DRV8704DCPR [TI]

60-V dual H-bridge smart gate driver | DCP | 38 | -40 to 85;
DRV8704DCPR
型号: DRV8704DCPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

60-V dual H-bridge smart gate driver | DCP | 38 | -40 to 85

文件: 总38页 (文件大小:1126K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DRV8704  
ZHCSEB6 OCTOBER 2015  
DRV8704 52V 双通道 H PWM 栅极驱动器  
1 特性  
通过 SPI 进行故障诊断  
1
脉宽调制 (PWM) 电机驱动器  
2 应用  
驱动外部 N 沟道金属氧化物半导体场效应晶体  
(MOSFET)  
自动取款机和验钞机  
办公自动化设备  
工厂自动化和机器人  
纺织机器  
双路直流电机的 PWM 控制接口  
支持 100% 脉宽调制 (PWM) 占空比  
运行电源电压范围:8V 52V  
可调节栅极驱动(4 级)  
3 说明  
50mA 200mA 拉电流  
100mA 400mA 灌电流  
DRV8704 是一款适用于工业设备应用的双路刷式电机  
控制器。该器件可控制配置为双 H 桥的外部 N 沟道  
MOSFET。  
集成 PWM 电流调节功能  
灵活的衰减模式  
该器件使用自适应消隐时间和各种电流衰减模式(包括  
自动混合衰减模式)对电机电流进行精确控制。  
自动混合衰减模式  
慢速衰减  
快速衰减  
通过一个简单的 PWM 接口即可轻松与控制器电路相  
连。SPI 串行接口用于对器件的工作模式进行编程。输  
出电流(转矩)、栅极驱动器设置以及衰减模式均可通  
SPI 串行接口进行编程。  
混合衰减(百分比可调,快速)  
高度可配置的串行外设接口 (SPI)  
以数字方式调节电流的转矩数模转换器 (DAC)  
低电流休眠模式 (65μA)  
该器件的内部关断功能可提供过流保护、短路保护、栅  
极驱动器故障排除、欠压锁定 (UVLO) 以及过热保护。  
FAULTn 引脚用于指示故障情况,故障情况通过各自  
SPI 专用位进行报告。  
5V10mA 低压降 (LDO) 稳压器  
耐热增强型表面贴装封装  
38 引脚散热薄型小外形尺寸 (HTSSOP)  
(PowerPAD) 封装  
空白  
DRV8704 采用 PowerPAD™带有散热焊盘的 38 引脚  
HTSSOP 封装(环保型:符合 RoHS 标准且不含锑/  
溴)。  
保护特性  
VM 欠压闭锁 (UVLO)  
栅极驱动器故障 (PDF)  
过流保护 (OCP)  
器件信息 (1)  
部件号  
DRV8704  
封装  
封装尺寸(标称值)  
热关断 (TSD)  
HTSSOP (38)  
9.70mm x 4.40mm  
故障条件指示引脚 (nFAULT)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化电路原理图  
8.0 ꢀo 52 ë  
tía  
5wë8704  
Dꢂꢀe ꢁrive  
.5/  
{[99tn  
{tL  
ꢁuꢂl  
I-ꢃridge  
Dꢂꢀe ꢁriver  
{ense  
.5/  
nC!Ü[Ç  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSD29  
 
 
 
 
DRV8704  
ZHCSEB6 OCTOBER 2015  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 19  
7.5 Register Maps......................................................... 20  
Application and Implementation ........................ 23  
8.1 Application Information............................................ 23  
8.2 Typical Application ................................................. 23  
Power Supply Recommendations...................... 27  
9.1 Bulk Capacitance .................................................... 27  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 SPI Timing Requirements ......................................... 8  
6.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 12  
8
9
10 Layout................................................................... 28  
10.1 Layout Guidelines ................................................. 28  
10.2 Layout Example .................................................... 29  
11 器件和文档支持 ..................................................... 30  
11.1 社区资源................................................................ 30  
11.2 ....................................................................... 30  
11.3 静电放电警告......................................................... 30  
11.4 Glossary................................................................ 30  
12 机械、封装和可订购信息....................................... 30  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
注释  
2015 10 月  
*
最初发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
DRV8704  
www.ti.com.cn  
ZHCSEB6 OCTOBER 2015  
5 Pin Configuration and Functions  
DCP Package  
38-Pin HTSSOP  
Top View  
1
2
3
4
5
6
7
8
9
38  
CP1  
CP2  
VCP  
VM  
GND  
GND  
37 AOUT1  
36 A1HS  
35 A1LS  
34 AISENP  
33 AISENN  
32 A2LS  
31  
30  
29  
28  
27  
V5  
VINT  
SLEEPn  
RESET  
A2HS  
AOUT2  
GND  
BOUT1  
B1HS  
GND  
(PPAD)  
AIN1 10  
AIN2 11  
BIN1 12  
BIN2  
SCLK 14  
SDATI  
SCS 16  
13  
15  
SDATO  
17  
18  
19  
FAULTn  
GND  
Pin Functions  
(1)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
POWER AND GROUND  
CP1  
CP2  
1
2
IO  
IO  
Charge pump flying capacitor  
Charge pump flying capacitor  
Connect a 0.1-μF X7R capacitor between CP1 and CP2.  
Voltage rating must be greater than applied VM voltage.  
5, 19, 29,  
38, PPAD  
GND  
RSVD  
V5  
O
Device ground  
All pins must be connected to ground  
Leave this pin disconnected  
20  
Reserved  
5-V linear regulator output. Bypass to GND with a 0.1-μF  
10-V X7R ceramic capacitor.  
6
5-V regulator output  
High-side gate drive voltage  
Internal logic supply voltage  
VCP  
VINT  
3
IO  
Connect a 1-μF 16-V X7R ceramic capacitor to VM  
Logic supply voltage. Bypass to GND with a 1-μF 6.3-V  
X7R ceramic capacitor.  
7
Connect to motor supply voltage. Bypass to GND with a  
0.1-μF ceramic capacitor plus a 100-μF electrolytic  
capacitor.  
VM  
4
Motor power supply  
CONTROL  
AIN1  
10  
11  
12  
13  
I
I
I
I
Bridge A IN1  
Bridge A IN2  
Bridge B IN1  
Bridge B IN2  
Controls bridge A OUT1. Internal pulldown.  
Controls bridge A OUT2. Internal pulldown.  
Controls bridge B OUT1. Internal pulldown.  
Controls bridge B OUT2. Internal pulldown.  
AIN2  
BIN1  
BIN2  
Active-high reset input initializes all internal logic and  
disables the H-bridge outputs. Internal pulldown.  
RESET  
9
8
I
I
Reset input  
Logic high to enable device, logic low to enter low-power  
sleep mode. Internal pulldown.  
SLEEPn  
Sleep mode input  
SERIAL INTERFACE  
Rising edge clocks data into part for write operations.  
Falling edge clocks data out of part for read operations.  
Internal pulldown.  
SCLK  
14  
I
Serial clock input  
SCS  
16  
15  
I
I
Serial chip select input  
Serial data input  
Active high to enable serial data transfer. Internal pulldown.  
Serial data input from controller. Internal pulldown.  
SDATI  
(1) Directions: I = Input, O = Output, OZ = Tri-state output, OD = Open-drain output, IO = Input/output  
Copyright © 2015, Texas Instruments Incorporated  
3
DRV8704  
ZHCSEB6 OCTOBER 2015  
www.ti.com.cn  
Pin Functions (continued)  
(1)  
PIN  
TYPE  
DESCRIPTION  
NAME  
SDATO  
NO.  
Serial data output to controller. Open-drain output requires  
external pull-up.  
17  
O
Serial data output  
Fault  
STATUS  
Logic low when in fault condition. Open-drain output  
requires external pullup.  
FAULTn  
18  
OD  
OUTPUT  
A1HS  
36  
35  
31  
32  
33  
34  
37  
30  
27  
26  
22  
23  
24  
25  
28  
21  
O
O
O
O
I
Bridge A out 1 HS gate  
Bridge A out 1 LS gate  
Bridge A out 2 HS gate  
Bridge A out 2 LS gate  
Bridge A Isense – in  
Bridge A Isense + in  
Bridge A output 1  
Bridge A out 1 HS FET gate  
Bridge A out 1 LS FET gate  
Bridge A out 2 HS FET gate  
Bridge A out 2 LS FET gate  
Ground at sense resistor for bridge A  
Current sense resistor for bridge A  
Output node of bridge A out 1  
Output node of bridge A out 2  
Bridge B out 1 HS FET gate  
Bridge B out 1 LS FET gate  
Bridge B out 2 HS FET gate  
Bridge B out 2 LS FET gate  
Ground at sense resistor for bridge B  
Current sense resistor for bridge B  
Output node of bridge B out 1  
Output node of bridge B out 2  
A1LS  
A2HS  
A2LS  
AISENN  
AISENP  
AOUT1  
AOUT2  
B1HS  
I
I
I
Bridge A output 2  
O
O
O
O
I
Bridge B out 1 HS gate  
Bridge B out 1 LS gate  
Bridge B out 2 HS gate  
Bridge B out 2 LS gate  
Bridge B Isense – in  
Bridge B Isense + in  
Bridge B output 1  
B1LS  
B2HS  
B2LS  
BISENN  
BISENP  
BOUT1  
BOUT2  
I
I
I
Bridge B output 2  
4
Copyright © 2015, Texas Instruments Incorporated  
DRV8704  
www.ti.com.cn  
ZHCSEB6 OCTOBER 2015  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)  
over operating free-air temperature range referenced with respect to GND (unless otherwise noted)  
MIN  
MAX  
60  
UNIT  
Power supply voltage (VM)  
–0.6  
–0.6  
–0.6  
–0.6  
V
V
V
V
V
Charge pump voltage (CP1, CP2, VCP)  
5-V regulator voltage (V5)  
VM + 12  
5.5  
Internal regulator voltage (VINT)  
2.0  
Digital pin voltage (SLEEPn, RESET, AIN1, AIN2, BIN1, BIN2, SCS, SCLK, SDATI,  
SDATO, FAULTn)  
–0.6  
5.5  
High-side gate drive pin voltage (A1HS, A2HS, B1HS, B2HS)  
Low-side gate drive pin voltage (A1LS, A2LS, B1LS, B2LS)  
Phase node pin voltage (AOUT1, AOUT2, BOUT1, BOUT2)  
ISENSEx pin voltage (AISENP, AISENN, BISENP, BISENN)  
Operating virtual junction temperature, TJ  
–0.6  
–0.6  
–0.6  
–0.7  
–40  
VM + 12  
12  
V
V
VM  
V
+0.7  
150  
V
°C  
°C  
Storage temperature, Tstg  
–60  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
(1)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001  
Charged-device model (CDM), per JEDEC specification JESD22-C101  
V(ESD)  
Electrostatic discharge  
V
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
8
MAX  
UNIT  
VM  
VIN  
fPWM  
IV5  
Motor power supply voltage range  
Digital pin voltage range  
52  
5.3  
500  
10  
V
V
0
Applied PWM signal (xINx)  
V5 external load current  
0
kHz  
mA  
°C  
0
TA  
Operating ambient temperature range  
–40  
85  
6.4 Thermal Information  
DRV8704  
(1)  
THERMAL METRIC  
DCP (HTSSOP)  
UNIT  
38 PINS  
32.7  
17.2  
14.3  
0.5  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
14.1  
0.9  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2015, Texas Instruments Incorporated  
5
DRV8704  
ZHCSEB6 OCTOBER 2015  
www.ti.com.cn  
MAX UNIT  
6.5 Electrical Characteristics  
TA = 25°C, over recommended operating conditions unless otherwise noted  
PARAMETER  
POWER SUPPLIES (VM)  
TEST CONDITIONS  
MIN  
TYP  
IVM  
VM operating supply current  
VM sleep mode supply current  
VM = 24 V  
17  
65  
22  
98  
mA  
IVMQ  
VM = 24 V, SLEEPn low  
μA  
INTERNAL LINEAR REGULATORS (V5, VINT)  
V5  
V5 output voltage  
VINT voltage  
VM 12 V, IOUT 10 mA  
4.8  
1.7  
5
5.2  
1.9  
V
V
VINT  
No external load; reference only  
1.8  
LOGIC-LEVEL INPUTS (SLEEPn, AIN1, AIN2, BIN1, BIN2, RESET, SCLK, SDATI, SCS)  
VIL  
VIH  
VHYS  
IIL  
Input logic low voltage  
Input logic high voltage  
Input logic hysteresis  
Input logic low current  
Input logic high current  
0.8  
V
V
1.5  
300  
50  
mV  
μA  
μA  
VIN = 0 V  
VIN = 5 V  
–5  
24  
5
IIH  
70  
OPEN DRAIN OUTPUTS (nFAULT, SDATO)  
VOL  
IOH  
Output logic low voltage  
Output logic high leakage  
IO = 5 mA  
0.5  
1
V
10kΩ pullup to 3.3 V  
–1  
μA  
GATE DRIVERS  
High-side gate drive output  
VOUTH  
VM = 24 V, IO = 100 μA  
VM = 24 V, IO = 100 μA  
VM + 10  
10  
V
V
voltage  
Low-side gate drive output  
voltage  
VOUTL  
DTIME = 00  
410  
460  
670  
880  
50  
Output dead time digital delay  
(dead time is enforced in analog  
circuits)  
DTIME = 01  
tDEAD  
ns  
mA  
mA  
ns  
DTIME = 10  
DTIME = 11  
IDRIVEP = 00  
IDRIVEP = 01  
IDRIVEP = 10  
IDRIVEP = 11  
IDRIVEN = 00  
IDRIVEN = 01  
IDRIVEN = 10  
IDRIVEN = 11  
TDRIVEP = 00  
TDRIVEP = 01  
TDRIVEP = 10  
TDRIVEP = 11  
TDRIVEN = 00  
TDRIVEN = 01  
TDRIVEN = 10  
TDRIVEN = 11  
100  
150  
200  
100  
150  
200  
400  
263  
525  
1050  
2100  
263  
525  
1050  
2100  
Peak output sourcing gate drive  
current  
IOUT,SRC  
IOUT,SNK  
tDRIVE,SRC  
tDRIVE,SNK  
Peak output sinking gate drive  
current  
Peak current drive time for  
sourcing  
Peak current drive time for  
sinking  
ns  
CURRENT REGULATION  
tOFF  
PWM off time adjustment range  
Set by TOFF register  
Set by TBLANK register  
ISGAIN = 00  
0.53  
1.05  
134  
7.0  
μs  
μs  
tBLANK  
Current sense blanking time  
5
10  
20  
40  
ISGAIN = 01  
AV  
Current sense amplifier gain  
V/V  
ISGAIN = 10  
ISGAIN = 11  
6
Copyright © 2015, Texas Instruments Incorporated  
DRV8704  
www.ti.com.cn  
ZHCSEB6 OCTOBER 2015  
Electrical Characteristics (continued)  
TA = 25°C, over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
ISGAIN = 00, VIN = 400 mV  
ISGAIN = 01, VIN = 200 mV  
ISGAIN = 10, VIN = 100 mV  
ISGAIN = 11, VIN = 50 mV  
ISGAIN = 00, input shorted  
MIN  
TYP  
150  
MAX UNIT  
300  
tSET  
Settling time (to ±1%)  
ns  
600  
1200  
VOFS  
VIN  
Offset voltage  
4
600  
mV  
mV  
V
Input differential voltage range  
Internal reference voltage  
–600  
2.50  
VREF  
2.75  
3.00  
PROTECTION CIRCUITS  
VIN falling; UVLO report  
VIN rising; UVLO recovery  
OCPTH = 00  
6.3  
7.1  
VUVLO Undervoltage lockout  
V
8
320  
160  
380  
620  
840  
150  
250  
500  
750  
1000  
160  
20  
Overcurrent protection trip level  
(Voltage drop across external  
FET)  
OCPTH = 01  
580  
VOCP  
mV  
OCPTH = 10  
880  
OCPTH = 11  
1200  
180  
(1)  
TTSD  
THYS  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
Die temperature, TJ  
Die temperature, TJ  
°C  
°C  
(1)  
(1) Not tested in production; limits are based on characterization data  
Copyright © 2015, Texas Instruments Incorporated  
7
DRV8704  
ZHCSEB6 OCTOBER 2015  
www.ti.com.cn  
6.6 SPI Timing Requirements  
over operating free-air temperature range (unless otherwise noted)  
NO.  
MIN  
250  
25  
25  
5
MAX  
UNIT  
ns  
1
2
3
4
5
6
7
8
9
tCYC  
Clock cycle time  
tCLKH  
Clock high time  
ns  
tCLCL  
Clock low time  
ns  
tSU(SDATI)  
tH(SDATI)  
tSU(SCS)  
tH(SCS)  
tL(SCS)  
tD(SDATO)  
tSLEEP  
tRESET  
Setup time, SDATI to SCLK  
ns  
Hold time, SDATI to SCLK  
1
ns  
Setup time, SCS to SCLK  
5
ns  
Hold time, SCS to SCLK  
1
ns  
Inactive time, SCS (between writes)  
Delay time, SCLK to SDATO (during read)  
Wake time (SLEEPn inactive to high-side gate drive enabled)  
Delay from power-up or RESETn high until serial interface functional  
100  
ns  
10  
1
ns  
ms  
μs  
10  
7
6
8
SCS  
1
SCLK  
2
3
X
SDATI  
X
4
5
9
SDATO  
valid  
SDATO  
Figure 1. Timing Diagram  
8
Copyright © 2015, Texas Instruments Incorporated  
DRV8704  
www.ti.com.cn  
ZHCSEB6 OCTOBER 2015  
6.7 Typical Characteristics  
16.3  
16.2  
16.1  
16  
16.25  
16.2  
16.15  
16.1  
15.9  
15.8  
15.7  
15.6  
15.5  
15.4  
15.3  
16.05  
16  
15.95  
15.9  
15.85  
15.8  
TA = +85°C  
TA = +25°C  
TA = -40°C  
15.75  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
-40  
-20  
0
20  
40  
60  
80  
100  
Supply Voltage VM (V)  
Ambient Temperature TA (èC)  
D001  
D002  
Figure 2. Supply Current over Supply Voltage  
Figure 3. Supply Current over Ambient Temperature at VM =  
24 V  
220  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
TA = +85°C  
TA = +25°C  
TA = -40°C  
60  
60  
40  
40  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
-40  
-20  
0
20  
40  
60  
80  
100  
Supply Voltage VM (V)  
Ambient Temperature TA (èC)  
D003  
D004  
Figure 4. Sleep Current over Supply Voltage  
Figure 5. Sleep Current over Ambient Temperature at VM =  
24 V  
5.1  
5.08  
5.06  
5.04  
5.02  
5
7.65  
TA = +85°C  
TA = +25°C  
TA = -40°C  
7.6  
7.55  
7.5  
7.45  
7.4  
4.98  
4.96  
4.94  
4.92  
4.9  
7.35  
7.3  
7.25  
7.2  
TA = +85°C  
TA = +25°C  
TA = -40°C  
7.15  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Load Current (mA)  
Load Current (mA)  
D005  
D006  
Figure 6. V5 Regulator Voltage over Output Load at  
VM = 12 V  
Figure 7. Charge Pump Voltage over DC Current Load at  
VM = 12 V  
Copyright © 2015, Texas Instruments Incorporated  
9
DRV8704  
ZHCSEB6 OCTOBER 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DRV8704 is a dual-brushed motor controller that uses external N-channel MOSFETs to drive two brushed  
DC motors.  
Motor current can be accurately controlled using adaptive blanking time and various current decay modes,  
including an auto-mixed decay mode.  
A simple PWM interface allows easy interfacing to controller circuits. A SPI serial interface is used to program  
the device operation. Output current (torque), gate drive settings, and decay mode are all programmable through  
a SPI serial interface.  
Internal shutdown functions are provided for overcurrent protection, short-circuit protection, UVLO, and  
overtemperature. Fault conditions are indicated by a FAULTn pin, and each fault condition is reported by a  
dedicated bit through SPI.  
10  
Copyright © 2015, Texas Instruments Incorporated  
DRV8704  
www.ti.com.cn  
ZHCSEB6 OCTOBER 2015  
7.2 Functional Block Diagram  
VM  
0.01 µF  
+ Bulk  
VM  
VM  
VM  
VCP  
Power  
A1HS  
HS  
1 µF  
VCP  
CP2  
CP1  
VINT  
V5  
AOUT1  
A1LS  
Gate Driver  
VGLS  
Charge  
Pump  
LS  
0.1 µF  
1 µF  
VM  
BDC  
1.8-V LDO  
5.0-V LDO  
VGLS LDO  
VCP  
A2HS  
AOUT2  
A2LS  
10 mA  
HS  
0.1 µF  
Gate Driver  
VGLS  
LS  
AIN1  
AIN2  
BIN1  
BIN2  
AISENP  
AISENN  
+
AV  
-
RSENSE  
VREF  
DAC  
Control  
Inputs  
SLEEPn  
RESET  
VM  
Logic  
VCP  
B1HS  
BOUT1  
B1LS  
HS  
SCS  
SCLK  
Serial  
Interface  
Gate Driver  
VGLS  
LS  
SDATI  
SDATO  
VM  
BDC  
VCP  
B2HS  
BOUT2  
B2LS  
HS  
Protection  
Overcurrent  
Output  
nFAULT  
Gate Driver  
VGLS  
Undervoltage  
Thermal  
LS  
Gate Drive  
BISENP  
BISENN  
+
AV  
-
RSENSE  
VREF  
DAC  
PPAD GND GND  
Copyright © 2015, Texas Instruments Incorporated  
11  
DRV8704  
ZHCSEB6 OCTOBER 2015  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 PWM Motor Drivers  
The DRV8704 contains two H-bridge motor gate drivers with current-control PWM circuitry.  
7.3.2 Direct PWM Input Mode (Dual Brushed DC Gate Driver)  
In direct PWM input mode, the AIN1, AIN2, BIN1, and BIN2 directly control the state of the output drivers. This  
allows for driving up to two brushed DC motors. Table 1 shows the logic.  
Table 1. Output Control Logic Table  
SLEEPn  
xIN1  
xIN2  
xOUT1  
xOUT2  
DESCRIPTION  
Sleep mode; H-bridge disabled Hi-Z  
Coast; H-bridge disabled Hi-Z  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Hi-Z  
Hi-Z  
L
Hi-Z  
Hi-Z  
H
Reverse (current xOUT2 xOUT1)  
Forward (current xOUT1 xOUT2)  
Brake; low-side slow decay  
H
L
L
L
In direct PWM mode, the current control circuitry is still active. The full-scale VREF is set to 2.75 V. The  
TORQUE register may be used to scale this value, and the ISEN sense amplifier gain may still be set using the  
ISGAIN bits of the CTRL register.  
VM  
x1HS  
Gate  
Drive  
xOUT1  
xIN1  
xIN2  
and  
OCP  
x1LS  
PWM  
logic  
VM  
x2HS  
Gate  
Drive  
and  
xOUT2  
OCP  
x2LS  
+
-
RISENSE  
Comp  
Comp  
+
-
xISENP  
xISENN  
-
+
ISEN  
amp  
+
-
VREF  
Torque  
DAC  
TORQUE  
ISGAIN  
Figure 8. Motor Driver Block Diagram  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
DRV8704  
www.ti.com.cn  
ZHCSEB6 OCTOBER 2015  
7.3.3 Current Regulation  
The current through the motor windings is regulated by an adjustable fixed-off-time PWM current regulation  
circuit. When an H-bridge is enabled, current rises through the winding at a rate dependent on the DC voltage  
and inductance of the winding and the magnitude of the back EMF present. Once the current hits the current  
chopping threshold, the bridge disables the current for a fixed period of time, which is programmable between  
525 ns and 128 µs by writing to the TOFF bits in the OFF register. After the off time expires, the bridge is re-  
enabled, starting another PWM cycle.  
Note that the decay mode is set by DECMOD bits in the DECAY register. Slow, fast, mixed, or auto mixed decay  
modes are available.  
The chopping current is set by a comparator which compares the voltage across a current sense resistor  
connected to the xISENx pins, multiplied by the gain of the current sense amplifier, with a reference voltage. The  
current sense amplifier is programmable in the CTRL register.  
When driving in PWM mode, the chopping current is calculated as follows:  
2.75 Vì TORQUE  
256 ì ISGAIN ì RISENSE  
ICHOP  
=
where  
TORQUE is the setting of the TORQUE bits  
ISGAIN is the programmed gain of the ISENSE amplifiers (5, 10, 20, or 40).  
(1)  
7.3.4 Decay Modes  
During PWM current chopping, the H-bridge is enabled to drive current through the motor winding until the PWM  
current chopping threshold is reached. This is shown in the diagram below as case 1. The current flow direction  
shown indicates positive current flow in the step table below.  
Once the chopping current threshold is reached, the H-bridge can operate in two different states, fast decay or  
slow decay.  
In fast decay mode, once the PWM chopping current level has been reached, the H-bridge reverses state to  
allow winding current to flow in a reverse direction. If the winding current approaches zero, the bridge is disabled  
to prevent any reverse current flow. Fast decay mode is shown in the diagram below as case 2.  
In slow decay mode, winding current is recirculated by enabling both of the low-side FETs in the bridge. This is  
shown as case 3 in Figure 9.  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
DRV8704  
ZHCSEB6 OCTOBER 2015  
www.ti.com.cn  
PWM  
ON  
ëa  
PWM OFF  
Slow Decay  
Fast Decay  
1
2
3
5rive /urrent  
1
Cast decay (reverse)  
{low decay (brake)  
xhÜÇ2  
xhÜÇ1  
3
2
Mixed Decay  
TDECAY  
TBLANK  
TOFF  
Itrip  
Figure 9. Decay Mode Current  
Figure 10. Decay Mode Comparison  
The DRV8704 supports fast decay and slow decay modes. In addition it supports fixed mixed decay and auto  
mixed decay modes. Decay mode is selected by the DECMOD bits in the DECAY register.  
Mixed decay mode begins as fast decay, but after a programmable period of time (set by the TDECAY bits in the  
DECAY register) switches to slow decay mode for the remainder of the fixed off time.  
Auto mixed decay mode samples the current level at the end of the blanking time, and if the current is above the  
Itrip threshold, immediately changes the H-bridge to fast decay. During fast decay, the (negative) current is  
monitored, and when it falls below the Itrip threshold (and another blanking time has passed), the bridge is  
switched to slow decay. Once the fixed off time expires, a new cycle is started.  
If the bridge is turned on and at the end of tBLANK the current is below the Itrip threshold, the bridge remains on  
until the current reaches Itrip. Then slow decay is entered for the fixed off time, and a new cycle begins.  
Refer to Figure 11.  
The upper waveform shows the behavior if I < Itrip at the end of tBLANK. This is a stable, slow decay mode of  
operation.  
The lower waveform shows what happens when I > Itrip at the end of tBLANK. Note that (at slow motor speeds,  
where back EMF is not significant), the current increase during the ON phase is the same magnitude as the  
current decrease in fast decay, since both times are controlled by tBLANK, and the rate of change is the same (full  
VM is applied to the load inductance in both cases, but in opposite directions). In this case, the current will  
gradually be driven down until the peak current is just hitting Itrip at the end of the blanking time, after which  
some cycles will be slow decay, and some will be mixed decay.  
14  
Copyright © 2015, Texas Instruments Incorporated  
DRV8704  
www.ti.com.cn  
ZHCSEB6 OCTOBER 2015  
tON  
tON  
tOFF  
tOFF  
tBLANK  
tBLANK  
I below Itrip  
after tBLANK  
Itrip  
At Itrip and after tBLANK  
slow decay  
,
I < Itrip  
tON  
tON  
tOFF  
tOFF  
On  
tBLANK  
tBLANK  
tBLANK  
tBLANK  
I above Itrip  
after tBLANK  
Fast  
Decay  
Itrip  
Slow  
Decay  
I > Itrip, start  
fast decay  
When I < Itrip in fast decay and  
tBLANK expires, change to slow  
decay  
Figure 11. Auto Mixed Decay  
To accurately detect zero current, an internal offset has been intentionally placed in the zero current detection  
circuit. If an external filter is placed on the current sense resistor to the xISENN and xISENP pins, symmetry  
must be maintained. This means that any resistance between the bottom of the RISENSE resistor and xISENN  
must be matched by the same resistor value (1% tolerance) between the top of the RISENSE resistor and xISENP.  
Ensure a maximum resistance of 500 . The capacitor value should be chosen such that the RC time constant is  
between 50 and 60 ns. Any external filtering on these pins is optional and not required for operation.  
VM  
x1HS  
Gate  
Drive  
xOUT1  
and  
OCP  
x1LS  
PWM  
logic  
VM  
x2HS  
Gate  
Drive  
xOUT2  
and  
OCP  
x2LS  
+
RISENSE  
Comp  
-
+
-
-
xISENP  
xISENN  
ISEN  
amp  
+
R
R
+
-
C
Comp  
Optional Filtering  
Figure 12. Optional Filtering for Sense Amplifiers  
Copyright © 2015, Texas Instruments Incorporated  
15  
DRV8704  
ZHCSEB6 OCTOBER 2015  
www.ti.com.cn  
7.3.5 Blanking Time  
After the current is enabled in an H-bridge, the voltage on the ISEN pin is ignored for a period of time before  
enabling the current sense circuitry. This blanking time is adjustable from 500 ns to 5.14 µs, in 20-ns increments,  
by setting the TBLANK bits in the BLANK register. Note that the blanking time also sets the minimum drive time  
of the PWM.  
The same blanking time is applied to the fast decay period in auto mixed decay mode. The PWM will ignore any  
transitions on Itrip after entering fast decay mode, until the blanking time has expired.  
7.3.6 Gate Drivers  
An internal charge pump circuit and pre-drivers inside the DRV8704 directly drive N-channel MOSFETs, which  
drive the motor current.  
The peak drive current of the pre-drivers is adjustable by setting the bits in the DRIVE register. Peak source  
currents may be set to 50 mA, 100 mA, 150 mA, or 200 mA. The peak sink current is approximately 2× the peak  
source current. Adjusting the peak current will change the output slew rate, which also depends on the FET input  
capacitance and gate charge.  
When changing the state of the output, the peak current is applied for a short period of time (tDRIVE), to charge  
the gate capacitance. After this time, a weak current source is used to keep the gate at the desired state. When  
selecting the gate drive strength for a given external FET, the selected current must be high enough to fully  
charge and discharge the gate during the time when driven at full current, or excessive power will be dissipated  
in the FET.  
During high-side turn-on, the low-side gate is pulled low. This prevents the gate-drain capacitance of the low-side  
FET from inducing turn-on.  
The pre-driver circuits include enforcement of a dead time in analog circuitry, which prevents the high-side and  
low-side FETs from conducting at the same time. Additional dead time is added with digital delays. This delay  
can be selected by setting the DTIME bits in the CTRL register.  
tDRIVE  
High Z  
High Z  
High Z  
Low Z  
HS drive  
(mA)  
Low  
Z
xHS  
(V)  
tDRIVE  
High Z  
Low Z  
High Z  
High Z  
LS drive  
(mA)  
Low  
Z
xLS  
(V)  
tDEAD  
tDEAD  
Figure 13. Gate Driver  
16  
Copyright © 2015, Texas Instruments Incorporated  
DRV8704  
www.ti.com.cn  
ZHCSEB6 OCTOBER 2015  
I (mA) source  
I (mA) source  
200 mA  
TDRIVEP = 00  
TDRIVEP = 01  
IDRIVEP = 11  
200 mA  
150 mA  
100 mA  
IDRIVEP = 11  
150 mA  
100 mA  
IDRIVEP = 10  
IDRIVEP = 10  
IDRIVEP = 01  
IDRIVEP = 00  
IDRIVEP = 01  
IDRIVEP = 00  
50 mA  
50 mA  
Holding Current  
Holding Current  
t (ns)  
t (ns)  
263 ns 525 ns  
1.05 µs  
2.1 µs  
263 ns 525 ns  
I (mA) source  
1.05 µs  
2.1 µs  
I (mA) source  
TDRIVEP = 10  
TDRIVEP = 11  
200 mA  
150 mA  
100 mA  
200 mA  
150 mA  
100 mA  
IDRIVEP = 11  
IDRIVEP = 11  
IDRIVEP = 10  
IDRIVEP = 10  
IDRIVEP = 01  
IDRIVEP = 00  
IDRIVEP = 01  
IDRIVEP = 00  
50 mA  
50 mA  
Holding Current  
Holding Current  
t (ns)  
t (ns)  
263 ns 525 ns  
1.05 µs  
2.1 µs  
263 ns 525 ns  
1.05 µs  
2.1 µs  
Figure 14. Gate Driver Source Capability  
TDRIVEN = 00  
1.05 µs  
TDRIVEN = 01  
1.05 µs  
263 ns 525 ns  
2.1 µs  
263 ns 525 ns  
2.1 µs  
t (ns)  
t (ns)  
Holding Current  
Holding Current  
IDRIVEN = 00  
IDRIVEN = 00  
100 mA  
100 mA  
IDRIVEN = 01  
IDRIVEN = 10  
IDRIVEN = 11  
IDRIVEN = 01  
IDRIVEN = 10  
IDRIVEN = 11  
200 mA  
300 mA  
400 mA  
200 mA  
300 mA  
400 mA  
I (mA) sink  
263 ns 525 ns  
I (mA) sink  
263 ns 525 ns  
TDRIVEN = 10  
1.05 µs  
TDRIVEN = 11  
1.05 µs  
2.1 µs  
2.1 µs  
t (ns)  
t (ns)  
Holding Current  
Holding Current  
IDRIVEN = 00  
IDRIVEN = 00  
IDRIVEN = 01  
100 mA  
100 mA  
IDRIVEN = 01  
IDRIVEN = 10  
IDRIVEN = 11  
200 mA  
300 mA  
400 mA  
200 mA  
300 mA  
400 mA  
IDRIVEN = 10  
IDRIVEN = 11  
I (mA) sink  
I (mA) sink  
Figure 15. Gate Driver Sink Capability  
7.3.7 Configuring Gate Drivers  
IDRIVE and TDRIVE are selected based on the size of external FETs used. These registers need to be  
configured so that the FET gates are charged completely during TDRIVE. If IDRIVE and TDRIVE are chosen to  
be too low for a given FET, then the FET may not turn on completely. It is suggested to adjust these values in-  
system with the required external FETs and motors in order to determine the best possible setting for any  
application.  
Note that TDRIVE will not increase the PWM time or change the PWM chopping frequency.  
Copyright © 2015, Texas Instruments Incorporated  
17  
DRV8704  
ZHCSEB6 OCTOBER 2015  
www.ti.com.cn  
In a system with capacitor charge Q and desired rise time RT, IDRIVE, and TDRIVE can be initially selected  
based on:  
Q
IDRIVE >  
RT  
(2)  
(3)  
TDRIVE > 2 × RT  
For best results, select the smallest IDRIVE and TDRIVE that meet the above conditions.  
Example:  
If the gate charge is 15 nC and the desired rise time is 400 ns, then select  
IDRIVEP = 50 mA, IDRIVEN = 100 mA  
TDRIVEP = TDRIVEN = 1050 ns  
7.3.8 External FET Selection  
In a typical setup, the DRV8704 can support external FETs over 50 nC each. However, this capacity can be  
lower or higher based on the device operation. For an accurate calculation of FET driving capacity, use  
Equation 4.  
20 mA ì 2 ì DTIME + TBLANK + TOFF  
(
)
Q <  
4
(4)  
Example:  
If a DTIME is set to 0 (410 ns), TBLANK is set to 0 (1 µs), and TOFF is set to 0 (525 ns), then the DRV8704  
will support Q < 11.5 nC FETs. (Please note that this is an absolute worst-case scenario with a PWM  
frequency about 430 kHz)  
If a DTIME is set to 0 (410 ns), TBLANK is set to 0 (1 µs), and TOFF is set to 0x14 (10 µs), then the  
DRV8704 will support Q < 59 nC FETs (PWM frequency about 85 kHz).  
If a DTIME is set to 0 (410 ns), TBLANK is set to 0 (1 µs), and TOFF is set to 0x60 (48 µs), then the  
DRV8704 will support Q < 249 nC FETs (PWM frequency about 20 kHz).  
7.3.9 Protection Circuits  
The DRV8704 is fully protected against undervoltage, overcurrent, and overtemperature events.  
7.3.9.1 Overcurrent Protection (OCP)  
Overcurrent is sensed by monitoring the voltage drop across the external FETs. If the voltage across a driven  
FET exceeds the value programmed by the OCPTH bits in the DRIVE register for more than the time period  
specified by the OCPDEG bits in the DRIVE register, an OCP event is recognized. During an OCP event, the H-  
bridge experiencing the OCP event is disabled. In addition, the corresponding xOCP bit in the STATUS register  
is set, and the FAULTn pin is driven low. The H-bridge (or H-bridges) will remain off, and the xOCP bit will  
remain set, until it is written to 0, or the device is reset.  
7.3.9.2 Gate Driver Fault (PDF)  
If excessive current is detected on the gate drive outputs (which would be indicative of a failed/shorted output  
FET or PCB fault), the H-bridge experiencing the fault is disabled, the xPDF bit in the STATUS register is set,  
and the FAULTn pin is driven low. The H-bridge will remain off, and the xPDF bit will remain set until it is written  
to 0, or the device is reset.  
7.3.9.3 Thermal Shutdown (TSD)  
If the die temperature exceeds safe limits, all FETs in the H-bridge will be disabled, the OTS bit in the STATUS  
register will be set, and the FAULTn pin will be driven low. Once the die temperature has fallen to a safe level  
operation will automatically resume and the OTS bit will reset. The FAULTn pin will be released after operation  
has resumed.  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
DRV8704  
www.ti.com.cn  
ZHCSEB6 OCTOBER 2015  
7.3.9.4 Undervoltage Lockout (UVLO)  
If at any time the voltage on the VM pin falls below the undervoltage lockout threshold voltage, all FETs in the H-  
bridge will be disabled, the UVLO bit in the STATUS register will be set, and the FAULTn pin will be driven low.  
Operation will resume and the UVLO bit will reset when VM rises above the UVLO threshold. The FAULTn pin  
will be released after operation has resumed.  
7.3.10 Serial Data Format  
The serial data consists of a 16-bit serial write, with a read/write bit, 3 address bits and 12 data bits. The three  
address bits identify one of the registers defined in the register section above. To complete the read or write  
transaction, SCS must be set to a logic 0.  
To write to a register, data is shifted in after the address as shown in the timing diagram below. The first bit at  
the beginning of the access must be logic low for a write operation.  
Figure 16. Serial Write Operation  
Data may be read from the registers through the SDATO pin. During a read operation, only the address is used  
form the SDATI pin; the data bits following are ignored. The first bit at the beginning of the access must be logic  
high for a read operation.  
(1) Any amount of time may pass between bits, as long as SCS stays active high. This allows two 8-bit writes to be used  
Figure 17. Serial Read Operation  
7.4 Device Functional Modes  
The DRV8704 is active unless the nSLEEP pin is brought logic low. In sleep mode the charge pump is disabled,  
the H-bridge FETs are disabled Hi-Z, and the V5 regulator is disabled. The DRV8704 is brought out of sleep  
mode automatically if nSLEEP is brought logic high.  
If a ‘0’ is written to the ENBL bit, the H-bridge outputs are disabled, but the internal logic will still be active.  
Table 2. Functional Modes  
CONDITION  
8 V < VM < 52 V  
H-BRIDGE  
CHARGE PUMP  
SPI  
V5  
Operating  
nSLEEP pin = 1  
ENBL bit = 1  
Operating  
Operating  
Operating  
Operating  
8 V < VM < 52 V  
nSLEEP pin = 1  
ENBL bit = 0  
Disabled  
Disabled  
Operating  
Operating  
Operating  
8 V < VM < 52 V  
nSLEEP pin = 0  
Sleep mode  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Fault  
encountered  
Any fault condition met  
Depends on fault  
Depends on fault  
Depends on fault  
Copyright © 2015, Texas Instruments Incorporated  
19  
DRV8704  
ZHCSEB6 OCTOBER 2015  
www.ti.com.cn  
7.5 Register Maps  
7.5.1 Control Registers  
The DRV8704 uses internal registers to control the operation of the motor. The registers are programmed by a  
serial SPI communications interface. At power-up or reset, the registers will be pre-loaded with default values as  
shown in Table 3.  
Following is a map of the DRV8704 registers:  
Table 3. DRV8704 Register Map  
ADDRESS  
NAME  
CTRL  
11  
10  
9
8
7
6
5
4
3
2
1
0
HEX  
00  
01  
02  
03  
04  
05  
06  
07  
DTIME  
ISGAIN  
Reserved  
ENBL  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TORQUE  
OFF  
Reserved  
Reserved  
Reserved  
DECMOD  
TORQUE  
PWMMODE  
TOFF  
BLANK  
TBLANK  
TDECAY  
DECAY  
RESERVED  
DRIVE  
Reserved  
Reserved  
IDRIVEP  
IDRIVEN  
Reserved  
TDRIVEP  
TDRIVEN  
UVLO BPDF  
OCPDEG  
APDF BOCP  
OCPTH  
AOCP  
STATUS  
OTS  
Individual register contents are defined in the following sections.  
7.5.1.1 CTRL Register (Address = 0x00h)  
Table 4. CTRL Register  
BIT  
0
NAME  
ENBL  
SIZE  
R/W  
R/W  
DEFAULT  
DESCRIPTION  
0: Disable motor  
1: Enable motor  
1
7
1
7-1  
Reserved  
Reserved  
ISENSE amplifier gain set  
00: Gain of 5 V/V  
9-8  
ISGAIN  
DTIME  
2
2
R/W  
R/W  
11  
00  
01: Gain of 10 V/V  
10: Gain of 20 V/V  
11: Gain of 40 V/V  
Dead time set  
00: 410-ns dead time  
01: 460-ns dead time  
10: 670-ns dead time  
11: 880-ns dead time  
11-10  
7.5.1.2 TORQUE Register (Address = 0x01h)  
Table 5. TORQUE Register  
BIT  
7-0  
NAME  
SIZE  
R/W  
R/W  
DEFAULT  
0xFFh  
DESCRIPTION  
TORQUE  
Reserved  
8
4
Sets full-scale output current for both H-bridges  
Reserved  
11-8  
7.5.1.3 OFF Register (Address = 0x02h)  
Table 6. OFF Register  
BIT  
NAME  
SIZE  
R/W  
DEFAULT  
DESCRIPTION  
7-0  
TOFF  
8
R/W  
0x30h  
Sets fixed off time, in increments of 525 ns  
0x00h: 525 ns  
0xFFh: 133.8 µs  
8
PWMMODE  
Reserved  
1
3
R/W  
1
0: Do not write ‘0’ to this register  
1: PWM control mode  
11-9  
Reserved  
20  
Copyright © 2015, Texas Instruments Incorporated  
 
DRV8704  
www.ti.com.cn  
ZHCSEB6 OCTOBER 2015  
7.5.1.4 BLANK Register (Address = 0x03h)  
Table 7. BLANK Register  
BIT  
NAME  
SIZE  
R/W  
DEFAULT  
DESCRIPTION  
7-0  
TBLANK  
8
R/W  
0x80h  
Sets current trip blanking time, in increments of 21  
ns  
0x00h: 1.05 µs  
0x32h: 1.05 µs  
0x33h: 1.07 µs  
0xFEh: 5.859 µs  
0xFFh: 5.880 µs  
Also sets minimum on-time of PWM  
11-8  
Reserved  
4
Reserved  
7.5.1.5 DECAY Register (Address = 0x04h)  
Table 8. DECAY Register  
BIT  
NAME  
SIZE  
R/W  
DEFAULT  
DESCRIPTION  
7-0  
TDECAY  
8
R/W  
0x10h  
Sets mixed decay transition time, in increments of  
525ns  
10-8  
DECMOD  
3
R/W  
000  
000: Force slow decay at all times  
001: Reserved  
010: Force fast decay at all times  
011: Use mixed decay at all times  
100: Reserved  
101: Use auto mixed decay at all times  
110 – 111: Reserved  
11  
Reserved  
1
Reserved  
7.5.1.6 Reserved Register Address = 0x05h  
Table 9. Reserved Register  
BIT  
NAME  
SIZE  
R/W  
DEFAULT  
DESCRIPTION  
11-0  
Reserved  
12  
Reserved  
7.5.1.7 DRIVE Register Address = 0x06h  
Table 10. DRIVE Register  
BIT  
NAME  
SIZE  
R/W  
DEFAULT  
DESCRIPTION  
1-0  
OCPTH  
2
R/W  
01  
OCP threshold  
00: 250 mV  
01: 500 mV  
10: 750 mV  
11: 1000 mV  
3-2  
5-4  
OCPDEG  
TDRIVEN  
2
2
R/W  
R/W  
01  
10  
OCP deglitch time  
00: 1.05 µs  
01: 2.1 µs  
10: 4.2 µs  
11: 8.4 µs  
Gate drive sink time  
00: 263 ns  
01: 525 ns  
10: 1.05 µs  
11: 2.10 µs  
Copyright © 2015, Texas Instruments Incorporated  
21  
DRV8704  
ZHCSEB6 OCTOBER 2015  
www.ti.com.cn  
Table 10. DRIVE Register (continued)  
BIT  
NAME  
SIZE  
R/W  
DEFAULT  
DESCRIPTION  
7-6  
TDRIVEP  
IDRIVEN  
IDRIVEP  
2
R/W  
10  
Gate drive source time  
00: 263 ns  
01: 525 ns  
10: 1.05 µs  
11: 2.10 µs  
9-8  
2
2
R/W  
R/W  
11  
11  
Gate drive peak sink current  
00: 100-mA peak (sink)  
01: 200-mA peak (sink)  
10: 300-mA peak (sink)  
11: 400-mA peak (sink)  
11-10  
Gate drive peak source current  
00: 50-mA peak (source)  
01: 100-mA peak (source)  
10: 150-mA peak (source)  
11: 200-mA peak (source)  
7.5.1.8 STATUS Register (Address = 0x07h)  
Table 11. STATUS Register  
BIT  
NAME  
SIZE  
R/W  
DEFAULT  
DESCRIPTION  
0
OTS  
1
R
0
0: Normal operation  
1: Device has entered overtemperature shutdown  
Write a ‘0’ to this bit to clear the fault and resume  
operation  
Operation automatically resumes once  
temperature has fallen to safe levels  
1
2
3
4
5
AOCP  
BOCP  
APDF  
BPDF  
UVLO  
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R
0
0
0
0
0
0: Normal operation  
1: Channel A overcurrent shutdown  
Write a ‘0’ to this bit to clear the fault and resume  
operation  
0: Normal operation  
1: Channel B overcurrent shutdown  
Write a ‘0’ to this bit to clear the fault and resume  
operation  
0: Normal operation  
1: Channel A predriver fault  
Write a ‘0’ to this bit to clear the fault and resume  
operation  
0: Normal operation  
1: Channel B predriver fault  
Write a ‘0’ to this bit to clear the fault and resume  
operation  
0: Normal operation  
1: Undervoltage lockout  
Write a ‘0’ to this bit to clear the fault and resume  
operation  
The UVLO bit cannot be cleared in sleep mode  
Operation automatically resumes once VM has  
risen  
11-6  
Reserved  
5
Reserved  
22  
Copyright © 2015, Texas Instruments Incorporated  
DRV8704  
www.ti.com.cn  
ZHCSEB6 OCTOBER 2015  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV8704 is used in brushed DC motor control.  
8.2 Typical Application  
The following design procedure can be used to configure the DRV8704.  
DRV8704DCP  
1
2
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
VM  
CP1  
GND  
AOUT1  
A1HS  
0.1 µF  
1 µF  
CP2  
3
A1HS  
AOUT1  
A1LS  
A2HS  
AOUT2  
A2LS  
VCP  
VM  
4
VM  
A1LS  
+
BDC  
5
bulk  
0.01 µF  
GND  
V5  
AISENP  
AISENN  
A2LS  
6
7
0.1 µF  
VINT  
SLEEPn  
RESET  
AIN1  
AIN2  
BIN1  
BIN2  
SCLK  
SDATI  
SCS  
AISENP  
AISENN  
1 µF  
8
A2HS  
9
AOUT2  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
VM  
BOUT1  
B1HS  
B1HS  
BOUT1  
B1LS  
B2HS  
BOUT2  
B2LS  
B1LS  
BISENP  
BISENN  
B2LS  
BDC  
V5  
V5  
SDATO  
FAULTn  
GND  
B2HS  
BISENP  
BISENN  
BOUT2  
RSVD  
Figure 18. Dual Brushed-DC Motor Control  
Copyright © 2015, Texas Instruments Incorporated  
23  
DRV8704  
ZHCSEB6 OCTOBER 2015  
www.ti.com.cn  
Typical Application (continued)  
8.2.1 Design Requirements  
Table 12 shows design input parameters for system design.  
Table 12. Design Parameters  
DESIGN PARAMETER  
Supply voltage  
FET total gate charge  
REFERENCE  
EXAMPLE VALUE  
24 V  
VM  
Qg  
(1)  
41 nC (typically)  
6.7 nC (typically)  
20 to 100 ns  
400 mΩ  
(1)  
FET gate-to-drain charge  
Target FET gate rise time  
Motor winding resistance  
Motor winding inductance  
Target chopping current  
Qgd  
RT  
RL  
LL  
258 μH  
ICHOP  
5.5 A  
(1) FET part number is CSD18540Q5B  
8.2.2 Detailed Design Procedure  
8.2.2.1 External FET Selection  
The DRV8704 FET support is based on the charge pump capacity and output PWM frequency. For a quick  
calculation of FET driving capacity, use the following equations when drive and brake (slow decay) are the  
primary modes of operation:  
IVCP  
Qg <  
2 ì ƒPWM  
where  
ƒPWM is the maximum desired PWM frequency to be applied to the DRV8704 inputs or the current chopping  
frequency, whichever is larger.  
IVCP is the charge pump capacity, which is 20 mA.  
(5)  
(6)  
The factor of two arises because there are two H-bridges present.  
The current chopping frequency is at most:  
1
ƒPWM  
<
tOFF + tBLANK  
Example:  
If a system uses a maximum PWM frequency of 40 kHz, then the DRV8704 will support Qg < 250 nC FETs.  
If the application will require a forced fast decay (or alternating between drive and reverse drive), the maximum  
FET driving capacity is given by:  
IVCP  
Qg <  
4 ì ƒPWM  
(7)  
8.2.2.2 IDRIVE Configuration  
IDRIVE is selected based on the gate charge of the FETs. The IDRIVEx and TDRIVEx registers need to be  
configured so that the FET gates are charged completely during TDRIVE. If IDRIVE is chosen to be too low for a  
given FET, or if TDRIVE is less than the intended rise time, then the FET may not turn on completely. TI  
suggests to adjust these values in-system with the required external FETs and motor to determine the best  
possible setting for any application.  
For FETs with a known gate-to-drain charge Qgd and desired rise time RT, IDRIVE and TDRIVE can be selected  
based on:  
Qgd  
IDRIVE >  
RT  
(8)  
(9)  
TDRIVE > 2 × RT  
24  
Copyright © 2015, Texas Instruments Incorporated  
 
DRV8704  
www.ti.com.cn  
ZHCSEB6 OCTOBER 2015  
Example:  
If the gate-to-drain charge is 5.9 nC, and the desired rise time is around 20 to 100 ns:  
IDRIVE1 = 6.7 nC / 20 ns = 335 mA  
IDRIVE2 = 6.7 nC / 100 ns = 67 mA  
Select IDRIVE between 67 and 335 mA.  
We select IDRIVEP as 200-mA source and IDRIVEP as 400-mA sink.  
We select TDRIVEN and TDRIVEP as 525 ns.  
8.2.2.3 Current Chopping Configuration  
The chopping current is set based on the sense resistor value, shunt amplifier gain set by the ISGAIN register,  
and the TORQUE register setting. The following is used to calculate the current:  
2.75 V ì TORQUE  
ICHOP  
=
256 ì ISGAIN ì RISENSE  
Example:  
If the desired chopping current is 5.5 A:  
(10)  
Set RSENSE = 100 m.  
Set ISGAIN to the 5 V/V setting.  
The TORQUE register can be (decimal) 255.  
8.2.2.4 Decay Modes  
The DRV8704 supports several different decay modes: slow decay, fast decay, mixed decay, and automatic  
mixed decay. The current through the motor windings is regulated using an adjustable fixed-time-off scheme.  
This means that after any drive phase, when a motor winding current has hit the current chopping threshold  
(ITRIP), the DRV8704 will place the winding in one of the decay modes for TOFF. After TOFF, a new drive phase  
starts.  
8.2.2.5 Sense Resistor  
For optimal performance, it is important for the sense resistor to be:  
Surface-mount  
Low inductance  
Rated for high enough power  
Placed closely to the motor driver  
2
The power dissipated by the sense resistor equals IRMS × R. For example, if peak motor current is 3 A, RMS  
motor current is 2 A, and a 0.05-Ω sense resistor is used, the resistor will dissipate 2 A2 × 0.05 Ω = 0.2 W. The  
power quickly increases with higher current levels.  
Resistors typically have a rated power within some ambient temperature range, along with a derated power curve  
for high ambient temperatures. When a PCB is shared with other components generating heat, margin should be  
added. It is always best to measure the actual sense resistor temperature in a final system, along with the power  
MOSFETs, as those are often the hottest components.  
Because power resistors are larger and more expensive than standard resistors, it is common practice to use  
multiple standard resistors in parallel, between the sense node and ground. This distributes the current and heat  
dissipation.  
Copyright © 2015, Texas Instruments Incorporated  
25  
DRV8704  
ZHCSEB6 OCTOBER 2015  
www.ti.com.cn  
8.2.3 Application Curves  
Figure 19. Current Regulation  
Figure 20. Motor Startup  
26  
Copyright © 2015, Texas Instruments Incorporated  
DRV8704  
www.ti.com.cn  
ZHCSEB6 OCTOBER 2015  
9 Power Supply Recommendations  
The DRV8704 is designed to operate from an input voltage supply (VM) range between 8 and 52 V. A 0.01-μF  
ceramic capacitor rated for VM must be placed as close to the DRV8704 as possible. In addition, a bulk  
capacitor must be included on VM.  
9.1 Bulk Capacitance  
Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally  
beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.  
The amount of local capacitance needed depends on a variety of factors, including:  
The highest current required by the motor system  
The power supply’s capacitance and ability to source current  
The amount of parasitic inductance between the power supply and motor system  
The acceptable voltage ripple  
The type of motor used (brushed DC, brushless DC, stepper)  
The motor braking method  
The inductance between the power supply and motor drive system will limit the rate current can change from the  
power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or  
dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage  
remains stable and high current can be quickly supplied.  
The data sheet generally provides a recommended value, but system-level testing is required to determine the  
appropriate sized bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
Motor  
Driver  
+
œ
GND  
Local  
IC Bypass  
Bulk Capacitor  
Capacitor  
Figure 21. Example Setup of Motor Drive System With External Power Supply  
The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases  
when the motor transfers energy to the supply.  
Copyright © 2015, Texas Instruments Incorporated  
27  
DRV8704  
ZHCSEB6 OCTOBER 2015  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The VM terminal should be bypassed to GND using a low-ESR ceramic bypass capacitor with a recommended  
value of 0.01 μF rated for VM. This capacitor should be placed as close to the VM pin as possible with a thick  
trace or ground plane connection to the device GND pin.  
The VM pin must be bypassed to ground using a bulk capacitor rated for VM. This component may be an  
electrolytic. The bulk capacitor should be placed to minimize the distance of the high-current path through the  
external FETs. The connecting metal trace widths should be as wide as possible, and numerous vias should be  
used when connecting PCB layers. These practices minimize inductance and allow the bulk capacitor to deliver  
high current.  
A low-ESR ceramic capacitor must be placed in between the CPL and CPH pins. A value of 0.1 μF rated for VM  
is recommended. Place this component as close to the pins as possible.  
A low-ESR ceramic capacitor must be placed in between the VM and VCP pins. A value of 1 μF rated for 16 V is  
recommended. Place this component as close to the pins as possible.  
Bypass VINT to ground with a ceramic capacitor rated 6.3 V. Place this bypassing capacitor as close to the pin  
as possible.  
Bypass V5 to ground with a ceramic capacitor rated 6.3 V. Place this bypassing capacitor as close to the pin as  
possible.  
If desired, align the external NMOS FETs as shown on the next page to facilitate layout. Route the AOUT1,  
AOUT2, BOUT1, and BOUT2 nets to the motor windings.  
Use separate traces to connect the xISENP and xISENN pins to the sense resistor terminals.  
28  
Copyright © 2015, Texas Instruments Incorporated  
DRV8704  
www.ti.com.cn  
ZHCSEB6 OCTOBER 2015  
10.2 Layout Example  
0.01 µF  
1 µF  
0.1 µF 1 µF  
0.1 µF  
+
Figure 22. Board Layout Example  
版权 © 2015, Texas Instruments Incorporated  
29  
DRV8704  
ZHCSEB6 OCTOBER 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.2 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
30  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8704DCP  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
DCP  
DCP  
38  
38  
50  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
DRV8704  
DRV8704  
DRV8704DCPR  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DCP 38  
4.4 x 9.7, 0.5 mm pitch  
PowerPAD TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224560/B  
www.ti.com  
PACKAGE OUTLINE  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
36X 0.5  
38  
1
2X  
9
9.8  
9.6  
NOTE 3  
19  
20  
0.27  
0.17  
0.08  
38X  
4.5  
4.3  
B
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 0.95 MAX  
NOTE 5  
19  
20  
2X 0.95 MAX  
NOTE 5  
0.25  
GAGE PLANE  
1.2 MAX  
39  
4.70  
3.94  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1
38  
2.90  
2.43  
4218816/A 10/2018  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
METAL COVERED  
BY SOLDER MASK  
(2.9)  
SYMM  
38X (1.5)  
38X (0.3)  
SEE DETAILS  
38  
1
(R0.05) TYP  
36X (0.5)  
3X (1.2)  
SYMM  
39  
(4.7)  
(9.7)  
NOTE 9  
(0.6) TYP  
SOLDER MASK  
DEFINED PAD  
(
0.2) TYP  
VIA  
20  
19  
(1.2)  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4218816/A 10/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.9)  
BASED ON  
0.125 THICK  
STENCIL  
38X (1.5)  
38X (0.3)  
METAL COVERED  
BY SOLDER MASK  
1
38  
(R0.05) TYP  
36X (0.5)  
(4.7)  
SYMM  
39  
BASED ON  
0.125 THICK  
STENCIL  
19  
20  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.24 X 5.25  
2.90 X 4.70 (SHOWN)  
2.65 X 4.29  
0.125  
0.15  
0.175  
2.45 X 3.97  
4218816/A 10/2018  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY