DRV8824-Q1 [TI]

具有电流调节功能和 1/32 微步进的汽车类 47V、1.6A 双极步进电机驱动器;
DRV8824-Q1
型号: DRV8824-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电流调节功能和 1/32 微步进的汽车类 47V、1.6A 双极步进电机驱动器

电机 驱动 驱动器
文件: 总29页 (文件大小:1259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DRV8824-Q1  
ZHCSCE6 APRIL 2014  
DRV8824-Q1 汽车用电机控制器集成电路 (IC)  
1 特性  
3 说明  
1
符合汽车应用要求  
具有符合 AEC-Q100 的下列结果:  
DRV8824-Q1 为汽车应用提供一个集成电机驱动器解  
决方案。 此器件具有两个 H 桥驱动器和一个微步进分  
度器,并且专门用来驱动一个双极步进电机。 每个输  
出驱动器块包含被配置为全 H 桥的 N 通道功率  
MOSFET,以驱动电机绕组。 DRV8824-Q1 能够驱动  
高达 1.6V 的输出电流(在 24V 25°C,具有适当散  
热时)。  
器件温度等级 1-40°C +125°C  
器件人体模型 (HBM) 静电放电 (ESD) 分类等级  
H2  
器件充电器件模型 (CDM) ESD 分类等级 C4B  
脉宽调制 (PWM) 微步进电机驱动器  
内置微步进分度器  
一个简单的步进/方向接口可轻松连接到控制器电路。  
端子可实现全步进到 1/32 步进模式的电机配置。 衰减  
模式可设定。  
5 位绕组电流控制支持高达 32 个电流级  
低金属氧化物半导体场效应晶体管 (MOSFET)  
导通电阻  
还提供用于过流保护、短路保护、欠压闭锁和过热保护  
的内部关断功能。  
24V25°C 1.6A 最大驱动电流  
内置 3.3V 基准输出  
8.2V 45V 宽工作电源电压范围  
DRV8824-Q1 采用具有 PowerPAD™ 28 引脚  
HTSSOP 封装(环保型:符合 RoHS 标准且不含铅/  
溴)。  
耐热增强型带散热片超薄小外形尺寸 (HTSSOP) 表  
面贴装封装  
2 应用范围  
器件信息  
汽车制热、通风与空调控制 (HVAC)  
汽车用阀门  
订货编号  
封装  
封装尺寸  
DRV8824QPWPRQ1 HTSSOP (28)  
9.7mm x 4.4mm  
车用信息娱乐  
4 简化电路原理图  
8.2 to 45 V  
微步进电流波形  
DRV8824-Q1  
STEP/DIR  
1.6 A  
1.6 A  
M
Step size  
Stepper  
Decreasing  
Current  
Increasing  
Current  
+
-
Motor Driver  
Decay mode  
Decreasing  
Current  
Increasing  
Current  
1/32 µstep  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCH0  
 
 
 
DRV8824-Q1  
ZHCSCE6 APRIL 2014  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 10  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 17  
Application and Implementation ........................ 18  
9.1 Application Information............................................ 18  
9.2 Typical Application ................................................. 18  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Terminal Configuration and Functions................ 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 Handling Ratings....................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 6  
7.7 Typical Characteristics.............................................. 8  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
9
10 Power Supply Recommendations ..................... 20  
11 Layout................................................................... 21  
11.1 Layout Guidelines ................................................. 21  
11.2 Layout Example .................................................... 21  
12 Device and Documentation Support ................. 22  
12.1 Trademarks........................................................... 22  
12.2 Electrostatic Discharge Caution............................ 22  
12.3 Glossary................................................................ 22  
13 Mechanical, Packaging, and Orderable  
8
Information ........................................................... 22  
5 修订历史记录  
日期  
修订版本  
注释  
2014 4 月  
*
最初发布。  
2
Copyright © 2014, Texas Instruments Incorporated  
 
DRV8824-Q1  
www.ti.com.cn  
ZHCSCE6 APRIL 2014  
6 Terminal Configuration and Functions  
PWP Package  
(Top View)  
Terminal Functions  
EXTERNAL COMPONENTS  
NAME  
TERMINAL  
I/O  
DESCRIPTION  
OR CONNECTIONS  
POWER AND GROUND  
GND  
VMA  
VMB  
14, 28  
4
-
-
-
Device ground  
Bridge A power supply  
Bridge B power supply  
Connect to motor supply (8.2 V - 45 V). Both terminals  
must be connected to same supply.  
11  
Bypass to GND with a 0.47-μF 6.3-V ceramic  
capacitor. Can be used to supply VREF.  
V3P3OUT  
15  
O
3.3-V regulator output  
CP1  
CP2  
1
2
IO  
IO  
Charge pump flying capacitor  
Charge pump flying capacitor  
Connect a 0.01-μF 50-V capacitor between CP1 and  
CP2.  
Connect a 0.1-μF 16-V ceramic capacitor and a 1-MΩ  
resistor to VM.  
VCP  
3
IO  
High-side gate drive voltage  
CONTROL  
nENBL  
Logic high to disable device outputs and indexer  
operation, logic low to enable. Internal pulldown.  
21  
17  
22  
I
I
I
Enable input  
Sleep mode input  
Step input  
Logic high to enable device, logic low to enter low-  
power sleep mode. Internal pulldown.  
nSLEEP  
STEP  
Rising edge causes the indexer to move one step.  
Internal pulldown.  
DIR  
20  
24  
25  
26  
I
I
I
I
Direction input  
Level sets the direction of stepping. Internal pulldown.  
MODE0  
MODE1  
MODE2  
Microstep mode 0  
Microstep mode 1  
Microstep mode 2  
MODE0 - MODE2 set the step mode - full, 1/2, 1/4,  
1/8/ 1/16, or 1/32 step. Internal pulldown.  
Low = slow decay, open = mixed decay,  
high = fast decay. Internal pulldown and pullup.  
DECAY  
19  
I
Decay mode  
Active-low reset input initializes the indexer logic and  
disables the H-bridge outputs. Internal pulldown.  
nRESET  
AVREF  
16  
12  
I
I
Reset input  
Bridge A current set reference input  
Reference voltage for winding current set. Normally  
AVREF and BVREF are connected to the same  
voltage. Can be connected to V3P3OUT. A 0.01-µF  
bypass capacitor to GND is recommended.  
BVREF  
13  
23  
I
Bridge B current set reference input  
No connect  
NC  
Leave this terminal unconnected.  
STATUS  
nHOME  
27  
18  
OD  
OD  
Home position  
Fault  
Logic low when at home state of step table  
Logic low when in fault condition (overtemp,  
overcurrent)  
nFAULT  
Copyright © 2014, Texas Instruments Incorporated  
3
DRV8824-Q1  
ZHCSCE6 APRIL 2014  
www.ti.com.cn  
Terminal Functions (continued)  
EXTERNAL COMPONENTS  
NAME  
TERMINAL  
I/O  
DESCRIPTION  
OR CONNECTIONS  
OUTPUT  
ISENA  
6
9
IO  
IO  
O
Bridge A ground / Isense  
Bridge B ground / Isense  
Bridge A output 1  
Connect to current sense resistor for bridge A.  
Connect to current sense resistor for bridge B.  
ISENB  
AOUT1  
AOUT2  
BOUT1  
BOUT2  
5
Connect to bipolar stepper motor winding A.  
Positive current is AOUT1 AOUT2  
7
O
Bridge A output 2  
10  
8
O
Bridge B output 1  
Connect to bipolar stepper motor winding B.  
Positive current is BOUT1 BOUT2  
O
Bridge B output 2  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)  
VALUE  
–0.3 to 47  
–0.5 to 7  
UNIT  
VMx  
Power supply voltage range  
V
V
V
V
A
A
Digital terminal voltage range  
Input voltage  
VREF  
–0.3 to 4  
ISENSEx terminal voltage  
–0.3 to 0.8  
Internally limited  
1.6  
Peak motor drive output current, t < 1 μS  
Continuous motor drive output current(3)  
Continuous total power dissipation  
Operating virtual junction temperature range  
See Thermal Information table  
–40 to 150 °C  
TJ  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) Power dissipation and thermal limits must be observed.  
7.2 Handling Ratings  
MIN  
MAX  
150  
UNIT  
Tstg  
Storage temperature range  
–60  
°C  
HBD (human body model), AEC-Q100 Classification H2  
CDM (charged device model), AEC-Q100 Classification C4B  
2000  
750  
VESD  
V
7.3 Recommended Operating Conditions  
MIN  
8.2  
1
NOM  
MAX  
45  
UNIT  
V
VM  
Motor power supply voltage(1)  
VREF input voltage(2)  
VREF  
IV3P3  
3.5  
1
V
V3P3OUT load current  
mA  
(1) All VM terminals must be connected to the same supply voltage.  
(2) Operational at VREF between 0 V and 1 V, but accuracy is degraded.  
4
Copyright © 2014, Texas Instruments Incorporated  
DRV8824-Q1  
www.ti.com.cn  
ZHCSCE6 APRIL 2014  
7.4 Thermal Information  
DRV8824-Q1  
THERMAL METRIC  
PWP  
28 TERMINAL  
38.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance(1)  
Junction-to-case (top) thermal resistance(2)  
Junction-to-board thermal resistance(3)  
Junction-to-top characterization parameter(4)  
Junction-to-board characterization parameter(5)  
Junction-to-case (bottom) thermal resistance(6)  
RθJC(top)  
RθJB  
23.3  
21.2  
°C/W  
ψJT  
0.8  
ψJB  
20.9  
RθJC(bot)  
2.6  
(1) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(2) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(4) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(5) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
Spacer  
7.5 Electrical Characteristics  
over operating free-air temperature range of -40°C to 125°C (unless otherwise noted)  
PARAMETER  
POWER SUPPLIES  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IVM  
VM operating supply current  
VM sleep mode supply current  
VM = 24 V, fPWM < 50 kHz  
VM = 24 V  
5
10  
8
20  
mA  
μA  
V
IVMQ  
VUVLO  
V3P3OUT REGULATOR  
VM undervoltage lockout voltage VM rising  
7.8  
8.2  
IOUT = 0 to 1 mA, VM = 24 V, TJ = 25°C  
IOUT = 0 to 1 mA  
3.18  
3.10  
3.30  
3.30  
3.45  
3.50  
V3P3  
V3P3OUT voltage  
V
LOGIC-LEVEL INPUTS  
VIL  
VIH  
VHYS  
IIL  
Input low voltage  
0.6  
0.7  
V
V
Input high voltage  
Input hysteresis  
Input low current  
Input high current  
2
5.25  
0.45  
V
VIN = 0  
–20  
20  
μA  
μA  
kΩ  
MΩ  
IIH  
VIN = 3.3 V  
100  
nENBL, nRESET, DIR, STEP, MODEx  
nSLEEP  
100  
1
RPD  
Internal pulldown resistance  
nHOME, nFAULT OUTPUTS (OPEN-DRAIN OUTPUTS)  
VOL  
IOH  
Output low voltage  
IO = 5 mA  
VO = 3.3 V  
0.5  
1
V
Output high leakage current  
μA  
DECAY INPUT  
VIL  
Input low threshold voltage  
For slow decay mode  
For fast decay mode  
0.8  
V
VIH  
IIN  
Input high threshold voltage  
Input current  
2
V
–100  
100  
µA  
kΩ  
kΩ  
RPU  
RPD  
Internal pullup resistance  
Internal pulldown resistance  
130  
80  
Copyright © 2014, Texas Instruments Incorporated  
5
DRV8824-Q1  
ZHCSCE6 APRIL 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range of -40°C to 125°C (unless otherwise noted)  
PARAMETER  
H-BRIDGE FETS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VM = 24 V, I O = 1 A, TJ = 25°C  
VM = 24 V, IO = 1 A, TJ = 85°C  
VM = 24 V, IO = 1 A, TJ = 125°C  
VM = 24 V, IO = 1 A, TJ = 25°C  
VM = 24 V, IO = 1 A, TJ = 85°C  
VM = 24 V, IO = 1 A, TJ = 125°C  
0.63  
0.76  
0.85  
0.65  
0.78  
0.85  
RDS(ON)  
HS FET on resistance  
0.90  
1
RDS(ON)  
LS FET on resistance  
0.90  
1
IOFF  
Off-state leakage current  
–20  
20  
μA  
MOTOR DRIVER  
fPWM  
tBLANK  
tR  
Internal PWM frequency  
50  
kHz  
μs  
Current sense blanking time  
Rise time  
3.75  
VM = 24 V  
VM = 24 V  
100  
80  
360  
250  
ns  
tF  
Fall time  
ns  
tDEAD  
Dead time  
400  
160  
660  
ns  
PROTECTION CIRCUITS  
IOCP Overcurrent protection trip level  
tTSD Thermal shutdown temperature  
CURRENT CONTROL  
1.8  
5
A
Die temperature  
150  
180  
°C  
IREF  
xVREF input current  
xVREF = 3.3 V  
–3  
635  
3
685  
μA  
VTRIP  
xISENSE trip voltage  
xVREF = 3.3 V, 100% current setting  
xVREF = 3.3 V , 5% current setting  
mV  
–25%  
25%  
xVREF = 3.3 V , 10% - 34% current  
setting  
–15%  
–10%  
–5%  
15%  
10%  
5%  
Current trip accuracy  
(relative to programmed value)  
ΔITRIP  
xVREF = 3.3 V, 38% - 67% current  
setting  
xVREF = 3.3 V, 71% - 100% current  
setting  
AISENSE  
Current sense amplifier gain  
Reference only  
5
V/V  
7.6 Timing Requirements  
MIN  
MAX UNIT  
1
2
3
4
5
6
7
fSTEP  
Step frequency  
250  
kHz  
μs  
tWH(STEP)  
tWL(STEP)  
tSU(STEP)  
tH(STEP)  
tENBL  
Pulse duration, STEP high  
Pulse duration, STEP low  
1.9  
1.9  
200  
200  
200  
1
μs  
Setup time, command to STEP rising  
Hold time, command to STEP rising  
Enable time, nENBL active to STEP  
Wakeup time, nSLEEP inactive to STEP  
ns  
ns  
ns  
tWAKE  
ms  
6
Copyright © 2014, Texas Instruments Incorporated  
DRV8824-Q1  
www.ti.com.cn  
ZHCSCE6 APRIL 2014  
Figure 1. Timing Diagram  
Copyright © 2014, Texas Instruments Incorporated  
7
DRV8824-Q1  
ZHCSCE6 APRIL 2014  
www.ti.com.cn  
7.7 Typical Characteristics  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
14  
13  
12  
11  
10  
9
-40°C  
25°C  
8
25°C  
85°C  
125°C  
85°C  
7
125°C  
6
10  
15  
20  
25  
30  
35  
40  
45  
10  
15  
20  
25  
30  
35  
40  
45  
VM (V)  
VM (V)  
C001  
C002  
Figure 2. IVM vs VM  
Figure 3. IVMQ vs VM  
2000  
1800  
1600  
1400  
1200  
1000  
800  
2000  
1800  
1600  
1400  
1200  
1000  
800  
-40°C  
85°C  
25°C  
125°C  
10 V  
24 V  
45 V  
10  
15  
20  
25  
30  
35  
40  
45  
0
25  
50  
75  
100  
125  
±50  
±25  
VM (V)  
TA (ƒC)  
C003  
C004  
Figure 4. RDS(ON) vs VM  
Figure 5. RDS(ON) vs Temperature  
8
Copyright © 2014, Texas Instruments Incorporated  
DRV8824-Q1  
www.ti.com.cn  
ZHCSCE6 APRIL 2014  
8 Detailed Description  
8.1 Overview  
The DRV8824-Q1 is an integrated motor driver solution for bipolar stepper motors. The device integrates two  
NMOS H-bridges, current sense and regulation circuitry, and a microstepping indexer. The DRV8824-Q1 can be  
powered with a supply voltage between 8.2 V and 45 V, and is capable of providing an output current up to 1.6 A  
full-scale or 1.1 A rms.  
A simple STEP/DIR interface allows easy interfacing to the controller circuit. The internal indexer is able to  
execute high-accuracy microstepping without requiring the processor to control the current level.  
The current regulation is highly configurable, with three decay modes of operation. Fast, slow, and mixed decay  
can be used.  
A low-power sleep mode is included which allows the system to save power when not driving the motor.  
Copyright © 2014, Texas Instruments Incorporated  
9
DRV8824-Q1  
ZHCSCE6 APRIL 2014  
www.ti.com.cn  
8.2 Functional Block Diagram  
VM  
LS Gate  
Drive  
3.3 V  
V3P3OUT  
CP1  
CP2  
VCP  
Charge  
Pump  
HS Gate  
Drive  
Low Side  
Gate  
Drive  
Internal  
VCC  
VM  
V3P3OUT  
3.3 V  
VM  
AVREF  
BVREF  
VM  
VMA  
+
nENBL  
STEP  
AOUT1  
AOUT2  
ISENA  
+
Stepper  
Motor  
Motor Driver  
A
±
DIR  
+
±
DECAY  
MODE0  
MODE1  
MODE2  
nRESET  
nSLEEP  
nHOME  
Control  
Logic/  
Indexer  
VM  
VMB  
BOUT1  
BOUT2  
ISENB  
Motor Driver  
B
Thermal  
Shut  
nFAULT  
Down  
GND  
PPAD  
GND  
10  
Copyright © 2014, Texas Instruments Incorporated  
DRV8824-Q1  
www.ti.com.cn  
ZHCSCE6 APRIL 2014  
8.3 Feature Description  
8.3.1 PWM Motor Drivers  
The DRV8824-Q1 contains two H-bridge motor drivers with current-control PWM circuitry. A block diagram of the  
motor control circuitry is shown in Figure 6.  
Figure 6. Motor Control Circuitry  
Note that there are multiple VM motor power supply terminals. All VM terminals must be connected together to  
the motor supply voltage.  
Copyright © 2014, Texas Instruments Incorporated  
11  
 
DRV8824-Q1  
ZHCSCE6 APRIL 2014  
www.ti.com.cn  
Feature Description (continued)  
8.3.2 Current Regulation  
The current through the motor windings is regulated by a fixed-frequency PWM current regulation, or current  
chopping. When an H-bridge is enabled, current rises through the winding at a rate dependent on the DC voltage  
and inductance of the winding. Once the current hits the current chopping threshold, the bridge disables the  
current until the beginning of the next PWM cycle.  
In stepping motors, current regulation is used to vary the current in the two windings in a semi-sinusoidal fashion  
to provide smooth motion.  
The PWM chopping current is set by a comparator which compares the voltage across a current sense resistor  
connected to the xISEN terminals, multiplied by a factor of 5, with a reference voltage. The reference voltage is  
input from the xVREF terminals.  
The full-scale (100%) chopping current is calculated in Equation 1.  
VREFX  
ICHOP =  
5 · RISENSE  
(1)  
Example:  
If a 0.5-sense resistor is used and the VREFx terminal is 3.3 V, the full-scale (100%) chopping current will  
be 3.3 V / (5 x 0.5 ) = 1.32 A.  
The reference voltage is scaled by an internal DAC that allows fractional stepping of a bipolar stepper motor, as  
described in the microstepping indexer section below.  
8.3.3 Blanking Time  
After the current is enabled in an H-bridge, the voltage on the xISEN terminal is ignored for a fixed period of time  
before enabling the current sense circuitry. This blanking time is fixed at 3.75 μs. Note that the blanking time also  
sets the minimum on time of the PWM.  
8.3.4 Microstepping Indexer  
Built-in indexer logic in the DRV8824-Q1 allows a number of different stepping configurations. The MODE0 -  
MODE2 terminals are used to configure the stepping format as shown in .  
Table 1. Stepping Format  
MODE2  
MODE1  
MODE0  
STEP MODE  
Full step (2-phase excitation) with 71% current  
1/2 step (1-2 phase excitation)  
1/4 step (W1-2 phase excitation)  
8 microsteps / step  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
16 microsteps / step  
32 microsteps / step  
32 microsteps / step  
32 microsteps / step  
Table 2 shows the relative current and step directions for different settings of MODEx. At each rising edge of the  
STEP input, the indexer travels to the next state in the table. The direction is shown with the DIR terminal high; if  
the DIR terminal is low the sequence is reversed. Positive current is defined as xOUT1 = positive with respect to  
xOUT2.  
Note that if the step mode is changed while stepping, the indexer will advance to the next valid state for the new  
MODEx setting at the rising edge of STEP.  
The home state is 45°. This state is entered at power-up or application of nRESET. This is shown in Table 2 by  
the shaded cells. The logic inputs DIR, STEP, nRESET and MODEx have an internal pulldown resistors of  
100 kΩ  
12  
Copyright © 2014, Texas Instruments Incorporated  
 
DRV8824-Q1  
www.ti.com.cn  
ZHCSCE6 APRIL 2014  
Table 2. Relative Current and Step Directions  
FULL  
STEP  
70%  
WINDING  
CURRENT  
A
WINDING  
CURRENT  
B
ELECTRICAL  
ANGLE  
1/32 STEP 1/16 STEP 1/8 STEP  
1/4 STEP  
1/2 STEP  
1
1
2
1
1
1
100%  
100%  
100%  
99%  
98%  
97%  
96%  
94%  
92%  
90%  
88%  
86%  
83%  
80%  
77%  
74%  
71%  
67%  
63%  
60%  
56%  
51%  
47%  
43%  
38%  
34%  
29%  
24%  
20%  
15%  
10%  
5%  
0%  
5%  
0
3
2
3
10%  
15%  
20%  
24%  
29%  
34%  
38%  
43%  
47%  
51%  
56%  
60%  
63%  
67%  
71%  
74%  
77%  
80%  
83%  
86%  
88%  
90%  
92%  
94%  
96%  
97%  
98%  
99%  
100%  
100%  
100%  
100%  
100%  
99%  
98%  
97%  
96%  
94%  
92%  
90%  
88%  
86%  
83%  
80%  
6
4
8
5
3
2
11  
14  
17  
20  
23  
25  
28  
31  
34  
37  
39  
42  
45  
48  
51  
53  
56  
59  
62  
65  
68  
70  
73  
76  
79  
82  
84  
87  
90  
93  
96  
98  
101  
104  
107  
110  
113  
115  
118  
121  
124  
127  
6
7
4
8
9
5
3
2
3
4
5
6
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
6
7
4
8
9
5
2
1
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
6
7
8
9
3
0%  
–5%  
–10%  
–15%  
–20%  
–24%  
–29%  
–34%  
–38%  
–43%  
–47%  
–51%  
–56%  
–60%  
10  
11  
12  
Copyright © 2014, Texas Instruments Incorporated  
13  
DRV8824-Q1  
ZHCSCE6 APRIL 2014  
www.ti.com.cn  
Table 2. Relative Current and Step Directions (continued)  
FULL  
STEP  
70%  
WINDING  
CURRENT  
A
WINDING  
CURRENT  
B
ELECTRICAL  
ANGLE  
1/32 STEP 1/16 STEP 1/8 STEP  
1/4 STEP  
1/2 STEP  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
–63%  
–67%  
–71%  
–74%  
–77%  
–80%  
–83%  
–86%  
–88%  
–90%  
–92%  
–94%  
–96%  
–97%  
–98%  
–99%  
–100%  
–100%  
–100%  
–100%  
–100%  
–99%  
–98%  
–97%  
–96%  
–94%  
–92%  
–90%  
–88%  
–86%  
–83%  
–80%  
–77%  
–74%  
–71%  
–67%  
–63%  
–60%  
–56%  
–51%  
–47%  
–43%  
–38%  
–34%  
–29%  
–24%  
77%  
74%  
129  
132  
135  
138  
141  
143  
146  
149  
152  
155  
158  
160  
163  
166  
169  
172  
174  
177  
180  
183  
186  
188  
191  
194  
197  
200  
203  
205  
208  
211  
214  
217  
219  
222  
225  
228  
231  
233  
236  
239  
242  
245  
248  
250  
253  
256  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
7
4
2
71%  
67%  
63%  
60%  
56%  
51%  
47%  
43%  
8
38%  
34%  
29%  
24%  
20%  
15%  
10%  
5%  
9
5
0%  
–5%  
–10%  
–15%  
–20%  
–24%  
–29%  
–34%  
–38%  
–43%  
–47%  
–51%  
–56%  
–60%  
–63%  
–67%  
–71%  
–74%  
–77%  
–80%  
–83%  
–86%  
–88%  
–90%  
–92%  
–94%  
–96%  
–97%  
10  
11  
12  
6
3
14  
Copyright © 2014, Texas Instruments Incorporated  
DRV8824-Q1  
www.ti.com.cn  
ZHCSCE6 APRIL 2014  
Table 2. Relative Current and Step Directions (continued)  
FULL  
STEP  
70%  
WINDING  
CURRENT  
A
WINDING  
CURRENT  
B
ELECTRICAL  
ANGLE  
1/32 STEP 1/16 STEP 1/8 STEP  
1/4 STEP  
1/2 STEP  
93  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
24  
25  
26  
27  
28  
29  
30  
31  
32  
–20%  
–15%  
–10%  
–5%  
0%  
–98%  
–99%  
–100%  
–100%  
–100%  
–100%  
–100%  
–99%  
–98%  
–97%  
–96%  
–94%  
–92%  
–90%  
–88%  
–86%  
–83%  
–80%  
–77%  
–74%  
–71%  
–67%  
–63%  
–60%  
–56%  
–51%  
–47%  
–43%  
–38%  
–34%  
–29%  
–24%  
–20%  
–15%  
–10%  
–5%  
259  
262  
264  
267  
270  
273  
276  
278  
281  
284  
287  
290  
293  
295  
298  
301  
304  
307  
309  
312  
315  
318  
321  
323  
326  
329  
332  
335  
338  
340  
343  
346  
349  
352  
354  
357  
94  
95  
96  
97  
13  
7
98  
5%  
99  
10%  
15%  
20%  
24%  
29%  
34%  
38%  
43%  
47%  
51%  
56%  
60%  
63%  
67%  
71%  
74%  
77%  
80%  
83%  
86%  
88%  
90%  
92%  
94%  
96%  
97%  
98%  
99%  
100%  
100%  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
14  
15  
16  
8
4
8.3.5 nRESET, nENBLE and nSLEEP Operation  
The nRESET terminal, when driven active low, resets internal logic, and resets the step table to the home  
position. It also disables the H-bridge drivers. The STEP input is ignored while nRESET is active.  
The nENBL terminal is used to control the output drivers and enable/disable operation of the indexer. When  
nENBL is low, the output H-bridges are enabled, and rising edges on the STEP terminal are recognized. When  
nENBL is high, the H-bridges are disabled, the outputs are in a high-impedance state, and the STEP input is  
ignored.  
Copyright © 2014, Texas Instruments Incorporated  
15  
DRV8824-Q1  
ZHCSCE6 APRIL 2014  
www.ti.com.cn  
Driving nSLEEP low will put the device into a low power sleep state. In this state, the H-bridges are disabled, the  
gate drive charge pump is stopped, the V3P3OUT regulator is disabled, and all internal clocks are stopped. In  
this state all inputs are ignored until nSLEEP returns inactive high. When returning from sleep mode, some time  
(approximately 1 ms) needs to pass before applying a STEP input, to allow the internal circuitry to stabilize.  
The nRESET and nENABLE terminals have internal pulldown resistors of 100 kΩ. The nSLEEP terminal has an  
internal pulldown resistor of 1 MΩ.  
8.3.6 Protection Circuits  
The DRV8824-Q1 is fully protected against undervoltage, overcurrent and overtemperature events.  
8.3.6.1 Overcurrent Protection (OCP)  
An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this  
analog current limit persists for longer than the OCP time, all FETs in the H-bridge will be disabled and the  
nFAULT terminal will be driven low. The device will remain disabled until either nRESET terminal is applied, or  
VM is removed and re-applied.  
Overcurrent conditions on both high and low side devices; i.e., a short to ground, supply, or across the motor  
winding will all result in an overcurrent shutdown. Note that overcurrent protection does not use the current sense  
circuitry used for PWM current control, and is independent of the ISENSE resistor value or VREF voltage.  
8.3.6.2 Thermal Shutdown (TSD)  
If the die temperature exceeds safe limits, all FETs in the H-bridge will be disabled and the nFAULT terminal will  
be driven low. Once the die temperature has fallen to a safe level operation will automatically resume.  
8.3.6.3 Undervoltage Lockout (UVLO)  
If at any time the voltage on the VM terminals falls below the undervoltage lockout threshold voltage, all circuitry  
in the device will be disabled and internal logic will be reset. Operation will resume when VM rises above the  
UVLO threshold.  
8.3.7 Thermal Information  
8.3.7.1 Thermal Protection  
The DRV8824-Q1 has thermal shutdown (TSD) as described above. If the die temperature exceeds  
approximately 150°C, the device will be disabled until the temperature drops to a safe level.  
Any tendency of the device to enter TSD is an indication of either excessive power dissipation, insufficient  
heatsinking, or too high an ambient temperature.  
8.3.7.2 Power Dissipation  
Power dissipation in the DRV8824-Q1 is dominated by the power dissipated in the output FET resistance, or  
RDS(ON). Average power dissipation when running a stepper motor can be roughly estimated by Equation 2.  
2
· ·  
PTOT = 4 RDS(ON) (IOUT(RMS)  
)
(2)  
where PTOT is the total power dissipation, RDS(ON) is the resistance of each FET, and IOUT(RMS) is the RMS output  
current being applied to each winding. IOUT(RMS) is equal to the approximately 0.7x the full-scale output current  
setting. The factor of 4 comes from the fact that there are two motor windings, and at any instant two FETs are  
conducting winding current for each winding (one high-side and one low-side).  
The maximum amount of power that can be dissipated in the device is dependent on ambient temperature and  
heatsinking.  
Note that RDS(ON) increases with temperature, so as the device heats, the power dissipation increases. This must  
be taken into consideration when sizing the heatsink.  
16  
Copyright © 2014, Texas Instruments Incorporated  
 
DRV8824-Q1  
www.ti.com.cn  
ZHCSCE6 APRIL 2014  
8.3.7.3 Heatsinking  
The PowerPAD™ package uses an exposed pad to remove heat from the device. For proper operation, this pad  
must be thermally connected to copper on the PCB to dissipate heat. On a multi-layer PCB with a ground plane,  
this can be accomplished by adding a number of vias to connect the thermal pad to the ground plane. On PCBs  
without internal planes, copper area can be added on either side of the PCB to dissipate heat. If the copper area  
is on the opposite side of the PCB from the device, thermal vias are used to transfer the heat between top and  
bottom layers.  
For details about how to design the PCB, refer to TI application report SLMA002, "PowerPAD™ Thermally  
Enhanced Package" and TI application brief SLMA004, "PowerPAD™ Made Easy", available at www.ti.com.  
In general, the more copper area that can be provided, the more power can be dissipated. It can be seen that the  
heatsink effectiveness increases rapidly to about 20 cm2, then levels off somewhat for larger areas.  
8.4 Device Functional Modes  
8.4.1 Decay Mode  
During PWM current chopping, the H-bridge is enabled to drive current through the motor winding until the PWM  
current chopping threshold is reached. This is shown in Figure 7 as case 1. The current flow direction shown  
indicates positive current flow.  
Once the chopping current threshold is reached, the H-bridge can operate in two different states, fast decay or  
slow decay.  
In fast decay mode, once the PWM chopping current level has been reached, the H-bridge reverses state to  
allow winding current to flow in a reverse direction. As the winding current approaches zero, the bridge is  
disabled to prevent any reverse current flow. Fast decay mode is shown in Figure 7 as case 2.  
In slow decay mode, winding current is re-circulated by enabling both of the low-side FETs in the bridge. This is  
shown in Figure 7 as case 3.  
Figure 7. Decay Mode  
The DRV8824-Q1 supports fast decay, slow decay and a mixed decay mode. Slow, fast, or mixed decay mode is  
selected by the state of the DECAY terminal - logic low selects slow decay, open selects mixed decay operation,  
and logic high sets fast decay mode. The DECAY terminal has both an internal pullup resistor of approximately  
130 kΩ and an internal pulldown resistor of approximately 80 kΩ. This sets the mixed decay mode if the terminal  
is left open or undriven.  
Copyright © 2014, Texas Instruments Incorporated  
17  
 
DRV8824-Q1  
ZHCSCE6 APRIL 2014  
www.ti.com.cn  
Device Functional Modes (continued)  
Mixed decay mode begins as fast decay, but at a fixed period of time (75% of the PWM cycle) switches to slow  
decay mode for the remainder of the fixed PWM period. This occurs only if the current through the winding is  
decreasing (per the indexer step table); if the current is increasing, then slow decay is used.  
9 Application and Implementation  
9.1 Application Information  
The DRV8824-Q1 is used in bipolar stepper control. The following design procedure can be used to configure the  
DRV8824-Q1.  
9.2 Typical Application  
DRV8824-Q1  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
CP1  
GND  
nHOME  
MODE2  
MODE1  
MODE0  
NC  
0.01 µF  
0.1 µF  
2
CP2  
VM  
0.01 µF  
3
VCP  
1 MΩ  
4
10 kΩ  
V3P3  
VMA  
5
AOUT1  
ISENA  
AOUT2  
BOUT2  
ISENB  
BOUT1  
VMB  
6
7
Step  
Motor  
400 mΩ  
400 mΩ  
STEP  
8
+
-
nENBL  
DIR  
9
10  
DECAY  
nFAULT  
nSLEEP  
nRESET  
V3P3OUT  
11  
VM  
12  
+
AVREF  
BVREF  
GND  
0.01 µF  
13  
10 kΩ  
14  
10 kΩ  
30 kΩ  
0.47 µF  
Figure 8. Typical Application Schematic  
9.2.1 Design Requirements  
Table 3 gives design input parameters for system design.  
Table 3. Design Parameters  
DESIGN PARAMETER  
Supply voltage  
REFERENCE  
EXAMPLE VALUE  
VM  
RL  
24 V  
Motor winding resistance  
Motor winding inductance  
Motor full step angle  
1.0 /phase  
3.5 mH/phase  
1.8°/step  
LL  
θstep  
nm  
v
Target microstepping level  
Target motor speed  
8 microsteps per step  
120 rpm  
Target full-scale current  
IFS  
1.25 A  
18  
Copyright © 2014, Texas Instruments Incorporated  
 
DRV8824-Q1  
www.ti.com.cn  
ZHCSCE6 APRIL 2014  
9.2.2 Detailed Design Procedure  
9.2.2.1 Stepper Motor Speed  
The first step in configuring the DRV8824-Q1 requires the desired motor speed and microstepping level. If the  
target application requires a constant speed, then a square wave with frequency fstep must be applied to the  
STEP pin.  
If the target motor speed is too high, the motor will not spin. Make sure that the motor can support the target  
speed.  
For a desired motor speed (v), microstepping level (nm), and motor full step angle (θstep),  
·
v(rpm) nm(steps) 6  
·
fstep(step/sec) =  
qstep(°/step)  
(3)  
θstep can be found in the stepper motor datasheet or written on the motor itself.  
For the DRV8824-Q1, the microstepping level is set by the USM pins and can be any of the settings in . Higher  
microstepping will mean a smother motor motion and less audible noise, but will increase switching losses and  
require a higher fstep to achieve the same motor speed.  
9.2.2.2 Current Regulation  
In a stepper motor, the full-scale current (IFS) is the maximum current driven through either winding. This quantity  
will depend on the VREF analog voltage and the sense resistor value (RSENSE). During stepping, IFS defines the  
current chopping threshold (ITRIP) for the maximum current step.  
VREF(V)  
· RSENSE(W)  
VREF(V)  
·
IFS(A) =  
=
5
Av  
RSENSE(W)  
(4)  
IFS is set by a comparator which compares the voltage across RSENSE to a reference voltage. There is a current  
sense amplifier built in with programmable gain through ISGAIN. Note that IFS must also follow the equation  
below in order to avoid saturating the motor. VM is the motor supply voltage and RL is the motor winding  
resistance.  
VM(V)  
RDS(ON)(W) + RSENSE(W)  
IFS(A) <  
·
RL(W) + 2  
(5)  
9.2.2.3 Decay Modes  
The DRV8824-Q1 supports three different decay modes: slow decay, fast decay, and mixed decay. The current  
through the motor windings is regulated using a fixed-frequency PWM scheme. This means that after any drive  
phase, when a motor winding current has hit the current chopping threshold (ITRIP), the DRV8824-Q1 will place  
the winding in one of the three decay modes until the PWM cycle has expired. Afterwards, a new drive phase  
starts.  
The blanking time tBLANK defines the minimum drive time for the current chopping. ITRIP is ignored during tBLANK  
,
so the winding current may overshoot the trip level.  
Copyright © 2014, Texas Instruments Incorporated  
19  
DRV8824-Q1  
ZHCSCE6 APRIL 2014  
www.ti.com.cn  
9.2.3 Application Curves  
Figure 9. Microstepping Waveform, Phase A, Mixed Decay  
Figure 10. Microstepping Waveform, Slow Decay on  
Increasing Steps  
Figure 11. Microstepping Waveform, Mixed Decay on Decreasing Steps  
10 Power Supply Recommendations  
The DRV8824-Q1 is designed to operate from an input voltage supply (VM) range between 8.2 V and 45 V. Two  
0.01-µF ceramic capacitorS rated for VMA and VMB must be placed as close to the DRV8824-Q1 as possible. In  
addition, a bulk capacitor must be included. If VMA and VMB are connected to the same board net, a single bulk  
capacitor is sufficient.  
20  
Copyright © 2014, Texas Instruments Incorporated  
DRV8824-Q1  
www.ti.com.cn  
ZHCSCE6 APRIL 2014  
11 Layout  
11.1 Layout Guidelines  
The VMA and VMB terminals should be bypassed to GND using low-ESR ceramic bypass capacitors with a  
recommended value of 0.01 µF rated for VM. This capacitor should be placed as close to the VMA and VMB pins  
as possible with a thick trace or ground plane connection to the device GND pin.  
The VMA and VMB pins must be bypassed to ground using a bulk capacitor. This component may be an  
electrolytic. If VMA and VMB are connected to the same board net, a single bulk capacitor is sufficient.  
A low-ESR ceramic capacitor must be placed in between the CPL and CPH pins. A value of 0.01 µF rated for  
VMA and VMB is recommended. Place this component as close to the pins as possible.  
A low-ESR ceramic capacitor must be placed in between the VMA and VCP pins. A value of 0.1 µF rated for 16  
V is recommended. Place this component as close to the pins as possible. In addition place a 1-Mresistor  
between VCP and VMA.  
Bypass V3P3 to ground with a ceramic capacitor rated 6.3 V. Place this bypassing capacitor as close to the pin  
as possible.  
11.2 Layout Example  
0.01 µF  
CP1  
CP2  
GND  
nHOME  
MODE2  
MODE1  
MODE0  
NC  
0.01 µF  
0.1 µF  
VCP  
1 MΩ  
VMA  
AOUT1  
ISENA  
AOUT2  
BOUT2  
ISENB  
BOUT1  
VMB  
STEP  
RISENA  
nEMBL  
DIR  
DECAY  
nFAULT  
nSLEEP  
nRESET  
V3P3OUT  
RISENB  
0.01 µF  
AVREF  
BVREF  
GND  
0.47 µF  
Figure 12. DRV8824-Q1 Board Layout  
Copyright © 2014, Texas Instruments Incorporated  
21  
DRV8824-Q1  
ZHCSCE6 APRIL 2014  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Trademarks  
PowerPAD is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.2 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
22  
Copyright © 2014, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2014, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8824QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
28  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
DRV8824Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
PWP 28  
4.4 x 9.7, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224765/B  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

DRV8824PWP

STEPPER MOTOR CONTROLLER IC
TI

DRV8824PWPR

STEPPER MOTOR CONTROLLER IC
TI

DRV8824QPWPRQ1

具有电流调节功能和 1/32 微步进的汽车类 47V、1.6A 双极步进电机驱动器 | PWP | 28 | -40 to 125
TI

DRV8824RHDR

具有电流调节功能和 1/32 微步进的 45V、1.6A 双极步进电机驱动器   | RHD | 28 | -40 to 85
TI

DRV8824RHDT

45-V, 1.6-A bipolar stepper motor driver with current regulation and 1/32 microstepping   28-VQFN -40 to 85
TI

DRV8824_14

DRV8824 Stepper Motor Controller IC
TI

DRV8825

STEPPER MOTOR CONTROLLER IC
TI

DRV8825PWP

暂无描述
TI

DRV8825PWPR

STEPPER MOTOR CONTROLLER IC
TI

DRV8825_16

Stepper Motor Controller IC
TI

DRV8826PWP

Serial interface dual bridge motor controller IC 28-HTSSOP -40 to 85
TI

DRV8826PWPR

Serial interface dual bridge motor controller IC 28-HTSSOP -40 to 85
TI