DRV8434 [TI]

48V, 2.5A bipolar stepper motor driver with integrated current sensing and 1/256 microstepping;
DRV8434
型号: DRV8434
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

48V, 2.5A bipolar stepper motor driver with integrated current sensing and 1/256 microstepping

文件: 总55页 (文件大小:4088K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DRV8434  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
具有集成电流检测、1/256 微步进、STEP/DIR 接口和智能调优技术DRV8434  
步进电机驱动器  
DRV8434 采用内部电流检测架构无需再使用两个外  
部功率检测电阻可缩小 PCB 面积并降低系统成本。  
该器件使用内PWM 电流调节方案该方案能在智能  
调优、慢速和混合衰减选项之间进行选择。智能调优可  
通过自动调节实现出色的电流调节性能并对电机变化  
和老化效应进行补偿和减少电机的可闻噪声。  
1 特性  
PWM 微步进电机驱动器  
– 简单STEP/DIR 接口  
– 最1/256 的微步进分度器  
• 集成电流检测功能  
– 无需检测电阻  
±4% 满量程电流精度  
借助简单的 STEP/DIR 接口可通过外部控制器管理  
步进电机的方向和步进速率。这款器件可配置为多种步  
进模式从全步进模式到 1/256 微步进模式皆可。该  
器件通过专用的 nSLEEP 引脚提供低功耗睡眠模式。  
提供的保护特性包括电源欠压、电荷泵故障、过流、  
短路、开路负载和过热保护。故障状态通过 nFAULT  
引脚指示。  
• 智能调优、慢速和混合衰减选项  
• 工作电源电压范围4.5V 48V  
RDS(ON)24V25°C 330mΩHS + LS  
• 高电流容量2.5A 满量程、1.8A 均方根电流  
• 与以下器件引脚对引脚兼容:  
DRV842633V900mΩHS + LS  
DRV843648V900mΩHS + LS  
DRV8424/2533V330/550mΩHS + LS  
• 可配置关断时PWM 斩波  
器件信息  
器件型号(1)  
封装尺寸标称值)  
9.7mm x 4.4mm  
4mm x 4mm  
封装  
DRV8434PWPR  
DRV8434RGER  
HTSSOP (28)  
VQFN (24)  
7μs16μs24μs 32μs  
• 支1.8V3.3V5.0V 逻辑输入  
• 低电流睡眠模(2μA)  
• 展频时钟以降EMI  
• 小型封装和外形尺寸  
• 保护特性  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VM 欠压锁(UVLO)  
– 电荷泵欠(CPUV)  
– 过流保(OCP)  
– 开路负载检(OL)  
– 热关(OTSD)  
– 故障调节输(nFAULT)  
2 应用  
简化版原理图  
打印机扫描仪  
ATM 和验钞机  
纺织机  
舞台照明设备  
办公和家庭自动化  
工厂自动化和机器人  
医疗应用  
3D 打印机  
3 说明  
DRV8434 是一款适用于工业和消费类应用的步进电机  
驱动器。该器件由两N 沟道功MOSFET H 桥驱动  
器、一个微步进分度器以及集成电流检测功能完全集  
成。DRV8434 最高可驱动 2.5A 满量程输出电流取  
PCB 设计。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLOSE47  
 
 
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
内容  
8 Application and Implementation..................................32  
8.1 Application Information............................................. 32  
8.2 Typical Application.................................................... 32  
9 Power Supply Recommendations................................38  
9.1 大容量电容................................................................38  
10 Layout...........................................................................39  
10.1 Layout Guidelines................................................... 39  
10.2 Layout Example...................................................... 39  
11 Device and Documentation Support..........................41  
11.1 Related Documentation...........................................41  
11.2 接收文档更新通知................................................... 41  
11.3 支持资源..................................................................41  
11.4 Trademarks............................................................. 41  
11.5 Electrostatic Discharge Caution..............................41  
11.6 术语表..................................................................... 41  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
5.1 引脚功能......................................................................3  
6 规格................................................................................... 5  
6.1 绝对最大额定值...........................................................5  
6.2 ESD 等级.................................................................... 5  
6.3 建议运行条件.............................................................. 6  
6.4 热性能信息..................................................................6  
6.5 Electrical Characteristics.............................................7  
6.6 Indexer Timing Requirements.....................................8  
7 详细说明.......................................................................... 11  
7.1 概述...........................................................................11  
7.2 功能模块图................................................................12  
7.3 特性说明....................................................................12  
7.4 器件功能模式............................................................ 30  
Information.................................................................... 42  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2020) to Revision A (May 2022)  
Page  
Updated Tri-Level and Quad-Level Input pin diagrams.................................................................................... 27  
Updated HTSSOP and QFN layout examples..................................................................................................39  
Added links to Related Documents section...................................................................................................... 41  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DRV8434  
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
5 Pin Configuration and Functions  
5-1. PWP PowerPAD™ Package 28-Pin HTSSOP Top View  
5-2. RGE Package 24-Pin VQFN with Exposed Thermal PAD Top View  
5.1 引脚功能  
引脚  
NO.  
I/O  
类型  
说明  
名称  
HTSSOP  
45  
VQFN  
AOUT1  
AOUT2  
PGND  
BOUT2  
BOUT1  
CPH  
3
4
O
O
A 输出。连接到步进电机绕组。  
A 输出。连接到步进电机绕组。  
电源接地。连接到系统接地。  
输出  
输出  
电源  
输出  
输出  
67  
312  
8, 9  
27  
5
O
O
B 输出。连接到步进电机绕组。  
B 输出。连接到步进电机绕组。  
6
1011  
28  
23  
22  
19  
电荷泵开关节点。CPH CPL 之间连接一个额定电压VM 的  
X7R 0.022µF 陶瓷电容器。  
电源  
CPL  
27  
DIR  
24  
I
I
方向输入。逻辑电平设置步进的方向内部下拉电阻。  
输入  
输入  
逻辑低电平将禁用器件输出逻辑高电平则会启用内部上拉至  
DVDD。还将决OCP OTSD 响应的类型。  
ENABLE  
25  
20  
逻辑电源电压。通过电容0.47μF 1μF、额定电压6.3V 或  
10V X7R 陶瓷电容器连接GND。  
DVDD  
GND  
15  
14  
10  
9
电源  
电源  
器件接地。连接到系统接地。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DRV8434  
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
引脚  
NO.  
I/O  
类型  
说明  
名称  
HTSSOP  
VQFN  
电流设定基准输入。最大值3.3VDVDD 可用于通过电阻分压器提  
VREF。  
VREF  
17  
12  
I
I
输入  
输入  
M0  
18  
22  
21  
20  
23  
1
13  
17  
16  
15  
18  
24  
微步进模式设置引脚。设置步进模式内部下拉电阻。  
M1  
DECAY0  
DECAY1  
STEP  
VCP  
I
衰减模式设置引脚。设置衰减模式请参阅7.3.6 部分。  
输入  
I
步进输入。上升沿使分度器前进一步内部下拉电阻。  
输入  
电源  
电荷泵输出。通过一X7R 0.22μF 16V 陶瓷电容器连接VM。  
电源。连接到电机电源电压并通过两0.01µF 陶瓷电容器每个  
引脚一个和一个额定电压VM 的大容量电容器旁路PGND。  
VM  
213  
19  
18  
14  
I
电源  
输入  
设置电流斩波期间的衰减模式关断时间四电平引脚。还将设置智能  
调优纹波控制模式中的纹波电流。  
TOFF  
nFAULT  
故障指示。故障状态下拉低逻辑低电平开漏输出需要外部上拉电  
阻。  
16  
11  
O
漏极开路  
睡眠模式输入。逻辑高电平用于启用器件逻辑低电平用于进入低功  
耗睡眠模式内部下拉电阻。nSLEEP 低电平脉冲将清除故障。  
nSLEEP  
PAD  
26  
-
21  
-
I
输入  
-
-
散热焊盘。连接到系统接地。  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DRV8434  
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
6 规格  
6.1 绝对最大额定值  
在自然通风条件下的工作温度范围内除非另有说明(1)  
最小值  
0.3  
0.3  
0.3  
0.3  
-0.3  
最大值  
单位  
50  
V
电源电(VM)  
VVM + 7  
VVM  
V
V
电荷泵电压VCPCPH)  
电荷泵负开关引(CPL)  
VVM  
V
nSLEEP 引脚电(nSLEEP)  
5.75  
V
内部稳压器电(DVDD)  
-0.3  
5.75  
V
控制引脚电压STEPDIRENABLEnFAULTDECAY0DECAY1TOFFM0M1)  
开漏输出电(nFAULT)  
0
10  
mA  
V
-0.3  
5.75  
基准输入引脚电(VREF)  
VVM + 1  
VVM + 3  
V
连续相节点引脚电压AOUT1AOUT2BOUT1BOUT2)  
100ns 相节点引脚电压AOUT1AOUT2BOUT1BOUT2)  
峰值驱动电流AOUT1AOUT2BOUT1BOUT2)  
工作环境温度TA  
1  
3  
V
A
受内部限制  
-40  
-40  
-65  
125  
150  
150  
°C  
°C  
°C  
运行结温TJ  
贮存温度Tstg  
(1) 应力超出绝对最大额定下所列的值可能会对器件造成永久损坏。这些列出的值仅仅是应力额定值这并不表示器件在这些条件下以及  
建议运行条以外的任何其他条件下能够正常运行。长时间处于绝对最大额定条件下可能会影响器件的可靠性。  
6.2 ESD 等级  
单位  
±2000  
人体放电模(HBM)ANSI/ESDA/JEDEC JS-001  
充电器件模(CDM)JEDEC JESD22-C101  
PWP 转角引脚114、  
15 28)  
V(ESD)  
V
±750  
±500  
静电放电  
其他引脚  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DRV8434  
 
 
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
6.3 建议运行条件  
在自然通风条件下的工作温度范围内测得除非另有说明)  
最小值  
4.5  
最大值  
单位  
V
VVM  
VI  
48  
5.5  
可确保正常直流运行的电源电压范围  
逻辑电平输入电压  
0
V
VVREF  
fSTEP  
0.05  
3.3  
V
VREF 电压  
0
500(1)  
kHz  
施加STEP (STEP)  
IFS  
Irms  
TA  
TJ  
0
2.5(2)  
1.8(2)  
125  
A
A
电机满量程电(xOUTx)  
电机均方根电(xOUTx)  
工作环境温度  
0
-40  
-40  
°C  
°C  
150  
工作结温  
(1) STEP 输入工作频率最高可500kHz但系统带宽受电机负载限制  
(2) 必须遵守功耗和热限值  
6.4 热性能信息  
PWP (HTSSOP)  
28 引脚  
RGE (VQFN)  
热指标(1)  
单位  
24 引脚  
RθJA  
29.7  
39.0  
°C/W  
°C/W  
结至环境热阻  
Rθ  
23.0  
28.9  
结至外壳顶部热阻  
JC(top)  
RθJB  
ψJT  
9.3  
0.3  
9.2  
16.0  
0.4  
°C/W  
°C/W  
°C/W  
结至电路板热阻  
结至顶部特征参数  
结至电路板特征参数  
15.9  
ψJB  
Rθ  
2.4  
3.4  
°C/W  
结至外壳底部热阻  
JC(bot)  
(1) 有关新旧热指标的更多信息请参阅《半导体IC 封装热指标应用报告。  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DRV8434  
 
 
 
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
6.5 Electrical Characteristics  
Typical values are at TA = 25°C and VVM = 24 V. All limits are over recommended operating conditions, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (VM, DVDD)  
IVM  
VM operating supply current  
ENABLE = 1, nSLEEP = 1, No motor load  
5
2
6.5  
4
mA  
μA  
μs  
IVMQ  
tSLEEP  
VM sleep mode supply current nSLEEP = 0  
Sleep time  
nSLEEP = 0 to sleep-mode  
nSLEEP low to clear fault  
120  
20  
tRESET  
nSLEEP reset pulse  
40  
μs  
ms  
ms  
tWAKE  
tON  
Wake-up time  
Turn-on time  
nSLEEP = 1 to output transition  
VM > UVLO to output transition  
0.8  
0.8  
1.2  
1.2  
tEN  
Enable time  
ENABLE = 0/1 to output transition  
5
μs  
No external load, 6  
V < VVM < 48V  
4.75  
4.2  
5
5.25  
V
VDVDD  
Internal regulator voltage  
No external load,  
VVM = 4.5V  
4.35  
V
CHARGE PUMP (VCP, CPH, CPL)  
VVCP  
f(VCP)  
VCP operating voltage  
6 V < VVM < 48 V  
VVM + 5  
360  
V
Charge pump switching  
frequency  
VVM > UVLO; nSLEEP = 1  
kHz  
LOGIC-LEVEL INPUTS (STEP, DIR, nSLEEP)  
VIL  
VIH  
VHYS  
IIL  
Input logic-low voltage  
Input logic-high voltage  
Input logic hysteresis  
Input logic-low current  
Input logic-high current  
0
0.6  
5.5  
V
1.5  
V
150  
mV  
μA  
μA  
VIN = 0 V  
VIN = 5 V  
1
1  
IIH  
100  
TRI-LEVEL INPUTS (M0, DECAY0, DECAY1, ENABLE)  
VI1  
VI2  
VI3  
IO  
Input logic-low voltage  
Input Hi-Z voltage  
Tied to GND  
Hi-Z  
0
0.6  
2.2  
5.5  
V
V
1.8  
2.7  
2
Input logic-high voltage  
Output pull-up current  
Tied to DVDD  
V
10  
μA  
QUAD-LEVEL INPUTS (M1, TOFF)  
VI1  
VI2  
VI3  
VI4  
IIL  
Input logic-low voltage  
Tied to GND  
330k± 5% to GND  
Hi-Z  
0
0.6  
1.4  
2.2  
5.5  
V
V
1
1.25  
2
Input Hi-Z voltage  
1.8  
2.7  
V
Input logic-high voltage  
Output pull-up current  
Tied to DVDD  
V
10  
μA  
CONTROL OUTPUTS (nFAULT)  
VOL  
IOH  
Output logic-low voltage  
Output logic-high leakage  
IO = 5 mA  
0.5  
1
V
1  
μA  
MOTOR DRIVER OUTPUTS (AOUT1, AOUT2, BOUT1, BOUT2)  
TJ = 25 °C, IO = -1 A  
165  
250  
280  
200  
300  
350  
mΩ  
mΩ  
mΩ  
RDS(ON)  
High-side FET on resistance  
TJ = 125 °C, IO = -1 A  
TJ = 150 °C, IO = -1 A  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DRV8434  
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
Typical values are at TA = 25°C and VVM = 24 V. All limits are over recommended operating conditions, unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
165  
250  
280  
MAX  
200  
300  
350  
UNIT  
TJ = 25 °C, IO = 1 A  
mΩ  
RDS(ON)  
Low-side FET on resistance  
TJ = 125 °C, IO = 1 A  
TJ = 150 °C, IO = 1 A  
mΩ  
mΩ  
VVM = 24 V, IO = 1 A, Between 10% and  
90%  
tSR  
Output slew rate  
240  
V/µs  
PWM CURRENT CONTROL (VREF)  
KV  
Transimpedance gain  
VREF Leakage Current  
VREF = 3.3 V  
VREF = 3.3 V  
1.254  
1.32  
1.386  
8.25  
V/A  
IVREF  
μA  
TOFF = 0  
7
TOFF = 1  
16  
24  
32  
tOFF  
PWM off-time  
μs  
TOFF = Hi-Z  
TOFF = 330 kΩto GND  
0.25 A < IO < 0.5 A  
12  
6
12  
6  
0.5 A < IO < 1 A  
1 A < IO < 2.5 A  
Current trip accuracy  
%
%
ΔITRIP  
4
4  
AOUT and BOUT current  
matching  
IO,CH  
IO = 2.5 A  
2.5  
2.5  
PROTECTION CIRCUITS  
VM falling, UVLO falling  
VM rising, UVLO rising  
Rising to falling threshold  
VCP falling; CPUV report  
Current through any FET  
4.1  
4.2  
4.25  
4.35  
4.35  
4.45  
VUVLO  
VM UVLO lockout  
V
VUVLO,HYS Undervoltage hysteresis  
100  
mV  
V
VCPUV  
IOCP  
tOCP  
tRETRY  
tOL  
Charge pump undervoltage  
Overcurrent protection  
Overcurrent deglitch time  
Overcurrent retry time  
Open load detection time  
Open load current threshold  
Thermal shutdown  
VVM + 2  
4
A
2
4
μs  
ms  
ms  
mA  
°C  
°C  
50  
IOL  
75  
165  
20  
TOTSD  
Die temperature TJ  
150  
180  
THYS_OTSD Thermal shutdown hysteresis Die temperature TJ  
6.6 Indexer Timing Requirements  
Typical limits are at TJ = 25°C and VVM = 24 V. Over recommended operating conditions unless otherwise noted.  
NO.  
MIN  
MAX  
UNIT  
kHz  
ns  
1
Step frequency  
500(1)  
ƒSTEP  
2
tWH(STEP)  
tWL(STEP)  
tSU(DIR, Mx)  
tH(DIR, Mx)  
Pulse duration, STEP high  
970  
970  
200  
200  
3
Pulse duration, STEP low  
ns  
4
Setup time, DIR or MODEx to STEP rising  
Hold time, DIR or MODEx to STEP rising  
ns  
5
ns  
(1) STEP input can operate up to 500 kHz, but system bandwidth is limited by the motor load.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DRV8434  
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
6-1. STEP and DIR Timing Diagram  
6.6.1 典型特性  
6-2. 睡眠电流与电源电压间的关系  
6-3. 睡眠电流与温度间的关系  
6-4. 工作电流与电源电压间的关系  
6-5. 工作电流与温度间的关系  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DRV8434  
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
6.6.1 典型特(continued)  
6-6. RDS(ON) 与电源电压间的关系MODE = 0 330k 至  
GND)  
6-7. RDS(ON) 与温度间的关系MODE = 0 330k 至  
GND)  
6-8. RDS(ON) 与电源电压间的关系MODE = 0 330k 至  
GND)  
6-9. RDS(ON) 与温度间的关系MODE = 0 330k 至  
GND)  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DRV8434  
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7 详细说明  
7.1 概述  
DRV8434 是一款用于双极步进电机的集成电机驱动器解决方案。该器件通过集成两个 N 沟道功率 MOSFET H  
桥、电流检测电阻和调节电路以及一个微步进分度器可更大程度提高集成度。DRV8434 DRV8426、  
DRV8436 DRV8424/25 引脚对引脚兼容。DRV8434 能够支持 4.5V 48V 的宽电源电压范围。DRV8434 提  
供高达 4A 峰值、2.5A 满量程或 1.8A 均方(rms) 的输出电流。实际的满量程和均方根电流取决于环境温度、电  
源电压PCB 热性能。  
DRV8434 采用集成式电流检测架构无需再使用两个外部功率检测电阻从而显著节省布板空间和 BOM 成本,  
并减少设计工作量和降低功耗。该架构通过使用电流镜方法消除了检测电阻中的功率损耗并使用内部功率  
MOSFET 进行电流检测。通VREF 引脚处的电压来调节电流调节设定点。  
借助简单的 STEP/DIR 接口可通过外部控制器管理步进电机的方向和步进速率。内部微步进分度器可以执行高  
精度微步进而无需外部控制器来管理绕组电流电平。分度器可实现全步进、半步进以及 1/41/81/16、  
1/321/641/128 1/256 微步进。高微步进有助于显著降低可闻噪声并实现平稳的运动。除了标准的半步进模  
非循环半步进模式可用于在较高的电机转速下增加扭矩输出。  
步进电机驱动器需要通过实现多种类型的衰减模式如慢速衰减、混合衰减和快速衰减来再循环绕组电流。  
DRV8434 提供智能调优衰减模式。自动调优是一种创新的衰减机制能够自动调节以实现出色的电流调节性能,  
而不受电压、电机转速、变化和老化效应的影响。自动调优纹波控制使用可变关断时间纹波电流控制方案以更  
大限度地减少电机绕组电流的失真。自动调优动态衰减使用固定关断时间动态快速衰减百分比方案以更大限度  
地减少电机绕组电流的失真同时实现频率成分最小化并显著减少设计工作量。除了该无缝的轻松自动智能调优  
之外DRV8434 还提供传统的衰减模式如慢速混合衰减和混合衰减。  
该器件为内部数字振荡器和内部电荷泵集成了展频时钟特性。此特性可更大程度减少器件的辐射发射。系统包括  
一个低功耗睡眠模式以便在不主动驱动电机时节省功耗。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DRV8434  
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7.2 功能模块图  
7.3 特性说明  
7-1 列出DRV8434 的推荐外部组件。  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DRV8434  
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7-1. 外部组件  
组件  
CVM1  
1  
VM  
2  
PGND  
PGND  
VM  
推荐  
两个额定电压VM X7R 0.01µF 陶瓷电容器  
额定电压VM 的大容量电容器  
CVM2  
VM  
CVCP  
VCP  
X7R 0.22µF 16V 陶瓷电容器  
CSW  
CPH  
CPL  
额定电压VM X7R 0.022µF 陶瓷电容器  
电容0.47µF 1µF X7R 6.3V 陶瓷电容器  
>4.7k电阻  
CDVDD  
DVDD  
VCC (1)  
VREF  
VREF  
GND  
RnFAULT  
RREF1  
nFAULT  
VCC  
用于限制斩波电流的电阻。建议RREF1 RREF2 的并联电阻应低50k。  
GND  
RREF2可选)  
(1) VCC 不是该器件上的引脚但开漏输nFAULT VCC 电源电压上拉nFAULT 可能会被上拉DVDD。  
7.3.1 Stepper Motor Driver Current Ratings  
Stepper motor drivers can be classified using three different numbers to describe the output current: peak, RMS,  
and full-scale.  
7.3.1.1 峰值电流额定值  
步进驱动器中的峰值电流受过流保护关断阈值 IOCP 的限制。峰值电流表示任何瞬态持续电流脉冲例如当对电容  
充电时当总占空比非常低时。通常IOCP 最小值指定了步进电机驱动器的峰值电流额定值。对于  
DRV8434每个电桥的峰值电流额定值4A。  
7.3.1.2 均方根电流额定值  
均方根平均电流由集成电路的热特性决定。均方根电流是根据典型系统中 RDS(ON)、上升和下降时间、PWM  
频率、器件静态电流25°C 温度下的封装热性能计算的。实际的均方根电流可能更高或更低具体取决于散热和  
环境温度。对DRV8434每个电桥的均方根电流额定值1.8A。  
7.3.1.3 Full-Scale Current Rating  
Full-scale current  
RMS current  
AOUT  
BOUT  
Step Input  
7-1. Full-Scale and RMS Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DRV8434  
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7.3.2 PWM Motor Drivers  
7-2. PWM Motor Driver Block Diagram  
7.3.3 Microstepping Indexer  
Built-in indexer logic in the device allows a number of different step modes. The M0 and M1 pins are used to  
configure the step mode as shown below. The settings can be changed on the fly.  
7-2. Microstepping Indexer Settings  
M0  
M1  
STEP MODE  
0
Full step (2-phase excitation) with 100%  
current  
0
0
Full step (2-phase excitation) with 71%  
current  
330 kto  
GND  
1
Hi-Z  
0
0
0
1
1
1
Non-circular 1/2 step  
1/2 step  
1/4 step  
1
1/8 step  
Hi-Z  
1/16 step  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DRV8434  
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7-2. Microstepping Indexer Settings (continued)  
M0  
M1  
STEP MODE  
0
Hi-Z  
1/32 step  
1/64 step  
Hi-Z  
330kto  
GND  
Hi-Z  
1
Hi-Z  
Hi-Z  
1/128 step  
1/256 step  
7-3 shows the relative current and step directions for full-step (71% current), 1/2 step, 1/4 step and 1/8 step  
operation. Higher microstepping resolutions follow the same pattern. The AOUT current is the sine of the  
electrical angle and the BOUT current is the cosine of the electrical angle. Positive current is defined as current  
flowing from the xOUT1 pin to the xOUT2 pin while driving.  
At each rising edge of the STEP input the indexer advances to the next state in the table. The direction shown is  
with the DIR pin logic high. If the DIR pin is logic low, the sequence table is reversed.  
备注  
If the step mode is changed dynamically while stepping, the indexer advances to the next valid state  
for the new step mode setting at the rising edge of STEP.  
The initial excitation state is an electrical angle of 45°, corresponding to 71% of full-scale current in both coils.  
This state is entered immediately after power-up, after exiting logic undervoltage lockout, or after exiting sleep  
mode.  
7-3. Relative Current and Step Directions  
AOUT CURRENT  
(% FULL-SCALE)  
BOUT CURRENT  
(% FULL-SCALE)  
ELECTRICAL  
ANGLE (DEGREES)  
1/8 STEP  
1/4 STEP  
1/2 STEP  
FULL STEP 71%  
1
2
1
1
0%  
20%  
38%  
56%  
71%  
83%  
92%  
98%  
100%  
98%  
92%  
83%  
71%  
56%  
38%  
20%  
0%  
100%  
98%  
0.00  
11.25  
3
2
3
92%  
22.50  
4
83%  
33.75  
5
2
3
4
5
6
1
71%  
45.00  
6
56%  
56.25  
7
4
38%  
67.50  
8
20%  
78.75  
9
5
0%  
90.00  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
-20%  
-38%  
-56%  
-71%  
-83%  
-92%  
-98%  
-100%  
-98%  
-92%  
-83%  
-71%  
-56%  
-38%  
101.25  
112.50  
123.75  
135.00  
146.25  
157.50  
168.75  
180.00  
191.25  
202.50  
213.75  
225.00  
236.25  
247.50  
6
7
2
8
9
-20%  
-38%  
-56%  
-71%  
-83%  
-92%  
10  
11  
12  
3
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DRV8434  
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7-3. Relative Current and Step Directions (continued)  
AOUT CURRENT  
(% FULL-SCALE)  
BOUT CURRENT  
(% FULL-SCALE)  
ELECTRICAL  
ANGLE (DEGREES)  
1/8 STEP  
1/4 STEP  
1/2 STEP  
FULL STEP 71%  
24  
25  
26  
27  
28  
29  
30  
31  
32  
-98%  
-100%  
-98%  
-92%  
-83%  
-71%  
-56%  
-38%  
-20%  
-20%  
0%  
258.75  
13  
14  
15  
16  
7
270.00  
20%  
38%  
56%  
71%  
83%  
92%  
98%  
281.25  
292.50  
303.75  
8
4
315.00  
326.25  
337.50  
348.75  
7-4 shows the full step operation with 100% full-scale current. This stepping mode consumes more power  
than full-step mode with 71% current, but provides a higher torque at high motor RPM.  
7-4. Full Step with 100% Current  
AOUT CURRENT  
(% FULL-SCALE)  
BOUT CURRENT  
(% FULL-SCALE)  
ELECTRICAL ANGLE  
(DEGREES)  
FULL STEP 100%  
1
2
3
4
100  
100  
100  
-100  
-100  
100  
45  
135  
225  
315  
-100  
-100  
7-5 shows the noncircular 1/2step operation. This stepping mode consumes more power than circular 1/2-  
step operation, but provides a higher torque at high motor RPM.  
7-5. Non-Circular 1/2-Stepping Current  
NON-CIRCULAR 1/2-STEP  
AOUT CURRENT  
(% FULL-SCALE)  
BOUT CURRENT  
(% FULL-SCALE)  
ELECTRICAL ANGLE  
(DEGREES)  
1
2
3
4
5
6
7
8
0
100  
100  
0
0
100  
100  
100  
0
45  
90  
135  
180  
225  
270  
315  
100  
100  
100  
0
100  
100  
100  
100  
7.3.4 Controlling VREF with an MCU DAC  
In some cases, the full-scale output current may need to be changed between many different values, depending  
on motor speed and loading. The voltage of the VREF pin can be adjusted in the system to change the full-scale  
current.  
In this mode of operation, as the DAC voltage increases, the full-scale regulation current increases as well. For  
proper operation, the output of the DAC must not exceed 3.3 V.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DRV8434  
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7-3. Controlling VREF with a DAC Resource  
The VREF pin can also be adjusted using a PWM signal and low-pass filter.  
7-4. Controlling VREF With a PWM Resource  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DRV8434  
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7.3.5 电流调节  
流经电机绕组的电流由一个可调节关断时间的 PWM 电流调节电路进行调节。当 H 桥被启用时通过绕组的电流  
以一定的速率上升该速率取决于直流电压、绕组电感和存在的反电动势大小。当电流达到电流调节阈值时电  
桥将进入衰减模式以减小电流该模式的持续时间取决于 TOFF 引脚设置。关断时间结束后将重新启用电桥,  
开始另一PWM 循环。  
7-5. 电流斩波波形  
PWM 调节电流由比较器设置该比较器监测与低侧功率 MOSFET 并联的电流检测 MOSFET 两端的电压。电流  
检测 MOSFET 通过基准电流进行偏置该基准电流是电流模式正弦加权 DAC 的输出其满量程基准电流通过  
VREF 引脚的电压进行设置。  
您可以使用以下公式计算满量程调节电(IFS)IFS (A) = VREF (V)/KV (V/A) = VREF (V)/1.32 (V/A)。  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DRV8434  
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7.3.6 Decay Modes  
During PWM current chopping, the H-bridge is enabled to drive through the motor winding until the PWM current  
chopping threshold is reached. This is shown in 7-6, Item 1.  
Once the chopping current threshold is reached, the H-bridge can operate in two different states, fast decay or  
slow decay. In fast decay mode, once the PWM chopping current level has been reached, the H-bridge reverses  
state to allow winding current to flow in a reverse direction. Fast decay mode is shown in 7-6, item 2. In slow  
decay mode, winding current is re-circulated by enabling both of the low-side FETs in the bridge. This is shown  
in 7-6, Item 3.  
7-6. Decay Modes  
The decay mode of the DRV8434 is selected by the DECAY0 and DECAY1 pins as shown in 7-6. If DECAY1  
pin is Hi-Z, irrespective of the DECAY0 pin voltage, the decay mode will be smart tune dynamic decay. The  
decay modes can be changed on the fly. After a decay mode change, the new decay mode is applied after a 10  
µs de-glitch time.  
7-6. Decay Mode Settings  
DECAY0  
DECAY1  
INCREASING STEPS  
DECREASING  
STEPS  
0
0
0
1
0
1
0
1
Smart tune Dynamic Smart tune Dynamic  
Decay  
Decay  
Smart tune Ripple  
Control  
Smart tune Ripple  
Control  
1
Mixed decay: 30%  
fast  
Mixed decay: 30%  
fast  
1
Mixed decay: 30%  
fast  
Slow decay  
Hi-Z  
Hi-Z  
Mixed decay: 60%  
fast  
Mixed decay: 60%  
fast  
Slow decay  
Slow decay  
7-7 defines increasing and decreasing current. For the slow-mixed decay mode, the decay mode is set as  
slow during increasing current steps and mixed decay during decreasing current steps. In full step and  
noncircular 1/2-step operation, the decay mode corresponding to decreasing steps is always used.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DRV8434  
 
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
Increasing Decreasing  
Increasing Decreasing  
STEP Input  
Decreasing  
Increasing  
Increasing Decreasing  
STEP Input  
7-7. Definition of Increasing and Decreasing Steps  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DRV8434  
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7.3.6.1 Slow Decay for Increasing and Decreasing Current  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tOFF  
tDRIVE  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
7-8. Slow/Slow Decay Mode  
During slow decay, both low-side MOSFETs of the H-bridge are turned on, allowing the current to be  
recirculated.  
Slow decay exhibits the least current ripple of the decay modes for a given tOFF. However on decreasing current  
steps, slow decay will take a long time to settle to the new ITRIP level because the current decreases very slowly.  
If the current at the end of the off time is above the ITRIP level, slow decay will be extended for multiple off time  
duration, until the current at the end of the cumulative off time is below the ITRIP level.  
When the winding current is held static for a long time (for example while no STEP input is present), or at very  
low step rates, slow decay may not properly regulate the current because back-EMF will be small or absent  
across the motor windings. The motor current can rise rapidly, and may require an extremely long off-time. In  
some cases this could result in loss of current regulation. An aggressive decay mode is recommended in such  
cases.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DRV8434  
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7.3.6.2 Slow Decay for Increasing Current, Mixed Decay for Decreasing Current  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tOFF  
tBLANK  
tDRIVE  
tDRIVE  
ITRIP  
tBLANK  
tFAST  
tBLANK  
tDRIVE  
tFAST  
tDRIVE  
tOFF  
tOFF  
7-9. Slow-Mixed Decay Mode  
Mixed decay begins as fast decay for an initial duration of the tOFF, followed by slow decay for the remainder of  
the tOFF time. Mixed decay only occurs during decreasing current. Slow decay is used for increasing current.  
This decay mode exhibits the same current ripple as slow decay mode does for increasing current, because for  
increasing current, only slow decay is used in this mode. For decreasing current, the ripple is larger than slow  
decay, but smaller than fast decay. On decreasing current steps, mixed decay settles to the new ITRIP level faster  
than slow decay.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DRV8434  
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7.3.6.3 上升和下降电流阶段均为混合衰减  
ITRIP  
tOFF  
tBLANK  
tOFF  
tBLANK  
tDRIVE  
tDRIVE  
tDRIVE  
ITRIP  
tBLANK  
tDRIVE  
tFAST  
tBLANK  
tDRIVE  
tFAST  
tOFF  
tOFF  
7-10. 混合-混合衰减模式  
混合衰减下开始的一段时间为快速衰减然后在剩余的 tOFF 内慢速衰减。在此模式下上升和下降电流阶跃都  
会发生混合衰减。  
该模式表现出的纹波比慢速衰减大但比快速衰减小。在下降电流阶跃时混合衰减可比慢速衰减更快地稳定到  
ITRIP 电平。  
如果电流保持很长时间STEP 引脚无输入或步进速度非常慢则慢速衰减可能无法正确调节电流因为电机  
绕组上不存在反电动势。在这种状态下电机电流上升速度会非常快需要极长的关断时间。当电机绕组上没有  
反电动势时上升或下降混合衰减模式能持续调节电流电平。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DRV8434  
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7.3.6.4 Smart tune Dynamic Decay  
The smart tune current regulation schemes are advanced current-regulation control methods compared to  
traditional fixed off-time current regulation schemes. Smart tune current regulation schemes help the stepper  
motor driver adjust the decay scheme based on operating factors such as the ones listed as follows:  
Motor winding resistance and inductance  
Motor aging effects  
Motor dynamic speed and load  
Motor supply voltage variation  
Motor back-EMF difference on rising and falling steps  
Step transitions  
Low-current versus high-current dI/dt  
The device provides two different smart tune current regulation modes, named smart tune Dynamic Decay and  
smart tune Ripple Control.  
ITRIP  
tBLANK  
tDRIVE  
tBLANK  
tBLANK  
tDRIVE  
tOFF  
tOFF  
tDRIVE  
ITRIP  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
tFAST  
tFAST  
7-11. Smart tune Dynamic Decay Mode  
Smart tune Dynamic Decay greatly simplifies the decay mode selection by automatically configuring the decay  
mode between slow, mixed, and fast decay. In mixed decay, smart tune dynamically adjusts the fast decay  
percentage of the total mixed decay time. This feature eliminates motor tuning by automatically determining the  
best decay setting that results in the lowest ripple for the motor.  
The decay mode setting is optimized iteratively each PWM cycle. If the motor current overshoots the target trip  
level, then the decay mode becomes more aggressive (add fast decay percentage) on the next cycle to prevent  
regulation loss. If a long drive time must occur to reach the target trip level, the decay mode becomes less  
aggressive (remove fast decay percentage) on the next cycle to operate with less ripple and more efficiently. On  
falling steps, smart tune Dynamic Decay automatically switches to fast decay to reach the next step quickly.  
Smart tune Dynamic Decay is optimal for applications that require minimal current ripple but want to maintain a  
fixed frequency in the current regulation scheme.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DRV8434  
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7.3.6.5 智能调优纹波控制  
ITRIP  
IVALLEY  
tBLANK  
tDRIVE  
tBLANK  
tBLANK  
tDRIVE  
tBLANK  
tDRIVE  
tOFF  
tOFF  
tOFF  
tDRIVE  
ITRIP  
IVALLEY  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
tOFF  
tBLANK  
tDRIVE  
tOFF  
7-12. 智能调优纹波控制衰减模式  
智能调优纹波控制通过在 ITRIP 电平旁设置一个 IVALLEY 电平来进行操作。当电流电平达到 ITRIP 驱动器将进入  
慢速衰减直到达到 IVALLEY而不是直到 tOFF 时间结束。慢速衰减的工作原理类似于模式 1其中两个低侧  
MOSFET 都导通允许电流再循环。在此模式下tOFF 根据电流电平和运行条件而变化。  
TOFF 引脚对该衰减模式下的纹波电流进行编程。纹波电流取决于特定微步进级别ITRIP。  
7-7. 电流纹波设置  
TOFF  
特定微步进级别下的电流纹波  
19mA + ITRIP 1%  
19mA + ITRIP 2%  
19mA + ITRIP 4%  
19mA + ITRIP 6%  
0
1
高阻态  
330kGND  
该纹波控制方法可以更严格地调节电流电平从而提高电机效率和系统性能。智能调优纹波控制适用于能够承受  
可变关断时间调节方案的系统以在电流调节中实现小电流纹波。选择低纹波电流设置可确保 PWM 频率不处于  
可闻范围之内。不过较高的纹波电流值会降PWM 频率从而降低开关损耗。  
7.3.6.6 PWM 关断时间  
除智能调优纹波控制模式外TOFF 引脚将配置所有衰减模式的 PWM 关断时间7-8 所示。该器件支持动  
态更改关断时间。在更改关断时间设置后新的关断时间设置将10µs 的抗尖峰脉冲时间之后生效。  
7-8. 关断时间设置  
TOFF  
关断时间  
0
7µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DRV8434  
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7-8. 关断时间设(continued)  
TOFF  
1
关断时间  
16µs  
Hi-Z  
24µs  
32µs  
330kGND  
7.3.6.7 消隐时间  
H 桥接通电流驱动阶段开始电流检测比较器将在启用电流检测电路前被忽略一段时间 (tBLANK)。消隐  
时间还将设PWM 的最小驱动时间。消隐时间大约1µs。  
7.3.7 电荷泵  
集成了一个电荷泵以提供高N MOSFET 栅极驱动电压。需要VM VCP 引脚之间为电荷泵放置一个电  
容作为储能电容。此外还需要CPH CPL 引脚之间放置一个陶瓷电容作为飞跨电容。  
7-13. 电荷泵方框图  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DRV8434  
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7.3.8 线性稳压器  
DVDD 器件中集成了一个线性稳压器。DVDD 稳压器可用于提供 VREF 基准电压。DVDD 最大可提供 2mA 的负  
载。为确保正常运行请使用陶瓷电容器DVDD 引脚旁路GND。  
DVDD 输出的标称值5VDVDD LDO 电流负载超2mA 输出电压会显著下降。  
7-14. 线性稳压器方框图  
如果数字输入必须永久连接高电平MxDECAYx TOFF),则最好将输入连接到 DVDD 引脚而不是外部  
稳压器。在未应用 VM 引脚或处于睡眠模式时此方法可省电DVDD 稳压器被禁用电流不会流经输入下拉电  
阻。逻辑电平输入的典型下拉电阻200k。  
请勿nSLEEP 引脚连接DVDD否则器件将无法退出睡眠模式。  
7.3.9 Logic Level, Tri-Level and Quad-Level Pin Diagrams  
7-15 shows the input structure for M0, DECAY0 and ENABLE pins.  
7-15. Tri-Level Input Pin Diagram  
7-16 shows the input structure for DECAY1 pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DRV8434  
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7-16. DECAY1 Pin Diagram  
7-17 shows the input structure for M1 and TOFF pins.  
7-17. Quad-Level Input Pin Diagram  
7-18 shows the input structure for STEP, DIR and nSLEEP pins.  
7-18. Logic-Level Input Pin Diagram  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DRV8434  
 
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7.3.9.1 nFAULT 引脚  
nFAULT 引脚具有开漏输出且应上拉至 5V3.3V 1.8V 电源电压。当检测到故障时nFAULT 引脚将变成逻辑  
低电平上电后则变成高电平。对5V 上拉nFAULT 引脚可通过一个电阻连接DVDD 引脚。对3.3V 或  
1.8V 上拉必须使用一个外部电源。  
Output  
nFAULT  
7-19. nFAULT 引脚  
7.3.10 保护电路  
DRV8434 器件可完全防止电源欠压、电荷泵欠压、输出过流、开路负载和器件过热事件。  
7.3.10.1 VM 欠压锁(UVLO)  
无论 VM 引脚电压何时降至电源电压的 UVLO 阈值电压以下都会禁用所有输出并将 nFAULT 引脚驱动为低电  
平。在这种情况下电荷泵会禁用。VM 欠压条件消失后器件将恢复正常运行电机驱动器运行并释nFAULT  
引脚。  
7.3.10.2 VCP 欠压锁(CPUV)  
无论 VCP 引脚电压何时降至 CPUV 电压以下都会禁用所有输出并将 nFAULT 引脚驱动为低电平。在这种情况  
电荷泵将保持有效状态。VCP 欠压条件消失后器件将恢复正常运行电机驱动器运行且释放 nFAULT 引  
。  
7.3.10.3 过流保(OCP)  
每个 MOSFET 上的模拟电流限制电路通过移除栅极驱动来限制通过 MOSFET 的电流。如果此电流限制的持续时  
间超过 tOCP则会禁用两个 H 桥中的 MOSFET 并将 nFAULT 引脚驱动为低电平。在这种情况下电荷泵将保持  
运行状态。过流保护可在两种不同的模式下运行锁存关断和自动重试。该器件支持动态更改工作模式。  
7.3.10.3.1 锁存关断  
必须将 ENABLE 引脚设置为高阻态才能选择锁存关断模式。在此模式下OCP 事件后将会禁用输出并将  
nFAULT 引脚驱动为低电平。一旦 OCP 条件消除器件会在应用 nSLEEP 复位脉冲或下电上电后恢复正常运  
行。  
7.3.10.3.2 自动重试  
必须将 ENABLE 引脚设置为高电平 (>2.7V)才能选择自动重试模式。在此模式下OCP 事件后将会禁用输出并  
nFAULT 引脚驱动为低电平。在经过 tRETRY 时间且故障条件消失后器件将自动恢复正常运行电机驱动器运  
行且释nFAULT 引脚。  
7.3.10.4 开路负载检(OL)  
如果任何线圈中的绕组电流降至开路负载电流阈值 (IOL) 和分度器设置的 ITRIP 电平之下并且持续时长超过开路  
负载检测时(tOL)则表明检测到开路负载条件。  
ENABLE 引脚连接到 DVDD 如果开路负载条件消失nFAULT 线路会被立即释放。ENABLE 引脚为高阻态  
如果开路负载条件消失并且已应用 nSLEEP 复位脉冲nFAULT 线路会被释放。当器件下电上电或退出睡  
眠模式时该故障也会清除。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DRV8434  
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7.3.10.5 热关(OTSD)  
如果内核温度超过热关断限(TOTSD)则会禁H 桥中的所MOSFET nFAULT 引脚驱动为低电平。在这  
种情况下电荷泵会被禁用。热关断保护可在两种不同的模式下运行锁存关断和自动重试。该器件支持动态更  
改工作模式。  
7.3.10.5.1 锁存关断  
必须将 ENABLE 引脚设置为高阻态才能选择锁存关断模式。在此模式下OTSD 事件后将会禁用相关输出并将  
nFAULT 引脚驱动为低电平。结温降至过热阈值限值减去迟滞 (TOTSD THYS_OTSD) 所得的值以下后器件会在  
nSLEEP 复位脉冲或功率循环后恢复正常运行。  
7.3.10.5.2 自动重试  
必须将 ENABLE 引脚设置为高电平 (>2.7V)才能选择自动重试模式。在此模式下OTSD 事件后将会禁用所有  
输出并将 nFAULT 引脚驱动为低电平。结温降至过热阈值限值减去迟滞 (TOTSD THYS_OTSD) 所得的值以下后,  
器件将恢复正常运行电机驱动器运行且释nFAULT 线路。  
Fault Condition Summary  
7-9. Fault Condition Summary  
FAULT  
CONDITION  
VM < VUVLO  
VCP < VCPUV  
CONFIGURATION  
ERROR  
REPORT  
H-BRIDGE CHARGE  
PUMP  
INDEXER LOGIC  
RECOVERY  
VM  
undervoltage  
(UVLO)  
Reset  
(VDVDD  
3.9 V)  
Automatic: VM >  
VUVLO  
nFAULT  
nFAULT  
Disabled  
Disabled  
Disabled  
Disabled  
<
VCP  
undervoltage  
(CPUV)  
Automatic: VCP  
> VCPUV  
Operating Operating Operating  
ENABLE = Hi-Z  
ENABLE = 1  
nFAULT  
nFAULT  
Disabled  
Disabled  
Operating Operating Operating  
Operating Operating Operating  
Latched  
Overcurrent  
(OCP)  
IOUT > IOCP  
Automatic retry:  
tRETRY  
No load  
detected  
Open Load (OL)  
nFAULT  
nFAULT  
Operating Operating Operating Operating  
Report only  
ENABLE = Hi-Z  
Disabled  
Disabled  
Disabled  
Disabled  
Operating Operating  
Operating Operating  
Latched  
Thermal  
Shutdown  
(OTSD)  
Automatic: TJ <  
TJ > TTSD  
ENABLE = 1  
nFAULT  
TOTSD  
-
THYS_OTSD  
7.4 器件功能模式  
7.4.1 睡眠模(nSLEEP = 0)  
DRV8434 器件将通过 nSLEEP 引脚实现状态管理。当 nSLEEP 引脚为低电平时DRV8434 器件将进入低功耗  
睡眠模式。在睡眠模式下将会禁用所有内部 MOSFET 和电荷泵。必须在 nSLEEP 引脚触发下降沿之后再过去  
t
SLEEP 时间后器件才能进入睡眠模式。如果 nSLEEP 引脚变为高电平DRV8434 器件会自动退出睡眠模式。  
必须在经tWAKE 时间之后器件才能针对输入做好准备。  
7.4.2 禁用模式nSLEEP = 1ENABLE = 0)  
ENABLE 引脚用于启用或禁DRV8434ENABLE 引脚为低电平时输出驱动器将在高阻态状态下被禁用。  
7.4.3 工作模式nSLEEP = 1ENABLE = Hi-Z/1)  
nSLEEP 引脚为高电平、ENABLE 引脚为 Hi-Z 1 VM > UVLO 器件将进入运行模式。必须在经过  
t
WAKE 时间之后器件才能针对输入做好准备。  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DRV8434  
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
7.4.4 nSLEEP 复位脉冲  
锁存故障可通过 nSLEEP 复位脉冲清除。该脉冲的宽度必须在 20µs 40µs 之间。如果 nSLEEP 40µs 至  
120µs 的时间内保持低电平则会清除故障但器件有可能会关断也有可能不关断如时序图中所示请参阅  
7-20。该复位脉冲不影响电荷泵或其他功能块的状态。  
7-20. nSLEEP 复位脉冲  
功能模式汇总  
7-10 汇总了所有功能模式。  
7-10. 功能模式汇总  
H 桥  
DVDD 稳压器  
条件  
配置  
电荷泵  
禁用  
分度器  
禁用  
逻辑  
禁用  
4.5V < VM <  
nSLEEP = 0  
睡眠模式  
工作  
禁用  
禁用  
48V  
4.5V < VM <  
48V  
nSLEEP = 1  
ENABLE = 1 或高阻态  
工作  
禁用  
工作  
工作  
工作  
工作  
工作  
工作  
工作  
工作  
4.5V < VM <  
48V  
nSLEEP = 1  
ENABLE = 0  
禁用  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DRV8434  
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The DRV8434 is used in bipolar stepper control.  
8.2 Typical Application  
The following design procedure can be used to configure the DRV8434.  
8-1. Typical Application Schematic (1/8 microstepping, smart tune Ripple Control Decay, HTSSOP  
package)  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DRV8434  
 
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
8-2. Typical Application Schematic (1/8 microstepping, smart tune Ripple Control Decay, VQFN  
package)  
8.2.1 Design Requirements  
8-1 lists the design input parameters for system design.  
8-1. Design Parameters  
DESIGN PARAMETER  
Supply voltage  
REFERENCE  
VM  
EXAMPLE VALUE  
24 V  
Motor winding resistance  
Motor winding inductance  
Motor full step angle  
Target microstepping level  
Target motor speed  
RL  
LL  
0.9 /phase  
1.4 mH/phase  
1.8°/step  
θstep  
nm  
1/8 step  
v
18.75 rpm  
2 A  
Target full-scale current  
IFS  
8.2.2 Detailed Design Procedure  
8.2.2.1 Stepper Motor Speed  
The first step in configuring the DRV8434 requires the desired motor speed and microstepping level. If the target  
application requires a constant speed, then a square wave with frequency ƒstep must be applied to the STEP pin.  
If the target motor speed is too high, the motor does not spin. Make sure that the motor can support the target  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DRV8434  
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
speed. Use 方程1 to calculate ƒstep for a desired motor speed (v), microstepping level (nm), and motor full step  
angle (θstep  
)
v (rpm) ì 360 (è / rot)  
step (è / step) ìnm (steps / microstep) ì 60 (s / min)  
ƒstep (steps / s) =  
q
(1)  
The value of θstep can be found in the stepper motor data sheet, or written on the motor. For example, the motor  
in this application is required to rotate at 1.8°/step for a target of 18.75 rpm at 1/8 microstep mode. Using 方程式  
1, ƒstep can be calculated as 500 Hz.  
The microstepping level is set by the M0 and M1 pins and can be any of the settings listed in 8-2. Higher  
microstepping results in a smoother motor motion and less audible noise, but requires a higher ƒstep to achieve  
the same motor speed.  
8-2. Microstepping Indexer Settings  
MODE0  
MODE1  
STEP MODE  
0
0
Full step (2-phase excitation) with 100%  
current  
0
Full step (2-phase excitation) with 71%  
current  
330kto  
GND  
1
Hi-Z  
0
0
0
Non-circular 1/2 step  
1/2 step  
1
1/4 step  
1
1
1/8 step  
Hi-Z  
0
1
1/16 step  
Hi-Z  
1/32 step  
Hi-Z  
1/64 step  
330kto  
GND  
Hi-Z  
1
Hi-Z  
Hi-Z  
1/128 step  
1/256 step  
8.2.2.2 电流调节  
在步进电机中满量程电流 (IFS) 是通过任一绕组的最大电流。该值大小取决于 VREF 电压和 TRQ_DAC 设置,  
方程2 所示。  
VREF 引脚上允许的最大电流3.3VDVDD 可用于通过电阻分压器提VREF。  
在步进期间IFS 定义了最大电流步进的电流斩波阈(ITRIP)。  
(2)  
8.2.2.3 衰减模式  
DRV8434A 以智能调优纹波控制衰减模式运行。当电机绕组电流达到电流斩波阈(ITRIP) DRV8434A 会将绕  
组置于慢速衰减模式下。  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DRV8434  
 
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
8.2.2.4 应用曲线  
8-3. 智能调优纹波控制衰减下1/8 微步进  
8-4. 智能调优动态衰减下1/8 微步进  
8-6. 智能调优动态衰减下1/32 微步进  
8-8. 智能调优动态衰减下1/256 微步进  
8-5. 智能调优纹波控制衰减下1/32 微步进  
8-7. 智能调优纹波控制衰减下1/256 微步进  
8.2.2.5 Thermal Application  
This section presents the power dissipation calculation and junction temperature estimation of the device.  
8.2.2.5.1 Power Dissipation  
The total power dissipation constitutes of three main components - conduction loss (PCOND), switching loss  
(PSW) and power loss due to quiescent current consumption (PQ).  
8.2.2.5.2 Conduction Loss  
The current path for a motor connected in full-bridge is through the high-side FET of one half-bridge and low-side  
FET of the other half-bridge. The conduction loss (PCOND) depends on the motor rms current (IRMS) and high-  
side (RDS(ONH)) and low-side (RDS(ONL)) on-state resistances as shown in 方程3.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DRV8434  
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
PCOND = 2 x (IRMS)2 x (RDS(ONH) + RDS(ONL)  
)
(3)  
The conduction loss for the typical application shown in 8-1 is calculated in 方程4.  
PCOND = 2 x (IRMS)2 x (RDS(ONH) + RDS(ONL)) = 2 x (2-A / 2)2 x (0.165-Ω+ 0.165-Ω) = 1.32-W  
(4)  
备注  
This power calculation is highly dependent on the device temperature which significantly effects the  
high-side and low-side on-resistance of the FETs. For more accurate calculation, consider the  
dependency of on-resistance of FETs with device temperature.  
8.2.2.5.3 Switching Loss  
The power loss due to the PWM switching frequency depends on the slew rate (tSR), supply voltage, motor RMS  
current and the PWM switching frequency. The switching losses in each H-bridge during rise-time and fall-time  
are calculated as shown in 方程5 and 方程6.  
PSW_RISE = 0.5 x VVM x IRMS x tRISE_PWM x fPWM  
PSW_FALL = 0.5 x VVM x IRMS x tFALL_PWM x fPWM  
(5)  
(6)  
Both tRISE_PWM and tFALL_PWM can be approximated as VVM/ tSR. After substituting the values of various  
parameters, and assuming 30-kHz PWM frequency, the switching losses in each H-bridge are calculated as  
shown below -  
PSW_RISE = 0.5 x 24-V x (2-A / 2) x (24-V / 240 V/µs) x 30-kHz = 0.05-W  
PSW_FALL = 0.5 x 24-V x (1-A / 2) x (24-V / 240 V/µs) x 30-kHz = 0.05-W  
(7)  
(8)  
The total switching loss for the stepper motor driver (PSW) is calculated as twice the sum of rise-time (PSW_RISE  
switching loss and fall-time (PSW_FALL) switching loss as shown below -  
)
PSW = 2 x (PSW_RISE + PSW_FALL) = 2 x (0.05-W + 0.05-W) = 0.2-W  
(9)  
备注  
The rise-time (tRISE) and the fall-time (tFALL) are calculated based on typical values of the slew rate  
(tSR). This parameter is expected to change based on the supply-voltage, temperature and device to  
device variation.  
The switching loss is directly proportional to the PWM switching frequency. The PWM frequency in an  
application will depend on the supply voltage, inductance of the motor coil, back emf voltage and OFF  
time or the ripple current (for smart tune ripple control decay mode).  
8.2.2.5.4 Power Dissipation Due to Quiescent Current  
The power dissipation due to the quiescent current consumed by the power supply is calculated as shown below  
-
PQ = VVM x IVM  
(10)  
Substituting the values, quiescent power loss can be calculated as shown below -  
PQ = 24-V x 5-mA = 0.12-W  
(11)  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DRV8434  
 
 
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
备注  
The quiescent power loss is calculated using the typical operating supply current (IVM) which is  
dependent on supply-voltage, temperature and device to device variation.  
8.2.2.5.5 Total Power Dissipation  
The total power dissipation (PTOT) is calculated as the sum of conduction loss, switching loss and the quiescent  
power loss as shown in 方程12.  
PTOT = PCOND + PSW + PQ = 1.32-W + 0.2-W + 0.12-W = 1.64-W  
(12)  
8.2.2.5.6 Device Junction Temperature Estimation  
For an ambient temperature of TA and total power dissipation (PTOT), the junction temperature (TJ) is calculated  
as -  
TJ = TA + (PTOT x RθJA  
)
Considering a JEDEC standard 4-layer PCB, the junction-to-ambient thermal resistance (RθJA) is 29.7 °C/W for  
the HTSSOP package and 39 °C/W for the VQFN package.  
Assuming 25°C ambient temperature, the junction temperature for the HTSSOP package is calculated as shown  
below -  
TJ = 25°C + (1.64-W x 29.7°C/W) = 73.71°C  
(13)  
The junction temperature for the VQFN package is calculated as shown below -  
TJ = 25°C + (1.64-W x 39°C/W) = 88.96 °C  
(14)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DRV8434  
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply (VM) range from 4.5 V to 48 V. A 0.01-µF  
ceramic capacitor rated for VM must be placed at each VM pin as close to the device as possible. In addition, a  
bulk capacitor must be included on VM.  
9.1 大容量电容  
配备合适的局部大容量电容是电机驱动系统设计中的重要因素。使用更多的大容量电容通常是有益的但缺点在  
于这会增加成本和物理尺寸。  
所需的局部电容数量取决于多种因素包括:  
• 电机系统所需的最高电流  
• 电源的电容和拉电流的能力  
• 电源和电机系统之间的寄生电感量  
• 可接受的电压纹波  
• 使用的电机类型有刷直流、无刷直流、步进电机)  
• 电机制动方法  
电源和电机驱动系统之间的电感将限制电流可以从电源变化的速率。如果局部大容量电容太小系统将以电压变  
化的方式对电机中的电流不足或过剩电流作出响应。当使用足够多的大容量电容时电机电压保持稳定可以快  
速提供大电流。  
数据表通常会给出建议值但需要进行系统级测试来确定大小适中的大容量电容。  
大容量电容的额定电压应高于工作电压以在电机将能量传递给电源时提供裕度。  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
Motor  
Driver  
+
œ
GND  
Local  
Bulk Capacitor  
IC Bypass  
Capacitor  
Copyright © 2016, Texas Instruments Incorporated  
9-1. 带外部电源的电机驱动系统示例设置  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DRV8434  
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
10 Layout  
10.1 Layout Guidelines  
The VM pin should be bypassed to PGND using a low-ESR ceramic bypass capacitor with a recommended  
value of 0.01 µF rated for VM. This capacitor should be placed as close to the VM pin as possible with a thick  
trace or ground plane connection to the device PGND pin.  
The VM pin must be bypassed to ground using a bulk capacitor rated for VM. This component can be an  
electrolytic capacitor.  
A low-ESR ceramic capacitor must be placed in between the CPL and CPH pins. A value of 0.022 µF rated for  
VM is recommended. Place this component as close to the pins as possible.  
A low-ESR ceramic capacitor must be placed in between the VM and VCP pins. A value of 0.22 µF rated for 16  
V is recommended. Place this component as close to the pins as possible.  
Bypass the DVDD pin to ground with a low-ESR ceramic capacitor. A value of 0.47 µF rated for 6.3 V is  
recommended. Place this bypassing capacitor as close to the pin as possible..  
10.2 Layout Example  
10-1. HTSSOP Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DRV8434  
 
 
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
10-2. QFN Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DRV8434  
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
11 Device and Documentation Support  
11.1 Related Documentation  
Texas Instruments, How to Reduce Audible Noise in Stepper Motors application report  
Texas Instruments, How to Improve Motion Smoothness and Accuracy application report  
Texas Instruments, How to Drive Unipolar Stepper Motors with DRV8xxx application report  
Texas Instruments, Calculating Motor Driver Power Dissipation application report  
Texas Instruments, Current Recirculation and Decay Modes application report  
Texas Instruments, Understanding Motor Driver Current Ratings application report  
Texas Instruments, Motor Drives Layout Guide application report  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DRV8434  
 
 
 
 
 
 
 
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DRV8434  
 
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
PACKAGE OUTLINE  
PowerPADTM TSSOP - 1.2 mm max height  
PWP0028M  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
26X 0.65  
28  
1
2X  
9.8  
9.6  
8.45  
NOTE 3  
14  
15  
0.30  
28X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 0.82 MAX  
NOTE 5  
14  
15  
2X 0.825 MAX  
NOTE 5  
0.25  
GAGE PLANE  
1.2 MAX  
4.05  
3.53  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1
28  
3.10  
2.58  
4224480/A 08/2018  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DRV8434  
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
EXAMPLE BOARD LAYOUT  
PowerPADTM TSSOP - 1.2 mm max height  
PWP0028M  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(3.1)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
28X (1.5)  
1
28X (0.45)  
28  
SEE DETAILS  
(R0.05) TYP  
26X (0.65)  
SYMM  
(4.05)  
(0.6)  
(9.7)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(1.2) TYP  
(
0.2) TYP  
VIA  
14  
15  
(1.2) TYP  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4224480/A 08/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DRV8434  
DRV8434  
www.ti.com.cn  
ZHCSND1A NOVEMBER 2020 REVISED MAY 2022  
EXAMPLE STENCIL DESIGN  
PowerPADTM TSSOP - 1.2 mm max height  
PWP0028M  
SMALL OUTLINE PACKAGE  
(3.1)  
BASED ON  
0.125 THICK  
STENCIL  
28X (1.5)  
METAL COVERED  
BY SOLDER MASK  
1
28X (0.45)  
28  
(R0.05) TYP  
26X (0.65)  
SYMM  
(4.05)  
BASED ON  
0.125 THICK  
STENCIL  
15  
14  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.47 X 4.53  
3.10 X 4.05 (SHOWN)  
2.83 X 3.70  
0.125  
0.15  
0.175  
2.62 X 3.42  
4224480/A 08/2018  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: DRV8434  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Aug-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8434PWPR  
DRV8434RGER  
ACTIVE  
ACTIVE  
HTSSOP  
VQFN  
PWP  
RGE  
28  
24  
2500 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
DRV8434  
NIPDAU  
DRV  
8434  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-Aug-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8434PWPR  
DRV8434RGER  
HTSSOP PWP  
VQFN RGE  
28  
24  
2500  
3000  
330.0  
330.0  
16.4  
12.4  
6.9  
10.2  
4.25  
1.8  
12.0  
8.0  
16.0  
12.0  
Q1  
Q2  
4.25  
1.15  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV8434PWPR  
DRV8434RGER  
HTSSOP  
VQFN  
PWP  
RGE  
28  
24  
2500  
3000  
356.0  
367.0  
356.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PWP 28  
4.4 x 9.7, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224765/B  
www.ti.com  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
RGE0024B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
0.5  
0.3  
PIN 1 INDEX AREA  
4.1  
3.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.5  
(0.2) TYP  
2.45 0.1  
7
12  
EXPOSED  
SEE TERMINAL  
DETAIL  
THERMAL PAD  
13  
6
2X  
SYMM  
25  
2.5  
18  
1
0.3  
24X  
20X 0.5  
0.2  
19  
24  
0.1  
C A B  
SYMM  
24X  
PIN 1 ID  
(OPTIONAL)  
0.05  
0.5  
0.3  
4219013/A 05/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGE0024B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.45)  
SYMM  
24  
19  
24X (0.6)  
1
18  
24X (0.25)  
(R0.05)  
TYP  
25  
SYMM  
(3.8)  
20X (0.5)  
13  
6
(
0.2) TYP  
VIA  
7
12  
(0.975) TYP  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219013/A 05/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGE0024B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.08)  
(0.64) TYP  
19  
24  
24X (0.6)  
1
25  
18  
24X (0.25)  
(R0.05) TYP  
SYMM  
(0.64)  
TYP  
(3.8)  
20X (0.5)  
13  
6
METAL  
TYP  
7
12  
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219013/A 05/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DRV8434A

具有集成式电流感应和失速检测功能的 48V、2.5A 双极步进电机驱动器(使用 GPIO 引脚)
TI

DRV8434APWPR

具有集成式电流感应和失速检测功能的 48V、2.5A 双极步进电机驱动器(使用 GPIO 引脚) | PWP | 28 | -40 to 125
TI

DRV8434ARGER

具有集成式电流感应和失速检测功能的 48V、2.5A 双极步进电机驱动器(使用 GPIO 引脚) | RGE | 24 | -40 to 125
TI

DRV8434E

DRV8434E/P Dual H-Bridge Motor Driver With Integrated Current Sense and Smart Tune Technology
TI

DRV8434E/P

DRV8434E/P Dual H-Bridge Motor Driver With Integrated Current Sense and Smart Tune Technology
TI

DRV8434EPWPR

DRV8434E/P Dual H-Bridge Motor Driver With Integrated Current Sense and Smart Tune Technology
TI

DRV8434ERGER

DRV8434E/P Dual H-Bridge Motor Driver With Integrated Current Sense and Smart Tune Technology
TI

DRV8434P

DRV8434E/P Dual H-Bridge Motor Driver With Integrated Current Sense and Smart Tune Technology
TI

DRV8434PPWPR

DRV8434E/P Dual H-Bridge Motor Driver With Integrated Current Sense and Smart Tune Technology
TI

DRV8434PRGER

DRV8434E/P Dual H-Bridge Motor Driver With Integrated Current Sense and Smart Tune Technology
TI

DRV8434PWPR

48V, 2.5A bipolar stepper motor driver with integrated current sensing and 1/256 microstepping | PWP | 28 | -40 to 125
TI

DRV8434RGER

48V, 2.5A bipolar stepper motor driver with integrated current sensing and 1/256 microstepping | RGE | 24 | -40 to 125
TI