HS or IDRIVEP_LS = 0011b  
IDRIVEP_HS or IDRIVEP_LS = 0100b  
IDRIVEP_HS or IDRIVEP_LS = 0101b  
IDRIVEP_HS or IDRIVEP_LS = 0110b  
IDRIVEP_HS or IDRIVEP_LS = 0111b  
IDRIVEP_HS or IDRIVEP_LS = 1000b  
IDRIVEP_HS or IDRIVEP_LS = 1001b  
IDRIVEP_HS or IDRIVEP_LS = 1010b  
IDRIVEP_HS or IDRIVEP_LS = 1011b  
IDRIVEP_HS or IDRIVEP_LS = 1100b  
IDRIVEP_HS or IDRIVEP_LS = 1101b  
IDRIVEP_HS or IDRIVEP_LS = 1110b  
IDRIVEP_HS or IDRIVEP_LS = 1111b  
IDRIVE = Tied to GND  
50  
100  
150  
300  
350  
400  
450  
550  
600  
650  
700  
850  
900  
950  
1000  
50  
SPI Device  
Peak source  
gate current  
IDRIVEP  
mA  
IDRIVE = 18 kΩ ± 5% tied to GND  
IDRIVE = 75 kΩ ± 5% tied to GND  
IDRIVE = Hi-Z  
100  
150  
300  
450  
700  
1000  
H/W Device  
IDRIVE = 75 kΩ ± 5% tied to DVDD  
IDRIVE = 18 kΩ ± 5% tied to DVDD  
IDRIVE = Tied to DVDD  
Copyright © 2018–2019, Texas Instruments Incorporated  
13  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = –40°C to +125°C, VVM = 9 to 75 V, VVDRAIN = 9 to 100 V, VVIN = 48 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IDRIVEN_HS or IDRIVEN_LS = 0000b  
IDRIVEN_HS or IDRIVEN_LS = 0001b  
IDRIVEN_HS or IDRIVEN_LS = 0010b  
IDRIVEN_HS or IDRIVEN_LS = 0011b  
IDRIVEN_HS or IDRIVEN_LS = 0100b  
IDRIVEN_HS or IDRIVEN_LS = 0101b  
IDRIVEN_HS or IDRIVEN_LS = 0110b  
IDRIVEN_HS or IDRIVEN_LS = 0111b  
IDRIVEN_HS or IDRIVEN_LS = 1000b  
IDRIVEN_HS or IDRIVEN_LS = 1001b  
IDRIVEN_HS or IDRIVEN_LS = 1010b  
IDRIVEN_HS or IDRIVEN_LS = 1011b  
IDRIVEN_HS or IDRIVEN_LS = 1100b  
IDRIVEN_HS or IDRIVEN_LS = 1101b  
IDRIVEN_HS or IDRIVEN_LS = 1110b  
IDRIVEN_HS or IDRIVEN_LS = 1111b  
IDRIVE = Tied to GND  
MIN  
TYP  
100  
100  
200  
300  
600  
700  
800  
900  
1100  
1200  
1300  
1400  
1700  
1800  
1900  
2000  
100  
200  
300  
600  
900  
1400  
2000  
50  
MAX  
UNIT  
SPI Device  
Peak sink  
gate current  
IDRIVEN  
mA  
IDRIVE = 18 kΩ ± 5% tied to GND  
IDRIVE = 75 kΩ ± 5% tied to GND  
IDRIVE = Hi-Z  
H/W Device  
IDRIVE = 75 kΩ ± 5% tied to DVDD  
IDRIVE = 18 kΩ ± 5% tied to DVDD  
IDRIVE = Tied to DVDD  
Source current after tDRIVE  
IHOLD  
Gate holding current  
mA  
Sink current after tDRIVE  
100  
2
ISTRONG  
ROFF  
Gate strong pulldown current  
Gate hold off resistor  
GHx to SHx and GLx to SPx/SLx  
GHx to SHx and GLx to SPx/SLx  
A
150  
kΩ  
CURRENT SHUNT AMPLIFIER (SNx, SOx, SPx, VREF)  
CSA_GAIN = 00b  
4.85  
9.7  
5
10  
5.15  
10.3  
20.6  
41.2  
5.15  
10.3  
20.6  
41.2  
CSA_GAIN = 01b  
SPI Device  
CSA_GAIN = 10b  
19.4  
38.8  
4.85  
9.7  
20  
CSA_GAIN = 11b  
40  
GCSA  
Amplifier gain  
V/V  
GAIN = Tied to GND  
5
GAIN = 47 kΩ ± 5% tied to GND  
GAIN = Hi-Z  
10  
H/W Device  
19.4  
38.8  
20  
GAIN = Tied to DVDD  
VO_STEP = 0.5 V, GCSA = 5 V/V  
VO_STEP = 0.5 V, GCSA = 10 V/V  
VO_STEP = 0.5 V, GVSA = 20 V/V  
VO_STEP = 0.5 V, GCSA = 40 V/V  
40  
250  
500  
1000  
2000  
tSET  
Settling time to ±1%  
ns  
VCOM  
VDIFF  
VOFF  
Common mode input range  
–0.15  
–0.3  
–3  
0.15  
0.3  
3
V
V
Differential mode input range  
Input offset error  
VSP = VSN = 0 V  
VSP = VSN = 0 V  
mV  
µV/°C  
VDRIFT  
Drift offset  
10  
VVREF  
VLINEAR  
SOx output voltage linear range  
0.25  
V
0.25  
14  
Copyright © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
Electrical Characteristics (continued)  
at TA = –40°C to +125°C, VVM = 9 to 75 V, VVDRAIN = 9 to 100 V, VVIN = 48 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VVREF  
VSP = VSN = 0 V, VREF_DIV = 0b  
0.3  
SPI Device  
H/W Device  
VVREF  
/
2
VBIAS  
SOx output voltage bias  
VSP = VSN = 0 V, VREF_DIV = 1b  
VSP = VSN = 0 V  
V
VVREF  
/
2
IBIAS  
SPx/SNx input bias current  
SOx output slew rate  
VREF input current  
250  
2.5  
µA  
VSLEW  
IVREF  
60-pF load  
10  
1.5  
10  
1
V/µs  
mA  
VVREF = 5 V  
DRV835x: 60-pF load  
DRV835xR: 60-pF load  
MHz  
MHz  
UGB  
Unity gain bandwidth  
PROTECTION CIRCUITS  
DRV835x: VM falling, UVLO report  
DRV835x: VM rising, UVLO recovery  
DRV835xR: VM falling, UVLO report  
DRV835xR: VM rising, UVLO recovery  
Rising to falling threshold  
8.0  
8.2  
8.0  
8.2  
8.3  
8.5  
8.3  
8.5  
200  
10  
8.8  
9.0  
8.6  
8.8  
VVM_UV  
VM undervoltage lockout  
V
VVM_UVH  
tVM_UVD  
VM undervoltage hysteresis  
mV  
µs  
VM undervoltage deglitch time  
VM falling, UVLO report  
DRV835x: VDRAIN falling, UVLO report  
DRV835x: VDRAIN rising, UVLO recovery  
DRV835xR: VDRAIN falling, UVLO report  
DRV835xR: VDRAIN rising, UVLO recovery  
Rising to falling threshold  
6.1  
6.3  
6.1  
6.3  
6.4  
6.6  
6.4  
6.6  
200  
10  
6.8  
7.0  
6.7  
6.9  
VVDR_UV  
VDRAIN undervoltage lockout  
V
VVDR_UVH  
tVDR_UVD  
VDRAIN undervoltage hysteresis  
VDRAIN undervoltage deglitch time  
mV  
µs  
VDRAIN falling, UVLO report  
VDRAIN  
+ 5  
VVCP_UV  
VCP charge pump undervoltage lockout  
VCP falling, GDUV report  
VGLS falling, GDUV report  
V
V
VGLS low-side regulator undervoltage  
lockout  
VVGLS_UV  
4.25  
Positive clamping voltage  
Negative clamping voltage  
12.5  
13.5  
–0.7  
16  
VGS_CLAMP  
High-side gate clamp  
V
Copyright © 2018–2019, Texas Instruments Incorporated  
15  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = –40°C to +125°C, VVM = 9 to 75 V, VVDRAIN = 9 to 100 V, VVIN = 48 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.041  
0.051  
0.061  
0.071  
0.081  
0.048  
0.056  
0.064  
0.072  
0.085  
0.18  
TYP  
0.06  
0.07  
0.08  
0.09  
0.1  
0.06  
0.07  
0.08  
0.09  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.5  
2
MAX  
0.072  
0.084  
0.096  
0.108  
0.115  
0.072  
0.084  
0.096  
0.108  
0.115  
0.22  
UNIT  
DRV835x: VDS_LVL = 0000b  
DRV835x: VDS_LVL = 0001b  
DRV835x: VDS_LVL = 0010b  
DRV835x: VDS_LVL = 0011b  
DRV835x: VDS_LVL = 0100b  
DRV835xR: VDS_LVL = 0000b  
DRV835xR: VDS_LVL = 0001b  
DRV835xR: VDS_LVL = 0010b  
DRV835xR: VDS_LVL = 0011b  
DRV835xR: VDS_LVL = 0100b  
VDS_LVL = 0101b  
SPI Device  
V
VDS_LVL = 0110b  
0.27  
0.33  
VDS_LVL = 0111b  
0.36  
0.44  
VDS_LVL = 1000b  
0.45  
0.55  
VDS_LVL = 1001b  
0.54  
0.66  
VDS overcurrent  
trip voltage  
VVDS_OCP  
VDS_LVL = 1010b  
0.63  
0.77  
VDS_LVL = 1011b  
0.72  
0.88  
VDS_LVL = 1100b  
0.81  
0.99  
VDS_LVL = 1101b  
0.9  
1.1  
VDS_LVL = 1110b  
1.35  
1.65  
VDS_LVL = 1111b  
1.8  
2.2  
DRV835x: VDS = Tied to GND  
DRV835x: VDS = 18 kΩ ± 5% tied to GND  
DRV835xR: VDS = Tied to GND  
DRV835xR: VDS = 18 kΩ ± 5% tied to GND  
VDS = 75 kΩ ± 5% tied to GND  
VDS = Hi-Z  
0.041  
0.081  
0.048  
0.085  
0.18  
0.06  
0.1  
0.06  
0.1  
0.2  
0.4  
0.7  
1
0.072  
0.115  
0.072  
0.115  
0.22  
H/W Device  
V
0.36  
0.44  
VDS = 75 kΩ ± 5% tied to DVDD  
VDS = 18 kΩ ± 5% tied to DVDD  
VDS = Tied to DVDD  
0.63  
0.77  
0.9  
1.1  
Disabled  
1
OCP_DEG = 00b  
OCP_DEG = 01b  
2
SPI Device  
H/W Device  
SPI Device  
VDS and VSENSE  
overcurrent deglitch time  
tOCP_DEG  
OCP_DEG = 10b  
4
µs  
OCP_DEG = 11b  
8
4
SEN_LVL = 00b  
SEN_LVL = 01b  
SEN_LVL = 10b  
SEN_LVL = 11b  
0.25  
0.5  
0.75  
1
VSENSE overcurrent trip  
voltage  
VSEN_OCP  
V
H/W Device  
SPI Device  
H/W Device  
1
TRETRY = 0b  
TRETRY = 1b  
8
ms  
μs  
tRETRY  
Overcurrent retry time  
50  
8
ms  
°C  
°C  
°C  
TOTW  
TOTSD  
THYS  
Thermal warning temperature  
Thermal shutdown temperature  
Thermal hysteresis  
Die temperature, TJ  
Die temperature, TJ  
Die temperature, TJ  
130  
150  
150  
170  
20  
170  
190  
BUCK REGULATOR VCC  
VVCC_REG VCC regulator voltage  
VVCC_BYT VCC bypass threshold  
6.6  
7
100  
8.5  
7.4  
V
mV  
V
VVIN = 6 to 8.5 V  
VVIN increasing  
16  
Copyright © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
Electrical Characteristics (continued)  
at TA = –40°C to +125°C, VVM = 9 to 75 V, VVDRAIN = 9 to 100 V, VVIN = 48 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
300  
100  
8.8  
0.8  
9.2  
5.3  
190  
3
MAX  
UNIT  
mV  
Ω
VVCC_BYH  
VCC bypass hysteresis  
VVIN = 6 V  
VVIN = 10 V  
VVIN = 48 V  
VVCC_OUT  
VCC output impedance  
Ω
Ω
VVCC_LIM  
VVCC_UV  
VVCC_UVH  
VVCC_UVFD  
IIN_OP  
VCC current limit  
mA  
V
VCC undervoltage lockout  
VCC undervoltage lockout hysteresis  
VCC filter delay  
mV  
μs  
IIN operating current  
FB = 3 V  
550  
110  
750  
176  
μA  
μA  
IIN_OP  
IIN shutdown current  
RT/SD = 0 V  
BUCK REGULATOR SWITCHING  
RDS(on)  
Buck switch RDS(on)  
ITEST = 200 mA  
1.25  
3.8  
2.57  
4.8  
Ω
VGATE_UV  
Gate drive undervoltage lockout  
VBST - VSW rising  
2.8  
V
Gate drive undervoltage lockout  
hysteresis  
VGATE_UVH  
490  
mV  
VSWITCH  
tON  
Pre-charge switch voltage  
Pre-charge switch on-time  
At 1 mA  
0.8  
V
150  
ns  
BUCK REGULATOR CURRENT LIMIT  
ILIMIT  
tLIM  
tOFF1  
tOFF2  
Current limit threshold  
Current limit response time  
Off time generator  
0.41  
0.51  
350  
35  
0.61  
A
ISW overdrive = 0.1 A, time to switch off  
FB = 0 V, RCL = 100 kΩ  
ns  
μs  
μs  
Off time generator  
FB = 2.3 V, RCL = 100 kΩ  
2.56  
BUCK REGULATOR ON TIME GENERATOR  
tON1  
Ton 1  
VVIN = 10 V, RON = 200 kΩ  
VVIN = 95 V, RON = 200 kΩ  
Rising  
2.15  
200  
0.4  
2.77  
300  
0.7  
3.5  
420  
μs  
μs  
V
tON2  
Ton 2  
VSDT  
VSDH  
Remote shutdown threshold  
Remote shutdown hysteresis  
1.05  
35  
mV  
BUCK REGULATOR MINIMUM OFF TIME  
tOFF_MIN Minimum off time  
FB = 0 V  
300  
ns  
BUCK REGULATOR REGULATIONS AND OV COMPARATORS  
VFB  
FB reference threshold  
FB overvoltage threshold  
FB bias current  
Internal reference, trip point for switch on  
Trip point for switch off  
2.445  
2.5  
2.875  
100  
2.55  
V
V
VFB_OV  
IFB_BIAS  
μA  
BUCK REGULATOR THERMAL SHUTDOWN  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
165  
25  
°C  
°C  
TSDH  
Copyright © 2018–2019, Texas Instruments Incorporated  
17  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
7.6 SPI Timing Requirements  
at TA = –40°C to +125°C, VVM = 9 to 75 V (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
ms  
ns  
tREADY  
tCLK  
SPI ready after enable  
VM > UVLO, ENABLE = 3.3 V  
1
SCLK minimum period  
100  
50  
50  
20  
30  
tCLKH  
SCLK minimum high time  
SCLK minimum low time  
SDI input data setup time  
SDI input data hold time  
SDO output data delay time  
nSCS input setup time  
ns  
tCLKL  
ns  
tSU_SDI  
tH_SDI  
ns  
ns  
tD_SDO  
tSU_nSCS  
tH_nSCS  
tHI_nSCS  
tDIS_nSCS  
SCLK high to SDO valid  
30  
ns  
50  
50  
ns  
nSCS input hold time  
ns  
nSCS minimum high time before active low  
nSCS disable time  
400  
ns  
nSCS high to SDO high impedance  
10  
ns  
tHI_nSCS tSU_nSCS  
tH_nSCS  
nSCS  
SCLK  
tCLK  
tCLKH  
tCLKL  
X
MSB  
LSB  
X
SDI  
tSU_SDI  
tH_SDI  
Z
MSB  
LSB  
Z
SDO  
tD_SDO  
tDIS_nSCS  
1. SPI Slave Mode Timing Diagram  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
7.7 Typical Characteristics  
10  
9.5  
9
2
1.95  
1.9  
TA = -40°C  
TA = 25°C  
TA = 125°C  
1.85  
1.8  
8.5  
8
1.75  
1.7  
1.65  
1.6  
TA = -40°C  
TA = 25°C  
TA = 125°C  
7.5  
7
1.55  
1.5  
0
10  
20  
30  
Supply Voltage (V)  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
Supply Voltage (V)  
50  
60  
70  
80  
90 100  
D001  
D002  
VVM = VVDRAIN  
VVM = VVDRAIN  
2. VM Supply Current Over Supply Voltage  
3. VDRAIN Supply Current Over Supply Voltage  
40  
35  
30  
25  
20  
15  
10  
40  
35  
30  
25  
20  
15  
10  
VSUP = 9 V  
VSUP = 48 V  
VSUP = 100 V  
TA = -40°C  
TA = 25°C  
TA = 125°C  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
10  
20  
30  
40  
50  
60  
Supply Voltage (V)  
70  
80  
90 100  
Temperature (èC)  
D004  
D003  
IVM + IVDRAIN  
5. Sleep Current Over Temperature  
IVM + IVDRAIN  
4. Sleep Current Over Supply Voltage  
11  
10.9  
10.8  
10.7  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
10  
15.5  
15.4  
15.3  
15.2  
15.1  
15  
TA = -40èC  
TA = -40èC  
TA = 25èC  
TA = 25èC  
TA = 125èC  
TA = 125èC  
14.9  
14.8  
14.7  
14.6  
14.5  
0
5
10 15  
VCP Load Current (mA)  
20  
25  
0
5
10 15  
VGLS Load Current (mA)  
20  
25  
D005  
D006  
VVM = 48-V  
VVM = 48-V  
7. VGLS Voltage Over Load Current  
6. VCP Voltage Over Load  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
11  
10.9  
10.8  
10.7  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
10  
16  
15.8  
15.6  
15.4  
15.2  
15  
TA = -40èC  
TA = 25èC  
TA = 125èC  
TA = -40èC  
TA = 25èC  
TA = 125èC  
14.8  
14.6  
14.4  
14.2  
14  
0
5
10 15  
VCP Load Current (mA)  
20  
25  
0
5
10 15  
VGLS Load Current (mA)  
20  
25  
D007  
D008  
VVM = 15-V  
8. VCP Voltage Over Load Current  
VVM = 15-V  
9. VGLS Voltage Over Load Current  
11  
10.8  
10.6  
10.4  
10.2  
10  
13  
12.8  
12.6  
12.4  
12.2  
12  
TA = -40èC  
TA = 25èC  
TA = 25èC  
TA = -40èC  
TA = 25èC  
TA = 125èC  
9.8  
11.8  
11.6  
11.4  
11.2  
11  
9.6  
9.4  
9.2  
9
0
5
10  
VCP Load Current (mA)  
15  
20  
0
5
10  
VGLS Load Current (mA)  
15  
20  
D009  
D010  
VVM = 12-V  
VVM = 12-V  
10. VCP Voltage Over Load Current  
11. VGLS Voltage Over Load Current  
9
8.8  
8.6  
8.4  
8.2  
8
10  
9.8  
9.6  
9.4  
9.2  
9
TA = -40èC  
TA = -40èC  
TA = 25èC  
TA = 25èC  
TA = 125èC  
TA = 125èC  
7.8  
7.6  
7.4  
7.2  
7
8.8  
8.6  
8.4  
8.2  
8
0
2
4
VCP Load Current (mA)  
6
8
10  
0
2
4
VGLS Load Current (mA)  
6
8
10  
D011  
D012  
VVM = 9-V  
VVM = 9-V  
12. VCP Voltage Over Load Current  
13. VGLS Voltage Over Load Current  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
8 Detailed Description  
8.1 Overview  
The DRV835x family of devices are integrated 100-V gate drivers for three-phase motor drive applications.  
These devices decrease system component count, cost, and complexity by integrating three independent half-  
bridge gate drivers, charge pump and linear regulator for the high-side and low-side gate driver supply voltages,  
optional triple current shunt amplifiers, and an optional 350-mA buck regulator. A standard serial peripheral  
interface (SPI) provides a simple method for configuring the various device settings and reading fault diagnostic  
information through an external controller. Alternatively, a hardware interface (H/W) option allows for configuring  
the most commonly used settings through fixed external resistors.  
The gate drivers support external N-channel high-side and low-side power MOSFETs and can drive up to 1-A  
source, 2-A sink peak currents with a 25-mA average output current. The high-side gate drive supply voltage is  
generated using a doubler charge-pump architecture that regulates the VCP output to VVDRAIN + 10.5-V. The low-  
side gate drive supply voltage is generated using a linear regulator from the VM power supply that regulates the  
VGLS output to 14.5-V. The VGLS supply is further regulated to 11-V on the GLx low-side gate driver outputs. A  
smart gate-drive architecture provides the ability to dynamically adjust the output gate-drive current strength  
allowing for the gate driver to control the power MOSFET VDS switching speed. This allows for the removal of  
external gate drive resistors and diodes reducing BOM component count, cost, and PCB area. The architecture  
also uses an internal state machine to protect against gate-drive short-circuit events, control the half-bridge dead  
time, and protect against dV/dt parasitic turnon of the external power MOSFET.  
The gate drivers can operate in either a single or dual supply architecture. In the single supply architecture, VM  
can be tied to VDRAIN and is regulated to the correct supply voltages internally. In the dual supply architecture,  
VM can be connected to a lower voltage supply from a more efficient switching regulator to improve the device  
efficiency. VDRAIN stays connected to the external MOSFETs to set the correct charge pump and overcurrent  
monitor reference.  
The DRV8353 and DRV8353R devices integrate three, bidirectional current-shunt amplifiers for monitoring the  
current level through each of the external half-bridges using a low-side shunt resistor. The gain setting of the  
shunt amplifier can be adjusted through the SPI or hardware interface with the SPI providing additional flexibility  
to adjust the output bias point.  
The DRV8350R and DRV8353R devices integrate a 350-mA buck regulator that can be used to power an  
external controller or other logic circuits. The buck regulator is implemented as a separate internal die that can  
use either the same or a different power supply from the gate driver.  
In addition to the high level of device integration, the DRV835x family of devices provides a wide range of  
integrated protection features. These features include power-supply undervoltage lockout (UVLO), gate drive  
undervoltage lockout (GDUV), VDS overcurrent monitoring (OCP), gate-driver short-circuit detection (GDF), and  
overtemperature shutdown (OTW/OTSD). Fault events are indicated by the nFAULT pin with detailed information  
available in the SPI registers on the SPI device version.  
The DRV835x family of devices are available in 0.5-mm pin pitch, QFN surface-mount packages. The QFN sizes  
are 5 × 5 mm for the 32-pin package, 6 × 6 mm for the 40-pin package, and 7 × 7 mm for the 48-pin package.  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
8.2 Functional Block Diagram  
VM  
VDRAIN  
VM  
VDRAIN  
>10 F  
0.1 F  
VCP  
HS  
VCP  
CPH  
GHA  
SHA  
VCP  
Charge  
Pump  
1 F  
VDRAIN  
VGLS  
LS  
CPL  
VGLS  
DVDD  
47 nF  
GLA  
SLA  
VGLS  
Linear  
Regulator  
Gate Driver  
1 F  
DVDD  
Linear  
Regulator  
VDRAIN  
1 F  
VCP  
HS  
GHB  
SHB  
GND  
Power Supplies  
ENABLE  
VGLS  
LS  
Digital  
Core  
GLB  
SLB  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
Gate Driver  
VDRAIN  
VCP  
HS  
Smart Gate  
Drive  
GHC  
SHC  
Control  
Inputs  
Protection  
VGLS  
LS  
GLC  
SLC  
MODE  
IDRIVE  
VDS  
Gate Driver  
Fault Output  
VCC  
R
PU  
nFAULT  
14. Block Diagram for DRV8350H  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
Functional Block Diagram (接下页)  
VM  
VDRAIN  
VDRAIN  
VM  
>10 F  
0.1 F  
VCP  
HS  
VCP  
CPH  
GHA  
SHA  
VCP  
Charge  
Pump  
1 F  
VDRAIN  
VGLS  
LS  
CPL  
VGLS  
DVDD  
47 nF  
GLA  
SLA  
VGLS  
Linear  
Regulator  
Gate Driver  
1 F  
DVDD  
Linear  
Regulator  
VDRAIN  
1 F  
VCP  
HS  
GHB  
GND  
Power Supplies  
SHB  
ENABLE  
VGLS  
LS  
Digital  
Core  
GLB  
SLB  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
SDI  
Gate Driver  
Control  
Inputs  
VDRAIN  
VCP  
HS  
Smart Gate  
Drive  
GHC  
Protection  
SHC  
GLC  
VGLS  
LS  
VCC  
SLC  
SPI  
Gate Driver  
Fault Output  
R
PU  
VCC  
SDO  
R
PU  
SCLK  
nFAULT  
nSCS  
15. Block Diagram for DRV8350S  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Functional Block Diagram (接下页)  
VM  
VDRAIN  
VM  
VDRAIN  
>10 F  
0.1 F  
VCP  
HS  
VCP  
CPH  
GHA  
SHA  
VCP  
Charge  
Pump  
1 F  
VDRAIN  
VGLS  
LS  
CPL  
VGLS  
DVDD  
47 nF  
GLA  
SLA  
VGLS  
Linear  
Regulator  
Gate Driver  
1 F  
DVDD  
Linear  
Regulator  
VDRAIN  
1 F  
VCP  
HS  
GHB  
SHB  
GND  
Power Supplies  
ENABLE  
VGLS  
LS  
Digital  
Core  
GLB  
SLB  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
Gate Driver  
VDRAIN  
VCP  
HS  
Smart Gate  
Drive  
GHC  
SHC  
Control  
Inputs  
Protection  
VGLS  
LS  
GLC  
SLC  
MODE  
IDRIVE  
VDS  
Gate Driver  
Fault Output  
VCC  
R
PU  
nFAULT  
VIN  
BST  
0.01 µF  
VIN  
RT/SD  
RCL  
LOUT  
RRT/SD  
CIN  
350 mA  
SW  
FB  
Buck Regulator  
(LM5008A)  
ROUT  
COUT  
RFB1  
DOUT  
GND  
VCC  
RRCL  
RFB2  
0.47 µF  
16. Block Diagram for DRV8350RH  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
Functional Block Diagram (接下页)  
VM  
VDRAIN  
VDRAIN  
VM  
>10 F  
0.1 F  
VCP  
HS  
VCP  
CPH  
GHA  
SHA  
VCP  
Charge  
Pump  
1 F  
VDRAIN  
VGLS  
LS  
CPL  
VGLS  
DVDD  
47 nF  
GLA  
SLA  
VGLS  
Linear  
Regulator  
Gate Driver  
1 F  
DVDD  
Linear  
Regulator  
VDRAIN  
1 F  
VCP  
HS  
GHB  
GND  
Power Supplies  
SHB  
ENABLE  
VGLS  
LS  
Digital  
Core  
GLB  
SLB  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
SDI  
Gate Driver  
Control  
Inputs  
VDRAIN  
VCP  
HS  
Smart Gate  
Drive  
GHC  
Protection  
SHC  
GLC  
VGLS  
LS  
VCC  
SLC  
SPI  
Gate Driver  
Fault Output  
R
PU  
VCC  
SDO  
R
PU  
SCLK  
nFAULT  
nSCS  
VIN  
BST  
0.01 µF  
VIN  
RT/SD  
RCL  
LOUT  
RRT/SD  
CIN  
350 mA  
RFB1  
SW  
FB  
Buck Regulator  
(LM5008A)  
ROUT  
COUT  
DOUT  
GND  
VCC  
RRCL  
RFB2  
0.47 µF  
17. Block Diagram for DRV8350RS  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Functional Block Diagram (接下页)  
VM  
VDRAIN  
VM  
VDRAIN  
>10 F  
0.1 F  
VCP  
HS  
VCP  
CPH  
GHA  
SHA  
VCP  
Charge  
Pump  
1 F  
VDRAIN  
VGLS  
LS  
CPL  
VGLS  
DVDD  
47 nF  
GLA  
SPA  
VGLS  
Linear  
Regulator  
Gate Driver  
1 F  
DVDD  
Linear  
Regulator  
VDRAIN  
1 F  
VCP  
HS  
GHB  
SHB  
GND  
Power Supplies  
ENABLE  
VGLS  
LS  
Digital  
Core  
GLB  
SPB  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
Gate Driver  
VDRAIN  
VCP  
HS  
Smart Gate  
Drive  
GHC  
SHC  
Protection  
Control  
Inputs  
VGLS  
LS  
GLC  
SPC  
MODE  
Gate Driver  
Fault Output  
IDRIVE  
VCC  
PU  
R
VDS  
nFAULT  
GAIN  
VCC  
0.1 F  
SPC  
SNC  
VREF  
AV  
AV  
AV  
RSENC  
SOC  
SOB  
SOA  
SPB  
SNB  
Output  
Offset  
Bias  
RSENB  
SPA  
SNA  
AGND  
RSENA  
18. Block Diagram for DRV8353H  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
Functional Block Diagram (接下页)  
VM  
VDRAIN  
VDRAIN  
VM  
>10 F  
0.1 F  
VCP  
HS  
VCP  
CPH  
GHA  
SHA  
VCP  
Charge  
Pump  
1 F  
VDRAIN  
VGLS  
LS  
CPL  
VGLS  
DVDD  
47 nF  
GLA  
SPA  
VGLS  
Linear  
Regulator  
Gate Driver  
1 F  
DVDD  
Linear  
Regulator  
VDRAIN  
1 F  
VCP  
HS  
GHB  
GND  
Power Supplies  
SHB  
ENABLE  
VGLS  
LS  
Digital  
Core  
GLB  
SPB  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
SDI  
Gate Driver  
Control  
Inputs  
VDRAIN  
VCP  
HS  
Smart Gate  
Drive  
GHC  
Protection  
SHC  
GLC  
VGLS  
LS  
VCC  
SPC  
SPI  
Gate Driver  
Fault Output  
R
PU  
VCC  
PU  
SDO  
R
SCLK  
nFAULT  
nSCS  
VCC  
0.1 F  
SPC  
SNC  
VREF  
AV  
AV  
AV  
RSENC  
SOC  
SOB  
SOA  
SPB  
SNB  
Output  
Offset  
Bias  
RSENB  
SPA  
SNA  
AGND  
RSENA  
19. Block Diagram for DRV8353S  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Functional Block Diagram (接下页)  
VM  
VDRAIN  
VM  
VDRAIN  
>10 F  
0.1 F  
VCP  
HS  
VCP  
CPH  
GHA  
SHA  
VCP  
Charge  
Pump  
1 F  
VDRAIN  
VGLS  
LS  
CPL  
VGLS  
DVDD  
47 nF  
GLA  
SPA  
VGLS  
Linear  
Regulator  
Gate Driver  
1 F  
DVDD  
Linear  
Regulator  
VDRAIN  
1 F  
VCP  
HS  
GHB  
SHB  
GND  
Power Supplies  
ENABLE  
VGLS  
LS  
Digital  
Core  
GLB  
SPB  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
Gate Driver  
VDRAIN  
VCP  
HS  
Smart Gate  
Drive  
GHC  
SHC  
Protection  
Control  
Inputs  
VGLS  
LS  
GLC  
SPC  
MODE  
Gate Driver  
Fault Output  
IDRIVE  
VCC  
PU  
R
VDS  
nFAULT  
GAIN  
VCC  
0.1 F  
SPC  
SNC  
VREF  
AV  
AV  
AV  
RSENC  
SOC  
SOB  
SOA  
SPB  
SNB  
Output  
Offset  
Bias  
RSENB  
SPA  
SNA  
AGND  
RSENA  
VIN  
BST  
0.01 µF  
VIN  
RT/SD  
RCL  
LOUT  
RRT/SD  
CIN  
350 mA  
SW  
FB  
Buck Regulator  
(LM5008A)  
ROUT  
COUT  
RFB1  
DOUT  
GND  
VCC  
RRCL  
RFB2  
0.47 µF  
20. Block Diagram for DRV8353RH  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
Functional Block Diagram (接下页)  
VM  
VDRAIN  
VDRAIN  
VM  
>10 F  
0.1 F  
VCP  
HS  
VCP  
CPH  
GHA  
SHA  
VCP  
Charge  
Pump  
1 F  
VDRAIN  
VGLS  
LS  
CPL  
VGLS  
DVDD  
47 nF  
GLA  
SPA  
VGLS  
Linear  
Regulator  
Gate Driver  
1 F  
DVDD  
Linear  
Regulator  
VDRAIN  
1 F  
VCP  
HS  
GHB  
GND  
Power Supplies  
SHB  
ENABLE  
VGLS  
LS  
Digital  
Core  
GLB  
SPB  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
SDI  
Gate Driver  
Control  
Inputs  
VDRAIN  
VCP  
HS  
Smart Gate  
Drive  
GHC  
Protection  
SHC  
GLC  
VGLS  
LS  
VCC  
SPC  
SPI  
Gate Driver  
Fault Output  
R
PU  
VCC  
PU  
SDO  
R
SCLK  
nFAULT  
nSCS  
VCC  
0.1 F  
SPC  
SNC  
VREF  
AV  
AV  
AV  
RSENC  
SOC  
SOB  
SOA  
SPB  
SNB  
Output  
Offset  
Bias  
RSENB  
SPA  
SNA  
AGND  
RSENA  
VIN  
BST  
0.01 µF  
VIN  
RT/SD  
RCL  
LOUT  
RRT/SD  
CIN  
350 mA  
RFB1  
SW  
FB  
Buck Regulator  
(LM5008A)  
ROUT  
COUT  
DOUT  
GND  
VCC  
RRCL  
RFB2  
0.47 µF  
21. Block Diagram for DRV8353RS  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Three Phase Smart Gate Drivers  
The DRV835x family of devices integrates three, half-bridge gate drivers, each capable of driving high-side and  
low-side N-channel power MOSFETs. The VCP doubler charge pump provides the correct gate bias voltage to  
the high-side MOSFET across a wide operating voltage range in addition to providing 100% duty-cycle support.  
The internal VGLS linear regulator provides the gate-bias voltage for the low-side MOSFETs. The half-bridge  
gate drivers can be used in combination to drive a three-phase motor or separately to drive other types of loads.  
The DRV835x family of devices implement a smart gate-drive architecture which allows the user to dynamically  
adjust the gate drive current without requiring external gate current limiting resistors. Additionally, this  
architecture provides a variety of protection features for the external MOSFETs including automatic dead-time  
insertion, parasitic dV/dt gate turnon prevention, and gate-fault detection.  
8.3.1.1 PWM Control Modes  
The DRV835x family of devices provides four different PWM control modes to support various commutation and  
control methods. Texas Instruments does not recommend changing the MODE pin or PWM_MODE register  
during operation of the power MOSFETs. Set all INHx and INLx pins to logic low before making a MODE or  
PWM_MODE change.  
8.3.1.1.1 6x PWM Mode (PWM_MODE = 00b or MODE Pin Tied to AGND)  
In this mode, each half-bridge supports three output states: low, high, or high-impedance (Hi-Z). The  
corresponding INHx and INLx signals control the output state as listed in 1.  
1. 6x PWM Mode Truth Table  
INLx  
INHx  
GLx  
L
GHx  
SHx  
Hi-Z  
H
0
0
1
1
0
1
0
1
L
H
L
L
H
L
L
L
Hi-Z  
8.3.1.1.2 3x PWM Mode (PWM_MODE = 01b or MODE Pin = 47 kΩ to AGND)  
In this mode, the INHx pin controls each half-bridge and supports two output states: low or high. The INLx pin is  
used to change the half-bridge to high impedance. If the high-impedance (Hi-Z) sate is not required, tie all INLx  
pins logic high. The corresponding INHx and INLx signals control the output state as listed in 2.  
2. 3x PWM Mode Truth Table  
INLx  
INHx  
GLx  
L
GHx  
L
SHx  
Hi-Z  
L
0
1
1
X
0
1
H
L
L
H
H
8.3.1.1.3 1x PWM Mode (PWM_MODE = 10b or MODE Pin = Hi-Z)  
In this mode, the DRV835x family of devices uses 6-step block commutation tables that are stored internally.  
This feature allows for a three-phase BLDC motor to be controlled using a single PWM sourced from a simple  
controller. The PWM is applied on the INHA pin and determines the output frequency and duty cycle of the half-  
bridges.  
The half-bridge output states are managed by the INLA, INHB, and INLB pins which are used as state logic  
inputs. The state inputs can be controlled by an external controller or connected directly to hall sensor digital  
outputs from the motor (INLA = HALL_A, INHB = HALL_B, INLB = HALL_C). The 1x PWM mode usually  
operates with synchronous rectification, however it can be configured to use asynchronous diode freewheeling  
rectification on SPI devices. This configuration is set using the 1PWM_COM bit through the SPI registers.  
The INHC input controls the direction through the 6-step commutation table which is used to change the direction  
of the motor when hall sensors are directly controlling the INLA, INHB, and INLB state inputs. Tie the INHC pin  
low if this feature is not required.  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
The INLC input brakes the motor by turning off all high-side MOSFETs and turning on all low-side MOSFETs  
when it is pulled low. This brake is independent of the states of the other input pins. Tie the INLC pin high if this  
feature is not required.  
3. Synchronous 1x PWM Mode  
LOGIC AND HALL INPUTS  
INHC = 0  
GATE-DRIVE OUTPUTS  
PHASE B PHASE C  
INHC = 1  
PHASE A  
STATE  
DESCRIPTION  
INLA  
INHB  
INLB  
INLA  
INHB  
INLB  
GHA  
GLA  
GHB  
GLB  
GHC  
GLC  
Stop  
0
1
1
1
1
0
0
0
0
1
1
0
0
0
1
1
0
1
0
0
1
1
1
0
0
1
0
0
0
1
1
1
0
1
0
1
1
1
0
0
0
1
1
1
0
0
0
1
L
PWM  
L
L
!PWM  
L
L
L
L
L
Stop  
Align  
L
H
L
H
Align  
1
2
3
4
5
6
PWM  
!PWM  
L
L
H
H
B C  
A C  
A B  
C B  
C A  
B A  
PWM  
PWM  
L
!PWM  
!PWM  
L
L
L
H
L
L
L
L
H
PWM  
PWM  
L
!PWM  
!PWM  
L
L
H
L
L
L
H
PWM  
!PWM  
4. Asynchronous 1x PWM Mode 1PWM_COM = 1 (SPI Only)  
LOGIC AND HALL INPUTS  
INHC = 0  
GATE-DRIVE OUTPUTS  
PHASE B PHASE C  
INHC = 1  
PHASE A  
STATE  
DESCRIPTION  
INLA  
INHB  
INLB  
INLA  
INHB  
INLB  
GHA  
GLA  
L
GHB  
GLB  
L
GHC  
GLC  
L
Stop  
0
1
1
1
1
0
0
0
0
1
1
0
0
0
1
1
0
1
0
0
1
1
1
0
0
1
0
0
0
1
1
1
0
1
0
1
1
1
0
0
0
1
1
1
0
0
0
1
L
PWM  
L
L
L
Stop  
Align  
L
L
H
L
L
H
H
H
L
Align  
1
2
3
4
5
6
L
PWM  
L
L
B C  
A C  
A B  
C B  
C A  
B A  
PWM  
PWM  
L
L
L
L
L
L
L
H
H
L
L
L
PWM  
PWM  
L
L
L
H
H
L
L
L
PWM  
L
L
22 and 23 show the different possible configurations in 1x PWM mode.  
INHA  
INLA  
INHB  
INLB  
INHC  
INLC  
INHA  
MCU_PWM  
PWM  
MCU_PWM  
MCU_GPIO  
MCU_GPIO  
PWM  
H
INLA  
INHB  
INLB  
INHC  
INLC  
STATE0  
STATE1  
STATE2  
DIR  
STATE0  
STATE1  
STATE2  
DIR  
H
BLDC Motor  
BLDC Motor  
H
MCU_GPIO  
MCU_GPIO  
MCU_GPIO  
MCU_GPIO  
nBRAKE  
MCU_GPIO  
nBRAKE  
22. 1x PWM—Simple Controller  
23. 1x PWM—Hall Sensor  
8.3.1.1.4 Independent PWM Mode (PWM_MODE = 11b or MODE Pin Tied to DVDD)  
In this mode, the corresponding input pin independently controls each high-side and low-side gate driver. This  
control mode allows for the external controller to bypass the internal dead-time handshake of the DRV835x or to  
utilize the high-side and low-side drivers to drive separate high-side and low-side loads with each half-bridge.  
These types of loads include unidirectional brushed DC motors, solenoids, and low-side and high-side switches.  
In this mode, If the system is configured in a half-bridge configuration, shoot-through occurs when the high-side  
and low-side MOSFETs are turned on at the same time.  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
5. Independent PWM Mode Truth Table  
INLx  
INHx  
GLx  
L
GHx  
L
0
0
1
1
0
1
0
1
L
H
H
L
H
H
Because the high-side and low-side VDS overcurrent monitors share the SHx sense line, using both of the  
monitors is not possible if both the high-side and low-side gate drivers are being operated independently.  
In this case, connect the SHx pin to the high-side driver and disable the VDS overcurrent monitors as shown in 图  
24.  
Disable  
+
VDS  
œ
VM  
VDRAIN  
VCP  
GHx  
Load  
HS  
INHx  
SHx  
VGLS  
INLx  
GLx  
LS  
Load  
Gate Driver  
Disable  
SLx/SPx  
+
VDS  
œ
24. Independent PWM High-Side and Low-Side Drivers  
If the half-bridge is used to implement only a high-side or low-side driver, using the VDS overcurrent monitors is  
still possible. Connect the SHx pin as shown in 25 or 26. The unused gate driver and the corresponding  
input can be left disconnected.  
+
+
VDS  
VDS  
œ
œ
VM  
VM  
VDRAIN  
VDRAIN  
VCP  
HS  
VCP  
HS  
GHx  
SHx  
GHx  
SHx  
Load  
INHx  
INLx  
INHx  
INLx  
VGLS  
LS  
VGLS  
LS  
GLx  
GLx  
Load  
Gate Driver  
SLx/SPx  
Gate Driver  
SLx/SPx  
+
+
VDS  
VDS  
œ
œ
25. Single High-Side Driver  
26. Single Low-Side Driver  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
8.3.1.2 Device Interface Modes  
The DRV835x family of devices support two different interface modes (SPI and hardware) to allow the end  
application to design for either flexibility or simplicity. The two interface modes share the same four pins, allowing  
the different versions to be pin to pin compatible. This allows for application designers to evaluate with one  
interface version and potentially switch to another with minimal modifications to their design.  
8.3.1.2.1 Serial Peripheral Interface (SPI)  
The SPI devices support a serial communication bus that allows for an external controller to send and receive  
data with the DRV835x. This allows for the external controller to configure device settings and read detailed fault  
information. The interface is a four wire interface utilizing the SCLK, SDI, SDO, and nSCS pins.  
The SCLK pin is an input which accepts a clock signal to determine when data is captured and propagated on  
SDI and SDO.  
The SDI pin is the data input.  
The SDO pin is the data output. The SDO pin uses an open-drain structure and requires an external pullup  
resistor.  
The nSCS pin is the chip select input. A logic low signal on this pin enables SPI communication with the  
DRV835x.  
For more information on the SPI, see the SPI Communication section.  
8.3.1.2.2 Hardware Interface  
Hardware interface devices convert the four SPI pins into four resistor configurable inputs, GAIN, IDRIVE,  
MODE, and VDS. This allows for the application designer to configure the most commonly used device settings  
by tying the pin logic high or logic low, or with a simple pullup or pulldown resistor. This removes the requirement  
for an SPI bus from the external controller. General fault information can still be obtained through the nFAULT  
pin.  
The GAIN pin configures the current shunt amplifier gain.  
The IDRIVE pin configures the gate drive current strength.  
The MODE pin configures the PWM control mode.  
The VDS pin configures the voltage threshold of the VDS overcurrent monitors.  
For more information on the hardware interface, see the Pin Diagrams section.  
DVDD  
DVDD  
RGAIN  
GAIN  
SCLK  
Hardware  
Interface  
SPI  
Interface  
DVDD  
DVDD  
IDRIVE  
MODE  
VDS  
SDI  
SDO  
DVDD  
VCC  
RPU  
DVDD  
nSCS  
RVDS  
27. SPI  
28. Hardware Interface  
版权 © 2018–2019, Texas Instruments Incorporated  
33  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
8.3.1.3 Gate Driver Voltage Supplies and Input Supply Configurations  
The high-side gate-drive voltage supply is created using a doubler charge pump that operates from the VM and  
VDRAIN voltage supply inputs. The charge pump allows the gate driver to correctly bias the high-side MOSFET  
gate with respect to the source across a wide input supply voltage range. The charge pump is regulated to keep  
a fixed output voltage of VVDRAIN + 10.5 V and supports an average output current of 25 mA. When VVM is less  
than 12 V, the charge pump operates in full doubler mode and generates VVCP = 2 × VVM – 1.5 V with respect to  
VVDRAIN when unloaded. The charge pump is continuously monitored for undervoltage to prevent under-driven  
MOSFET conditions.  
The charge pump requires a X5R or X7R, 1-µF, 16-V ceramic capacitor between the VDRAIN and VCP pins to  
act as the storage capacitor. Additionally, a X5R or X7R, 47-nF, VDRAIN-rated ceramic capacitor is required  
between the CPH and CPL pins to act as the flying capacitor.  
VDRAIN  
VDRAIN  
1 F  
VCP  
CPH  
VM  
Charge  
Pump  
Control  
47 nF  
CPL  
29. Charge Pump Architecture  
The low-side gate drive voltage is created using a linear regulator that operates from the VM voltage supply  
input. The VGLS linear regulator allows the gate driver to correctly bias the low-side MOSFET gate with respect  
to ground. The VGLS linear regulator output is fixed at 14.5 V and further regulated to 11-V on the GLx outputs  
during operation. The VGLS regulator supports an output current of 25 mA. The VGLS linear regulator is  
monitored for undervoltage to prevent under driver MOSFET conditions. The VGLS linear regulator requires a  
X5R or X7R, 1-µF, 16-V ceramic capacitor between VGLS and GND.  
Since the charge pump output is regulated to VVDRAIN + 10.5 V this allows for VM to be supplied either directly  
from the high voltage motor supply (up to 75 V) to support a single supply system or from a low voltage gate  
driver power supply derived from a switching or linear regulator to improve the device efficiency or utilize an  
externally available power supply. On the DRV8350R and DRV8353R devices the integrated buck regulator can  
be used to create the efficient low voltage supply for VM without the need for an additional regulator. 30 and  
31 show examples of the DRV835x configured in either single supply or dual supply configuration.  
34  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
48-V  
Power  
Supply  
48-V  
Power  
Supply  
48-V to 15-V  
DC/DC  
VM  
VDRAIN  
VM  
VDRAIN  
DRV835x  
DRV835x  
Power  
MOSFETs  
Power  
MOSFETs  
30. Single Supply Example  
31. Dual Supply Example  
8.3.1.4 Smart Gate Drive Architecture  
The DRV835x gate drivers use an adjustable, complimentary, push-pull topology for both the high-side and low-  
side drivers. This topology allows for both a strong pullup and pulldown of the external MOSFET gates.  
Additionally, the gate drivers use a smart gate-drive architecture to provide additional control of the external  
power MOSFETs, take additional steps to protect the MOSFETs, and allow for optimal tradeoffs between  
efficiency and robustness. This architecture is implemented through two components called IDRIVE and TDRIVE  
which are detailed in the IDRIVE: MOSFET Slew-Rate Control section and TDRIVE: MOSFET Gate Drive  
Control section. 32 shows the high-level functional block diagram of the gate driver.  
The IDRIVE gate-drive current and TDRIVE gate-drive time should be initially selected based on the parameters  
of the external power MOSFET used in the system and the desired rise and fall times (see the Application and  
Implementation section).  
The high-side gate driver also implements a Zener clamp diode to help protect the external MOSFET gate from  
overvoltage conditions in the case of external short-circuit events on the MOSFET.  
版权 © 2018–2019, Texas Instruments Incorporated  
35  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
VCP  
INHx  
VDRAIN  
Control  
Inputs  
INLx  
GHx  
SHx  
Level  
Shifters  
150 k  
+
GS œ  
V
VGLS  
Digital  
Core  
GLx  
Level  
Shifters  
150 kꢀ  
SLx/SPx  
+
GS œ  
V
32. Gate Driver Block Diagram  
8.3.1.4.1 IDRIVE: MOSFET Slew-Rate Control  
The IDRIVE component implements adjustable gate-drive current to control the MOSFET VDS slew rates. The  
MOSFET VDS slew rates are a critical factor for optimizing radiated emissions, energy and duration of diode  
recovery spikes, dV/dt gate turnon leading to shoot-through, and switching voltage transients related to parasitics  
in the external half-bridge. IDRIVE operates on the principal that the MOSFET VDS slew rates are predominately  
determined by the rate of gate charge (or gate current) delivered during the MOSFET QGD or Miller charging  
region. By allowing the gate driver to adjust the gate current, it can effectively control the slew rate of the external  
power MOSFETs.  
IDRIVE allows the DRV835x family of devices to dynamically switch between gate drive currents either through a  
register setting on SPI devices or the IDRIVE pin on hardware interface devices. The SPI devices provide 16  
IDRIVE settings ranging between 50-mA to 1-A source and 100-mA to 2-A sink. Hardware interface devices  
provides 7 IDRIVE settings between the same ranges. The gate drive current setting is delivered to the gate during  
the turnon and turnoff of the external power MOSFET for the tDRIVE duration. After the MOSFET turnon or turnoff,  
the gate driver switches to a smaller hold IHOLD current to improve the gate driver efficiency. Additional details on  
the IDRIVE settings are described in the Register Maps section for the SPI devices and in the Pin Diagrams  
section for the hardware interface devices.  
8.3.1.4.2 TDRIVE: MOSFET Gate Drive Control  
The TDRIVE component is an integrated gate-drive state machine that provides automatic dead time insertion  
through switching handshaking, parasitic dV/dt gate turnon prevention, and MOSFET gate-fault detection.  
The first component of the TDRIVE state machine is automatic dead-time insertion. Dead time is period of time  
between the switching of the external high-side and low-side MOSFETs to make sure that they do not cross  
conduct and cause shoot-through. The DRV835x family of devices use VGS voltage monitors to measure the  
MOSFET gate-to-source voltage and determine the correct time to switch instead of relying on a fixed time value.  
This feature allows the gate-driver dead time to adjust for variation in the system such a temperature drift and  
variation in the MOSFET parameters. An additional digital dead time (tDEAD) can be inserted and is adjustable  
through the registers on SPI devices.  
36  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
The automatic dead-time insertion has a limitation when the gate driver is transitioning from high-side MOSFET  
on to low-side MOSFET on when the phase current is coming into the external half-bridge. In this case, the high-  
side diode will conduct during the dead-time and hold up the switch-node voltage to VDRAIN. In this case, an  
additional delay of approximately 100-200 ns is introduced into the dead-time handshake. This is introduced due  
to the need to discharge the voltage present on the internal VGS detection circuit.  
The second component focuses on parasitic dV/dt gate turnon prevention. To implement this, the TDRIVE state  
machine enables a strong pulldown ISTRONG current on the opposite MOSFET gate whenever a MOSFET is  
switching. The strong pulldown last for the TDRIVE duration. This feature helps remove parasitic charge that  
couples into the MOSFET gate when the half-bridge switch-node voltage slews rapidly.  
The third component implements a gate-fault detection scheme to detect pin-to-pin solder defects, a MOSFET  
gate failure, or a MOSFET gate stuck-high or stuck-low voltage condition. This implementation is done with a pair  
of VGS gate-to-source voltage monitors for each half-bridge gate driver. When the gate driver receives a  
command to change the state of the half-bridge it starts to monitor the gate voltage of the external MOSFET. If at  
the end of the tDRIVE period the VGS voltage has not reached the correct threshold the gate driver will report a  
fault. To make sure that a false fault is not detected, a tDRIVE time should be selected that is longer than the time  
required to charge or discharge the MOSFET gate. The tDRIVE time does not increase the PWM time and will  
terminate if another PWM command is received while active. Additional details on the TDRIVE settings are  
described in the Register Maps section for SPI devices and in the Pin Diagrams section for hardware interface  
devices.  
33 shows an example of the TDRIVE state machine in operation.  
V
INHx  
V
INLx  
V
GHx  
tDEAD  
IHOLD  
tDEAD  
I
I
t
I
I
HOLD  
HOLD  
DRIVE  
STRONG  
I
GHx  
I
t
I
HOLD  
DRIVE  
DRIVE  
DRIVE  
V
GLx  
GLx  
tDEAD  
tDEAD  
IHOLD  
I
I
t
I
I
HOLD  
HOLD  
DRIVE  
DRIVE  
STRONG  
I
I
I
HOLD  
DRIVE  
t
DRIVE  
33. TDRIVE State Machine  
8.3.1.4.3 Propagation Delay  
The propagation delay time (tpd) is measured as the time between an input logic edge to a detected output  
change. This time has three parts consisting of the digital input deglitcher delay, the digital propagation delay,  
and the delay through the analog gate drivers.  
The input deglitcher prevents high-frequency noise on the input pins from affecting the output state of the gate  
drivers. To support multiple control modes and dead time insertion, a small digital delay is added as the input  
command propagates through the device. Lastly, the analog gate drivers have a small delay that contributes to  
the overall propagation delay of the device.  
版权 © 2018–2019, Texas Instruments Incorporated  
37  
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
8.3.1.4.4 MOSFET VDS Monitors  
The gate drivers implement adjustable VDS voltage monitors to detect overcurrent or short-circuit conditions on  
the external power MOSFETs. When the monitored voltage is greater than the VDS trip point (VVDS_OCP) for  
longer than the deglitch time (tOCP), an overcurrent condition is detected and action is taken according to the  
device VDS fault mode.  
The high-side VDS monitors measure the voltage between the VDRAIN and SHx pins. In devices with three  
current-shunt amplifiers (DRV8353 and DRV8353R), the low-side VDS monitors measure the voltage between the  
SHx and SPx pins. If the current shunt amplifier is unused, tie the SP pins to the common ground point of the  
external half-bridges. On device options without the current shunt amplifiers (DRV8350 and DRV8350R) the low-  
side VDS monitor measures between the SHx and SLx pins.  
For the SPI devices, the low-side VDS monitor reference point can be changed between the SPx and SNx pins if  
desired with the LS_REF register setting. This is only for the low-side VDS monitor. The high-side VDS monitor  
stays between the VDRAIN and SHx pins.  
The VVDS_OCP threshold is programmable between 0.06 V and 2 V on SPI device and between 0.06 V and 1 V on  
hardware interface devices. Additional information on the VDS monitor levels are described in the Register Maps  
section for SPI devices and in the Pin Diagrams section hardware interface device.  
VDRAIN  
VDRAIN  
VDRAIN  
VDRAIN  
+
+
V
V
+
+
V
V
V
V
DSœ  
DS œ  
DSœ  
DSœ  
V
V
V
V
VDS_OCP  
VDS_OCP  
GHx  
SHx  
GLx  
GHx  
SHx  
GLx  
+
DSœ  
+
DSœ  
+
DSœ  
+
DSœ  
V
V
VDS_OCP  
VDS_OCP  
SLx  
SPx  
0
1
R
SENSE  
SNx  
LS_REF  
(SPI Only)  
34. DRV8350 and DRV8350R VDS Monitors  
35. DRV8353 and DRV8353R VDS Monitors  
8.3.1.4.5 VDRAIN Sense and Reference Pin  
The DRV835x family of devices provides a separate sense and reference pin for the common point of the high-  
side MOSFET drain. This pin is called VDRAIN. This pin allows the sense line for the overcurrent monitors  
(VDRAIN) and the power supply (VM) to stay separate and prevent noise on the VDRAIN sense line.  
The VDRAIN pin serves as the reference point for the integrated charge pump. This makes sure that the charge  
pump reference stays with respect to the power MOSFET supply through voltage transient conditions.  
Since the charge pump is referenced to VDRAIN, this also allows for VM to supplied either directed from the  
power MOSFET supply (VDRAIN) or from an independent supply. This allows for a configuration where VM can  
be supplied from an efficient low voltage supply to increase the device efficiency. On the DRV8350R and  
DRV8353R devices, the integrated buck regulator can be used to create the efficient low voltage supply.  
8.3.2 DVDD Linear Voltage Regulator  
A 5-V, 10-mA linear regulator is integrated into the DRV835x family of devices and is available for use by  
external circuitry. This regulator can provide the supply voltage for low-current supporting circuitry. The output of  
the DVDD regulator should be bypassed near the DVDD pin with a X5R or X7R, 1-µF, 6.3-V ceramic capacitor  
routed directly back to the adjacent DGND or GND ground pin.  
The DVDD nominal, no-load output voltage is 5 V. When the DVDD load current exceeds 10 mA, the regulator  
functions like a constant-current source. The output voltage drops significantly with a current load greater than 10  
mA.  
38  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
VM  
REF  
+
œ
5 V, 10 mA  
DVDD  
1 F  
GND/  
DGND  
36. DVDD Linear Regulator Block Diagram  
Use 公式 1 to calculate the power dissipated in the device because of the DVDD linear regulator.  
P = VVM - VDVDD ì I  
(
)
DVDD  
(1)  
(2)  
For example, at VVM = 24 V, drawing 20 mA out of DVDD results in a power dissipation as shown in 公式 2.  
P = 24 V - 3.3 V ì 20 mA = 414 mW  
(
)
8.3.3 Pin Diagrams  
37 shows the input structure for the logic-level pins, INHx, INLx, ENABLE, nSCS, SCLK, and SDI.  
DVDD  
STATE  
VIH  
RESISTANCE  
Tied to DVDD  
Tied to AGND  
INPUT  
Logic High  
Logic Low  
VIL  
100 k  
37. Logic-Level Input Pin Structure  
版权 © 2018–2019, Texas Instruments Incorporated  
39  
 
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
38 shows the structure of the four level input pins, MODE and GAIN, on hardware interface devices. The input  
can be set with an external resistor.  
MODE  
GAIN  
DVDD  
STATE  
VI4  
RESISTANCE  
Tied to DVDD  
DVDD  
Independent 40 V/V  
+
50 k  
œ
Hi-Z (>500 kΩ to  
AGND)  
1x PWM  
3x PWM  
6x PWM  
20V/V  
10 V/V  
5 V/V  
VI3  
VI2  
VI1  
+
84 kꢀ  
47 kΩ ±5%  
to AGND  
œ
Tied to AGND  
+
œ
38. Four Level Input Pin Structure  
39 shows the structure of the seven level input pins, IDRIVE and VDS, on hardware interface devices. The  
input can be set with an external resistor.  
IDRIVE  
1/2 A  
VDS  
Disabled  
+
œ
STATE  
VI7  
RESISTANCE  
Tied to DVDD  
700/1400 mA  
450/900 mA  
300/600 mA  
150/300 mA  
100/200 mA  
50/100 mA  
1 V  
0.7 V  
0.4 V  
0.2 V  
0.1 V  
0.06 V  
+
DVDD  
DVDD  
œ
18 k5%  
to DVDD  
VI6  
VI5  
VI4  
VI3  
VI2  
VI1  
+
75 k5%  
to DVDD  
73 kꢀ  
œ
Hi-Z (>500 kΩ  
to AGND)  
73 kꢀ  
+
75 k5%  
to AGND  
œ
18 kΩ ±5%  
to AGND  
+
Tied to AGND  
œ
+
œ
39. Seven Level Input Pin Structure  
40  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
40 shows the structure of the open-drain output pins nFAULT and SDO. The open-drain output requires an  
external pullup resistor to function correctly.  
DVDD  
R
PU  
STATE  
No Fault  
Fault  
STATUS  
Inactive  
Active  
OUTPUT  
Active  
Inactive  
40. Open-Drain Output Pin Structure  
8.3.4 Low-Side Current-Shunt Amplifiers (DRV8353 and DRV8353R Only)  
The DRV8353 and DRV8353R integrate three, high-performance low-side current-shunt amplifiers for current  
measurements using low-side shunt resistors in the external half-bridges. Low-side current measurements are  
commonly used to implement overcurrent protection, external torque control, or brushless DC commutation with  
the external controller. All three amplifiers can be used to sense the current in each of the half-bridge legs or one  
amplifier can be used to sense the sum of the half-bridge legs. The current shunt amplifiers include features such  
as programmable gain, offset calibration, unidirectional and bidirectional support, and a voltage reference pin  
(VREF).  
8.3.4.1 Bidirectional Current Sense Operation  
The SOx pin on the DRV8353 and DRV8353R outputs an analog voltage equal to the voltage across the SPx  
and SNx pins multiplied by the gain setting (GCSA). The gain setting is adjustable between four different levels (5  
V/V, 10 V/V, 20 V/V, and 40 V/V). Use 公式 3 to calculate the current through the shunt resistor.  
VVREF  
- VSOx  
2
I =  
GCSA ì RSENSE  
(3)  
R2  
R3  
R4  
R5  
R6  
SOx  
I
R1  
R1  
SPx  
SNx  
V
CC  
œ
R
SENSE  
V
+
REF  
0.1 F  
R2  
R3  
R4  
R5  
½
+
œ
41. Bidirectional Current-Sense Configuration  
版权 © 2018–2019, Texas Instruments Incorporated  
41  
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
SO (V)  
V
REF  
V
/ 2  
VREF  
V
LINEAR  
SP œ SN (V)  
42. Bidirectional Current-Sense Output  
I
SP  
SO  
R
AV  
SN  
SO  
VREF  
SP œ SN  
œ0.3 V  
V
VREF  
œ 0.25 V  
œI × R  
V
SO(rangeœ)  
V
SO(off)max  
/ 2  
V
,
OFF  
0 V  
V
VREF  
V
DRIFT  
V
SO(off)min  
V
SO(range+)  
I × R  
0.3 V  
0.25 V  
0 V  
43. Bidirectional Current Sense Regions  
42  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
8.3.4.2 Unidirectional Current Sense Operation (SPI only)  
On the DRV8353 and DRV8353R SPI devices, use the VREF_DIV bit to remove the VREF divider. In this case  
the shunt amplifier operates unidirectionally and SOx outputs an analog voltage equal to the voltage across the  
SPx and SNx pins multiplied by the gain setting (GCSA). Use 公式 4 to calculate the current through the shunt  
resistor.  
VVREF - VSOx  
GCSA ì RSENSE  
I =  
(4)  
R2  
R3  
R4  
R5  
R6  
SOx  
I
R1  
R1  
SPx  
SNx  
œ
R
SENSE  
+
V
CC  
R2  
R3  
R4  
R5  
V
REF  
+
0.1 F  
œ
44. Unidirectional Current-Sense Configuration  
SO (V)  
V
REF  
V
œ 0.3 V  
VREF  
V
LINEAR  
SP œ SN (V)  
45. Unidirectional Current-Sense Output  
版权 © 2018–2019, Texas Instruments Incorporated  
43  
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
I
SP  
SN  
SO  
SO  
R
AV  
V
REF  
V
œ 0.25 V  
VREF  
V
SO(off)max  
SP œ SN  
V
,
OFF  
0 V  
V
œ 0.3 V  
VREF  
V
DRIFT  
V
SO(off)min  
V
SO(range)  
I × R  
0.3 V  
0.25 V  
0 V  
46. Unidirectional Current-Sense Regions  
8.3.4.3 Amplifier Calibration Modes  
To minimize DC offset and drift over temperature, a DC calibration mode is provided and enabled through the  
SPI register (CSA_CAL_X). This option is not available on hardware interface devices. When the calibration  
setting is enabled the inputs to the amplifier are shorted and the load is disconnected. DC calibration can be  
done at any time, even when the half-bridges are operating. For the best results, do the DC calibration during the  
switching OFF period to decrease the potential noise impact to the amplifier. A diagram of the calibration mode is  
shown below. When a CSA_CAL_X bit is enabled, the corresponding amplifier goes to the calibration mode.  
RF  
ROUT  
SOx  
RSP  
!CAL  
!CAL  
SP  
SN  
-
RSENSE  
RSN  
VREF  
+
CAL  
CAL  
+
RG  
-
47. Amplifier Manual Calibration  
In addition to the manual calibration method provided on the SPI devices versions, the DRV835x family of  
devices provide an auto calibration feature on both the hardware and SPI device versions in order to minimize  
the amplifier input offset after power up and during run time to account for temperature and device variation.  
44  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
Auto calibration occurs automatically on device power up for both the hardware and SPI device options. The  
power up auto calibration starts immediately after the VREF pin crosses the minimum operational VREF voltage.  
50 us should be allowed for the power up auto calibration routine to complete after the VREF pin voltage crosses  
the minimum VREF operational voltage. The auto calibration functions by doing a trim routine of the amplifier to  
minimize the amplifier input offset. After this the amplifiers are ready for normal operation.  
For the SPI device options, auto calibration can also be done again during run time by enabling the AUTO_CAL  
register setting. Auto calibration can then be commanded with the corresponding CSA_CAL_X register setting to  
rerun the auto calibration routine. During auto calibration all of the amplifiers will be configured for the max gain  
setting in order to improve the accuracy of the calibration routine.  
8.3.4.4 MOSFET VDS Sense Mode (SPI Only)  
The current-sense amplifiers on the DRV8353 and DRV8353R SPI devices can be configured to amplify the  
voltage across the external low-side MOSFET VDS. This allows for the external controller to measure the voltage  
drop across the MOSFET RDS(on) without the shunt resistor and then calculate the half-bridge current level.  
To enable this mode set the CSA_FET bit to 1. The positive input of the amplifier is then internally connected to  
the SHx pin with an internal clamp to prevent high voltage on the SHx pin from damaging the sense amplifier  
inputs. During this mode of operation, the SPx pins should stay connected to the source of the low-side MOSFET  
as it serves as the reference for the low-side gate driver. When the CSA_FET bit is set to 1, the negative  
reference for the low-side VDS monitor is automatically set to SNx, regardless of the state of the LS_REF bit  
state. This setting is implemented to prevent disabling of the low-side VDS monitor.  
If the system operates in MOSFET VDS sensing mode, route the SHx and SNx pins with Kelvin connections  
across the drain and source of the external low-side MOSFETs.  
VDRAIN  
VDRAIN  
VDRAIN  
VDRAIN  
High-Side  
High-Side  
VCP  
VCP  
V
Monitor  
V
DS  
Monitor  
DS  
+
V
+
V
DSœ  
DSœ  
GHx  
SHx  
GHx  
SHx  
(SPI only)  
(SPI only)  
CSA_FET = 0  
CSA_FET = 1  
LS_REF = 0  
LS_REF = X  
VGLS  
VGLS  
Low-Side  
Low-Side  
V
Monitor  
V
Monitor  
DS  
DS  
+
V
+
V
DSœ  
GLx  
GLx  
SPx  
DSœ  
0
1
0
1
10 k  
10 k  
10 k  
10 kꢀ  
SPx  
10 k  
10 kꢀ  
SOx  
SOx  
AV  
R
SEN  
AV  
SNx  
SNx  
GND  
GND  
48. Resistor Sense Configuration  
49. VDS Sense Configuration  
版权 © 2018–2019, Texas Instruments Incorporated  
45  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
When operating in MOSFET VDS sense mode, the amplifier is enabled at the end of the tDRIVE time. At this time,  
the amplifier input is connected to the SHx pin, and the SOx output is valid. When the low-side MOSFET  
receives a signal to turn off, the amplifier inputs, SPx and SNx, are shorted together internally.  
8.3.5 Step-Down Buck Regulator  
The DRV8350R and DRV8353R have an integrated buck regulator (LM5008A) to supply power for an external  
controller or system voltage rail.  
The LM5008A regulator is an easy-to-use buck (step-down) DC-DC regulator that operates from 6-V to 95-V  
supply voltage. The device is intended for step-down conversions from 12-V, 24-V, and 48-V unregulated, semi-  
regulated and fully-regulated supply rails. With integrated buck power MOSFET, the LM5008A delivers up to  
350-mA DC load current with exceptional efficiency and low input quiescent current in a very small solution size.  
Designed for simple implementation, an almost fixed-frequency, constant on-time (COT) operation with  
discontinuous conduction mode (DCM) at light loads is ideal for low-noise, high current, fast transient load  
requirements. Control loop compensation is not required reducing design time and external component count.  
The LM5008A incorporates other features for comprehensive system requirements, including VCC undervoltage  
lockout (UVLO), gate drive undervoltage lockout, maximum duty cycle limiter, intelligent current limit off-timer, a  
precharge switch, and thermal shutdown with automatic recovery. These features enable a flexible and easy-to-  
use platform for a wide range of applications. The pin arrangement is designed for simple and optimized PCB  
layout, requiring only a few external components.  
For additional details and design information refer to the LM5008A 100-V 350-mA Constant On-Time Buck  
Switching Regulator data sheet.  
8.3.5.1 Functional Block Diagram  
7 V Bias  
Regulator  
6 V to 95 V  
Input  
VIN  
C5  
RT  
C1  
VCC  
UVLO  
Thermal  
Shutdown  
VIN SENSE  
VCC  
Bypass  
Switch  
Q2  
GND  
C3  
On Timer  
Start  
Finish  
œ
+
0.7 V  
RT  
RT/SD  
BST  
Start  
Over-Voltage  
Comparator  
Vin  
SHUTDOWN  
GD  
UVLO  
SD  
C4  
300 ns MIN  
Off Timer  
œ
Driver  
Finish  
2.875 V  
Level  
Shift  
L1  
SW  
2.5 V  
SSET  
RCLR  
Q
Q
FB  
VOUT  
œ
D1  
Regulation  
Comparator  
Buck  
RCL  
RTN  
FB  
RCL  
Finish  
Start  
Current Limit  
Off Timer  
RFB2  
Pre-  
Charge  
Switch  
Current  
Sense  
R3  
C2  
œ
RCL  
0.51 A  
RFB1  
50. Functional Block Diagram  
46  
版权 © 2018–2019, Texas Instruments Incorporated  
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
8.3.5.2 Feature Description  
8.3.5.2.1 Control Circuit Overview  
The LM5008A is a Buck DC-DC regulator that uses a control scheme in which the on-time varies inversely with  
line voltage (VIN). Control is based on a comparator and the on-time one-shot, with the output voltage feedback  
(FB) compared to an internal reference (2.5 V). If the FB level is below the reference the buck switch is turned on  
for a fixed time determined by the line voltage and a programming resistor (RT). Following the ON period, the  
switch stays off for at least the minimum off-timer period of 300 ns. If FB is still below the reference at that time,  
the switch turns on again for another on-time period. This continues until regulation is achieved.  
The LM5008A operates in discontinuous conduction mode at light load currents, and continuous conduction  
mode at heavy load current. In discontinuous conduction mode, current through the output inductor starts at zero  
and ramps up to a peak during the on-time, then ramps back to zero before the end of the off-time. The next on-  
time period starts when the voltage at FB falls below the internal reference; until then, the inductor current stays  
zero. In this mode, the operating frequency is lower than in continuous conduction mode and varies with load  
current. Therefore, at light loads, the conversion efficiency is kept because the switching losses decrease with  
the reduction in load and frequency. The discontinuous operating frequency can be calculated with 公式 5.  
VOUT2 ìL ì1.04ì1020  
RL ì(RT )2  
F =  
«
÷
÷
where  
RL = the load resistance  
(5)  
In continuous conduction mode, current flows continuously through the inductor and never ramps down to zero.  
In this mode the operating frequency is greater than the discontinuous mode frequency and stays relatively  
constant with load and line variations. The approximate continuous mode operating frequency can be calculated  
with 公式 6.  
VOUT  
F =  
«
÷
÷
1.385ì10-10 ìRT ◊  
(6)  
The output voltage (VOUT) is programmed by two external resistors as shown in 50. The regulation point can  
be calculated with 公式 7.  
VOUT = 2.5 × (RFB1 + RFB2) / RFB1  
(7)  
The LM5008A regulates the output voltage based on ripple voltage at the feedback input, requiring a minimum  
amount of ESR for the output capacitor C2. A minimum of 25 mV to 50 mV of ripple voltage at the feedback pin  
(FB) is required for the LM5008A. In cases where the capacitor ESR is too small, additional series resistance  
may be required (R3 in the 50).  
For applications where lower output voltage ripple is required, the output can be taken directly from a low-ESR  
output capacitor as shown in 51. However, R3 slightly degrades the load regulation.  
L1  
SW  
RFB2  
R3  
FB  
VOUT2  
RFB1  
C2  
51. Low-Ripple Output Configuration  
版权 © 2018–2019, Texas Instruments Incorporated  
47  
 
 
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
8.3.5.2.2 Start-Up Regulator (VCC  
)
The high voltage bias regulator is integrated within the LM5008A. The input pin (VIN) can be connected directly  
to line voltages between 6 V and 95 V, with transient capability to 100 V. Referring to the 50, when VIN is  
between 6 V and the bypass threshold (nominally 8.5 V), the bypass switch (Q2) is on, and VCC tracks VIN within  
100 mV to 150 mV. The bypass switch on-resistance is approximately 100 Ω, with inherent current limiting at  
approximately 100 mA. When VIN is above the bypass threshold Q2 is turned off, and VCC is regulated at 7 V.  
The VCC regulator output current is limited at approximately 9.2 mA. When the LM5008A is shut down using the  
RT/SD pin, the VCC bypass switch is shut off regardless of the voltage at VIN.  
When VIN exceeds the bypass threshold, the time required for Q2 to shut off is approximately 2 µs to 3 µs. The  
capacitor at VCC (C3) must be a minimum of 0.47 µF to prevent the voltage at VCC from rising above its absolute  
maximum rating in response to a step input applied at VIN. C3 must be placed as near as possible to the VCC  
and RTN pins. In applications with a relatively high input voltage, power dissipation in the bias regulator is a  
concern. An auxiliary voltage of between 7.5 V and 14 V can be diode connected to the VCC pin to shut off the  
VCC regulator, thereby reducing internal power dissipation. The current required into the VCC pin is shown in the  
typical characteristics curves. Internally a diode connects VCC to VIN requiring that the auxiliary voltage be less  
than VIN.  
The turnon sequence is shown in 52. During the initial delay (t1), VCC ramps up at a rate determined by its  
current limit and C3 while internal circuitry stabilizes. When VCC reaches the upper threshold of its undervoltage  
lockout (UVLO, typically 5.3 V), the buck switch is enabled. The inductor current increases to the current limit  
threshold (ILIM), and during t2 the VOUT increases as the output capacitor charges up. When VOUT reaches the  
intended voltage the average inductor current decreases (t3) to the nominal load current (IO).  
VIN  
t1  
7 V  
UVLO  
VCC  
Vin  
SW Pin  
0 V  
ILIM  
Inductor  
Current  
IO  
t3  
t2  
VOUT  
52. Start-Up Sequence  
48  
版权 © 2018–2019, Texas Instruments Incorporated  
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
8.3.5.2.3 Regulation Comparator  
The feedback voltage at FB is compared to an internal 2.5-V reference. In normal operation (the output voltage is  
regulated), an on-time period is initiated when the voltage at FB falls below 2.5 V. The buck switch stays on for  
the on-time, causing the FB voltage to rise above 2.5 V. After the on-time period, the buck switch stays off until  
the FB voltage again falls below 2.5 V. During start-up, the FB voltage is below 2.5 V at the end of each on-time,  
resulting in the minimum off-time of 300 ns. Bias current at the FB pin is nominally 100 nA.  
8.3.5.2.4 Overvoltage Comparator  
The feedback voltage at FB is compared to an internal 2.875-V reference. If the voltage at FB rises above 2.875  
V, the on-time pulse is immediately terminated. This condition can occur if the input voltage or the output load  
change suddenly. The buck switch does not turn on again until the voltage at FB falls below 2.5 V.  
8.3.5.2.5 On-Time Generator and Shutdown  
The on-time for the LM5008A is determined by the RT resistor and is inversely proportional to the input voltage  
(VIN), resulting in an almost constant frequency as Vin is varied over its range. The on-time equation for the  
LM5008A is 公式 8.  
TON = 1.385 × 10–10 × RT / VIN  
(8)  
RT must be selected for a minimum on-time (at maximum VIN) greater than 400 ns, for correct current limit  
operation. This requirement limits the maximum frequency for each application, depending on VIN and VOUT  
.
The LM5008A can be remotely disabled by taking the RT/SD pin to ground. See 53. The voltage at the RT/SD  
pin is between 1.5 V and 3 V, depending on VIN and the value of the RT resistor.  
Input  
Voltage  
VIN  
RT  
RT/SD  
STOP  
RUN  
53. Shutdown Implementation  
8.3.5.2.6 Current Limit  
The LM5008A has an intelligent current limit OFF timer. If the current in the Buck switch exceeds 0.51 A the  
present cycle is immediately terminated and a non-resetable OFF timer is initiated. The length of off-time is  
controlled by an external resistor (RCL) and the FB voltage. When FB = 0 V, a maximum off-time is required, and  
the time is preset to 35 µs. This condition occurs when the output is shorted and during the initial part of start-up.  
This amount of time makes sure that safe short-circuit operation occurs up to the maximum input voltage of 95 V.  
In cases of overload where the FB voltage is above zero volts (not a short circuit), the current limit off-time is less  
than 35 µs. Reducing the off-time during less severe overloads decreases the amount of foldback, recovery time,  
and the start-up time. The off-time is calculated from 公式 9.  
÷
÷
÷
÷
10-5  
TOFF  
=
VFB  
6.35ì10-6 ìRCL  
0.285 +  
÷
(
)
«
(9)  
The current limit-sensing circuit is blanked for the first 50 ns to 70 ns of each on-time, so it is not falsely tripped  
by the current surge which occurs at turnon. The current surge is required by the re-circulating diode (D1) for its  
turnoff recovery.  
版权 © 2018–2019, Texas Instruments Incorporated  
49  
 
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
8.3.5.2.7 N-Channel Buck Switch and Driver  
The LM5008A integrates an N-Channel Buck switch and associated floating high voltage gate driver. The gate  
driver circuit works in conjunction with an external bootstrap capacitor and an internal high voltage diode. A 0.01-  
µF ceramic capacitor (C4) connected between the BST pin and SW pin provides the voltage to the driver during  
the on-time.  
During each off-time, the SW pin is at approximately 0 V and the bootstrap capacitor charges from VCC through  
the internal diode. The minimum off-timer, set to 300 ns, makes sure that a minimum time each cycle to recharge  
the bootstrap capacitor.  
The internal precharge switch at the SW pin is turned on for 150 ns during the minimum off-time period,  
ensuring sufficient voltage exists across the bootstrap capacitor for the on-time. This feature helps prevent  
operating problems which can occur during very light-load conditions, involving a long off-time, during which the  
voltage across the bootstrap capacitor could otherwise decrease to less than the threshold for the gate drive  
UVLO. The precharge switch also helps prevent start-up problems which can occur if the output voltage is  
precharged prior to turnon. After current limit detection, the precharge switch is turned on for the entire duration  
of the forced off-time.  
8.3.5.2.8 Thermal Protection  
The LM5008A must be operated so the junction temperature does not exceed 125°C during normal operation. An  
internal Thermal Shutdown circuit is provided to shutdown the LM5008A in the event of a higher than normal  
junction temperature. When activated, typically at 165°C, the controller is forced into a low-power reset state by  
disabling the buck switch. This feature prevents catastrophic failures from accidental device overheating. When  
the junction temperature decreases below 140°C (typical hysteresis = 25°C), normal operation continues.  
8.3.6 Gate Driver Protective Circuits  
The DRV835x family of devices are fully protected against VM undervoltage, charge pump and low-side regulator  
undervoltage, MOSFET VDS overcurrent, gate driver shorts, and overtemperature events.  
8.3.6.1 VM Supply and VDRAIN Undervoltage Lockout (UVLO)  
If at any time the input supply voltage on the VM pin falls below the VVM_UV threshold or voltage on VDRAIN pin  
falls below the VVDR_UV, all of the external MOSFETs are disabled, the charge pump is disabled, and the nFAULT  
pin is driven low. The FAULT and UVLO bits are also latched high in the registers on SPI devices. Normal  
operation continues (gate driver operation and the nFAULT pin is released) when the undervoltage condition is  
removed. The UVLO bit stays set until cleared through the CLR_FLT bit or an ENABLE pin reset pulse (tRST).  
VM supply or VDRAIN undervoltage may also lead to VCP charge pump or VGLS regulator undervoltage  
conditions to report. This behavior is expected because the VCP and VGLS supply voltages are dependent on  
VM and VDRAIN pin voltages.  
8.3.6.2 VCP Charge-Pump and VGLS Regulator Undervoltage Lockout (GDUV)  
If at any time the voltage on the VCP pin (charge pump) falls below the VVCP_UV threshold or voltage on the  
VGLS pin falls below the VVGLS_UV threshold, all of the external MOSFETs are disabled and the nFAULT pin is  
driven low. The FAULT and GDUV bits are also latched high in the registers on SPI devices. Normal operation  
continues (gate-driver operation and the nFAULT pin is released) when the undervoltage condition is removed.  
The GDUV bit stays set until cleared through the CLR_FLT bit or an ENABLE pin reset pulse (tRST). Setting the  
DIS_GDUV bit high on the SPI devices disables this protection feature. On hardware interface devices, the  
GDUV protection is always enabled.  
8.3.6.3 MOSFET VDS Overcurrent Protection (VDS_OCP)  
A MOSFET overcurrent event is sensed by monitoring the VDS voltage drop across the external MOSFET RDS(on)  
.
If the voltage across an enabled MOSFET exceeds the VVDS_OCP threshold for longer than the tOCP_DEG deglitch  
time, a VDS_OCP event is recognized and action is done according to the OCP_MODE. On hardware interface  
devices, the VVDS_OCP threshold is set with the VDS pin, the tOCP_DEG is fixed at 4 µs, and the OCP_MODE is  
configured for 8-ms automatic retry but can be disabled by tying the VDS pin to DVDD. On SPI devices, the  
VVDS_OCP threshold is set through the VDS_LVL SPI register, the tOCP_DEG is set through the OCP_DEG SPI  
register, and the OCP_MODE bit can operate in four different modes: VDS latched shutdown, VDS automatic retry,  
VDS report only, and VDS disabled.  
50  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
The MOSFET VDS overcurrent protection operates in cycle-by-cycle (CBC) mode by default. This can be disabled  
on SPI device variants through the SPI registers. When in cycle-by-cycle (CBC) mode a new rising edge on the  
PWM inputs will clear an existing overcurrent fault.  
Additionally, on SPI devices the OCP_ACT register setting can be set to change the VDS_OCP overcurrent  
response between linked and individual shutdown modes. When OCP_ACT is 0, a VDS_OCP fault will only  
effect the half-bridge in which it occurred. When OCP_ACT is 1, all three half-bridges will respond to a  
VDS_OCP fault on any of the other half-bridges. OCP_ACT defaults to 0, individual shutdown mode.  
8.3.6.3.1 VDS Latched Shutdown (OCP_MODE = 00b)  
After a VDS_OCP event in this mode, all the external MOSFETs are disabled and the nFAULT pin is driven low.  
The FAULT, VDS_OCP, and corresponding MOSFET OCP bits are latched high in the SPI registers. Normal  
operation continues (gate driver operation and the nFAULT pin is released) when the VDS_OCP condition is  
removed and a clear faults command is issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST).  
8.3.6.3.2 VDS Automatic Retry (OCP_MODE = 01b)  
After a VDS_OCP event in this mode, all the external MOSFETs are disabled and the nFAULT pin is driven low.  
The FAULT, VDS_OCP, and corresponding MOSFET OCP bits are latched high in the SPI registers. Normal  
operation continues automatically (gate driver operation and the nFAULT pin is released) after the tRETRY time  
elapses. The FAULT, VDS_OCP, and MOSFET OCP bits stay latched until the tRETRY period expires.  
8.3.6.3.3 VDS Report Only (OCP_MODE = 10b)  
No protective action occurs after a VDS_OCP event in this mode. The overcurrent event is reported by driving  
the nFAULT pin low and latching the FAULT, VDS_OCP, and corresponding MOSFET OCP bits high in the SPI  
registers. The gate drivers continue to operate as normal. The external controller manages the overcurrent  
condition by acting appropriately. The reporting clears (nFAULT pin is released) when the VDS_OCP condition is  
removed and a clear faults command is issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST).  
8.3.6.3.4 VDS Disabled (OCP_MODE = 11b)  
No action occurs after a VDS_OCP event in this mode.  
8.3.6.4 VSENSE Overcurrent Protection (SEN_OCP)  
Half-bridge overcurrent is also monitored by sensing the voltage drop across the external current-sense resistor  
with the SP pin. If at any time, the voltage on the SP input of the current-sense amplifier exceeds the VSEN_OCP  
threshold for longer than the tOCP_DEG deglitch time, a SEN_OCP event is recognized and action is done  
according to the OCP_MODE. On hardware interface devices, the VSENSE threshold is fixed at 1 V, tOCP_DEG is  
fixed at 4 µs, and the OCP_MODE for VSENSE is fixed for 8-ms automatic retry. On SPI devices, the VSENSE  
threshold is set through the SEN_LVL SPI register, the tOCP_DEG is set through the OCP_DEG SPI register, and  
the OCP_MODE bit can operate in four different modes: VSENSE latched shutdown, VSENSE automatic retry,  
VSENSE report only, and VSENSE disabled.  
The VSENSE overcurrent protection operates in cycle-by-cycle (CBC) mode by default. This can be disabled on  
SPI device variants through the SPI registers. When in cycle-by-cycle (CBC) mode a new rising edge on the  
PWM inputs will clear an existing overcurrent fault.  
Additionally, on SPI devices the OCP_ACT register setting can be set to change the SEN_OCP overcurrent  
response between linked and individual shutdown modes. When OCP_ACT is 0, a SEN_OCP fault will only  
effect the half-bridge in which it occurred. When OCP_ACT is 1, all three half-bridges will respond to a  
SEN_OCP fault on any of the other half-bridges. OCP_ACT defaults to 0, individual shutdown mode.  
8.3.6.4.1 VSENSE Latched Shutdown (OCP_MODE = 00b)  
After a SEN_OCP event in this mode, all the external MOSFETs are disabled and the nFAULT pin is driven low.  
The FAULT and SEN_OCP bits are latched high in the SPI registers. Normal operation continues (gate driver  
operation and the nFAULT pin is released) when the SEN_OCP condition is removed and a clear faults  
command is issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST).  
版权 © 2018–2019, Texas Instruments Incorporated  
51  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
8.3.6.4.2 VSENSE Automatic Retry (OCP_MODE = 01b)  
After a SEN_OCP event in this mode, all the external MOSFETs are disabled and the nFAULT pin is driven low.  
The FAULT, SEN_OCP, and corresponding sense OCP bits are latched high in the SPI registers. Normal  
operation continues automatically (gate driver operation and the nFAULT pin is released) after the tRETRY time  
elapses. The FAULT , SEN_OCP, and sense OCP bits stay latched until the tRETRY period expires.  
8.3.6.4.3 VSENSE Report Only (OCP_MODE = 10b)  
No protective action occurs after a SEN_OCP event in this mode. The overcurrent event is reported by driving  
the nFAULT pin low and latching the FAULT and SEN_OCP bits high in the SPI registers. The gate drivers  
continue to operate. The external controller manages the overcurrent condition by acting appropriately. The  
reporting clears (nFAULT released) when the SEN_OCP condition is removed and a clear faults command is  
issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST).  
8.3.6.4.4 VSENSE Disabled (OCP_MODE = 11b or DIS_SEN = 1b)  
No action occurs after a SEN_OCP event in this mode. The SEN_OCP bit can be disabled independently of the  
VDS_OCP bit by using the DIS_SEN SPI register.  
8.3.6.5 Gate Driver Fault (GDF)  
The GHx and GLx pins are monitored such that if the voltage on the external MOSFET gate does not increase or  
decrease after the tDRIVE time, a gate driver fault is detected. This fault may be encountered if the GHx or GLx  
pins are shorted to the PGND, SHx, or VM pins. Additionally, a gate driver fault may be encountered if the  
selected IDRIVE setting is not sufficient to turn on the external MOSFET within the tDRIVE period. After a gate drive  
fault is detected, all external MOSFETs are disabled and the nFAULT pin driven low. In addition, the FAULT,  
GDF, and corresponding VGS bits are latched high in the SPI registers. Normal operation continues (gate driver  
operation and the nFAULT pin is released) when the gate driver fault condition is removed and a clear faults  
command is issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST). On SPI devices, setting the  
DIS_GDF_UVLO bit high disables this protection feature.  
Gate driver faults can indicate that the selected IDRIVE or tDRIVE settings are too low to slew the external MOSFET  
in the desired time. Increasing either the IDRIVE or tDRIVE setting can resolve gate driver faults in these cases.  
Alternatively, if a gate-to-source short occurs on the external MOSFET, a gate driver fault is reported because of  
the MOSFET gate not turning on.  
8.3.6.6 Overcurrent Soft Shutdown (OCP Soft)  
In the case of a MOSFET VDS or VSENSE overcurrent fault the driver uses a special shutdown sequence to protect  
the driver and MOSFETs from large voltage switching transients. These large voltage transients can be created  
when rapidly switching off the external MOSFETs when a large drain to source current is present, such as during  
an overcurrent event.  
To mitigate this issue, the DRV835x family of devices reduce the IDRIVEN pull down current setting for both the  
high-side and low-side gate drivers during the MOSFET turn off in response to the fault event. If the programmed  
IDRIVEN value is less than 1100 mA, the IDRIVEN value is set to the minimum IDRIVEN setting. If the programmed  
IDRIVEN value is greater than or equal to 1100mA, the IDRIVEN value is reduced by seven code settings.  
8.3.6.7 Thermal Warning (OTW)  
If the die temperature exceeds the trip point of the thermal warning (TOTW), the OTW bit is set in the registers of  
SPI devices. The device does no additional action and continues to function. When the die temperature falls  
below the hysteresis point of the thermal warning, the OTW bit clears automatically. The OTW bit can also be  
configured to report on the nFAULT pin and FAULT bit by setting the OTW_REP bit to 1 through the SPI  
registers.  
52  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
8.3.6.8 Thermal Shutdown (OTSD)  
If the die temperature exceeds the trip point of the thermal shutdown limit (TOTSD), all the external MOSFETs are  
disabled, the charge pump is shut down, and the nFAULT pin is driven low. In addition, the FAULT and TSD bits  
are latched high. Normal operation continues (gate driver operation and the nFAULT pin is released) when the  
overtemperature condition is removed. The TSD bit stays latched high indicating that a thermal event occurred  
until a clear fault command is issued either through the CLR_FLT bit or an ENABLE reset pulse (tRST). This  
protection feature cannot be disabled.  
8.3.6.9 Fault Response Table  
6. Fault Action and Response  
FAULT  
CONDITION  
CONFIGURATION  
REPORT  
GATE DRIVER  
RECOVERY  
Automatic:  
VVM > VVM_UV  
VM Undervoltage  
(VM_UV)  
VVM < VVM_UV  
nFAULT  
Hi-Z  
Automatic:  
VVM > VVDR_UV  
VDRAIN Undervoltage  
(VDR_UV)  
VVDRAIN < VVDR_UV  
nFAULT  
Hi-Z  
DIS_GDUV = 0b  
DIS_GDUV = 1b  
DIS_GDUV = 0b  
DIS_GDUV = 1b  
nFAULT  
None  
Hi-Z  
Active  
Hi-Z  
Automatic:  
VVCP > VVCP_UV  
Charge Pump Undervoltage  
(VCP_UV)  
VVCP < VVCP_UV  
nFAULT  
None  
Automatic:  
VVGLS > VVGLS_UV  
VGLS Regulator Undervoltage  
(VGLS_UV)  
VVGLS < VVGLS_UV  
Active  
Latched:  
CLR_FLT, ENABLE Pulse  
OCP_MODE = 00b  
OCP_MODE = 01b  
nFAULT  
nFAULT  
Hi-Z  
Hi-Z  
Retry:  
tRETRY  
VDS Overcurrent  
(VDS_OCP)  
VDS > VVDS_OCP  
OCP_MODE = 10b  
OCP_MODE = 11b  
nFAULT  
None  
Active  
Active  
No action  
No action  
Latched:  
CLR_FLT, ENABLE Pulse  
OCP_MODE = 00b  
nFAULT  
Hi-Z  
Retry:  
tRETRY  
OCP_MODE = 01b  
OCP_MODE = 10b  
nFAULT  
nFAULT  
None  
Hi-Z  
VSENSE Overcurrent  
(SEN_OCP)  
VSP > VSEN_OCP  
Active  
Active  
No action  
No action  
OCP_MODE = 11b or  
DIS_SEN = 1b  
Latched:  
CLR_FLT, ENABLE Pulse  
DIS_GDF = 0b  
DIS_GDF = 1b  
OTW_REP = 1b  
OTW_REP = 0b  
nFAULT  
None  
Hi-Z  
Active  
Active  
Active  
Hi-Z  
Gate Driver Fault  
(GDF)  
VGS Stuck > tDRIVE  
No action  
Automatic:  
TJ < TOTW – THYS  
nFAULT  
None  
Thermal Warning  
(OTW)  
TJ > TOTW  
No action  
Automatic:  
TJ < TOTSD – THYS  
Thermal Shutdown  
(OTSD)  
TJ > TOTSD  
nFAULT  
8.4 Device Functional Modes  
8.4.1 Gate Driver Functional Modes  
8.4.1.1 Sleep Mode  
The ENABLE pin manages the state of the DRV835x family of devices. When the ENABLE pin is low, the device  
goes to a low-power sleep mode. In sleep mode, all gate drivers are disabled, all external MOSFETs are  
disabled, the VCP charge pump and VGLS regulator are disabled, the DVDD regulator is disabled, the sense  
amplifiers are disabled, and the SPI bus is disabled. In sleep mode all the device registers will reset to their  
default values. The tSLEEP time must elapse after a falling edge on the ENABLE pin before the device goes to  
sleep mode. The device comes out of sleep mode automatically if the ENABLE pin is pulled high. The tWAKE time  
must elapse before the device is ready for inputs.  
In sleep mode and when VVM < VUVLO, all external MOSFETs are disabled. The high-side gate pins, GHx, are  
pulled to the SHx pin by an internal resistor and the low-side gate pins, GLx, are pulled to the PGND pin by an  
internal resistor.  
版权 © 2018–2019, Texas Instruments Incorporated  
53  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
8.4.1.2 Operating Mode  
When the ENABLE pin is high and VVM > VUVLO, the device goes to operating mode. The tWAKE time must elapse  
before the device is ready for inputs. In this mode the charge pump, low-side gate regulator, DVDD regulator,  
and SPI bus are active  
8.4.1.3 Fault Reset (CLR_FLT or ENABLE Reset Pulse)  
In the case of device latched faults, the DRV835x family of devices goes to a partial shutdown state to help  
protect the external power MOSFETs and system.  
When the fault condition has been removed the device can reenter the operating state by either setting the  
CLR_FLT SPI bit on SPI devices or issuing a result pulse to the ENABLE pin on either interface variant. The  
ENABLE reset pulse (tRST) consists of a high-to-low-to-high transition on the ENABLE pin. The low period of the  
sequence should fall with the tRST time window or else the device will start the complete shutdown sequence.  
The reset pulse has no effect on any of the regulators, device settings, or other functional blocks  
8.4.2 Buck Regulator Functional Modes  
8.4.2.1 Shutdown Mode  
The RT/SD pin provides ON and OFF control for the LM5008A. When VSD is below approximately 0.7 V, the  
device is in shutdown mode. Both the internal LDO and the switching regulator are off. The quiescent current in  
shutdown mode drops to 110 µA (typical) at VIN = 48 V. The LM5008A also employs VCC bias rail undervoltage  
protection. If the VCC bias supply voltage is below its UV threshold, the regulator stays off.  
8.4.2.2 Active Mode  
LM5008A is in active mode when the internal bias rail, VCC, is above its UV threshold. Depending on the load  
current, the device operates in either DCM or CCM mode.  
Whenever the load current is decreased to a level less than half the peak-to-peak inductor ripple current, the  
device goes to discontinuous conduction mode (DCM). Calculate the critical conduction boundary using 公式 10.  
VOUT ì 1-D  
(
)
DIL  
2
IBOUNDARY  
=
=
2 ì LF ì fSW  
(10)  
When the inductor current reaches zero, the SW node becomes high impedance. Resonant ringing occurs at SW  
as a result of the LC tank circuit formed by the buck inductor and the parasitic capacitance at the SW node. At  
light loads, several pulses may be skipped in between switching cycles, effectively reducing the switching  
frequency and further improving light-load efficiency.  
8.5 Programming  
This section applies only to the DRV835x SPI devices.  
8.5.1 SPI Communication  
8.5.1.1 SPI  
On DRV835x SPI devices, an SPI bus is used to set device configurations, operating parameters, and read out  
diagnostic information. The SPI operates in slave mode and connects to a master controller. The SPI input data  
(SDI) word consists of a 16 bit word, with a 5 bit command and 11 bits of data. The SPI output data (SDO) word  
consists of 11-bit register data. The first 5 bits are don’t care bits.  
A valid frame must meet the following conditions:  
The SCLK pin should be low when the nSCS pin transitions from high to low and from low to high.  
The nSCS pin should be pulled high for at least 400 ns between words.  
When the nSCS pin is pulled high, any signals at the SCLK and SDI pins are ignored and the SDO pin is set  
Hi-Z.  
Data is captured on the falling edge of SCLK and data is propagated on the rising edge of SCLK.  
54  
版权 © 2018–2019, Texas Instruments Incorporated  
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
Programming (接下页)  
The most significant bit (MSB) is shifted in and out first.  
A full 16 SCLK cycles must occur for transaction to be valid.  
If the data word sent to the SDI pin is not 16 bits, a frame error occurs and the data word is ignored.  
For a write command, the existing data in the register being written to is shifted out on the SDO pin following  
the 5 bit command data.  
The SDO pin is an open-drain output and requires an external pullup resistor.  
8.5.1.1.1 SPI Format  
The SDI input data word is 16 bits long and consists of the following format:  
1 read or write bit, W (bit B15)  
4 address bits, A (bits B14 through B11)  
11 data bits, D (bits B11 through B0)  
Set the read/write bit (W0, B15) to 0b for a write command. Set the read/write bit (W0, B15) to 1b for a read  
command.  
The SDO output data word is 16 bits long and the first 5 bits are don't care bits. The response word is the data  
currently in the register being accessed.  
7. SDI Input Data Word Format  
R/W  
B15  
W0  
ADDRESS  
DATA  
B5  
B14  
A3  
B13  
A2  
B12  
A1  
B11  
A0  
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
D5  
8. SDO Output Data Word Format  
DON'T CARE BITS  
DATA  
B15  
X
B14  
X
B13  
X
B12  
X
B11  
X
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
nSCS  
SCLK  
SDI  
X
Z
MSB  
LSB  
LSB  
X
Z
MSB  
SDO  
Capture  
Point  
Propagate  
Point  
54. SPI Slave Timing Diagram  
版权 © 2018–2019, Texas Instruments Incorporated  
55  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
8.6 Register Maps  
This section applies only to the DRV835x SPI devices.  
Do not modify reserved registers or addresses not listed in the register maps (Table 9). Writing to these registers may have  
unintended effects. For all reserved bits, the default value is 0. To help prevent erroneous SPI writes from the master controller,  
set the LOCK bits to lock the SPI registers.  
Table 9. Register Map  
Name  
10  
9
8
7
6
5
4
3
2
1
0
Type  
Address  
DRV8350S and DRV8350RS  
Fault Status 1  
VGS Status 2  
Driver Control  
Gate Drive HS  
Gate Drive LS  
OCP Control  
Reserved  
FAULT  
SA_OC  
VDS_OCP  
SB_OC  
GDF  
UVLO  
OTW  
OTSD  
GDUV  
VDS_HA  
VGS_HA  
VDS_LA  
VGS_LA  
VDS_HB  
VGS_HB  
VDS_LB  
VGS_LB  
COAST  
VDS_HC  
VGS_HC  
BRAKE  
VDS_LC  
VGS_LC  
CLR_FLT  
R
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
SC_OC  
DIS_GDF  
R
OCP_ACT  
DIS_GDUV  
LOCK  
OTW_REP  
PWM_MODE  
1PWM_COM  
1PWM_DIR  
RW  
RW  
RW  
RW  
RW  
RW  
IDRIVEP_HS  
IDRIVEP_LS  
IDRIVEN_HS  
CBC  
TDRIVE  
DEAD_TIME  
IDRIVEN_LS  
VDS_LVL  
TRETRY  
OCP_MODE  
OCP_DEG  
Reserved  
Reserved  
DRV8353S and DRV8353RS  
Reserved  
Fault Status 1  
VGS Status 2  
Driver Control  
Gate Drive HS  
Gate Drive LS  
OCP Control  
CSA Control  
Reserved  
FAULT  
SA_OC  
VDS_OCP  
GDF  
UVLO  
OTW  
OTSD  
GDUV  
VDS_HA  
VGS_HA  
VDS_LA  
VDS_HB  
VGS_HB  
VDS_LB  
VDS_HC  
VGS_HC  
BRAKE  
VDS_LC  
VGS_LC  
CLR_FLT  
R
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
SB_OC  
DIS_GDUV  
LOCK  
SC_OC  
DIS_GDF  
VGS_LA  
VGS_LB  
COAST  
R
OCP_ACT  
OTW_REP  
PWM_MODE  
1PWM_COM  
1PWM_DIR  
RW  
RW  
RW  
RW  
RW  
RW  
IDRIVEP_HS  
IDRIVEP_LS  
IDRIVEN_HS  
CBC  
TDRIVE  
DEAD_TIME  
VREF_DIV LS_REF  
IDRIVEN_LS  
VDS_LVL  
TRETRY  
CSA_FET  
OCP_MODE  
CSA_GAIN  
OCP_DEG  
DIS_SEN CSA_CAL_A  
Reserved  
CSA_CAL_B  
CSA_CAL_C  
SEN_LVL  
CAL_MODE  
56  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
8.6.1 Status Registers  
The status registers are used to reporting warning and fault conditions. The status registers are read-only  
registers  
Complex bit access types are encoded to fit into small table cells. Table 10 shows the codes that are used for  
access types in this section.  
Table 10. Status Registers Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Reset or Default Value  
-n  
Value after reset or the default value  
8.6.1.1 Fault Status Register 1 (address = 0x00h)  
The fault status register 1 is shown in Figure 55 and described in Table 11.  
Register access type: Read only  
Figure 55. Fault Status Register 1  
10  
9
8
7
6
5
4
3
2
1
0
FAULT  
R-0b  
VDS_OCP  
R-0b  
GDF  
R-0b  
UVLO  
R-0b  
OTSD  
R-0b  
VDS_HA  
R-0b  
VDS_LA  
R-0b  
VDS_HB  
R-0b  
VDS_LB  
R-0b  
VDS_HC  
R-0b  
VDS_LC  
R-0b  
Table 11. Fault Status Register 1 Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10  
FAULT  
R
0b  
Logic OR of FAULT status registers. Mirrors nFAULT pin.  
Indicates VDS monitor overcurrent fault condition  
Indicates gate drive fault condition  
9
8
7
6
5
4
3
2
1
0
VDS_OCP  
GDF  
R
R
R
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
UVLO  
Indicates undervoltage lockout fault condition  
OTSD  
Indicates overtemperature shutdown  
VDS_HA  
VDS_LA  
VDS_HB  
VDS_LB  
VDS_HC  
VDS_LC  
Indicates VDS overcurrent fault on the A high-side MOSFET  
Indicates VDS overcurrent fault on the A low-side MOSFET  
Indicates VDS overcurrent fault on the B high-side MOSFET  
Indicates VDS overcurrent fault on the B low-side MOSFET  
Indicates VDS overcurrent fault on the C high-side MOSFET  
Indicates VDS overcurrent fault on the C low-side MOSFET  
Copyright © 2018–2019, Texas Instruments Incorporated  
57  
 
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
8.6.1.2 Fault Status Register 2 (address = 0x01h)  
The fault status register 2 is shown in Figure 56 and described in Table 12.  
Register access type: Read only  
Figure 56. Fault Status Register 2  
10  
9
8
7
6
5
4
3
2
1
0
SA_OC  
R-0b  
SB_OC  
R-0b  
SC_OC  
R-0b  
OTW  
R-0b  
GDUV  
R-0b  
VGS_HA  
R-0b  
VGS_LA  
R-0b  
VGS_HB  
R-0b  
VGS_LB  
R-0b  
VGS_HC  
R-0b  
VGS_LC  
R-0b  
Table 12. Fault Status Register 2 Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10  
SA_OC  
SB_OC  
SC_OC  
OTW  
R
0b  
Indicates overcurrent on phase A sense amplifier (DRV8353xS)  
Indicates overcurrent on phase B sense amplifier (DRV8353xS)  
Indicates overcurrent on phase C sense amplifier (DRV8353xS)  
Indicates overtemperature warning  
9
8
7
6
R
R
R
R
0b  
0b  
0b  
0b  
GDUV  
Indicates VCP charge pump and/or VGLS undervoltage fault  
condition  
5
4
3
2
1
0
VGS_HA  
VGS_LA  
VGS_HB  
VGS_LB  
VGS_HC  
VGS_LC  
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
Indicates gate drive fault on the A high-side MOSFET  
Indicates gate drive fault on the A low-side MOSFET  
Indicates gate drive fault on the B high-side MOSFET  
Indicates gate drive fault on the B low-side MOSFET  
Indicates gate drive fault on the C high-side MOSFET  
Indicates gate drive fault on the C low-side MOSFET  
58  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
8.6.2 Control Registers  
The control registers are used to configure the device. The control registers are read and write capable  
Complex bit access types are encoded to fit into small table cells. Table 13 shows the codes that are used for  
access types in this section.  
Table 13. Control Registers Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default value  
8.6.2.1 Driver Control Register (address = 0x02h)  
The driver control register is shown in Figure 57 and described in Table 14.  
Register access type: Read/Write  
Figure 57. Driver Control Register  
10  
9
8
7
6
5
4
3
2
1
0
OCP  
_ACT  
DIS  
_GDUV  
DIS  
_GDF  
OTW  
_REP  
1PWM  
_COM  
1PWM  
_DIR  
CLR  
_FLT  
PWM_MODE  
R/W-00b  
COAST  
R/W-0b  
BRAKE  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 14. Driver Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10  
OCP_ACT  
R/W  
0b  
0b = Associated half-bridge is shutdown in response to  
VDS_OCP and SEN_OCP  
1b  
= All three half-bridges are shutdown in response to  
VDS_OCP and SEN_OCP  
9
8
DIS_GDUV  
DIS_GDF  
R/W  
R/W  
R/W  
R/W  
0b  
0b =VCP and VGLS undervoltage lockout fault is enabled  
1b = VCP and VGLS undervoltage lockout fault is disabled  
0b  
0b = Gate drive fault is enabled  
1b = Gate drive fault is disabled  
7
OTW_REP  
PWM_MODE  
0b  
0b = OTW is not reported on nFAULT or the FAULT bit  
1b = OTW is reported on nFAULT and the FAULT bit  
6-5  
00b  
00b = 6x PWM Mode  
01b = 3x PWM mode  
10b = 1x PWM mode  
11b = Independent PWM mode  
4
1PWM_COM  
R/W  
0b  
0b = 1x PWM mode uses synchronous rectification  
1b = 1x PWM mode uses asynchronous rectification  
3
2
1
1PWM_DIR  
COAST  
R/W  
R/W  
R/W  
0b  
0b  
0b  
In 1x PWM mode this bit is ORed with the INHC (DIR) input  
Write a 1 to this bit to put all MOSFETs in the Hi-Z state  
BRAKE  
Write a 1 to this bit to turn on all three low-side MOSFETs  
This bit is ORed with the INLC (BRAKE) input in 1x PWM mode.  
0
CLR_FLT  
R/W  
0b  
Write a 1 to this bit to clear latched fault bits.  
This bit automatically resets after being writen.  
Copyright © 2018–2019, Texas Instruments Incorporated  
59  
 
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
8.6.2.2 Gate Drive HS Register (address = 0x03h)  
The gate drive HS register is shown in Figure 58 and described in Table 15.  
Register access type: Read/Write  
Figure 58. Gate Drive HS Register  
10  
9
8
7
6
5
4
3
2
1
0
LOCK  
IDRIVEP_HS  
R/W-1111b  
IDRIVEn_HS  
R/W-1111b  
R/W-011b  
Table 15. Gate Drive HS Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10-8  
LOCK  
R/W  
011b  
Write 110b to lock the settings by ignoring further register writes  
except to these bits and address 0x02h bits 0-2.  
Writing any sequence other than 110b has no effect when  
unlocked.  
Write 011b to this register to unlock all registers.  
Writing any sequence other than 011b has no effect when  
locked.  
7-4  
IDRIVEP_HS  
R/W  
1111b  
0000b = 50 mA  
0001b = 50 mA  
0010b = 100 mA  
0011b = 150 mA  
0100b = 300 mA  
0101b = 350 mA  
0110b = 400 mA  
0111b = 450 mA  
1000b = 550 mA  
1001b = 600 mA  
1010b = 650 mA  
1011b = 700 mA  
1100b = 850 mA  
1101b = 900 mA  
1110b = 950 mA  
1111b = 1000 mA  
3-0  
IDRIVEN_HS  
R/W  
1111b  
0000b = 100 mA  
0001b = 100 mA  
0010b = 200 mA  
0011b = 300 mA  
0100b = 600 mA  
0101b = 700 mA  
0110b = 800 mA  
0111b = 900 mA  
1000b = 1100 mA  
1001b = 1200 mA  
1010b = 1300 mA  
1011b = 1400 mA  
1100b = 1700 mA  
1101b = 1800 mA  
1110b = 1900 mA  
1111b = 2000 mA  
60  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
8.6.2.3 Gate Drive LS Register (address = 0x04h)  
The gate drive LS register is shown in Figure 59 and described in Table 16.  
Register access type: Read/Write  
Figure 59. Gate Drive LS Register  
10  
9
8
7
6
5
4
3
2
1
0
CBC  
TDRIVE  
R/W-11b  
IDRIVEP_LS  
R/W-1111b  
IDRIVEN_LS  
R/W-1111b  
R/W-1b  
Table 16. Gate Drive LS Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10  
CBC  
R/W  
1b  
Active only when OCP_MODE = 01b  
0b = For VDS_OCP and SEN_OCP, the fault is cleared after  
tRETRY  
1b = For VDS_OCP and SEN_OCP, the fault is cleared when  
a new PWM input is given or after tRETRY  
9-8  
7-4  
TDRIVE  
R/W  
R/W  
11b  
00b = 500-ns peak gate-current drive time  
01b = 1000-ns peak gate-current drive time  
10b = 2000-ns peak gate-current drive time  
11b = 4000-ns peak gate-current drive time  
IDRIVEP_LS  
1111b  
0000b = 50 mA  
0001b = 50 mA  
0010b = 100 mA  
0011b = 150 mA  
0100b = 300 mA  
0101b = 350 mA  
0110b = 400 mA  
0111b = 450 mA  
1000b = 550 mA  
1001b = 600 mA  
1010b = 650 mA  
1011b = 700 mA  
1100b = 850 mA  
1101b = 900 mA  
1110b = 950 mA  
1111b = 1000 mA  
3-0  
IDRIVEN_LS  
R/W  
1111b  
0000b = 100 mA  
0001b = 100 mA  
0010b = 200 mA  
0011b = 300 mA  
0100b = 600 mA  
0101b = 700 mA  
0110b = 800 mA  
0111b = 900 mA  
1000b = 1100 mA  
1001b = 1200 mA  
1010b = 1300 mA  
1011b = 1400 mA  
1100b = 1700 mA  
1101b = 1800 mA  
1110b = 1900 mA  
1111b = 2000 mA  
Copyright © 2018–2019, Texas Instruments Incorporated  
61  
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
8.6.2.4 OCP Control Register (address = 0x05h)  
The OCP control register is shown in Figure 60 and described in Table 17.  
Register access type: Read/Write  
Figure 60. OCP Control Register  
10  
9
8
7
6
5
4
3
2
1
0
TRETRY  
R/W-0b  
DEAD_TIME  
R/W-01b  
OCP_MODE  
R/W-01b  
OCP_DEG  
R/W-01b  
VDS_LVL  
R/W-1101b  
Table 17. OCP Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10  
TRETRY  
R/W  
0b  
0b = VDS_OCP and SEN_OCP retry time is 8 ms  
1b = VDS_OCP and SEN_OCP retry time is 50 µs  
9-8  
7-6  
5-4  
3-0  
DEAD_TIME  
R/W  
R/W  
R/W  
R/W  
01b  
00b = 50-ns dead time  
01b = 100-ns dead time  
10b = 200-ns dead time  
11b = 400-ns dead time  
OCP_MODE  
OCP_DEG  
VDS_LVL  
01b  
00b = Overcurrent causes a latched fault  
01b = Overcurrent causes an automatic retrying fault  
10b = Overcurrent is report only but no action is taken  
11b = Overcurrent is not reported and no action is taken  
10b  
00b = Overcurrent deglitch of 1 µs  
01b = Overcurrent deglitch of 2 µs  
10b = Overcurrent deglitch of 4 µs  
11b = Overcurrent deglitch of 8 µs  
1001b  
0000b = 0.06 V  
0001b = 0.07 V  
0010b = 0.08 V  
0011b = 0.09 V  
0100b = 0.1 V  
0101b = 0.2 V  
0110b = 0.3 V  
0111b = 0.4 V  
1000b = 0.5 V  
1001b = 0.6 V  
1010b = 0.7 V  
1011b = 0.8 V  
1100b = 0.9 V  
1101b = 1 V  
1110b = 1.5 V  
1111b = 2 V  
62  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
8.6.2.5 CSA Control Register (DRV8353 and DRV8353R Only) (address = 0x06h)  
The CSA control register is shown in Figure 61 and described in Table 18.  
Register access type: Read/Write  
This register is only available with the DRV8353x family of devices.  
Figure 61. CSA Control Register  
10  
9
8
7
6
5
4
3
2
1
0
CSA  
_FET  
VREF  
_DIV  
LS  
_REF  
CSA  
_GAIN  
DIS  
_SEN  
CSA  
_CAL_A  
CSA  
_CAL_B  
CSA  
_CAL_C  
SEN  
_LVL  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-10b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-11b  
Table 18. CSA Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10  
CSA_FET  
VREF_DIV  
LS_REF  
R/W  
0b  
0b = Sense amplifier positive input is SPx  
1b = Sense amplifier positive input is SHx (also automatically  
sets the LS_REF bit to 1)  
9
8
R/W  
R/W  
1b  
0b  
0b = Sense amplifier reference voltage is VREF (unidirectional  
mode)  
1b = Sense amplifier reference voltage is VREF divided by 2  
0b  
= VDS_OCP for the low-side MOSFET is measured  
across SHx to SPx  
1b = VDS_OCP for the low-side MOSFET is measured across  
SHx to SNx  
7-6  
CSA_GAIN  
R/W  
10b  
00b = 5-V/V shunt amplifier gain  
01b = 10-V/V shunt amplifier gain  
10b = 20-V/V shunt amplifier gain  
11b = 40-V/V shunt amplifier gain  
5
4
DIS_SEN  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
11b  
0b = Sense overcurrent fault is enabled  
1b = Sense overcurrent fault is disabled  
CSA_CAL_A  
CSA_CAL_B  
CSA_CAL_C  
SEN_LVL  
0b = Normal sense amplifier A operation  
1b = Short inputs to sense amplifier A for offset calibration  
3
0b = Normal sense amplifier B operation  
1b = Short inputs to sense amplifier B for offset calibration  
2
0b = Normal sense amplifier C operation  
1b = Short inputs to sense amplifier C for offset calibration  
1-0  
00b = Sense OCP 0.25 V  
01b = Sense OCP 0.5 V  
10b = Sense OCP 0.75 V  
11b = Sense OCP 1 V  
Copyright © 2018–2019, Texas Instruments Incorporated  
63  
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
8.6.2.6 Driver Configuration Register (DRV8353 and DRV8353R Only) (address = 0x07h)  
The driver configuration register is shown in Figure 62 and described in Table 19.  
Register access type: Read/Write  
This register is only available with the DRV8353 and DRV8353R devices.  
Figure 62. Driver Configuration Register  
10  
9
8
7
6
5
4
3
2
1
0
CAL  
_MODE  
Reserved  
R/W-000 0000 000b  
R/W-0b  
Table 19. Driver Configuration Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
10-1  
Reserved  
R/W  
000 0000 Reserved  
000b  
0
CAL_MODE  
R/W  
0b  
0b = Amplifier calibration operates in manual mode  
1b = Amplifier calibration uses internal auto calibration routine  
64  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DRV835x family of devices are primarily used in three-phase brushless DC motor control applications. The  
design procedures in the Typical Application section highlight how to use and configure the DRV835x family of  
devices.  
9.2 Typical Application  
9.2.1 Primary Application  
The DRV8353R is shown being used for a single supply, three-phase BLDC motor drive with individual half-  
bridge current sense in this application example.  
版权 © 2018–2019, Texas Instruments Incorporated  
65  
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
Typical Application (接下页)  
LOUT  
VCC  
VM  
DOUT  
VM  
CIN  
ROUT  
RFB1  
1 F  
COUT  
RFB2  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
GND  
VGLS  
CPL  
CPH  
VM  
INHB  
INLA  
1 F  
2
3
INHA  
47 nF  
4
ENABLE  
nSCS  
SCLK  
SDI  
VM  
5
0.1 F  
1 F  
6
VDRAIN  
VCP  
Thermal  
Pad  
VCC  
1 k  
7
VCC  
10 kꢀ  
8
GHA  
GHA  
SHA  
SDO  
9
SHA  
GLA  
SPA  
SNA  
nFAULT  
AGND  
VREF  
SOA  
10  
11  
12  
GLA  
VCC  
1 F  
SPA  
SNA  
VM  
CBULK  
VM  
VM  
VM  
VM  
CBULK  
CBYP  
CBYP  
CBYP  
GHA  
GHB  
SHB  
GHC  
SHC  
SHA  
MOTA  
MOTB  
MOTC  
GLA  
SPA  
GLB  
SPB  
GLC  
SPC  
R
R
R
SENC  
SENA  
SENB  
SNA  
SNB  
SNC  
63. Primary Application Schematic  
66  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
Typical Application (接下页)  
9.2.1.1 Design Requirements  
20 lists the example input parameters for the system design.  
20. Design Parameters  
EXAMPLE DESIGN PARAMETER  
Power supply voltage  
REFERENCE  
EXAMPLE VALUE  
48 V  
VVM, VVDRAIN, VVIN  
MOSFET part number  
MOSFET  
Qg  
CSD19535KCS  
78 nC (typical) at VVGS = 10 V  
13 nC (typical)  
100 to 300 ns  
50 to 150 ns  
45 kHz  
MOSFET total gate charge  
MOSFET gate to drain charge  
Target output rise time  
Qgd  
tr  
Target output fall time  
tf  
PWM frequency  
ƒPWM  
VVCC  
IVCC  
Imax  
Buck regulator output voltage  
Buck regulator output current  
Maximum motor current  
ADC reference voltage  
3.3 V  
100 mA  
100 A  
VVREF  
ISENSE  
IRMS  
PSENSE  
TA  
3.3 V  
Winding sense current range  
Motor RMS current  
–40 A to +40 A  
28.3 A  
Sense resistor power rating  
System ambient temperature  
3 W  
–20°C to +60°C  
9.2.1.2 Detailed Design Procedure  
21 lists the recommended values of the external components for the gate driver. 22 lists the recommended  
values of the external components for the buck regulator.  
21. DRV835x Gate-Driver External Components  
COMPONENTS  
CVM1  
PIN 1  
VM  
PIN 2  
GND  
RECOMMENDED  
X5R or X7R, 0.1-µF, VM-rated capacitor  
10 µF, VM-rated capacitor  
X5R or X7R, 1-µF, 16-V capacitor  
X5R or X7R, 1-µF, 16-V capacitor  
X5R or X7R, 47-nF, VDRAIN-rated capacitor  
X5R or X7R, 1-µF, 6.3-V capacitor  
Pullup resistor  
CVM2  
VM  
GND  
CVCP  
VCP  
VM  
CVGLS  
VGLS  
CPH  
GND  
CSW  
CPL  
CDVDD  
RnFAULT  
RSDO  
DVDD  
VCC(1)  
VCC(1)  
IDRIVE  
VDS  
DGND  
nFAULT  
SDO  
Pullup resistor  
RIDRIVE  
RVDS  
RMODE  
RGAIN  
GND or DVDD  
GND or DVDD  
GND or DVDD  
GND or DVDD  
GND or DGND  
SNA and GND  
SNB and GND  
SNC and GND  
DRV835x hardware interface  
DRV835x hardware interface  
DRV835x hardware interface  
DRV835x hardware interface  
Optional capacitor rated for VREF  
Sense shunt resistor  
MODE  
GAIN  
VREF  
SPA  
CVREF  
RASENSE  
RBSENSE  
RCSENSE  
SPB  
Sense shunt resistor  
SPC  
Sense shunt resistor  
(1) VCC is not a pin on the DRV835x family of devices, but a VCC supply voltage pullup is required for the open-drain output nFAULT and  
SDO. These pins can also be pulled up to DVDD.  
版权 © 2018–2019, Texas Instruments Incorporated  
67  
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
22. DRV835xR Buck Regulator External Components  
COMPONENT  
PIN 1  
VIN  
PIN 2  
GND  
SW  
RECOMMENDED  
(1)  
CIN  
X5R or X7R, VIN-rated capacitor  
X5R or X7R, 0.01-µF, 16-V rated capacitor  
X5R or X7R, 0.47-µF, 16-V rated capacitor  
Schottky diode  
(1)  
CBST  
BST  
(1)  
CVCC  
VCC  
SW  
GND  
GND  
OUT(2)  
GND  
GND  
FB  
(1)  
DSW  
(1)  
LSW  
SW  
Output filter inductor  
(1)  
COUT  
OUT(2)  
OUT(2)  
OUT(2)  
FB  
X5R or X7R, OUT-rated capacitor  
Output ripple resistor  
(1)  
ROUT  
(1)  
RFB1  
Resistor divider to set buck output voltage  
(1)  
RFB2  
GND  
(1) For detailed design procedures, refer to the LM5008A 100-V 350-mA Constant On-Time Buck Switching Regulator data sheet.  
(2) OUT is not a pin on the DRV8350R and DRV8353R devices, but the regulated output voltage of the buck regulator after the output  
inductor.  
9.2.1.2.1 External MOSFET Support  
The DRV835x family of devices MOSFET support is based on the MOSFET gate charge, VCP charge-pump  
capacity, VGLS regulator capacity, and output PWM switching frequency. For a quick calculation of MOSFET  
driving capacity, use 公式 11 and 公式 12 for three phase BLDC motor applications.  
Trapezoidal 120° Commutation: IVCP/VGLS > Qg × ƒPWM  
Sinusoidal 180° Commutation: IVCP/VGLS > 3 × Qg × ƒPWM  
(11)  
where  
ƒPWM is the maximum desired PWM switching frequency.  
Qg is the MOSFET total gate charge  
IVCP/VGLS is the charge pump or low-side regulator capacity, dependent on the VM pin voltage.  
The MOSFET multiplier based on the commutation control method, may vary based on implementation.  
(12)  
9.2.1.2.1.1 MOSFET Example  
If a system is using VVM = 48 V (IVCP = 25 mA) and a maximum PWM switching frequency of 45 kHz, then the  
VCP charge-pump and VGLS regulator can support MOSFETs using trapezoidal commutation with a Qg < 556  
nC, and MOSFETs using sinusoidal commutation with a Qg < 185 nC.  
9.2.1.2.2 IDRIVE Configuration  
The gate drive current strength, IDRIVE, is selected based on the gate-to-drain charge of the external MOSFETs  
and the target rise and fall times at the outputs. If IDRIVE is selected to be too low for a given MOSFET, then the  
MOSFET may not turn on completely within the tDRIVE time and a gate drive fault may be asserted. Additionally,  
slow rise and fall times will lead to higher switching power losses. TI recommends adjusting these values in  
system with the required external MOSFETs and motor to determine the best possible setting for any application.  
The IDRIVEP and IDRIVEN current for both the low-side and high-side MOSFETs are independently adjustable on  
SPI devices through the SPI registers. On hardware interface devices, both source and sink settings are selected  
at the same time on the IDRIVE pin.  
For MOSFETs with a known gate-to-drain charge Qgd, desired rise time (tr), and a desired fall time (tf), use 公式  
13 and 公式 14 to calculate the value of IDRIVEP and IDRIVEN (respectively).  
Qgd  
IDRIVEP  
>
tr  
Qgd  
tf  
(13)  
(14)  
IDRIVEN  
>
9.2.1.2.2.1 IDRIVE Example  
Use 公式 15 and 公式 16 to calculate the value of IDRIVEP1 and IDRIVEP2 (respectively) for a gate to drain charge of  
13 nC and a rise time from 100 to 300 ns.  
68  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
13 nC  
100 ns  
13 nC  
300 ns  
IDRIVEP1  
=
= 130 mA  
= 43 mA  
(15)  
(16)  
IDRIVEP2  
=
Select a value for IDRIVEP that is between 43 mA and 130 mA. For this example, the value of IDRIVEP was selected  
as 100-mA source.  
Use 公式 17 and 公式 18 to calculate the value of IDRIVEN1 and IDRIVEN2 (respectively) for a gate to drain charge of  
13 nC and a fall time from 50 to 150 ns.  
13 nC  
IDRIVEN1  
=
= 260 mA  
= 87 mA  
50 ns  
13 nC  
150 ns  
(17)  
(18)  
IDRIVEN2  
=
Select a value for IDRIVEN that is between 87 mA and 260 mA. For this example, the value of IDRIVEN was selected  
as 200-mA sink.  
9.2.1.2.3 VDS Overcurrent Monitor Configuration  
The VDS monitors are configured based on the worst-case motor current and the RDS(on) of the external  
MOSFETs as shown in 公式 19.  
VDS_OCP > Imax ì RDS(on)max  
(19)  
9.2.1.2.3.1 VDS Overcurrent Example  
The goal of this example is to set the VDS monitor to trip at a current greater than 75 A. According to the  
CSD19535KCS 100 V N-Channel NexFET™ Power MOSFET data sheet, the RDS(on) value is 2.2 times higher at  
175°C, and the maximum RDS(on) value at a VGS of 10 V is 3.6 mΩ at TA = 25°C. From these values, the  
approximate worst-case value of RDS(on) is 2.2 × 3.6 mΩ = 7.92 mΩ.  
Using 公式 19 with a value of 7.92 mΩ for RDS(on) and a worst-case motor current of 75 A, 公式 20 shows the  
calculated desired value of the VDS overcurrent monitors.  
VDS _ OCP > 75 A ì 7.92 mW  
VDS _ OCP > 0.594 V  
(20)  
For this example, the value of VDS_OCP was selected as 0.6 V.  
The SPI devices allow for adjustment of the deglitch time for the VDS overcurrent monitor. The deglitch time can  
be set to 1 µs, 2 µs, 4 µs, or 8 µs.  
9.2.1.2.4 Sense-Amplifier Bidirectional Configuration (DRV8353 and DRV8353R)  
The sense amplifier gain on the DRV8353 and DRV8353R devices and sense resistor value are selected based  
on the target current range, VREF reference voltage, sense-resistor power rating, and operating temperature  
range. In bidirectional operation of the sense amplifier, the dynamic range at the output is approximately  
calculated as shown in 公式 21.  
VVREF  
VO = V  
- 0.25 V -  
(
)
VREF  
2
(21)  
Use 公式 22 to calculate the approximate value of the selected sense resistor with VO calculated using 公式 21.  
VO  
2
R =  
PSENSE > IRMS ì R  
AV ì I  
(22)  
From 公式 21 and 公式 22, select a target gain setting based on the power rating of the target sense resistor.  
9.2.1.2.4.1 Sense-Amplifier Example  
In this system example, the value of VREF voltage is 3.3 V with a sense current from –40 to +40 A. The linear  
range of the SOx output is 0.25 V to VVREF – 0.25 V (from the VLINEAR specification). The differential range of the  
sense amplifier input is –0.3 to +0.3 V (VDIFF).  
版权 © 2018–2019, Texas Instruments Incorporated  
69  
 
 
 
 
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
3.3 V  
V = 3.3 V - 0.25 V -  
= 1.4 V  
(
)
O
2
(23)  
(24)  
(25)  
1.4 V  
AV ì 40 A  
1.4 V  
AV ì 40 A  
R =  
2 W > 28.32 ì R ç R < 2.5 mW  
2.5 mW >  
ç AV > 14  
Therefore, the gain setting must be selected as 20 V/V or 40 V/V and the value of the sense resistor must be  
less than 2.5 mΩ to meet the power requirement for the sense resistor. For this example, the gain setting was  
selected as 20 V/V. The value of the resistor and worst case current can be verified that R < 2.5 mΩ and Imax  
=
40 A does not violate the differential range specification of the sense amplifier input (VSPxD).  
9.2.1.2.5 Single Supply Power Dissipation  
Design care must be taken to make sure that the thermal ratings of the DRV835x are not violated during normal  
operation of the device. The is especially critical in higher voltage and higher ambient operation applications  
where power dissipation or the device ambient temperature are increased.  
To determine the temperature of the device in single supply operation, first the power internal power dissipation  
must be calculated. The internal power dissipation has four primary components:  
VCP charge pump power dissipation (PVCP  
VGLS low-side regulator power dissipation (PVGLS  
VM device nominal power dissipation (PVM  
VIN buck regulator power dissipation (PBUCK  
)
)
)
)
The values of PVCP and PVGLS can be approximated by referring to External MOSFET Support to first determine  
IVCP and IVGLS and then referring to 公式 26 and 公式 27.  
PVCP = IVCP × (VVM + VVDRAIN  
)
(26)  
(27)  
PVGLS = IVGLS × VVM  
The value of PVM can be calculated by referring to the data sheet parameter for IVM current and 公式 28.  
PVM = IVM × VVM  
(28)  
PBUCK = (PO / η) - PO  
where  
PO = VVCC × IVCC  
(30)  
(30)  
The value of PBUCK can be calculated with the buck output voltage (VVCC), buck output current (IVCC), and by  
referring to the typical characteristic curve for efficiency (η) in the LM5008A data sheet.  
The total power dissipation is then calculated by summing the four components as shown in 公式 31.  
Ptot = PVCP + PVGLS + PVM + PBUCK  
(31)  
(32)  
Lastly, the device junction temperature can be estimate by referring to Thermal Information and 公式 32.  
TJmax = TAmax + (RθJA × Ptot)  
The information in Thermal Information is based off of a standardized test metric for package and PCB thermal  
dissipation. The actual values may vary based on the actual PCB design used in the application.  
9.2.1.2.6 Single Supply Power Dissipation Example  
In this application example the device is configured for single supply operation. This configuration requires only  
one power supply for the DRV835x but comes at the tradeoff of increased internal power dissipation. The  
junction temperature is estimated in the example below.  
Use 公式 11 to calculate the value of IVCP and IVGLS for a MOSFET gate charge of 78 nC, all 3 high-side and 3  
low-side MOSFETs switching, and a switching frequency of 45 kHz.  
70  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
IVCP/VGLS = 78 nC × 3 × 45 kHz = 10.5 mA  
(33)  
Use 公式 26, 公式 27, 公式 28, 公式 29, and 公式 31 to calculate the value of Ptot for VVM = VVDRAIN = VVIN = 48  
V, IVM = 9.5 mA, IVCP = 10.5 mA, IVGLS = 10.5 mA, VVCC = 3.3 V, IVCC = 100 mA, and η = 86 %.  
PVCP = 10.5 mA × (48 V + 48 V) = 1 W  
PVGLS = 10.5 mA × 48 V = 0.5 W  
(34)  
(35)  
(36)  
(37)  
(38)  
PVM = 9.5 mA × 48 V = 0.5 W  
PBUCK = [(3.3 V × 100 mA) / 0.86] – (3.3 V × 100 mA) = 0.054 W  
Ptot = 1 W + 0.5 W + 0.5 W + 0.054 = 2.054 W  
Lastly, to estimate the device junction temperature during operation, use 公式 32 to calculate the value of TJmax  
for TAmax = 60°C, RθJA = 26.6°C/W for the RGZ package, and Ptot = 2.054 W. Again, please note that the RθJA is  
highly dependent on the PCB design used in the actual application and should be verified. For more information  
about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
TJmax = 60°C + (26.6°C/W × 2.054 W) = 115°C  
(39)  
As shown in this example, the device is within its operational limits, but is operating almost to its maximum  
operational junction temperature. Design care should be taken in the single supply configuration to correctly  
manage the power dissipation of the device.  
9.2.1.2.7 Buck Regulator Configuration (DRV8350R and DRV8353R)  
For a detailed design procedure and information on selecting the correct buck regulator external components,  
refer to LM5008A 100-V 350-mA Constant On-Time Buck Switching Regulator.  
9.2.1.3 Application Curves  
64. Gate Driver Operation 30% Duty Cycle  
65. Gate Driver Operation 90% Duty Cycle  
版权 © 2018–2019, Texas Instruments Incorporated  
71  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
66. IDRIVE Minimum Setting Positive Current  
67. IDRIVE Minimum Setting Negative Current  
68. IDRIVE 300-mA and 600-mA Setting Positive Current  
69. IDRIVE 300-mA and 600-mA Setting Negative  
Current  
70. IDRIVE Maximum Setting Positive Current  
71. IDRIVE Maximum Setting Negative Current  
72  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
72. FOC Motor Commutation  
版权 © 2018–2019, Texas Instruments Incorporated  
73  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
9.2.2 Alternative Application  
In this application, the DRV8353R is configured to use one sense amplifier in unidirectional mode for a summing  
current sense scheme often used in trapezoidal or hall-based BLDC commutation control. Additionally, the device  
is configured in dual supply mode using the integrated buck regulator for the VM gate drive voltage supply to  
decrease internal power dissipation.  
LOUT  
VM  
VM  
VDRAIN  
VDRAIN  
CIN  
External  
LDO  
ROUT  
RFB1  
DOUT  
VCC  
1 F  
CLIN  
CLOUT  
COUT  
RFB2  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
GND  
VGLS  
CPL  
CPH  
VM  
INHB  
INLA  
1 F  
2
3
INHA  
47 nF  
4
ENABLE  
nSCS  
SCLK  
SDI  
VM  
5
VDRAIN  
1 F  
0.1 F  
6
VDRAIN  
VCP  
Thermal  
VCC  
7
Pad  
1 k  
VCC  
10 kꢀ  
8
GHA  
SHA  
GLA  
SPA  
SNA  
GHA  
SHA  
SDO  
9
nFAULT  
AGND  
VREF  
SOA  
10  
11  
12  
GLA  
VCC  
1 F  
SPA  
SNA  
VDRAIN  
CBULK  
VDRAIN  
VDRAIN  
VDRAIN  
VDRAIN  
CBULK  
CBYP  
CBYP  
CBYP  
GHA  
GHB  
SHB  
GHC  
SHC  
SHA  
MOTA  
MOTB  
MOTC  
GLA  
SPA  
GLB  
SPB  
GLC  
SPC  
R
SEN  
SNA  
73. Alternative Application Schematic  
74  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
9.2.2.1 Design Requirements  
23 lists the example design input parameters for system design.  
23. Design Parameters  
EXAMPLE DESIGN PARAMETER  
Power supply voltage  
REFERENCE  
VVM  
EXAMPLE VALUE  
12 V  
Buck supply voltage  
VVIN  
48 V  
MOSFET drain voltage  
MOSFET part number  
VVDRAIN  
MOSFET  
Qg  
48 V  
CSD19535KCS  
78 nC  
MOSFET total gate charge  
PWM frequency  
fPWM  
20 kHz  
Buck regulator output voltage  
Buck regulator output current  
ADC reference voltage  
Winding sense current range  
Motor RMS current  
VVCC  
12 V  
IVCC  
150 mA  
3.3 V  
VVREF  
ISENSE  
IRMS  
0 to 40 A  
28.3 A  
Sense-resistor power rating  
System ambient temperature  
PSENSE  
TA  
3 W  
–20°C to +105°C  
9.2.2.2 Detailed Design Procedure  
9.2.2.2.1 Sense Amplifier Unidirectional Configuration  
The sense amplifiers are configured to be unidirectional through the registers on SPI devices by writing a 0 to the  
VREF_DIV bit.  
The sense-amplifier gain and sense resistor values are selected based on the target current range, VREF,  
sense-resistor power rating, and operating temperature range. In unidirectional operation of the sense amplifier,  
use 公式 40 to calculate the approximate value of the dynamic range at the output.  
V = V  
- 0.25 V - 0.25 V = VVREF - 0.5 V  
(
)
O
VREF  
(40)  
Use 公式 41 to calculate the approximate value of the selected sense resistor.  
VO  
2
R =  
PSENSE > IRMS ì R  
AV ì I  
where  
VO = VVREF - 0.5 V  
(41)  
From 公式 40 and 公式 41, select a target gain setting based on the power rating of a target sense resistor.  
9.2.2.2.1.1 Sense-Amplifier Example  
In this system example, the value of VVREF is 3.3 V with a sense current from 0 to 40 A. The linear range of the  
SOx output for the DRV8353x device is 0.25 V to VVREF – 0.25 V (from the VLINEAR specification). The differential  
range of the sense-amplifier input is –0.3 to +0.3 V (VDIFF).  
VO = 3.3 V - 0.5 V = 2.8 V  
(42)  
(43)  
(44)  
2.8 V  
R =  
3 W > 28.32 ì R ç R < 3.75 mW  
AV ì 40 A  
2.8 V  
3.75 mW >  
ç AV > 18.7  
AV ì 40 A  
Therefore, the gain setting must be selected as 20 V/V or 40 V/V and the value of the sense resistor must be  
less than 3.75 mΩ to meet the power requirement for the sense resistor. For this example, the gain setting was  
selected as 20 V/V. The value of the resistor and worst-case current can be verified that R < 3.75 mΩ and Imax  
=
40 A does not violate the differential range specification of the sense amplifier input (VSPxD).  
版权 © 2018–2019, Texas Instruments Incorporated  
75  
 
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
9.2.2.2.1.2 Dual Supply Power Dissipation  
Design care must be taken to make sure that the thermal ratings of the DRV835x are not violated during normal  
operation of the device. The is especially critical in higher voltage and higher ambient operation applications  
where power dissipation or the device ambient temperature are increased.  
To determine the temperature of the device in dual supply operation, first the internal power dissipation must be  
calculated. The internal power dissipation has four primary components:  
VCP Charge pump power dissipation (PVCP  
VGLS low-side regulator power dissipation (PVGLS  
VM device nominal power dissipation (PVM  
VIN buck regulator power dissipation (PBUCK  
)
)
)
)
The value of PVCP and PVGLS can be approximated by referring to External MOSFET Support to first determine  
IVCP and IVGLS and then referring to 公式 45 and 公式 46.  
PVCP = IVCP × (VVM + VVDRAIN  
)
(45)  
(46)  
PVGLS = IVGLS × VVM  
The value of PVM can be calculated by referring to the datasheet parameter for IVM current and 公式 47.  
PVM = IVM × VVM  
(47)  
PBUCK = (PO / η) – PO  
where  
PO = VVCC × IVCC  
(49)  
(49)  
The value of PBUCK can be calculated with the buck output voltage (VVCC), buck output current (IVCC), and by  
referring to the typical characteristic curve for efficiency (η) in the LM5008A data sheet.  
The total power dissipation is then calculated by summing the four components as shown in 公式 50.  
Ptot = PVCP + PVGLS + PVM + PBUCK  
(50)  
(51)  
Lastly, the device junction temperature can be estimate by referring to the Thermal Information and 公式 51.  
TJmax = TAmax + (RθJA × Ptot)  
Note that the information in the Thermal Information is based off of a standardized test metric for package and  
PCB thermal dissipation. The actual values may vary based on the actual PCB design used in the application.  
9.2.2.2.1.3 Dual Supply Power Dissipation Example  
In this application example the device is configured for dual supply operation. dual supply operation helps to  
decrease the internal power dissipation by providing the gate driver with a lower supply voltage. This can be  
derived from the internal buck regulator or an external power supply. The junction temperature is estimated in the  
example below.  
Use 公式 11 to calculate the value of IVCP and IVGLS for a MOSFET gate charge of 78 nC, 1 high-side and 1 low-  
side MOSFETs switch at a time, and a switching frequency of 20 kHz.  
IVCP/VGLS = 78 nC × 1 × 20 kHz = 1.56 mA  
(52)  
Use equation 公式 45, 公式 46, 公式 47, 公式 48, and 公式 50 to calculate the value of Ptot for VVM = 12 V,  
VVDRAIN = 48 V, VVIN = 48 V, IVM = 9.5 mA, IVCP = 1.56 mA, IVGLS = 1.56 mA, VVCC = 12 V, IVCC = 150 mA, and η =  
86 %.  
PVCP = 1.56 mA × (12 V + 48 V) = 0.1 W  
PVGLS = 1.56 mA × 12 V = 0.02 W  
(53)  
(54)  
(55)  
(56)  
(57)  
PVM = 9.5 mA × 12 V = 0.1 W  
PBUCK = [(12 V × 150 mA) / 0.86] – (12 V × 150 mA) = 0.29 W  
Ptot = 0.1 W + 0.02 W + 0.1 W + 0.29 = 0.51 W  
76  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
 
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
Lastly, to estimate the device junction temperature during operation, use 公式 51 to calculate the value of TJmax  
for TAmax = 105°C, RθJA = 26.6°C/W for the RGZ package, and Ptot = 0.51 W. Again, note that the RθJA is highly  
dependent on the PCB design used in the actual application and should be verified. For more information about  
traditional and new thermal metrics, refer to the Semiconductor and IC Package Thermal Metrics application  
report.  
TJmax = 105°C + (26.6°C/W × 0.51 W) = 119°C  
(58)  
10 Power Supply Recommendations  
The DRV835x family of devices are designed to operate from an input voltage supply (VM) range between 9 V  
and 75 V. A 0.1-µF ceramic capacitor rated for VM must be placed as near to the device as possible. In addition,  
a bulk capacitor must be included on the VM pin but can be shared with the bulk bypass capacitance for the  
external power MOSFETs. Additional bulk capacitance is required to bypass the external half-bridge MOSFETs  
and should be sized according to the application requirements.  
10.1 Bulk Capacitance Sizing  
Having appropriate local bulk capacitance is an important factor in motor drive system design. It is usually  
beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size. The  
amount of local capacitance depends on a variety of factors including:  
The highest current required by the motor system  
The power supply's type, capacitance, and ability to source current  
The amount of parasitic inductance between the power supply and motor system  
The acceptable supply voltage ripple  
Type of motor (brushed DC, brushless DC, stepper)  
The motor startup and braking methods  
The inductance between the power supply and motor drive system will limit the rate current can change from the  
power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or  
dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage  
stays stable and high current can be quickly supplied.  
The data sheet provides a recommended minimum value, but system level testing is required to determine the  
appropriate sized bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
+
Motor Driver  
œ
GND  
Local  
Bulk Capacitor  
IC Bypass  
Capacitor  
74. Motor Drive Supply Parasitics Example  
版权 © 2018–2019, Texas Instruments Incorporated  
77  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Bypass the VM pin to the GND pin using a low-ESR ceramic bypass capacitor with a recommended value of 0.1  
µF. Place this capacitor as near to the VM pin as possible with a thick trace or ground plane connected to the  
GND pin. Additionally, bypass the VM pin using a bulk capacitor rated for VM. This component can be  
electrolytic. This capacitance must be at least 10 µF.  
Additional bulk capacitance is required to bypass the high current path on the external MOSFETs. This bulk  
capacitance should be placed such that it minimizes the length of any high current paths through the external  
MOSFETs. The connecting metal traces should be as wide as possible, with numerous vias connecting PCB  
layers. These practices minimize inductance and allow the bulk capacitor to deliver high current.  
Place a low-ESR ceramic capacitor between the CPL and CPH pins. This capacitor should be 47 nF, rated for  
VDRAIN, and be of type X5R or X7R. Additionally, place a low-ESR ceramic capacitor between the VCP and  
VDRAIN pins and VGLS and GNDs. These capacitors should be 1 µF, rated for 16 V, and be of type X5R or  
X7R.  
Bypass the DVDD pin to the GND/DGND pin with a 1-µF low-ESR ceramic capacitor rated for 6.3 V and of type  
X5R or X7R. Place this capacitor as near to the pin as possible and minimize the path from the capacitor to the  
GND/DGND pin.  
The VDRAIN pin can be shorted directly to the VM pin for single supply application configurations. However, if a  
significant distance is between the device and the external MOSFETs, use a dedicated trace to connect to the  
common point of the drains of the high-side external MOSFETs. Do not connect the SLx pins directly to GND.  
Instead, use dedicated traces to connect these pins to the sources of the low-side external MOSFETs. These  
recommendations allow for more accurate VDS sensing of the external MOSFETs for overcurrent detection.  
Minimize the loop length for the high-side and low-side gate drivers. The high-side loop is from the GHx pin of  
the device to the high-side power MOSFET gate, then follows the high-side MOSFET source back to the SHx  
pin. The low-side loop is from the GLx pin of the device to the low-side power MOSFET gate, then follows the  
low-side MOSFET source back to the SPx/SLx pins.  
11.1.1 Buck-Regulator Layout Guidelines  
Layout is a critical portion of good power supply design. The following guidelines will help users design a PCB  
with the best power conversion performance, thermal performance, and minimized generation of unwanted EMI:  
Put the feedback network resistors near the FB pin and away from the inductor to minimize coupling noise  
into the feedback pin.  
Put the input bypass capacitor near the VIN pin to decrease copper trace resistance which effects input  
voltage ripple of the device.  
Put the inductor near the SW pin to decrease magnetic and electrostatic noise.  
Put the output capacitor near the junction of the inductor and the diode. The inductor, diode, and COUT trace  
should be as short as possible to decrease conducted and radiated noise and increase overall efficiency.  
Make the ground connection for the diode, CVIN, and COUT as small as possible and tie it to the system  
ground plane in only one spot (preferably at the COUT ground point) to minimize conducted noise in the  
system ground plane.  
For more detail on switching power supply layout considerations refer to the AN-1149 Layout Guidelines for  
Switching Power Supplies application report.  
78  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
11.2 Layout Example  
S
S
S
G
D
D
D
D
D
D
D
D
G
S
S
S
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
SOB  
SOC  
SNC  
SPC  
GLC  
SHC  
GHC  
GHB  
SHB  
GLB  
SPB  
SNB  
INLB  
INHC  
INLC  
DVDD  
DGND  
SW  
D
D
D
D
G
S
S
S
Thermal Pad  
VIN  
VCC  
BST  
RCL  
RT/SD  
FB  
VOUT  
S
S
S
G
D
D
D
D
S
S
S
G
D
D
D
D
D
D
D
D
G
S
S
S
75. Layout Example  
版权 © 2018–2019, Texas Instruments Incorporated  
79  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 器件命名规则  
下图显示了说明完整器件名称的图例:  
DRV83 (5) (3) (R) (S) (RGZ) (R)  
Prefix  
DRV83 œ Three Phase Brushless DC  
Tape and Reel  
R œ Tape and Reel  
T œ Small Tape and Reel  
Package  
RTV œ 5 × 5 × 0.75 mm QFN  
RTA œ 6 x 6 × 0.75 mm QFN  
RGZ œ 7 × 7 × 0.9 mm QFN  
Series  
5 œ 100 V device  
Interface  
S œ SPI interface  
H œ Hardware interface  
Sense amplifiers  
0 œ No sense amplifiers  
3 œ 3x sense amplifiers  
Buck Regulator  
[blank] œ No buck regulator  
R œ Buck regulator  
12.2 文档支持  
12.2.1 相关文档  
有关相关文档,请参阅:  
德州仪器 (TI)DRV8353Rx-EVM 用户指南》  
德州仪器 (TI)DRV8353Rx-EVM GUI 用户指南》  
德州仪器 (TI)DRV8353Rx-EVM InstaSPIN™ 软件快速入门指南》  
德州仪器 (TI)LM5008A 100V 350mA 恒定导通时间降压开关稳压器》 产品说明书  
德州仪器 (TI)CSD19535KCS 100V N 通道 NexFET™ 功率 MOSFET产品说明书  
德州仪器 (TI)TI 电机栅极驱动器的 IDRIVE TDRIVE 认知》应用报告  
德州仪器 (TI)《采用 TI 智能栅极驱动技术进行电机驱动保护》TI 技术手册  
德州仪器 (TI)《采用 TI 智能栅极驱动技术缩减电机驱动 BOM PCB 面积》TI 技术手册  
德州仪器 (TI)《采用 TI 智能栅极驱动技术降低 EMI 辐射发射》TI 技术手册  
德州仪器 (TI)《采用 BLDC 电机的高效真空吸尘器硬件设计注意事项》  
德州仪器 (TI)《采用 BLDC 电机的电动自行车硬件设计注意事项》  
德州仪器 (TI)《工业电机驱动解决方案指南》  
德州仪器 (TI)《开关电源布局指南》应用报告  
德州仪器 (TI)QFN/SON PCB 连接》应用报告  
德州仪器 (TI)《采用 MSP430™ 的传感器式三相 BLDC 电机控制》应用报告  
德州仪器 (TI)AN-1149 开关电源布局指南》应用报告  
80  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8350, DRV8350R  
DRV8353, DRV8353R  
www.ti.com.cn  
ZHCSIN3A AUGUST 2018REVISED JUNE 2019  
12.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
24. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
DRV8350  
DRV8350R  
DRV8353  
DRV8353R  
12.4 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.5 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.6 商标  
NexFET, InstaSPIN, MSP430, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018–2019, Texas Instruments Incorporated  
81  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8350HRTVR  
DRV8350HRTVT  
DRV8350RHRGZR  
DRV8350RHRGZT  
DRV8350RSRGZR  
DRV8350RSRGZT  
DRV8350SRTVR  
DRV8350SRTVT  
DRV8353HRTAR  
DRV8353HRTAT  
DRV8353RHRGZR  
DRV8353RHRGZT  
DRV8353RSRGZR  
DRV8353RSRGZT  
DRV8353SRTAR  
DRV8353SRTAT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
VQFN  
VQFN  
VQFN  
VQFN  
WQFN  
WQFN  
WQFN  
WQFN  
VQFN  
VQFN  
VQFN  
VQFN  
WQFN  
WQFN  
RTV  
RTV  
RGZ  
RGZ  
RGZ  
RGZ  
RTV  
RTV  
RTA  
RTA  
RGZ  
RGZ  
RGZ  
RGZ  
RTA  
RTA  
32  
32  
48  
48  
48  
48  
32  
32  
40  
40  
48  
48  
48  
48  
40  
40  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
DRV8350H  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAU  
DRV8350H  
DRV8350RH  
DRV8350RH  
DRV8350RS  
DRV8350RS  
DRV8350S  
DRV8350S  
DRV8353H  
DRV8353H  
DRV8353RH  
DRV8353RH  
DRV8353RS  
DRV8353RS  
DRV8353S  
DRV8353S  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jun-2022  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8350HRTVR  
DRV8350HRTVT  
DRV8350RHRGZR  
DRV8350RHRGZT  
DRV8350RSRGZR  
DRV8350RSRGZT  
DRV8350SRTVR  
DRV8350SRTVT  
DRV8353HRTAR  
DRV8353HRTAT  
DRV8353RHRGZR  
DRV8353RHRGZT  
DRV8353RSRGZR  
DRV8353RSRGZT  
DRV8353SRTAR  
DRV8353SRTAT  
WQFN  
WQFN  
VQFN  
VQFN  
VQFN  
VQFN  
WQFN  
WQFN  
WQFN  
WQFN  
VQFN  
VQFN  
VQFN  
VQFN  
WQFN  
WQFN  
RTV  
RTV  
RGZ  
RGZ  
RGZ  
RGZ  
RTV  
RTV  
RTA  
RTA  
RGZ  
RGZ  
RGZ  
RGZ  
RTA  
RTA  
32  
32  
48  
48  
48  
48  
32  
32  
40  
40  
48  
48  
48  
48  
40  
40  
3000  
250  
330.0  
180.0  
330.0  
330.0  
330.0  
330.0  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
330.0  
330.0  
330.0  
180.0  
12.4  
12.4  
16.4  
16.4  
16.4  
16.4  
12.4  
12.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
2500  
250  
7.25  
7.25  
7.25  
7.25  
5.3  
7.25  
7.25  
7.25  
7.25  
5.3  
12.0  
12.0  
12.0  
12.0  
8.0  
2500  
250  
3000  
250  
5.3  
5.3  
8.0  
2000  
250  
6.3  
6.3  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
6.3  
6.3  
2500  
250  
7.25  
7.25  
7.25  
7.25  
6.3  
7.25  
7.25  
7.25  
7.25  
6.3  
2500  
250  
2000  
250  
6.3  
6.3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV8350HRTVR  
DRV8350HRTVT  
DRV8350RHRGZR  
DRV8350RHRGZT  
DRV8350RSRGZR  
DRV8350RSRGZT  
DRV8350SRTVR  
DRV8350SRTVT  
DRV8353HRTAR  
DRV8353HRTAT  
DRV8353RHRGZR  
DRV8353RHRGZT  
DRV8353RSRGZR  
DRV8353RSRGZT  
DRV8353SRTAR  
DRV8353SRTAT  
WQFN  
WQFN  
VQFN  
VQFN  
VQFN  
VQFN  
WQFN  
WQFN  
WQFN  
WQFN  
VQFN  
VQFN  
VQFN  
VQFN  
WQFN  
WQFN  
RTV  
RTV  
RGZ  
RGZ  
RGZ  
RGZ  
RTV  
RTV  
RTA  
RTA  
RGZ  
RGZ  
RGZ  
RGZ  
RTA  
RTA  
32  
32  
48  
48  
48  
48  
32  
32  
40  
40  
48  
48  
48  
48  
40  
40  
3000  
250  
367.0  
210.0  
338.0  
338.0  
338.0  
338.0  
367.0  
210.0  
367.0  
210.0  
338.0  
338.0  
338.0  
338.0  
367.0  
210.0  
367.0  
185.0  
355.0  
355.0  
355.0  
355.0  
367.0  
185.0  
367.0  
185.0  
355.0  
355.0  
355.0  
355.0  
367.0  
185.0  
35.0  
35.0  
50.0  
50.0  
50.0  
50.0  
35.0  
35.0  
35.0  
35.0  
50.0  
50.0  
50.0  
50.0  
35.0  
35.0  
2500  
250  
2500  
250  
3000  
250  
2000  
250  
2500  
250  
2500  
250  
2000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
RGZ0048L  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.1  
6.9  
B
A
PIN 1 INDEX AREA  
0.5  
0.3  
7.1  
6.9  
0.30  
0.18  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
2X 5.5  
4.6 0.1  
(0.2) TYP  
EXPOSED  
13  
24  
THERMAL PAD  
44X 0.5  
12  
25  
4.975 0.1  
(0.188)  
PAD  
PKG  
2X  
49  
5.5  
0.30  
48X  
36  
0.18  
1
SEE TERMINAL  
DETAIL  
0.1  
C A B  
48  
37  
0.05  
SYMM  
PIN 1 ID  
(OPTIONAL)  
0.5  
0.3  
48X  
4223465/B 10/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGZ0048L  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(4.6)  
(0.74)  
(1.31)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
(1.45)  
TYP  
44X (0.5)  
(0.786)  
TYP  
49  
PKG  
(4.975)  
(0.188)  
PAD  
(6.8)  
(R0.05)  
TYP  
(
0.2) TYP  
VIA  
12  
25  
13  
24  
SYMM  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223465/B 10/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGZ0048L  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.48)  
TYP  
37  
48  
48X (0.6)  
1
36  
49  
48X (0.24)  
44X (0.5)  
(1.57)  
TYP  
(6.8)  
PKG  
PAD  
(0.188)  
9X  
(1.37)  
(R0.05) TYP  
METAL  
TYP  
12  
25  
13  
24  
9X (1.28)  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
69% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4223465/B 10/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RTA0040B  
A
6.1  
5.9  
B
PIN 1 INDEX AREA  
6.1  
5.9  
0.8 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 4.5  
4.15±0.1  
(0.2) TYP  
11  
20  
36X 0.5  
10  
21  
SYMM  
41  
2X  
4.5  
1
30  
0.28  
40X  
PIN1 IDENTIFICATION  
(OPTIONAL)  
0.16  
31  
40  
0.1  
C A B  
C
SYMM  
0.5  
0.3  
40X  
0.05  
4219112/A 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
RTA0040B  
PLASTIC QUAD FLATPACK- NO LEAD  
2X (5.8)  
2X (4.5)  
(
4.15)  
40  
31  
40X (0.6)  
40X (0.22)  
1
30  
36X (0.5)  
SYMM  
41  
2X 2X  
(4.5) (5.8)  
2X  
(0.685)  
2X  
(1.14)  
(R0.05) TYP  
10  
21  
12X (Ø0.2) VIA  
TYP  
11  
20  
2X (1.14)  
2X (0.685)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219112/A 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
RTA0040B  
PLASTIC QUAD FLATPACK- NO LEAD  
2X (5.8)  
2X (4.5)  
9X ( 1.17)  
40  
31  
40X (0.6)  
40X (0.22)  
1
30  
41  
36X (0.5)  
SYMM  
2X 2X  
(4.5) (5.8)  
2X  
(1.37)  
(R0.05) TYP  
10  
21  
EXPOSED  
METAL  
11  
20  
2X (1.37)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
71% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219112/A 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
RTV0032E  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.15  
4.85  
B
A
PIN 1 INDEX AREA  
5.15  
4.85  
SIDE WALL LEAD  
METAL THICKNESS  
DIM A  
0.8  
0.7  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(DIM A) TYP  
3.45 0.1  
(0.2) TYP  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
2X  
SYMM  
33  
3.5  
0.30  
32X  
0.18  
24  
0.1  
C A B  
1
0.05  
C
PIN 1 ID  
(OPTIONAL)  
32  
25  
SYMM  
0.5  
0.3  
32X  
4225196/A 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTV0032E  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.24)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225196/A 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTV0032E  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.24)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4225196/A 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY