DRV8847 [TI]

具有电流调节和独立半桥控制的 18V、2A 双路 H 桥电机驱动器;
DRV8847
型号: DRV8847
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电流调节和独立半桥控制的 18V、2A 双路 H 桥电机驱动器

电机 驱动 驱动器
文件: 总80页 (文件大小:3608K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
DRV8847 双路 H 桥电机驱动器  
1 特性  
3 说明  
1
双路 H 桥电机驱动器  
DRV8847 器件是一款适用于工业 应用、家用电器、  
ePOS 打印机以及其他机电产品 的双 H 桥电机驱动  
器。本器件可用于驱动两个直流电机、一个双极步进电  
机或继电器等其他负载。借助简单的 PWM 接口,可  
与控制器轻松连接。DRV8847 器件由单一电源供电,  
支持 2.7V 18V 的宽输入电源范围。  
单路或双路刷式直流电机  
一个双极步进电机  
电磁阀负载  
2.7V 18V 工作电压范围  
每个 H 桥均提供高输出电流  
TA = 25°C 时,驱动器电流为 1A RMS  
驱动器的输出级由配置为两个全 H 桥的 N 沟道功率  
MOSFET 构成,用于驱动电机绕组或四个独立半桥  
(位于独立桥接式接口)。固定关断时间控制电桥中的  
峰值电流,该电流能够驱动一个 1A 的负载(并行模式  
25°C TA 时,在散热适当的条件下,可驱动 2A 的  
负载)。  
并行模式下 TA = 25°C 时,驱动器电流为 2A  
RMS  
VM > 5V 时具有低导通电阻  
TA = 25°C 时,RDS(ON) (HS + LS) 1000mΩ  
多种控制接口选项  
4 引脚接口  
提供了低功耗睡眠模式,以通过关断大量内部电路实现  
较低的静态电流消耗。此外,附带的扭矩标量能够通过  
数字输入引脚动态调节输出电流。该特性可降低控制器  
所需电流,实现更低功耗。  
2 引脚接口  
并联桥接式接口  
独立桥接式接口  
采用 20μs 固定关断时间进行电流调节  
输出电流调节至 50% 的扭矩标量  
支持 1.8V3.3V5V 逻辑输入  
低功耗睡眠模式  
还提供了各种内部保护功能,如欠压锁定、每个 FET  
的过流保护、短路保护、开路负载检测和过热保护等。  
故障状态通过 nFAULT 引脚指示。I2C 器件版本  
(DRV8847S) 提供详细诊断。  
VVM = 12VTA = 25°C 时,睡眠模式电源电流  
1.7µA  
器件信息(1)  
提供 I2C 器件版本 (DRV8847S)  
器件型号  
封装  
HTSSOP (16)  
TSSOP (16)  
WQFN (16)  
封装尺寸(标称值)  
5.00mm × 4.40mm  
5.00mm × 4.40mm  
3.00mm × 3.00mm  
5.00mm × 4.40mm  
I2C 寄存器上显示详细诊断  
多从运行支持  
支持标准和快速 I2C 模式  
DRV8847  
小型封装和尺寸  
DRV8847S  
TSSOP (16)  
16 引脚 TSSOP(无散热垫)  
16 引脚 HTSSOP PowerPAD™封装  
16 引脚 WQFN 热封装  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
内置保护 特性  
2.7 to 18 V  
VM 欠压锁定  
过流保护  
DRV8847  
INx  
开路负载检测  
热关断  
1 A  
Dual H-Bridge Driver  
nSLEEP  
nFAULT  
TRQ  
Controller  
故障条件指示引脚 (nFAULT)  
Stepper  
Current Regulation  
Built-in Protection  
1 A  
2 应用  
MODE  
冰箱风门和制冰机  
洗衣机、烘干机和洗碗机  
电子销售终端 (ePOS) 打印机  
舞台照明设备  
微型断路器和智能仪表  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSE65  
 
 
 
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
目录  
7.6 Register Map........................................................... 43  
Application and Implementation ........................ 48  
8.1 Application Information............................................ 48  
8.2 Typical Application ................................................. 48  
Power Supply Recommendations...................... 60  
9.1 Bulk Capacitance Sizing ......................................... 60  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 7  
6.6 I2C Timing Requirements ......................................... 8  
6.7 Typical Characteristics............................................ 11  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Description................................................. 17  
7.4 Device Functional Modes........................................ 39  
7.5 Programming........................................................... 41  
8
9
10 Layout................................................................... 61  
10.1 Layout Guidelines ................................................. 61  
10.2 Layout Example .................................................... 61  
10.3 Thermal Considerations........................................ 63  
10.4 Power Dissipation ................................................. 63  
11 器件和文档支持 ..................................................... 64  
11.1 文档支持................................................................ 64  
11.2 接收文档更新通知 ................................................. 64  
11.3 社区资源................................................................ 64  
11.4 ....................................................................... 64  
11.5 静电放电警告......................................................... 64  
11.6 Glossary................................................................ 64  
12 机械、封装和可订购信息....................................... 64  
7
2
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (July 2018) to Revision B  
Page  
已更改 将低导通电阻更改为 VM > 5V 时的指示............................................................................................................... 1  
Changed nFAULT pin type to OD/I ........................................................................................................................................ 5  
Changed VM description to indicate 0.1-uF capacitor should be ceramic ............................................................................. 5  
Changed digital pin voltage (IN1, IN2, IN3, IN4, TRQ, nSLEEP, nFAULT, SCL, SDA) maximum voltage from 5.5 V  
to 5.75 V ................................................................................................................................................................................. 6  
Changed the Phase node pin voltage specification’s name to Continuous phase node pin voltage .................................... 6  
Added for ISEN12, ISEN34 specification a footnote stating transients of +- 1V for less than 25 ns are acceptable ........... 6  
Added for both Peak drive current (OUT1, OUT2, OUT3, OUT4) specifications a footnote stating Power dissipation  
and thermal limits must be observed ..................................................................................................................................... 6  
Changed V(ESD) specification’s value to 4000 V .................................................................................................................. 6  
Changed the VIL specification to be two specifications based on test conditions VM < 7 V and VM >= 7 V......................... 7  
Changed the IIH specification’s minimum value to 18 uA for test condition IN1, IN2, IN3, IN4, TRQ, VIN = 5 V and to  
10 uA for test condition nSLEEP, VIN = minimum (VM, 5 V) ................................................................................................. 7  
Added to IOCP specification a minimum value......................................................................................................................... 8  
已更改 pin naming of Block Diagram for DRV8847S figure ................................................................................................. 16  
已删除 ceramic from CVM1 .................................................................................................................................................... 17  
已更改 the relay or solenoid coils load bullet item for more clarity....................................................................................... 24  
已添加 sentence to clarify nFAULT pin behavior when open load is detected ................................................................... 36  
已添加 sentence to clarify nFAULT pin behavior during power-up ..................................................................................... 39  
已添加 an Open Load Implementation section..................................................................................................................... 53  
已添加 a Layout Recommendation of 16-Pin QFN Package for Double Layer Board figure .............................................. 62  
Changes from Original (July 2018) to Revision A  
Page  
已更改 将数据表状态从预告信息 更改为生产数据 .................................................................................................................. 1  
已更改 pin naming on Layout Recommendation of 16-Pin HTSSOP Package for Double Layer Board figure .................. 61  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
5 Pin Configuration and Functions  
DRV8847 PW Package  
16-Pin TSSOP  
Top View  
DRV8847 PWP PowerPAD™ Package  
16-Pin HTSSOP  
Top View  
nSLEEP  
OUT1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
IN1  
nSLEEP  
OUT1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
IN1  
IN2  
IN2  
ISEN12  
OUT2  
MODE  
GND  
VM  
ISEN12  
OUT2  
MODE  
GND  
VM  
Thermal  
Pad  
OUT4  
OUT4  
ISEN34  
OUT3  
TRQ  
IN4  
ISEN34  
OUT3  
TRQ  
IN4  
nFAULT  
IN3  
nFAULT  
IN3  
Not to scale  
Not to scale  
DRV8847 RTE Package  
16-Pin WQFN With Exposed Thermal Pad  
Top View  
DRV8847S PW Package  
16-Pin TSSOP  
Top View  
nSLEEP  
OUT1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
IN1  
IN2  
ISEN12  
OUT2  
SDA  
GND  
VM  
ISEN12  
1
2
3
4
12  
11  
10  
9
MODE  
OUT2  
OUT4  
GND  
VM  
OUT4  
Thermal  
Pad  
ISEN34  
OUT3  
SCL  
IN4  
ISEN34  
TRQ  
nFAULT  
IN3  
Not to scale  
Not to scale  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
Pin Functions  
PIN  
DRV8847  
DRV8847S  
TSSOP  
TYPE(1)  
DESCRIPTION  
NAME  
TSSOP  
WQFN  
HTSSOP  
Device ground. Recommended to connect the GND pin and device  
thermal pad (HTSSOP and WQFN packages) to ground  
GND  
13  
11  
13  
PWR  
IN1  
IN2  
IN3  
IN4  
16  
15  
9
14  
13  
7
16  
15  
9
I
I
I
I
Half-bridge input 1  
Half-bridge input 2  
Half-bridge input 3  
Half-bridge input 4  
10  
8
10  
Full-bridge-12 sense. Connect this pin to the current sense resistor for full-  
bridge-12. Connect this pin to the GND pin if current regulation is not  
required.  
ISEN12  
3
1
3
O
Full-bridge-34 sense. Connect this pin to the to current sense resistor for  
full-bridge-34. Connect this pin to the GND pin if current regulation is not  
required.  
ISEN34  
MODE  
6
14  
8
4
12  
6
6
8
O
I
Tri-state pin for selection of driver operating mode  
Fault indication pin. This pin is pulled logic low with a fault condition. This  
open-drain output requires an external pullup resistor. This pin is also  
used as an input pin for the DRV8847S device for releasing the I2C bus.  
nFAULT  
OD / I  
Sleep mode input. Set this pin to logic high to enable the device. Set this  
pin to logic low to go to low-power sleep mode  
nSLEEP  
1
15  
1
I
OUT1  
OUT2  
OUT3  
OUT4  
SCL  
2
4
16  
2
2
4
O
O
O
O
I
Half-bridge output 1  
Half-bridge output 2  
7
5
7
Half-bridge output 3  
5
3
5
Half-bridge output 4  
I2C clock signal.  
I2C data signal. The SDA pin requires a pullup resistor.  
11  
9
11  
14  
SDA  
OD  
I
TRQ  
Torque current scalar  
Power supply. Connect the VM pin to the motor power supply. Bypass this  
pin to ground with a VM-rated 0.1-µF (ceramic) and 10-μF (minimum)  
capacitor.  
VM  
12  
10  
12  
PWR  
(1) I = input, O = output, OD = open-drain output, PWR = power  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
MAX  
20  
UNIT  
V
Power supply pin voltage (VM)  
-0.3  
Power supply voltage ramp rate (VM)  
0
2
V/µs  
V
Digital pin voltage (IN1, IN2, IN3, IN4, TRQ, nSLEEP, nFAULT, SCL, SDA)  
Continuous phase node pin voltage (OUT1, OUT2, OUT3, OUT4)  
Shunt amplifier input pin voltage (ISEN12, ISEN34)(2)  
Peak drive current (OUT1, OUT2, OUT3, OUT4), VVM <= 16.5 V(3)  
Peak drive current (OUT1, OUT2, OUT3, OUT4), VVM > 16.5 V(3)  
Ambient temperature, TA  
-0.3  
5.75  
-0.7  
VM + 0.6  
0.6  
V
-0.6  
V
Internally Limited  
A
0
-40  
-40  
-65  
4
125  
150  
150  
A
°C  
°C  
°C  
Junction temperature, TJ  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Transients of ±1 V for less than 25 ns are acceptable.  
(3) Power dissipation and thermal limits must be observed.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±4000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating ambient temperature range (unless otherwise noted). Typical limits apply for TA = 25°C and VVM = 12 V.  
MIN  
2.7  
0
NOM  
MAX  
18  
UNIT  
V
VVM  
VIN  
Power supply voltage (VM)  
Logic input voltage (IN1, IN2, IN3, IN4, TRQ, nSLEEP, SCL, SDA)  
Motor RMS current per bridge (OUT1, OUT2, OUT3, OUT4)  
PWM frequency (IN1, IN2, IN3, IN4)  
5
V
IRMS  
fPWM  
VOD  
IOD  
0
1(1)  
250(1)  
5
A
0
kHz  
V
Open drain pullup voltage (nFAULT)  
0
Open drain output current (nFAULT)  
0
5
mA  
°C  
°C  
TA  
Operating Ambient Temperature  
-40  
-40  
85  
TJ  
Operating Junction Temperature  
150  
(1) Power dissipation and thermal limits must be observed. Dependent on the package thermal performance.  
6.4 Thermal Information  
DRV8847, DRV8847S  
DRV8847  
PWP (HTSSOP)  
16 PINS  
46.5  
DRV8847  
THERMAL METRIC(1)  
PW (TSSOP)  
16 PINS  
107.9  
RTE (QFN)  
16 PINS  
46.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
38.5  
40.1  
47.5  
54.2  
18.8  
21.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
 
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
Thermal Information (continued)  
DRV8847, DRV8847S  
DRV8847  
DRV8847  
RTE (QFN)  
16 PINS  
0.9  
THERMAL METRIC(1)  
PW (TSSOP)  
16 PINS  
3.1  
PWP (HTSSOP)  
UNIT  
16 PINS  
1.3  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
°C/W  
ΨJB  
53.6  
19.0  
5.9  
21.3  
RθJC(bot)  
N/A  
6.1  
6.5 Electrical Characteristics  
Over recommended operating conditions unless otherwise noted. Typical limits apply for TA = 25°C and VVM = 12 V.  
PARAMETER  
POWER SUPPLIES (VM)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VM = 2.7 V; nSLEEP = 1; INX = 0  
VM = 5 V; nSLEEP = 1; INX = 0  
VM = 12 V; nSLEEP = 1; INX = 0  
VM = 2.7 V; nSLEEP = 0; TA = 25°C  
VM = 2.7 V; nSLEEP = 0; TA = 85°C  
VM = 5 V; nSLEEP = 0; TA = 25°C  
VM = 5 V; nSLEEP = 0; TA = 85°C  
VM = 12 V; nSLEEP = 0; TA = 25°C  
VM = 12 V; nSLEEP = 0; TA = 85°C  
nSLEEP = 0 to sleep mode  
2
3
2.5  
3.5  
3.5  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
µs  
IVM  
VM operating supply current  
VM sleep mode current  
3
0.1  
0.5  
1
0.2  
1.7  
2
IVMQ  
2.5  
tSLEEP  
tWAKE  
Sleep time  
Wake-up time  
nSLEEP = 1 to output transition  
1.5  
1.5  
ms  
VM > UVLO to output transition  
(nSLEEP = 1)  
tON  
Turnon-time  
ms  
LOGIC-LEVEL INPUTS (IN1, IN2, IN3, IN4, NSLEEP, TRQ, SCL, SDA)  
VM < 7 V  
0
0
0.6  
1.0  
5.5  
V
V
VIL  
Input logic low voltage  
(1)  
VM >= 7 V  
VIH  
Input logic high voltage  
Input logic hysteresis  
Input logic hysteresis  
Input logic low current  
1.6  
40  
V
VHYS  
VHYS  
IIL  
nSLEEP pin  
mV  
mV  
µA  
µA  
µA  
ns  
ns  
IN1, IN2, IN3, IN4, TRQ, SCL pins  
VIN = 0 V  
100  
-1  
1
35  
IN1, IN2, IN3, IN4, TRQ, VIN = 5 V  
nSLEEP, VIN = minimum (VM, 5 V)  
INx edge to output  
18  
IIH  
Input logic high current  
10  
25  
tPD  
Propagation Delay  
Input logic deglitch  
100  
400  
50  
600  
tDEGLITCH  
TRI-LEVEL INPUTS (MODE)  
VIL  
VIZ  
VIH  
IIL  
Tri-level input logic low voltage  
0
0.6  
V
V
Tri-level input hi-Z voltage  
1.2  
Tri-level input logic high voltage  
Tri-level input logic low current  
Tri-level input logic high current  
1.6  
-9  
8
5.5  
-4  
V
VIN = 0 V  
VIN = 5 V  
µA  
µA  
IIH  
25  
OPEN-DRAIN OUTPUTS (nFAULT)  
VOL  
IOH  
Output logic low voltage  
Output logic high current  
IOD = 5 mA  
VOD = 3.3 V  
0.5  
1
V
-1  
-1  
µA  
OPEN-DRAIN OUTPUTS (SDA)  
VOL  
IOH  
Output logic low voltage  
Output logic high current  
IOD = 5 mA  
VOD = 3.3 V  
0.5  
1
V
µA  
(1) Specified by design and characterization  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended operating conditions unless otherwise noted. Typical limits apply for TA = 25°C and VVM = 12 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CB  
Capacitive load for each bus line  
400  
pF  
DRIVER OUTPUTS (OUT1, OUT2, OUT3, OUT4)  
VVM = 2.7 V; IOUT = 0.5 A; TA = 25°C  
VVM = 2.7 V; IOUT = 0.5 A; TA = 85°C  
VVM = 5 V; IOUT = 0.5 A; TA = 25°C  
VVM = 5 V; IOUT = 0.5 A; TA = 85°C  
VVM = 12 V; IOUT = 0.5 A; TA = 25°C  
VVM = 12 V; IOUT = 0.5 A; TA = 85°C  
VVM = 2.7 V; IOUT = 0.5 A; TA = 25°C  
VVM = 2.7 V; IOUT = 0.5 A; TA = 85°C  
VVM = 5 V; IOUT = 0.5 A; TA = 25°C  
VVM = 5 V; IOUT = 0.5 A; TA = 85°C  
VVM = 12 V; IOUT = 0.5 A; TA = 25°C  
VVM = 12 V; IOUT = 0.5 A; TA = 85°C  
VVM = 5 V; TJ = 25 °C; VOUT = 0 V  
VVM = 12 V; IOUT = 0.5 A  
690  
530  
520  
570  
460  
450  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
µA  
950  
740  
700  
900  
690  
RDS(ON)_HS High-side MOSFET on resistance  
RDS(ON)_LS Low-side MOSFET on resistance  
680  
1
IOFF  
Off-state leakage current  
Output rise time  
-1  
tRISE  
tFALL  
tDEAD  
VSD  
150  
150  
200  
1.1  
ns  
Output fall time  
VVM = 12 V, IOUT = 0.5 A  
ns  
Output dead time  
Internal dead time  
ns  
Body diode forward voltage  
IOUT = 0.5 A  
V
PWM CURRENT CONTROL (ISEN12, SEN34)  
Torque at 100% (TRQ = 0)  
Torque at 50% (TRQ = 1)  
140  
150  
75  
160  
mV  
mV  
µs  
VTRIP  
ISENxx trip voltage  
63.75  
86.25  
tBLANK  
tOFF  
Current sense blanking time  
1.8  
20  
Current control constant off time  
µs  
PROTECTION CIRCUITS  
Supply rising  
2.7  
V
V
VUVLO  
Supply undervoltage lockout  
Supply falling  
2.4  
1.6  
VUVLO_HYS Supply undervoltage hysteresis  
Rising to falling theshold  
VM falling; UVLO report  
50  
10  
2
mV  
µs  
A
tUVLO  
IOCP  
Supply undervoltage deglitch time  
(2)  
Overcurrent protection trip point  
VVM < 15 V  
3
µs  
µs  
ms  
µA  
µA  
V
tOCP  
Overcurrent protection deglitch time  
VVM >= 15 V  
1
tRETRY  
IOL_PU  
IOL_PD  
VOL_HS  
VOL_LS  
TTSD  
Overcurrent protection retry time  
Open load pull-up current  
1
< 15 nF on OUTx Pin  
< 15 nF on OUTx Pin  
200  
230  
2.3  
1.2  
160  
40  
Open load pull-down current  
Open load detect threshold (high side)  
Open load detect threshold (low side)  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
V
150  
180  
°C  
°C  
THYS  
(2) For VM > 16.5 V, the output current on OUTx must be limited to 4 A  
6.6 I2C Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
STANDARD MODE  
fSCL  
SCL Clock frequency  
0
100  
kHz  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
I2C Timing Requirements (continued)  
MIN  
NOM  
MAX  
UNIT  
Hold time (repeated) START condition. After this period, the first  
clock pulse is generated  
tHD,STA  
4
µs  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Setup time for a repeated START condition  
Data hold time: For I2C bus devices  
Data set-up time  
4.7  
4
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
tHIGH  
tSU,STA  
tHD,DAT  
tSU,DAT  
tR  
4.7  
0
3.45  
250  
SDA and SCL rise time  
1000  
300  
tF  
SDA and SCL fall time  
tSU,STO  
tBUF  
Set-up time for STOP condition  
Bus free time between a STOP and START condition  
4
4.7  
FAST MODE  
fSCL  
SCL Clock frequency  
0
400  
kHz  
µs  
Hold time (repeated) START condition. After this period, the first  
clock pulse is generated  
tHD,STA  
0.6  
tLOW  
tHIGH  
tSU,STA  
tHD,DAT  
tSU,DAT  
tR  
LOW period of the SCL clock  
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
HIGH period of the SCL clock  
Setup time for a repeated START condition  
Data hold time: For I2C bus devices  
Data set-up time  
0.9  
250  
SDA and SCL rise time  
300  
300  
tF  
SDA and SCL fall time  
tSU,STO  
tBUF  
Set-up time for STOP condition  
Bus free time between a STOP and START condition  
Pulse width of spikes to be supressed by input noise filter  
0.6  
1.3  
tSP  
50  
版权 © 2018–2019, Texas Instruments Incorporated  
9
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
xIN1  
tpd  
xIN2  
tpd  
tpd  
xOUT1  
Z
Z
Z
tpd  
Z
xOUT2  
90%  
90%  
10%  
10%  
trise  
tfall  
1. Timing Diagram  
STO  
STA  
STA  
STO  
SDA  
SCL  
tBUF  
tr  
tHD,STA  
tf  
tSU,STO  
tHD,DAT  
tSU,DAT  
tSU,STA  
tHIGH  
tLOW  
tHD,STA  
2. I2C Timing Diagram  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
6.7 Typical Characteristics  
5
4
3
2
1
0
4
3
2
1
0
VVM = 2.7 V  
VVM = 5 V  
VVM = 12 V  
VVM = 15 V  
VVM = 18 V  
TA = -40°C  
TA = 25°C  
TA = 85°C  
2
4
6
8
Supply Voltage (V)  
10  
12  
14  
16  
18  
-40  
-20  
0
20 40  
Temperature (°C)  
60  
80  
100  
D001  
D002  
3. Operating Supply Current (IVM) vs Supply Voltage (VVM  
)
4. Operating Supply Current (IVM) vs Ambient  
Temperature (TA)  
5
7
6
5
4
3
2
1
0
VVM = 2.7 V  
VVM = 5 V  
VVM = 12 V  
VVM = 15 V  
VVM = 18 V  
4
3
2
1
TA = -40°C  
TA = 25°C  
TA = 85°C  
0
2
4
6
8
Supply Voltage (V)  
10  
12  
14  
16  
18  
-40  
-20  
0
20 40  
Temperature (°C)  
60  
80  
100  
D003  
D004  
5. Sleep Mode Supply Current (IVMQ) vs Supply Voltage  
(VVM  
6. Sleep Mode Supply Current (IVMQ) vs Ambient  
)
Temperature (TA)  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
TA = -40°C  
TA = 25°C  
TA = 85°C  
VVM = 2.7 V  
VVM = 5 V  
VVM = 12 V  
VVM = 15 V  
VVM = 18 V  
2
4
6
8
Supply Voltage (V)  
10  
12  
14  
16  
18  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
D005  
D006  
7. High Side On-State Resistance (RDS(ON)_HS) vs Supply  
Voltage (VVM  
8. High Side On-State Resistance (RDS(ON)_HS) vs Ambient  
)
Temperature (TA)  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
TA = -40°C  
TA = 25°C  
TA = 85°C  
0.3  
0.2  
0.1  
0
VVM = 2.7 V  
VVM = 5 V  
VVM = 12 V  
VVM = 15 V  
VVM = 18 V  
2
4
6
8
Supply Voltage (V)  
10  
12  
14  
16  
18  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
D007  
D008  
9. Low Side On-State Resistance (RDS(ON)_LS) vs Supply  
Voltage (VVM  
10. Low Side On-State Resistance (RDS(ON)_LS) vs  
)
Ambient Temperature (TA)  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
Typical Characteristics (接下页)  
225  
250  
225  
200  
175  
150  
125  
100  
200  
175  
150  
125  
100  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
2
4
6
8
Supply Voltage (V)  
10  
12  
14  
16  
18  
2
4
6
8
Supply Voltage (V)  
10  
12  
14  
16  
18  
D009  
D001  
11. Open Load Pull-Up Current (IOL_PU) vs Supply Voltage  
12. Open Load Pull-Down Current (IOL_PD) vs Supply  
Voltage (VVM  
(VVM  
)
)
2.6  
2.4  
2.2  
2
1.3  
1.2  
1.1  
1
1.8  
1.6  
1.4  
1.2  
0.9  
0.8  
0.7  
0.6  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
2
4
6
8
Supply Voltage (V)  
10  
12  
14  
16  
18  
2
4
6
8
Supply Voltage (V)  
10  
12  
14  
16  
18  
D001  
D001  
13. Open Load High-Side Threshold Voltage (VOL_HS) vs  
14. Open Load Low-Side Threshold Voltage (VOL_LS) vs  
Supply Voltage (VVM  
Supply Voltage (VVM  
)
)
版权 © 2018–2019, Texas Instruments Incorporated  
13  
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DRV8847 device is an integrated 2.7-V to 18-V dual motor driver for industrial brushed and stepper motor  
applications. This driver can drive two DC motors, a bipolar stepper motor, or the solenoid loads. The device  
integrates two H-bridges that use NMOS low-side and high-side drivers and current-sense regulation circuitry.  
The DRV8847 device supports a high output current of 1-A RMS per H-bridge using low-RDS(ON) integrated  
MOSFETs.  
A simple PWM interface option allows easy interfacing to the H-bridge outputs. The interface options can be  
configured using the MODE and IN3 pins in the DRV8847 device. The interface options can be configured  
through a I2C interface in the I2C device variant (DRV8847S).  
The current regulation uses a fixed off-time (tOFF) PWM scheme. The trip point for current regulation is controlled  
by the value of the sense resistor and fixed internal VTRIP value.  
A low-power sleep mode is included which lets the system save power when not driving the motor.  
The DRV8847 device is available in three different packages:  
16-pin TSSOP (no thermal pad)  
16 pin HTSSOP (PowerPAD)  
16 pin WQFN (thermal pad)  
The I2C variant of the DRV8847 device is also available for a detailed diagnostics requirement and multi-slave  
operation with multi-slave operation control over I2C bus.  
The DRV8847S device variant is available in one package which is the 16-pin TSSOP (no thermal pad).  
The DRV8847 device has a broad range of integrated protection features. These features include power supply  
undervoltage lockout, open-load detection, overcurrent faults, and thermal shutdown.  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
7.2 Functional Block Diagram  
VM  
Charge Pump  
Power  
VM  
VM  
Internal  
Reference  
and  
0.1 µF  
CVM1  
bulk  
CVM2  
Regulators  
OUT1  
MODE  
DC  
Motor  
Stepper  
Gate  
Drive  
and  
VM  
Motor  
OCP  
TRQ  
OUT2  
nSLEEP  
RSENSE12  
(Optional)  
ISENS12  
ISEN  
IN1  
IN2  
IN3  
IN4  
VM  
Logic  
OUT3  
DC  
Motor  
Gate  
Drive  
and  
VM  
VEXT  
OCP  
RnFAULT  
OUT4  
Output  
nFAULT  
RSENSE34  
(Optional)  
ISENS34  
ISEN  
Overtemperature  
GND  
PPAD  
15. Block Diagram for DRV8847  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Functional Block Diagram (接下页)  
VM  
Charge Pump  
Power  
VM  
VM  
Internal  
Reference  
and  
0.1 µF  
CVM1  
bulk  
CVM2  
Regulators  
OUT1  
nSLEEP  
DC  
Motor  
Stepper  
Motor  
Gate  
Drive  
and  
IN1  
IN2  
IN3  
IN4  
VM  
OCP  
OUT2  
RSENSE12  
(Optional)  
ISENS12  
ISEN  
VM  
VEXT  
RnFAULT  
Logic  
OUT3  
Output  
nFAULT  
DC  
Motor  
Gate  
Drive  
and  
VM  
SCL  
VEXT  
I2C  
Registers  
OCP  
RSDA  
OUT4  
SDA  
RSENSE34  
(Optional)  
ISENS34  
ISEN  
Overtemperature  
GND  
PPAD  
16. Block Diagram for DRV8847S  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
7.3 Feature Description  
1 lists the recommended values of the external components for the gate driver.  
1. DRV8847 External Components  
COMPONENT  
CVM1  
PIN 1  
VM  
PIN 2  
GND  
RECOMMENDED  
10-µF (minimum) VM-rated capacitor  
CVM2  
VM  
GND  
0.1-µF VM-rated ceramic capacitor  
>1 k  
RnFAULT  
RISEN12  
RISEN34  
VEXT(1)  
ISEN12  
ISEN34  
nFAULT  
GND  
Sense resistor, see the Typical Application for sizing  
Sense resistor, see the Typical Application for sizing  
GND  
(1) VEXT is not a pin on the DRV8847 device, but a pullup resistor on the VEXT external supply voltage is required for the open-drain  
output, nFAULT.  
7.3.1 PWM Motor Drivers  
The DRV8847 device has two identical H-bridge motor drivers with current-control PWM circuitry. 17 shows a  
block diagram of the circuitry.  
The two H-bridges can also be used as four independent half-bridges depending upon the interface option. The  
ISENxx pin can be only used together with two half-bridges.  
VM  
IN1  
OUT1  
IN2  
Stepper  
VM  
Motor  
PWM  
Predrive  
OUT2  
ISEN12  
œ
RSENSE12  
+
REF (VTRIP  
)
17. PWM Motor Driver Circuitry  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
 
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.3.2 Bridge Operation  
The full-bridge can operate in four different operating modes: forward, reverse, coast (fast decay), and brake  
(slow decay) operation.  
7.3.2.1 Forward Operation  
This operating mode refers to the forward rotation of the motor such that the current flows from terminal A (OUT1  
or OUT3) to terminal B (OUT2 or OUT4) as shown in 18. In this mode, terminal A is connected to VM and  
terminal B is connected to ground.  
VM  
B
A
18. Forward Operation  
7.3.2.2 Reverse Operation  
This operating mode refers to the reverse rotation of the motor such that the current flows from terminal B (OUT2  
or OUT4) to terminal A (OUT1 or OUT3) as shown in 19. In this mode, terminal A is connected to ground and  
terminal B is connected to VM.  
VM  
B
A
19. Reverse Operation  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
7.3.2.3 Coast Operation (Fast Decay)  
In this operating mode, all the FETs of the full-bridges are in the high impedance (Hi-Z) state. The motor also  
goes to the Hi-Z state, and the motor starts coasting. This operating mode also helps to decay the motor current  
faster and is therefore also referred to as a fast decay mode. If the motor was initially connected in forward  
operation (current flows from terminal A to terminal B) and if the coast operation is applied, then, because of the  
inductive nature of motor load, the current continues to flow in the same direction (A to B), and the anti-parallel  
diodes of the alternate FETs starts conducting as shown in 20. This flow of current through anti-parallel diodes  
lets the current decrease rapidly because of the higher negative potential created by the supply voltage, VM.  
VM  
A
B
20. Coast Operation (Fast Decay)  
7.3.2.4 Brake Operation (Slow Decay)  
This operating mode is realized by switching on both of the low-side FETs of the full-bridge as shown in 21. A  
current circulation path is provided when both low-side FETs are turned on. Due to this circulation path, the  
current decays to ground using the resistance of the motor and of the low-side FET. Because this current decay  
is less when compared to the coast operation because of the low potential difference, this mode is also referred  
to the slow decay mode.  
VM  
B
A
21. Brake Operation (Slow Decay)  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
 
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.3.3 Bridge Control  
The DRV8847 device can be configured in four different operating modes depending on user requirements. The  
MODE and IN3 pins are used to configure the DRV8847 in one of the four different interfaces: 4-pin interface, 2-  
pin interface, a parallel bridge interface, and the independent bridge interface. Mode selection is done using the  
I2C registers in the DRV8847S device variant (see the Programming section). 2 lists the configurations to  
select the operating mode of the bridges.  
2. Bridge Mode Selection (DRV8847 Hardware Device Variant)  
nSLEEP  
MODE  
IN3  
X
INTERFACE  
0
1
1
1
1
X
0
1
1
Z
Sleep mode  
X
4-pin interface  
0
2-pin interface  
1
Parallel bridge interface  
X
Independent bridge interface  
The MODE pin is not latched during driver operation. Therefore, TI does not recommend  
connecting this pin to a controller to use at any time.  
7.3.3.1 4-Pin Interface  
In the 4-pin interface, the DRV8847 device is configured to drive a stepper motor or two BDC motors with fully  
functional modes. To configure 4-pin interface operation, connect the MODE pin to ground and use the IN1, IN2,  
IN3, and IN4 pins to control the drivers. In this mode, the stepper or brushed DC motor can operate with all four  
modes (forward, reverse, coast, and brake mode) and the stepper motor can operate in either full-stepping mode  
or the non-circulating half-stepping mode. Sense resistors can be connected to the ISEN12 and ISEN34 pins for  
independent current regulation in bridge-12 and bridge-34 respectively.  
Use this interface option for the following loads:  
Stepper motor in full-stepping mode (with or without current regulation)  
Stepper motor in half-stepping mode (with or without current regulation)  
Single or dual BDC motor (with or without current regulation) with full functional BDC modes (forward,  
reverse, brake, and coast mode)  
3 lists the configurations for 4-pin interface operation and 22 shows the application diagram for 4-pin  
interface operation.  
3. 4-Pin Interface (MODE = 0)  
nSLEEP  
IN1  
X
IN2  
X
IN3  
IN4  
OUT1  
OUT2  
OUT3  
OUT4  
FUNCTION (DC MOTOR)  
Sleep mode  
0
1
1
1
1
1
1
1
1
X
X
Z
Z
L
Z
Z
H
L
Z
Z
0
0
Motor coast (fast decay)  
Reverse direction  
0
1
1
0
H
L
Forward direction  
1
1
L
Motor brake (slow decay)  
Motor coast (fast decay)  
Reverse direction  
0
0
1
1
0
1
0
1
Z
L
Z
H
L
H
L
Forward direction  
L
Motor brake (slow decay)  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
VM  
OUT1  
DC  
Motor  
Gate  
Drive  
and  
Stepper  
VM  
Motor  
OCP  
OUT2  
IN1  
RSENSE  
(Optional)  
ISEN12  
ISEN  
IN2  
IN3  
VM  
Logic  
Controller  
IN4  
OUT3  
nSLEEP  
DC  
Motor  
Gate  
Drive  
and  
VM  
OCP  
MODE  
GND  
OUT4  
RSENSE  
(Optional)  
ISEN34  
ISEN  
22. 4-Pin Interface Operation  
7.3.3.2 2-Pin Interface  
In the 2-pin interface, the DRV8847 device is configured to drive a stepper motor or two BDC motors with lower  
number of control inputs from microcontroller. To configure 2-pin interface operation, connect the MODE pin to  
the external supply (3.3 V or 5 V), connect the IN3 pin to ground, and use the IN1 and IN2 pins to control the  
driver. In this mode, the stepper or brushed DC motor operate in only two modes (forward mode and reverse  
mode) i.e. only full-step operation is supported for stepper motor. This 2-pin interface is very useful for low GPIO  
applications such as refrigerator dampers. Sense resistors can be connected to the ISEN12 and ISEN34 pins for  
current regulation.  
Use this interface option for the following loads:  
Stepper motor in full stepping mode (with or without current regulation)  
Single or dual BDC motor (with or without current regulation) with reduced functional BDC modes (forward  
and reverse mode only)  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
4 lists the configurations for 2-pin interface operation and 23 shows the application diagram for 2-pin  
interface operation.  
4. 2-Pin Interface (MODE = 1, IN3 = 0)  
nSLEEP  
IN1  
X
IN2  
IN3  
X
IN4  
X
OUT1  
OUT2  
OUT3  
OUT4  
FUNCTION (DC MOTOR)  
Sleep mode  
0
1
1
1
1
X
Z
L
Z
H
L
Z
Z
0
0
X
Reverse direction  
Forward direction  
Reverse direction  
Forward direction  
1
0
X
H
0
1
0
X
L
H
L
0
X
H
VM  
OUT1  
VEXT  
MODE  
DC  
Motor  
Gate  
Drive  
and  
Stepper  
Motor  
VM  
IN3  
OCP  
GND  
OUT2  
IN4  
Don‘t Care  
RSENSE  
(Optional)  
ISEN12  
ISEN  
VM  
Logic  
OUT3  
IN1  
IN2  
DC  
Motor  
Gate  
Drive  
and  
Controller  
VM  
OCP  
nSLEEP  
OUT4  
RSENSE  
(Optional)  
ISEN34  
ISEN  
23. 2-Pin Interface Operation  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
In this mode, two of the OUTx pins are always 'ON' if the device is in non-sleep state  
(nSLEEP = HIGH). Therefore, to completely de-energize the motor-coils connected to  
OUTx pins, the user has to pull-down nSLEEP pin.  
7.3.3.3 Parallel Bridge Interface  
In the parallel bridge interface, the DRV8847 device is configured to drive a higher current BDC motor by using  
the driver in parallel to deliver twice the motor current. To go to parallel bridge interface operation, connect the  
MODE and IN3 pins to the external supply (3.3 V or 5 V) and use the IN1 and IN2 pins to control the driver. This  
mode can deliver the full functionality of the BDC motor control with all four modes (forward, reverse, coast, and  
brake mode).  
Use this interface option for the following loads:  
One high current BDC motor (with or without current regulation) with full functional BDC modes (forward,  
reverse, brake, and coast mode)  
Two independent BDC motors operating together (with or without current regulation) with full functional BDC  
modes (forward, reverse, brake, and coast mode)  
5 lists the configurations for parallel bridge interface operation, and 24 shows the application diagram for  
parallel bridge interface operation.  
5. Parallel Interface (MODE = 1, IN3 = 1)  
nSLEEP  
IN1  
X
IN2  
X
IN3  
X
IN4  
X
OUT1  
OUT2  
OUT3  
OUT4  
FUNCTION (DC MOTOR)  
Sleep mode  
0
1
1
1
1
Z
Z
L
Z
Z
H
L
Z
Z
L
Z
Z
H
L
0
0
1
X
Motor coast (fast decay)  
Reverse direction  
0
1
1
X
1
0
1
X
H
L
H
L
Forward direction  
1
1
1
X
L
L
Motor brake (slow decay)  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
VM  
VEXT  
OUT1  
MODE  
IN3  
Gate  
Drive  
and  
VM  
OCP  
IN4  
Don‘t Care  
OUT2  
ISEN12  
ISEN  
VM  
Logic  
IN1  
OUT3  
IN2  
Controller  
DC  
Motor  
Gate  
Drive  
and  
VM  
nSLEEP  
OCP  
OUT4  
RSENSE  
(Optional)  
ISEN34  
ISEN  
24. Parallel Mode Operation  
7.3.3.4 Independent Bridge Interface  
In the independent bridge interface, the DRV8847 device is configured for independent half-bridge operation. To  
configure independent bridge interface operation, leave the MODE pin unconnected (Hi-Z state) and use the IN1,  
IN2, IN3, and IN4 pins to independently control the OUT1, OUT2, OUT3, and OUT4 pins respectively. Only two  
output states of the OUTx pin can be controlled (either connected to VM or connected to GND). This mode is  
used to drive independent loads such as relays and solenoids.  
Use this interface option for the following loads:  
Relay or solenoid coils connected between OUTx and VM/ground pin without current regulation  
Single or dual BDC motor (with or without current regulation) with three functional BDC modes (forward,  
reverse, and braking mode only)  
Stepper motor in full-stepping mode (with or without current regulation)  
Stepper motor in half-stepping mode (with or without current regulation) using brake mode  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
6 lists the configurations for independent bridge interface operation and 25 shows the application diagram  
for independent bridge interface operation.  
6. Independent Bridge Interface (MODE = Hi-Z)  
nSLEEP  
IN1  
X
IN2  
IN3  
IN4  
OUT1  
OUT2  
OUT3  
OUT4  
FUNCTION (DC MOTOR)  
Sleep mode  
0
1
1
1
1
1
1
1
1
X
X
X
Z
L
Z
Z
Z
0
OUT1 connected to GND  
OUT1 connected to VM  
OUT2 connected to GND  
OUT2 connected to VM  
OUT3 connected to GND  
OUT3 connected to VM  
OUT4 connected to GND  
OUT4 connected to VM  
1
H
0
1
L
H
0
1
L
H
0
1
L
H
版权 © 2018–2019, Texas Instruments Incorporated  
25  
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
VM  
OUT1  
Gate  
Drive  
and  
VM  
OCP  
OUT2  
IN1  
IN2  
IN3  
ISEN12  
ISEN  
Controller  
IN4  
VM  
Logic  
nSLEEP  
OUT3  
Gate  
Drive  
and  
VM  
OCP  
MODE  
Not Connected  
OUT4  
ISEN34  
ISEN  
25. Independent Bridge Interface  
7.3.4 Current Regulation  
The current through the motor windings is regulated by a fixed off-time PWM current regulation circuit. With  
brushed DC motors, current regulation can be used to limit the stall current (which is also the start-up current) of  
the motor.  
Current regulation works as follows: When an H-bridge is enabled, current rises through the winding at a rate  
dependent on the supply voltage and inductance of the winding. If the current reaches the current trip threshold,  
the bridge disables the current for a time tOFF before starting the next PWM cycle.  
Immediately after the current is enabled, the voltage on the ISENxx pin is ignored for a  
period of time (tBLANK) before enabling the current sense circuitry. This blanking time also  
sets the minimum on-time of the PWM cycle.  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
The PWM trip current is set by a comparator which compares the voltage across a current sense resistor  
connected to the ISENxx pin with a reference voltage. This reference voltage (VTRIP) is generated on-chip and  
decides the current trip level.  
The full-scale trip current in a winding is calculated as shown in 公式 1.  
VTRIP  
ITRIP = Torque  
RSENSExx  
where  
ITRIP is the regulated current.  
VTRIP is the internally generated trip voltage.  
RSENSExx is the resistance of the sense resistor.  
Torque is the torque scalar, the value of which depends on the input on TRQ pin. TRQ = 100% for TRQ pin  
connected to GND (DRV8847) or TRQ bit set to 0 (DRV8847S) and TRQ = 50% connected to VEXT (DRV8847)  
or TRQ bit set to 1 (DRV8847S).  
(1)  
For example, if the VTRIP voltage is 150 mV and the value of the sense resistor is 150 mΩ, the full-scale trip  
current is 1 A (150 mV / (150 mΩ) = 1 A).  
If current control is not needed, connect the ISENxx pins directly to ground.  
7.3.5 Current Recirculation and Decay Modes  
During PWM current trip operation, the H-bridge is enabled to drive current through the motor winding until the  
trip threshold of the current regulation is reached. After the trip current threshold is reached, the drive current is  
interrupted, but, because of the inductive nature of the motor, current must continue to flow for some time. This  
continuous flow of current is called recirculation current. A mixed decay allows a better current regulation by  
optimizing the current ripple by using fast and slow decay.  
Mixed decay is a combination of fast and slow decay modes. In fast decay mode, the anti-parallel diodes of the  
opposite FETs are conducting on to let the current decay faster as shown in 26 (see case 2). In slow decay  
mode, winding current is recirculated by enabling both low-side FETs in the bridge (see case 3 in 26). Mixed  
decay starts with fast decay, then goes to slow decay. In the DRV8847 device, the mixed decay ratio is 25% fast  
decay and 75% slow decay as shown in 27.  
VM  
1
2
3
Drive Current  
Fast Decay  
Slow Decay  
1
2
3
26. Decay Modes  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
 
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Fast Decay  
ITRIP  
Slow Decay  
Motor  
Current  
25% of tOFF  
Time  
tON  
tOFF  
Mixed Decay (25% Fast Decay)  
27. Mixed Decay  
The current regulation scheme uses a single sense resistor and hence always works for  
two half bridges even when used in "Independent Bridge Interface". It is recommended  
that current regulation not be used for loads using independent half bridges.  
7.3.6 Torque Scalar  
The torque scalar is used to dynamically adjust the output current through a digital input pin, TRQ. This torque  
scalar decreases the trip reference value of the output current to 50% (whenever the TRQ pin is pulled-high).  
Torque scalar can be used to scale the holding torque of the stepper motor. For the I2C device variant  
(DRV8847S), this feature is implemented through an I2C register.  
When the TRQ pin is pulled-low (or the TRQ bit is reset in the DRV8847S device variant), then trip current is  
calculated using 公式 2.  
Torque ì VTRIP  
RSENSExx  
ITRIP  
=
(2)  
When the TRQ pin is pulled-high (or the TRQ bit is set in the DRV8847S device variant), then trip current is  
calculated using 公式 3.  
VTRIP  
ITRIP = 0.5  
RSENSExx  
(3)  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
7.3.7 Stepping Modes  
The DRV8847 device is used to drive a stepper motor in full-stepping mode or non-circulating half-stepping mode  
using the following bridge configurations:  
Full-stepping mode (with or without current regulation)  
Using 4-pin interface configuration  
Using 2-pin interface configuration  
Half-stepping mode (with or without current regulation)  
Using 4-pin interface configuration  
7.3.7.1 Full-Stepping Mode (4-Pin Interface)  
In full-stepping mode, the full-bridge operates in either of two modes (forward or reverse mode) with a phase shift  
of 90° between the two windings.  
In 4-pin interface, the PWM input is applied to the IN1, IN2, IN3, and IN4 pins as shown in 28 and the driver  
operates only in forward (FRW) and reverse (REV) mode.  
90o  
Phase  
IN1  
IN2  
IN3  
IN4  
OUT12 FRW  
OUT12 FRW  
OUT12  
OUT12 REV  
OUT12 REV  
OUT34 FRW  
OUT34 FRW  
OUT34  
OUT34 REV  
OUT34 REV  
Time  
28. Full-Stepping Mode Using 4-Pin Interface  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.3.7.2 Full-Stepping Mode (2-Pin Interface)  
In full-stepping using the 2-pin interface, the PWM input is only applied to the IN1 and IN2 pins, and the IN3 is  
connected to ground (see the 23 section). 29 shows the full-stepping mode of stepper motor using the 2-  
pin interface  
90o  
Phase  
IN1  
IN2  
OUT12 FRW  
OUT12 FRW  
OUT12  
OUT12 REV  
OUT12 REV  
OUT34 FRW  
OUT34 FRW  
OUT34  
OUT34 REV  
OUT34 REV  
Time  
29. Full-Stepping Mode Using 2-Pin Interface  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
 
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
7.3.7.3 Half-Stepping Mode (With Non-Driving Fast Decay)  
In half-stepping mode, the full-bridge operates in one of the three modes (forward, reverse, or coast mode) with a  
phase shift of 45° between the two windings.  
In 4-pin interface, the PWM input is connected to the IN1, IN2, IN3, and IN4 pins as shown in 30, and the  
driver operates in forward, reverse, and coast mode.  
45o  
Phase  
IN1  
IN2  
IN3  
IN4  
OUT12 FRW  
OUT12 FRW  
OUT12  
OUT12 REV  
OUT12 REV  
OUT34 FRW  
OUT34 FRW  
OUT34  
OUT34 REV  
OUT34 REV  
Time  
30. Half-Stepping Mode Using 4-Pin Interface (With Non-Driving Fast Decay)  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.3.7.4 Half-Stepping Mode (With Non-Driving Slow Decay)  
In this half-stepping mode, the non-driving state is slow decay (braking mode). Therefore, the full-bridge operates  
in one of the three modes (forward, reverse, or brake mode) with a phase shift of 45° between the two windings.  
In 4-pin interface, the PWM input is connected to the IN1, IN2, IN3, and IN4 pins as shown in 31, and the  
driver operates in forward, reverse, and brake mode.  
45o  
Phase  
IN1  
IN2  
IN3  
IN4  
OUT12 FRW  
OUT12 FRW  
OUT12  
OUT12 REV  
OUT12 REV  
OUT34 FRW  
OUT34 FRW  
OUT34  
OUT34 REV  
OUT34 REV  
Time  
31. Half-Stepping Mode Using 4-Pin Interface (With Non-Driving Slow Decay)  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
 
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
7.3.8 Motor Driver Protection Circuits  
The DRV8847 device is protected against VM undervoltage, overcurrent, open load, and over temperature  
events.  
7.3.8.1 Overcurrent Protection (OCP)  
The DRV8847 is protected against overcurrent by overcurrent protection trip. The OCP circuit on each FET  
disables the current flow through the FET by removing the gate drive. If this overcurrent detection continues for  
longer than the OCP deglitch time (tOCP), all FETs in the H-bridge (or half-bridge in the independent interface) are  
disabled and the nFAULT pin is driven low. The DRV8847 device stays disabled until the retry time tRETRY occurs  
whereas the DRV8847S device has a programmable option for auto-retry or the latch mode.  
7.3.8.1.1 OCP Automatic Retry (Hardware Device and Software Device (OCPR = 0b))  
After an OCP event in this mode, the corresponding half-bridges, full-bridge, or both bridges (depending on the  
MODE bits) are disabled and the nFAULT pin is driven low (see 13 and 14). The OCP and corresponding  
OCPx bits are latched high in the I2C registers (see the Register Map section). Normal operation resumes  
automatically (motor driver operation and the nFAULT pin is released) after the tRETRY time elapses as shown in  
32. The OCP and OCPx bits remain latched until the tRETRY period expires.  
Overshoot due to OCP  
)
deglitch time (tOCP  
IOCP  
Motor  
Current  
Time  
tOCP  
tRETRY  
32. OCP Operation  
7.3.8.1.2 OCP Latch Mode (Software Device (OCPR = 1b))  
OCP latch mode is only available in the DRV8847S device. After an OCP event, the corresponding half-bridges,  
full-bridge, or both bridges (depending on the MODE bits) are disabled and the nFAULT pin is driven low. The  
OCP and corresponding OCPx bits are latched high in the I2C registers (see the Register Map section). Normal  
operation continues (motor driver operation and the nFAULT pin is released) when the OCP condition is removed  
and a clear faults command is issued through the CLR_FLT bit.  
For supply voltage, VVM > 16.5-V, if the OUTx current (FET current) exceeds 4-A, then the  
device operation is pushed beyond the safe operating area (SOA) of the device. User has  
to ensure that the FET-current is below 4-A for device safe operation for supply voltage  
above 16.5-V.  
7.3.8.2 Thermal Shutdown (TSD)  
If the die temperature exceeds thermal shutdown limits (TTSD), all FETs in the H-bridge are disabled and the  
nFAULT pin is driven low. After the die temperature decreases to a value within the specified limits, normal  
operation resumes automatically. The nFAULT pin is released after operation starts again.  
版权 © 2018–2019, Texas Instruments Incorporated  
33  
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.3.8.3 VM Undervoltage Lockout (VM_UVLO)  
Whenever the voltage on the VM pin falls below the UVLO falling threshold voltage, VUVLO, all circuitry in the  
device is disabled, and all internal logic is reset. Operation continues when the VVM voltage rises above the  
UVLO rising threshold as shown in 33. The nFAULT pin is driven low during an undervoltage condition and is  
released after operation starts again.  
VUVLO (max) rising  
VUVLO (min) rising  
VUVLO (max) falling  
VUVLO (min) falling  
VVM  
DEVICE ON  
DEVICE OFF  
DEVICE ON  
nFAULT  
Time  
33. VM UVLO Operation  
7.3.8.4 Open Load Detection (OLD)  
An open load detection feature is also implemented in this device. This diagnostic test runs at device power up or  
when the DRV8847 device comes out from sleep mode (rising edge on the nSLEEP pin). The OLD diagnostic  
test can run any time in the I2C variant device (DRV8847S) using the OLDOD (OLD On Demand) bit.  
The OLD implementation is done on the full-bridge and the half-bridge. In the DRV8847 device, during an open-  
load condition, the half-bridges, full-bridge, or both bridges (depending on the MODE pin) are always operating  
and the nFAULT pin is pulled-low. The user must reset the power to release the nFAULT pin by doing the OLD  
sequence again. 7 lists the different OLD scenarios for the DRV8847 device.  
In the DRV8847S device, the user can program the full-bridge or half-bridge to be in the operating mode or the  
Hi-Z state, whenever an open-load condition is detected by using the OLDBO (OLD Bridge Operation) bit.  
Moreover, the nFAULT signaling on the OLD bit can be disabled using the OLDFD (OLD Fault Disable) bit. For  
detailed I2C register settings, see the Register Map section. 8 lists the different OLD scenarios for the  
DRV8847S device.  
For accurate OLD operation, the user must ensure that the motor is stationary (or current  
in connected load becomes zero) before the open load on-demand command is executed.  
34  
版权 © 2018–2019, Texas Instruments Incorporated  
 
DRV8847  
www.ti.com.cn  
INTERFACE  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
7. Open Load Detection in DRV8847  
BRIDGE  
OPERATION  
LOAD TYPE  
OLD  
nFAULT  
Full-Bridge Connected  
Half-Bridge Connected  
Bridge Open  
NO  
NO  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
NO  
NO  
4-pin  
2-pin  
YES  
YES  
NO  
YES  
YES  
NO  
One Half-Bridge Open  
Full-Bridge Connected  
Half-Bridge Connected  
Bridge Open  
NO  
NO  
Parallel bridge  
YES  
YES  
NO  
YES  
YES  
NO  
One Half-Bridge Open  
Full-Bridge Connected  
Half-Bridge Connected  
Bridge Open  
NO  
NO  
Independent  
bridge  
YES  
YES  
YES  
YES  
One Half-Bridge Open  
8. Open Load Detection in DRV8847S (Full-bridge-12)  
BRIDGE OPERATION(1)  
OLD BITS  
OLD1 OLD2 OLD3 OLD4  
INTERFACE  
LOAD TYPE  
OLD  
nFAULT  
OLDBO = 0b  
YES  
OLDBO = 1b  
YES  
Full-bridge connected  
Half-bridge connected  
Bridge open  
NO  
NO  
NO  
NO  
0b  
0b  
1b  
0b  
0b  
1b  
X
X
X
X
X
X
YES  
YES  
4-pin  
2-pin  
YES  
YES  
NO  
YES  
1b or 0b or  
One half-bridge open  
YES  
YES  
NO  
YES  
X
X
(2)  
0b  
1b  
0b  
0b  
1b  
Full-bridge connected  
Half-bridge connected  
Bridge open  
NO  
NO  
YES  
YES  
YES  
YES  
YES  
NO  
NO  
NO  
0b  
X
X
X
X
X
X
0b  
1b  
Parallel bridge  
YES  
YES  
1b or 0b or  
One half-Bridge Open  
YES  
YES  
NO  
YES  
X
X
0b  
0b  
0b  
1b  
1b  
0b  
0b  
1b  
Full-Bridge Connected  
Half-Bridge Connected  
Bridge Open  
NO  
NO  
YES  
YES  
YES  
YES  
YES  
NO  
NO  
NO  
X
X
X
X
X
X
Independent  
bridge  
YES  
YES  
1b or 0b or  
0b 1b  
One Half-Bridge Open  
YES  
YES  
NO  
YES  
X
X
(1) The operation of the bridge is subjected to the selected mode type:  
(a) In 4-pin or 2-pin interface, the corresponding bridge is in the operating or Hi-Z state.  
(b) In parallel bridge (BDC) interface, both bridges are in the operating or Hi-Z state.  
(c) In independent bridge interface, the corresponding half-bridge is in the operating or Hi-Z state.  
(2) Depending on which half-bridge is open, the corresponding bit in the I2C register is set.  
The open-load detect sequence comprise of three detection states in which the driver ensures that any of the  
load is either connected or open as follows.  
版权 © 2018–2019, Texas Instruments Incorporated  
35  
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.3.8.4.1 Full-Bridge Open Load Detection  
As shown in 34, during device wakeup, a constant current source pulls the OUT1 pin to the AVDD (internal)  
fixed voltage which allows current flow from OUT1 to OUT2 terminal. The current drawn is completely dependent  
on the motor resistance between OUT1 and OUT2. Depending on this current and the comparator threshold  
voltage (VOL_HS and VOL_LS), the comparator output OL1_HS and OL2_LS are either set or reset which  
determines the open load status. 9 shows the states of OL1_HS and OL2_LS for the open load detect. This  
test executes before the tWAKE or tON time has elapsed. When an open load is detected, the nFAULT pin is  
latched low until the device is power cycled or device reset with nSLEEP pin. A similar implementation is done  
for the OUT3 and OUT4 pins.  
9. Open Load Detection for Full-Bridge Connection  
OL1_HS  
OL2_LS  
OLD STATUS  
0
0
1
1
0
1
0
1
NO OLD  
OLD  
AVDD  
VM  
SW1_HS  
VOL_HS  
œ
12 k  
+
OL1_HS  
X
IOL_PU  
OUT1  
SW1_LS  
OLD1  
IOL_PD  
X
œ
+
OL1_LS  
VOL_LS  
15 kΩ  
DC  
Motor  
Stepper  
Motor  
AVDD  
VM  
SW2_HS  
œ
12 kΩ  
VOL_HS  
+
OL2_HS  
X
IOL_PU  
OUT2  
SW2_LS  
OLD2  
To OUT3 and OUT4  
IOL_PD  
X
œ
+
OL2_LS  
VOL_LS  
15 kΩ  
34. Open Load Detect Circuit for Full-Bridge Connection  
36  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
AVDD voltage is the internal regulator voltage and is determined as min (VVM, 4.2 V).  
Hence, for supply voltage (VVM) higher than 4.2 V, this voltage is fixed at 4.2 V else it is  
equal to supply voltage ( VVM).  
7.3.8.4.2 Load Connected to VM  
For detection of the VM connected load, a constant current source pull-down the OUT1 node as shown in 35.  
This allows the current to flow from VM to OUT1 depending upon the value of load resistor (RL) connected  
between OUT1 and VM. Higher current (not open load) will allow the OL1_LS comparator to set and higher  
current resets the comparator output as shown in 10 for open load detection.  
10. Open Load Detection for VM Connected Load  
OL1_LS  
OLD STATUS  
NO OLD  
OLD  
0
1
VM  
AVDD  
VM  
SW1_HS  
œ
12 k  
VOL_HS  
RL  
+
OL1_HS  
X
IOL_PU  
X
OUT1  
SW1_LS  
OLD1  
IOL_PD  
X
œ
+
OL1_LS  
VOL_LS  
15 kΩ  
35. Open Load Detect Circuit for Load Connected to VM  
版权 © 2018–2019, Texas Instruments Incorporated  
37  
 
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.3.8.4.3 Load Connected to GND  
For detection of the GND connected load, the OUT1 node is pulled-up by the internal current source and the  
internal (4.2-V) fixed voltage as shown in 36. This allows the current to flow from OUT1 to GND depending  
upon the value of load resistor (RL) connected between OUT1 and GND. Higher current (not open load) will allow  
the OL1_HS comparator to set and higher current resets the comparator output as shown in 11.  
11. Open Load Detection for GND Connected Load  
OL1_HS  
OLD STATUS  
NO OLD  
OLD  
0
1
AVDD  
VM  
SW1_HS  
œ
12 k  
VOL_HS  
+
OL1_HS  
X
IOL_PU  
OUT1  
SW1_LS  
OLD1  
IOL_PD  
X
RL  
X
œ
+
OL1_LS  
VOL_LS  
15 kΩ  
36. Open Load Detect Circuit for Load Connected to GND  
38  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
7.4 Device Functional Modes  
The DRV8847 device is active until the nSLEEP pin is pulled logic low. In sleep mode, the internal circuitry  
(charge pump and regulators) is disabled and all internal FETs are disabled (Hi-Z state).  
The device goes to operating mode automatically if the nSLEEP pin is pulled logic high. tWAKE must elapse  
before the device is ready for inputs. The nFAULT pin asserts for small duration during power-up. Various  
functional modes are described in 12.  
The DRV8847 device goes to a fault mode in the event of VM undervoltage (UVLO), overcurrent (OCP), open-  
load detection (OLD), and thermal shutdown (TSD). The functionality of each fault depends on the type of fault  
listed in 13 for the DRV8847 device and 14 for the DRV8847S device.  
The tSLEEP time must elapse before the device goes to sleep mode.  
12. Functional Modes  
MODE  
CONDITION  
H-BRIDGE  
INTERNAL CIRCUITS  
2.7 V < VVM < 18 V  
nSLEEP pin = 1  
Operating  
Operating  
Operating  
2.7 V < VVM < 18 V  
nSLEEP pin = 0  
Sleep  
Fault  
Disabled  
Disabled  
Any fault condition met  
Depends on fault  
Depends on fault  
13. Fault Support for DRV8847  
INTERNAL  
CIRCUITS  
FAULT  
INTERFACE  
CONDITION  
REPORT  
H-BRIDGE  
RECOVERY  
Automatic:  
VM > VUVLO  
VM undervoltage  
(VM_UVLO)  
Both H-bridges in  
Hi-Z state  
All interfaces  
VM < VUVLO  
nFAULT  
Shutdown  
Corresponding H-  
bridges in Hi-Z  
state  
4-pin  
2-pin  
Overcurrent  
(OCP)  
Both H-bridges in  
Hi-Z state  
Automatic:  
tRETRY  
Parallel bridge  
I > IOCP  
nFAULT  
Operating  
Corresponding  
half-bridges in Hi-  
Z state  
Independent  
bridge  
H-bridge in  
operating mode  
4-pin  
Full-bridge open  
Full-bridges open  
Half-bridge open  
nFAULT  
nFAULT  
nFAULT  
nFAULT  
Power cycle  
/RESET: OUTx  
Connected  
2-pin  
Parallel bridge  
Open load detect  
(OLD)  
Both H-bridges in  
operating mode  
Operating  
Operating  
Independent  
bridge  
Half-bridge in  
operating mode  
TJ > TTSD  
(min 150°C)  
TJ < TTSD  
(THYS typ 40°C)  
Thermal shutdown  
(TSD)  
Both H-bridges in  
Hi-Z state  
All interfaces  
版权 © 2018–2019, Texas Instruments Incorporated  
39  
 
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
RECOVERY  
14. Fault Support for DRV8847S  
INTERNAL  
CIRCUITS  
FAULT  
MODE  
CONDITION  
REPORT  
H-BRIDGE  
Automatic:  
VM > VUVLO  
VM undervoltage  
(VM_UVLO)  
Both H-bridges in  
Hi-Z state  
All interfaces  
VM < VUVLO  
nFAULT  
Shutdown  
Corresponding H-  
bridges in Hi-Z  
state  
4-pin  
2-pin  
Overcurrent  
(OCP)  
Both H-bridges in  
Hi-Z state  
Automatic:  
tRETRY  
Parallel bridge  
I > IOCP  
nFAULT  
Operating  
Corresponding  
half-bridges in Hi-  
Z state  
Independent  
bridge Interface  
H-bridge in  
operating or Hi-Z  
state(1)  
4-pin  
Full-bridge open  
Full-bridges open  
Half-bridge open  
nFAULT  
nFAULT  
Both H-bridges in  
operating or Hi-Z  
state  
Power cycle /  
RESET: OUTx  
Connected  
2-pin  
Parallel bridge  
Open load detect  
(OLD)  
Operating  
Operating  
Half-bridge in  
operating or Hi-Z  
state  
Independent  
bridge  
nFAULT  
nFAULT  
TJ > TTSD  
(min 150°C)  
TJ < TTSD  
(THYS typ 40°C)  
Thermal shutdown  
(TSD)  
Both H-bridges in  
Hi-Z state  
All interfaces  
(1) The state of the bridge in OLD is dependent on the OLDBO bit as listed in 19.  
40  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
7.5 Programming  
This section applies only to the DRV8847S device (I2C variant).  
7.5.1 I2C Communication  
7.5.1.1 I2C Write  
To write on the I2C bus, the master device sends a START condition on the bus with the address of the 7-bit  
slave device. Also, the last bit (the R/W bit) is set to 0b, which signifies a write. After the slave sends the  
acknowledge bit, the master device then sends the register address of the register to be written. The slave  
device sends an acknowledge (ACK) signal again which notifies the master device that the slave device is ready.  
After this process, the master device sends 8-bit write data and terminates the transmission with a STOP  
condition.  
START  
7-bit Slave Address  
R/W=0  
ACK  
8-bit Register Address  
ACK  
8-bit Data  
ACK  
STOP  
Write to Memory  
37. I2C Write Sequence  
7.5.1.2 I2C Read  
To read from a slave device, the master device must first communicate to the slave device which register will be  
read from. This communication is done by the master starting the transmission similarly to the write process  
which is by setting the address with the R/W bit equal to 0b (signifying a write). The master device then sends  
the register address of the register to be read from. When the slave device acknowledges this register address,  
the master device sends a START condition again, followed by the slave address with the R/W bit set to 1b  
(signifying a read). After this process, the slave device acknowledges the read request and the master device  
releases the SDA bus, but continues supplying the clock to the slave device.  
During this part of the transaction, the master device becomes the master-receiver, and the slave device  
becomes the slave-transmitter. The master device continues sending out the clock pulses, but releases the SDA  
line so that the slave device can transmit data. At the end of the byte, the master device send a negative-  
acknowledge (NACK) signal, signaling to the slave device to stop communications and release the bus. The  
master device then sends a STOP condition.  
Repeated Start  
START  
7-bit Slave Address  
R/W=0  
ACK  
8-bit Register Address  
ACK  
RSTRT  
7-bit Slave Address  
R/W=1  
STOP  
NACK  
8-bit Data  
ACK  
38. I2C Read Sequence  
版权 © 2018–2019, Texas Instruments Incorporated  
41  
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Programming (接下页)  
7.5.2 Multi-Slave Operation  
Multi-slave operation is used to control multiple DRV8847S devices through one I2C line as shown in 39. The  
default device address of the DRV8847 device is 0x60 (7-bit address). Therefore, any DRV8847S device can be  
accessed using this address. The steps for multi-slave configuration for programming device-1 out of 4  
connected devices (as shown in 39) are as follows:  
nFAULT1  
nFAULT2  
nFAULT4  
nFAULT3  
Microcontroller  
(Master)  
SDA  
SCL  
DRV8847S (2)  
(Slave 2)  
DRV8847S (3)  
(Slave 3)  
DRV8847S (4)  
(Slave 4)  
DRV8847S (1)  
(Slave 1)  
39. Multi-Slave Operation of DRV8847S  
The DRV8847S device variant is configured for multi-slave operation by writing the DISFLT bit (IC2_CON  
register) of all connected devices to 1b. This step will disable the nFAULT output pin of all DRV8847S, to  
avoid any race condition between master and slave I2C device.  
Pull the nFAULT pins (nFAULT2, nFAULT3, and nFAULT4 pins) of three devices (2, 3, and 4) to low to  
release the I2C buses of the slave device (device-2, device-3 and device-4). Now only device-1 is connected  
to master.  
Since, only one device, DRV8847S (1), is connected to the controller, and, therefore, its slave address can be  
reprogrammed from default 0x60 (7-bit address) to another unique address.  
Similarly, the slave address (SLAVE_ADDR) of the other three devices (device-2, device-3 and device-4) can  
be reprogrammed sequentially to unique addresses by a combination of nFAULT pins.  
When all slave addresses are reprogrammed, write the DISFLT bit to 0b (IC2_CON register). This will enable  
the nFAULT output pin for fault flagging.  
All the nFAULT pins are released and a multi-slave setup is complete. Now all connected slave devices can  
be accessed using the newly reprogrammed address.  
The above steps should be repeated for any device in case of a power reset (nSLEEP). .  
42  
版权 © 2018–2019, Texas Instruments Incorporated  
 
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
7.6 Register Map  
15 lists the memory-mapped I2c registers for the DRV8847 device. The I2C registers are used to configure the DRV8847S device and for device  
diagnostics.  
Do not modify reserved registers or addresses not listed in the register map (15). Writing to these registers may have  
unintended effects. For all reserved bits, the default value is 0b.  
15. I2C Registers  
Address  
0x00  
Acronym  
SLAVE_ADDR  
IC1_CON  
Register Name  
Slave Address  
7
6
5
4
3
SLAVE_ADDR  
IN1  
2
1
0
Access  
RW  
RW  
RW  
RW  
R
Section  
Go  
RSVD  
TRQ  
0x01  
IC1 Control  
IN4  
DISFLT  
SLR  
IN3  
IN2  
I2CBC  
OLDOD  
OLD  
MODE  
Go  
0x02  
IC2_CON  
IC2 Control  
CLRFLT  
RSVD  
OLD4  
RSVD  
RSVD  
OLD2  
DECAY  
nFAULT  
OLD1  
OCPR  
OLDFD  
TSDF  
OLDBO  
UVLOF  
OCP1  
Go  
0x03  
SLR_STATUS1  
STATUS2  
Slew Rate and Fault Status-1  
Fault Status-2  
OCP  
Go  
0x04  
OLD3  
OCP4  
OCP3  
OCP2  
Go  
版权 © 2018–2019, Texas Instruments Incorporated  
43  
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Complex bit access types are encoded to fit into small table cells. 16 shows the codes that are used for  
access types in this section.  
16. Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
7.6.1 Slave Address Register (Address = 0x00) [reset = 0x60]  
Slave Address is shown in 40 and described in 17.  
40. Slave Address Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
SLAVE_ADDR  
R/W-1100000b  
17. Slave Address Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Reserved  
6-0  
SLAVE_ADDR  
R/W  
1100000b  
Slave address (8 bit)  
The default value is 0x60  
7.6.2 IC1 Control Register (Address = 0x01) [reset = 0x00]  
IC1 Control is shown in 41 and described in 18.  
41. IC1 Control Register  
7
6
5
4
3
2
1
0
TRQ  
IN4  
IN3  
IN2  
IN1  
I2CBC  
R/W-0b  
MODE  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-00b  
18. IC1 Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
TRQ  
R/W  
0b  
0b = Torque scalar set to 100%  
1b = Torque scalar set to 50%  
6
5
4
3
2
IN4  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
The INx bits are used to control the bridge operation.  
The INx bits are used to control the bridge operation.  
The INx bits are used to control the bridge operation.  
The INx bits are used to control the bridge operation.  
IN3  
IN2  
IN1  
I2CBC  
0b = Bridge control configured by using the INx pins  
1b = Bridge control configured by using the INx bits  
1-0  
MODE  
R/W  
00b  
00b = 4-pin interface  
01b = 2-pin interface  
10b = Parallel interface  
11b = Independent mode  
44  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
7.6.3 IC2 Control Register (Address = 0x02) [reset = 0x00]  
IC2 Control is shown in 42 and described in 19.  
42. IC2 Control Register  
7
6
5
4
3
2
1
0
CLRFLT  
R/W-0b  
DISFLT  
R/W-0b  
RSVD  
R-0b  
DECAY  
R/W-0b  
OCPR  
R/W-0b  
OLDOD  
R/W-0b  
OLDFD  
R/W-0b  
OLDBO  
R/W-0b  
19. IC2 Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CLRFLT  
R/W  
0b  
Set this bit to issue a clear FAULT command. This command  
clears all FAULT bits other than the OLD and OLDx bits. This bit  
reset to 0b after clearing all the faults.  
0b = No clear FAULT command issued  
1b = Clear FAULT command issued  
6
DISFLT  
R/W  
0b  
0b = nFAULT pin not disable  
1b = nFAULT pin is disabled  
5
4
RSVD  
R
0b  
0b  
Reserved  
DECAY  
R/W  
0b = 25% fast decay  
1b = 100% slow decay  
3
2
1
0
OCPR  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b = OCP auto retry mode  
1b = OCP latch mode  
OLDOD  
OLDFD  
OLDBO  
0b = Idle  
1b = OLD on-demand is activated  
0b = Fault signaling on OLD  
1b = No fault signaling on OLD  
0b = Bridge operating on OLD  
1b = Bridge Hi-Z on OLD  
版权 © 2018–2019, Texas Instruments Incorporated  
45  
 
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.6.4 Slew-Rate and Fault Status-1 Register (Address = 0x03) [reset = 0x40]  
Fault Status-1 is shown in 43 and described in 20.  
43. Fault Status-1 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
SLR  
RSVD  
R-0b  
nFAULT  
R-0b  
OCP  
R-0b  
OLD  
R-0b  
TSDF  
R-0b  
UVLOF  
R-0b  
R/W-0b  
20. Fault Status-1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
RSVD  
R
0b  
Reserved  
SLR  
R/W  
0b  
0b = 150 ns  
1b = 300 ns  
5
4
RSVD  
R
R
0b  
0b  
Reserved  
nFAULT  
0b = No FAULT detected (mirrors the nFAULT pin)  
1b = FAULT detected  
3
2
1
0
OCP  
R
R
R
R
0b  
0b  
0b  
0b  
0b = No OCP detected  
1b = OCP detected  
OLD  
0b = No open load detected  
1b = Open load detected  
TSDF  
UVLOF  
0b = No TSD fault detected  
1b = TSD fault detected  
0b = No UVLO fault detected  
1b = UVLO fault detected  
46  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
7.6.5 Fault Status-2 Register (Address = 0x04) [reset = 0x00]  
Fault Status-2 is shown in 44 and described in 21.  
44. Fault Status-2 Register  
7
6
5
4
3
2
1
0
OLD4  
R-0b  
OLD3  
R-0b  
OLD2  
R-0b  
OLD1  
R-0b  
OCP4  
R-0b  
OCP3  
R-0b  
OCP2  
R-0b  
OCP1  
R-0b  
21. Fault Status-2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
OLD4  
R
0b  
0b = No open load detected on OUT4  
1b = Open load detected on OUT4  
OLD3  
OLD2  
OLD1  
OCP4  
OCP3  
OCP2  
OCP1  
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = No open load detected on OUT3  
1b = Open load detected on OUT3  
0b = No open load detected on OUT2  
1b = Open load detected on OUT2  
0b = No open load detected on OUT1  
1b = Open load detected on OUT1  
0b = No OCP detected on OUT4  
1b = OCP detected on OUT4  
0b = No OCP detected on OUT3  
1b = OCP detected on OUT3  
0b = No OCP detected on OUT2  
1b = OCP detected on OUT2  
0b = No OCP detected on OUT1  
1b = OCP detected on OUT1  
版权 © 2018–2019, Texas Instruments Incorporated  
47  
 
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV8847 device is used in applications for stepper or brushed DC motor control.  
8.2 Typical Application  
The user can configure the DRV8847 for stepper motor and dual BDC motor applications as described in this  
section.  
8.2.1 Stepper Motor Application  
45 shows the typical application of the DRV8847 device to drive a stepper motor.  
1
16  
15  
14  
IN1  
IN2  
nSLEEP  
OUT1  
2
3
330 m  
MODE  
ISEN12  
OUT2  
4
13  
12  
GND  
VM  
10 µF  
0.1 µF  
DRV8847  
5
6
Stepper  
Motor  
OUT4  
330 mꢀ  
11  
10  
9
ISEN34  
OUT3  
TRQ  
IN4  
7
8
nFAULT  
IN3  
VEXT  
(Logic Supply)  
To Controller  
45. Typical Application Schematic of Device Driving Stepper Motor  
8.2.1.1 Design Requirements  
22 lists design input parameters for system design.  
22. Design Parameters  
DESIGN PARAMETER  
Motor supply voltage  
REFERENCE  
EXAMPLE VALUE  
12 V  
VM  
RL  
Motor winding resistance  
Motor winding inductance  
Motor RMS current  
34 /phase  
33 mH/phase  
350 mA  
LL  
IRMS  
ITRIP  
VTRIP  
Target trip current  
350 mA  
Trip current reference voltage (internal voltage)  
150 mV  
48  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Current Regulation  
The trip current (ITRIP) is the maximum current driven through either winding. The amount of this current depends  
on the sense resistor value (RSENSExx) as shown in 公式 4 (Considering torque setting (TRQ) as 100%).  
Torque ì VTRIP  
RSENSExx  
ITRIP  
=
(4)  
The ITRIP current is set by a comparator which compares the voltage across the RSENSExx resistor to a reference  
voltage. To avoid saturation of the motor, the ITRIP current must be calculated as shown in 公式 5.  
VVM  
ITRIP  
=
RL (W) + RDS(ON)_HS (W) + RDS(ON)_LS (W) + RSENSExx (W)  
where  
VVM is the motor supply voltage.  
RL is the motor winding resistance.  
RDS(ON)_HS and RDS(ON)_LS are the high-side and low-side on-state resistance of the FET.  
(5)  
(6)  
For an ITRIP value of 350 mA, the value of the sense resistor (RSENSExx) is calculated as shown in 公式 6.  
VTRIP  
150 mV  
RSENSE12 = RSENSE34  
=
=
= 428.6 mW  
ITRIP  
350 mA  
Select the closest available value of 440 mΩ for the sense resistors. Selecting this value will effect the current  
accuracy by 2.8%.  
版权 © 2018–2019, Texas Instruments Incorporated  
49  
 
 
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.2.1.3 Application Curves  
46. Device Power-up with Supply Voltage (VM)  
47. Device Power-up with nSLEEP  
48. Stepper Motor Full-Step Operation  
49. Stepper Motor Half-Step Operation With Off-State as  
Hi-Z  
50. Stepper Motor Half-Step Operation With Off-State as  
51. Brushed DC Motor Operation in Parallel Mode  
Brake  
Showing Current Regulation at 2-A  
50  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
52. Zoomed Waveform Showing Current Regulation  
53. Torque Pin Functionality for Current Scaling  
54. Undervoltage Lockout Operation  
55. Open Load Detect Operation  
56. Over Current Protection and Recovery  
57. Zoomed Waveform of Over Current Protection  
版权 © 2018–2019, Texas Instruments Incorporated  
51  
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.2.2 Dual BDC Motor Application  
58 shows the typical application of DRV8847 device to drive dual BDC motors.  
1
16  
15  
14  
IN1  
IN2  
nSLEEP  
OUT1  
2
3
330 m  
MODE  
BDC  
ISEN12  
OUT2  
4
13  
12  
GND  
VM  
10 µF  
0.1 µF  
DRV8847  
5
6
OUT4  
330 mꢀ  
11  
10  
9
BDC  
ISEN34  
OUT3  
TRQ  
IN4  
7
8
nFAULT  
IN3  
VEXT  
(Logic Supply)  
To Controller  
58. Typical Application Schematic of Device Driving Two BDC Motors  
8.2.2.1 Design Requirements  
23 lists the design input parameters for system design.  
23. Design Parameters  
DESIGN PARAMETER  
Motor supply voltage  
REFERENCE  
EXAMPLE VALUE  
12 V  
VM  
RL  
Motor winding resistance  
Motor winding inductance  
Motor RMS current  
13.2 Ω  
LL  
500 µH  
IRMS  
ISTART  
ITRIP  
VTRIP  
490 mA  
900 mA  
1.2 A  
Motor start-up current  
Target trip current  
Trip current reference voltage (internal voltage)  
150 mV  
8.2.2.2 Detailed Design Procedure  
8.2.2.2.1 Motor Voltage  
The motor voltage used in an application depends on the rating of the selected motor and the desired revolutions  
per minute (RPM). A higher voltage spins a brushed DC motor faster with the same PWM duty cycle applied to  
the power FETs. A higher voltage also increases the rate of current change through the inductive motor  
windings.  
8.2.2.2.2 Current Regulation  
The trip current (ITRIP) is the maximum current driven through either winding. Because the peak current (start  
current) of the motor is 900 mA, the ITRIP current level is selected to be just greater than the peak current. The  
selected ITRIP value for this example is 1.2 A. Therefore, use 公式 7 to select the value of the sense resistors  
(RSENSE12 and RSENSE34) connected to the ISEN12 and ISEN34 pins.  
VTRIP  
150 mV  
RSENSE12 = RSENSE34  
=
=
= 125 mW  
ITRIP  
1.2 A  
(7)  
52  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
8.2.2.2.3 Sense Resistor  
For optimal performance, the sense resistor must:  
Be a surface mount component  
Have low inductance  
Be rated for high enough power  
Be placed closely to the motor driver  
2
The power dissipated by the sense resistor equals IRMS × R. In this example, the peak current is 900 mA, the  
RMS motor current is 490 mA, and the sense resistor value is 125 mΩ. Therefore, the sense resistors (RSENSE12  
and RSENSE34) dissipate 30 mW (490 mA2 × 125 mΩ = 30 mW). The power quickly increases with higher current  
levels.  
Resistors typically have a rated power within some ambient temperature range, along with a derated power curve  
for high ambient temperatures. When a printed circuit board (PCB) is shared with other components generating  
heat, margin should be added. For best practice, measure the actual sense resistor temperature in a final  
system, along with the power MOSFETs, because those components are often the hottest.  
Because power resistors are larger and more expensive than standard resistors, the common practice is to use  
multiple standard resistors in parallel, between the sense node and ground. This practice distributes the current  
and heat dissipation.  
8.2.3 Open Load Implementation  
This section presents the open load detection circuit and the operation. The open load detection diagnostic test  
runs during the device power up or when the DRV8847 device comes out from sleep mode. In the I2C variant  
device (DRV8847S), the OLD diagnostic test can run any instant of time using the I2C register bits.  
8.2.3.1 Open Load Detection Circuit  
OLD circuit consists of four main components i.e. current source (and current sink), series sequencing switches  
(sequenced by the digital core), resistors and comparators. For ground (GND) connected load, the current  
source (IOL_PU) pulls up the OUTx node to internal regulator voltage (AVDD) and allows the current to flow from  
internal regulator voltage (AVDD) to ground via the connected load as shown in 59. Moreover, for the supply  
(VM) connected load, the current sink (IOL_PD) pulls down the current from supply voltage (VM) to ground via the  
connected load as shown in 61. The resistance of the load connected at the OUTx terminal will change the  
source / sink current and indirectly the voltage drop across two resistors (12-kΩ and 15-kΩ). This voltage drop  
across resistors is compared with the reference voltage (VOL_HS and VOL_LS) by the internal comparators to give  
the output as OL1_HS and OL1_LS. This comparator output is fed to the open load digital circuit to determine  
the open load condition.  
Following are the values of various parameter shown above: AVDD voltage = 4.2-V, IOL_PU  
= 200-µA, IOL_PD = 230-µA, VOL_HS = 2.3-V, VOL_LS = 1.2-V.  
Note that the values taken above are at the typical condition of supply voltage and  
temperature. Refer to "Typical Characteristics" section in Specifications for detailed  
specifications.  
8.2.3.2 OLD for Ground Connected Load  
59 shows the ground connected load with internal OLD circuit. When high-side open load sequence is  
activated (i.e. SW1_HS is on and SW1_LS is off), the current source (IOL_PU) pulls up the OUT1 node to internal  
regulator voltage (AVDD) and current flows from internal regulator voltage (AVDD) to ground via the connected  
load (RL). Now, depending upon if the load is present or not, there can be three cases as follows:  
8.2.3.2.1 Half Bridge Open  
If no-load is connected at the OUT1, then no current flows from AVDD. This pulls up the positive terminal of  
OL1_HS comparator to 4.2-V (AVDD). This if compared with 2.3-V (VOL_HS) sets the comparator output to "1",  
which signifies an open load detect.  
版权 © 2018–2019, Texas Instruments Incorporated  
53  
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
AVDD  
VM  
SW1_HS  
œ
12 k  
VOL_HS  
+
OL1_HS  
X
IOL_PU  
OUT1  
SW1_LS  
OLD1  
IOL_PD  
X
RL  
X
œ
+
OL1_LS  
VOL_LS  
15 kΩ  
59. Open Load Detect Circuit for Load Connected to Ground (GND)  
8.2.3.2.2 Half Bridge Short  
If OUT1 pin is shorted to ground, then pull-up current of 200-µA (IOL_PU) flows from AVDD. Due to this, there is a  
voltage drop at the positive terminal of OL1_HS comparator as:  
VOL1_HS + = V  
( )  
-IOL _PU ì12kW  
AVDD  
(8)  
Using 公式 8, the VOL1_HS(+) is calculated as shown in 公式 9,  
VOL1_HS + = 4.2V - 200mA ì12kW = 1.8V  
( )  
(9)  
This voltage, if compared with 2.3-V (VOL_HS) reset the OL1_HS comparator output to "0", which signifies a no  
open load detect.  
8.2.3.2.3 Load Connected  
If a resistive load (RL) is connected between OUT1 and GND, then current flowing from AVDD depends on load  
reistance (RL) as:  
VAVDD  
ILOAD  
=
RL +12kW  
(10)  
Now, if the voltage drop at positive terminal of OL1_HS comparator is higher than 2.3-V (VOL_HS), the comparator  
sets output to "1" showing as open load. Hence, the voltage required to trip the OL1_HS comparator is  
calculated as:  
VOL _HS < VAVDD -ILOAD ì12kW  
(11)  
By putting 公式 10 to 公式 11,  
VAVDD ì12kW  
VOL _HS < VAVDD  
-
RL +12kW  
(12)  
By solving 公式 12, the load resistance (RL) is expressed as,  
VAVDD ì12kW  
RL >  
-12kW  
VAVDD - VOL _HS  
(13)  
54  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
 
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
By putting the values of VAVDD and VOL_HS in 公式 13, the load resistance (RL) is calculated as 14.52-kΩ. Hence,  
any resisitive load connected between OUTx and GND above this value is shown as an open-load.  
The values of these parameters are taken for a typical case for understanding. These  
parameters changes with supply voltage and temperature. User has to consider a design  
margin based on the above calculations.  
17  
16  
15  
14  
13  
12  
TA = -40°C  
TA = 25°C  
TA = 85°C  
11  
2
4
6
8
10  
Supply Voltage (V)  
12  
14  
16  
18  
D001  
60. Resistance Threshold's for Open Load Detect in Ground (GND) Connected Load  
8.2.3.3 OLD for Supply (VM) Connected Load  
61 shows the supply (VM) connected load with internal OLD circuit. When low-side open load sequence is  
activated (i.e. SW1_HS is off and SW1_LS is on), the current sink (IOL_PD) pulls down the OUT1 node to supply  
voltage (VVM) and current flows from supply (VM) to ground via the connected load (RL). Now, depending upon if  
the load is present or not, there can be three cases as follows:  
VM  
AVDD  
VM  
SW1_HS  
œ
12 k  
VOL_HS  
RL  
+
OL1_HS  
X
X
IOL_PU  
X
OUT1  
SW1_LS  
OLD1  
IOL_PD  
œ
+
OL1_LS  
VOL_LS  
15 kΩ  
61. Open Load Detect Circuit for Load Connected to Supply Voltage (VM)  
8.2.3.3.1 Half Bridge Open  
If no-load is connected at the OUT1, then no current flows from supply (VM). This pulls down the negative  
terminal of OL1_LS comparator to 0-V (GND). This if compared with 1.2-V (VOL_LS) sets the comparator output to  
"1", which signifies an open load detect.  
版权 © 2018–2019, Texas Instruments Incorporated  
55  
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.2.3.3.2 Half Bridge Short  
If OUT1 pin is shorted to supply (VM), then pull-down current of 230-µA (IOL_LS) flows from supply (VM). Due to  
this, there is a voltage drop at the negative terminal of OL1_LS comparator as:  
VOL1_LS - = IOL _PD ì15kW  
( )  
(14)  
Using 公式 14, the VOL1_LS(-) is calculated as shown in 公式 15,  
VOL1_LS - = 230mA ì15kW = 3.45V  
( )  
(15)  
This voltage, if compared with 1.2-V (VOL_LS) reset the OL1_LS comparator output to "0", signifying a no open  
load detect.  
8.2.3.3.3 Load Connected  
If a resistive load (RL) is connected between OUT1 and VM, then current flowing from supply (VM) is as:  
VVM  
ILOAD  
=
RL +15kW  
(16)  
Now, if the voltage drop at negative terminal of OL1_LS comparator is lower than 1.2-V (VOL_LS), the comparator  
sets output to "1" showing open load. Hence, the voltage required to trip OL1_LS comparator is calculated as:  
VOL _LS > ILOAD ì15kW  
(17)  
By putting 公式 16 to 公式 17,  
VVM ì15kW  
VOL _LS  
>
RL +15kW  
(18)  
By solving 公式 18, the load resistance (RL) is expressed as,  
VVM ì15kW  
VOL _LS  
RL >  
-15kW  
(19)  
By putting the values of VVM and VOL_HS in 公式 19, the load resistance (RL) is calculated as 135-kΩ for supply  
voltage (VVM) of 12-V. Hence, any resistive load connected between VM and OUTx above this value (at VVM  
12-V) is shown as an open-load.  
=
250  
200  
150  
100  
50  
TA = -40°C  
TA = 25°C  
TA = 85°C  
0
2
4
6
8
10  
Supply Voltage (V)  
12  
14  
16  
18  
D002  
62. Resistance Threshold's for Open Load Detect in Supply (VM) Connected Load  
In the open load detection for load connected to supply (VM) configuration, the resistive  
load threshold for an open load also depends on the supply voltage (VVM).  
56  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
 
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
8.2.3.4 OLD for Full Bridge Connected Load  
63 shows the load connected as a full bridge configuration with internal OLD circuit. Full-bridge open load  
sequence consists of turning-on the high-side switch (SW1_HS) of half-bridge-1 and low-side switch (SW2_LS)  
of half-bridge-2 together. In a similar manner, the full-bridge open-load sequence for the other half bridge with  
turning-on the high-side switch (SW2_HS) of half-bridge-2 and low-side switch (SW1_LS) of half-bridge-1  
together is executed. Now, depending on the load presence, three cases are considered:  
8.2.3.4.1 Full Bridge Open  
If no-load is connected between the OUT1 and OUT2 terminals, then no current flows from internal regulator  
(AVDD). Now, the voltage-drop at the positive terminal of high side comparator of half-bridge-1 (OL1_HS) and  
the negative terminal of low side comparator of half-bridge-2 (OL2_LS) will be as follows:  
8.2.3.4.1.1 High side comparator of half-bridge-1 (OL1_HS)  
Since no current is flowing from the internal regulator (AVDD), the voltage at the OUT1 node (which is also the  
positive terminal of OL1_HS comparator) is clamped to 4.2-V (i.e. AVDD). This if compared with 2.3-V (VOL_HS  
)
sets the comparator output to "1".  
8.2.3.4.1.2 Low side comparator of half-bridge-2 (OL2_LS)  
For an open load condition, no current flows through the SW2_LS switch, which pulls down the negative terminal  
of OL2_LS comparator to 0-V (GND). This if compared with 1.2-V (VOL_LS) sets the comparator output to "1".  
Now, if both the comparator outputs (OL1_HS and OL2_LS) is high, it signifies an open load.  
8.2.3.4.2 Full Bridge Short  
If there is short between the OUT1 and OUT2 terminals, then a short current (ISC) will flows from internal  
regulator (AVDD) depending upon the high-side (12-kΩ) and low-side (15-kΩ) resistors as,  
VAVDD  
VAVDD  
ISC  
=
=
15kW +12kW 27kW  
(20)  
Hence the short-current flowing using 公式 20 is calculated as,  
VAVDD  
4.2V  
ISC  
=
=
= 155.56mA  
27kW 27kW  
(21)  
Now, the voltage-drop at the positive terminal of high side comparator of half-bridge-1 (OL1_HS) and the  
negative terminal of low side comparator of half-bridge-2 (OL2_LS) will be as follows:  
8.2.3.4.2.1 High side comparator of half-bridge-1 (OL1_HS)  
Now, the pull up current of ISC (155.56-µA) is flowing from the internal regulator (AVDD), therefore the voltage at  
the positive terminal of OL1_HS comparator (which is also the OUT1 node) is calculated as,  
VOL1_HS + = V  
( )  
-ISC ì12kW  
AVDD  
(22)  
using 公式 22, the VOL1_HS(+) is calculated as,  
VOL1_HS + = 4.2V -155.56mA ì12kW = 2.33V  
( )  
(23)  
This voltage, if compared with 2.3-V (VOL_HS) sets the OL1_HS comparator output to "1".  
8.2.3.4.2.2 Low side comparator of half-bridge-2 (OL2_LS)  
The pull down current of ISC (155.56-µA) is flowing from the internal regulator (AVDD) to the SW2_LS switch,  
therefore the voltage at the negative terminal of OL2_LS comparator is calculated as,  
VOL2_LS + = ISC ì15kW  
( )  
(24)  
Using 公式 24, the VOL2_LS is calculated as,  
版权 © 2018–2019, Texas Instruments Incorporated  
57  
 
 
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
VOL2_LS + = 155.56mA ì15kW = 2.33V  
( )  
(25)  
This voltage, if compared with 1.2-V (VOL_LS) reset the OL2_LS comparator output to "0".  
Since, OL1_HS comparator shows an output "1" and OL2_LS comparator shows and output "0", therefore this  
case is considered as no-open load.  
AVDD  
VM  
SW1_HS  
œ
12 k  
VOL_HS  
+
OL1_HS  
X
X
IOL_PU  
OUT1  
SW1_LS  
OLD1  
IOL_PD  
X
œ
+
OL1_LS  
VOL_LS  
15 kΩ  
AVDD  
VM  
SW2_HS  
œ
12 kΩ  
VOL_HS  
+
OL2_HS  
X
IOL_PU  
X
OUT2  
SW2_LS  
OLD2  
IOL_PD  
X
œ
+
OL2_LS  
VOL_LS  
15 kΩ  
63. Open Load Detect Circuit for Motor Connected in Full Bridge Configuration  
8.2.3.4.3 Load Connected in Full Bridge  
If there is a load (RL) connected between the OUT1 and OUT2 terminals, then a load current (IL) is calculated as,  
VAVDD VAVDD  
12kW + RL +15kW RL + 27kW  
ILOAD  
=
=
(26)  
Now, the voltage-drop at the positive terminal of high side comparator of half-bridge-1 (OL1_HS) and the  
negative terminal of low side comparator of half-bridge-2 (OL2_LS) will be as follows:  
58  
版权 © 2018–2019, Texas Instruments Incorporated  
 
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
8.2.3.4.3.1 High side comparator of half-bridge-1 (OL1_HS)  
If the voltage drop at positive terminal of OL1_HS comparator is higher than 2.3-V (VOL_HS), the comparator sets  
output to "1" (for open load). Hence, the voltage required to trip the OL1_HS comparator is calculated as:  
VOL _HS < VAVDD -ILOAD ì12kW  
(27)  
By putting 公式 26 into 公式 27,  
VAVDD ì12kW  
VOL < VAVDD  
-
HS  
RL + 27kW  
(28)  
By solving 公式 28, the load resistance (RL) is expressed as,  
VAVDD ì12kW  
RL >  
- 27kW  
VAVDD - VOL _HS  
(29)  
By putting the values of VAVDD and VOL_HS in 公式 29, the load resistance (RL) is calculated as (-)10.2-kΩ. Since,  
the value of resistance is negative, therefore, the voltage at positive terminal of OL1_HS comparator is always  
higher than VOL_HS and comparator output is always high ("1").  
8.2.3.4.3.2 Low side comparator of half-bridge-2 (OL2_LS)  
If the voltage drop at negative terminal of OL2_LS comparator is lower than 1.2-V (VOL_LS), the comparator sets  
output to "1" showing as open load. Hence, the voltage required to trip the OL2_LS comparator is calculated as:  
VOL _LS > ILOAD ì15kW  
(30)  
By putting 公式 26 to 公式 30,  
VAVDD ì15kW  
VOL _LS  
=
RL + 27kW  
(31)  
By solving 公式 31, the load resistance (RL) is expressed as,  
VAVDD ì15kW  
VOL _LS  
RL >  
- 27kW  
(32)  
By putting the values of VAVDD and VOL_LS in 公式 32, the load resistance (RL) is calculated as 25.5-kΩ.  
Therefore, the output of OL2_HS comparator sets to 1, if the load resistance is greater than 25.5-kΩ.  
Since, the OL1_HS comparator always outputs "1", therefore, the open load status is solely dependent on the  
output of OL2_HS comparator. If OL2_HS comparator output is "1", then an open load is detected.  
37.5  
TA = -40°C  
TA = 25°C  
TA = 85°C  
35  
32.5  
30  
27.5  
25  
2
4
6
8
10  
Supply Voltage (V)  
12  
14  
16  
18  
D003  
64. Resistance Threshold's for Open Load Detect for Load Connected in Full-Bridge Configuration  
版权 © 2018–2019, Texas Instruments Incorporated  
59  
 
 
 
 
 
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
The DRV8847 device is designed to operate from an input voltage supply (VVM) range from 2.7 V to 18 V. Place  
a 0.1-µF ceramic capacitor rated for VM as close to the DRV8847 device as possible. In addition, a bulk  
capacitor with a value of at least 10 µF must be included on the VM pin.  
9.1 Bulk Capacitance Sizing  
Bulk capacitance sizing is an important factor in motor drive system design. The amount of bulk capacitance  
depends on a variety of factors including:  
Type of power supply  
Acceptable supply voltage ripple  
Parasitic inductance in the power supply wiring  
Type of motor (brushed DC, brushless DC, stepper)  
Motor start-up current  
Motor braking method  
The inductance between the power supply and motor drive system limits the rate that current can change from  
the power supply. If the local bulk capacitance is too small, the system responds to excessive current demands  
or dumps from the motor with a change in voltage. Size the bulk capacitance to meet acceptable voltage ripple  
levels.  
The data sheet provides a recommended minimum value, but system-level testing is required to determine the  
appropriate-sized bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
+
Motor Driver  
œ
GND  
Local  
Bulk Capacitor  
IC Bypass  
Capacitor  
65. Setup of Motor Drive System With External Power Supply  
60  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
10 Layout  
10.1 Layout Guidelines  
Bypass the VM pin to ground using a low-ESR ceramic bypass capacitor with a recommended value of 10 μF  
and rated for VM. Place this capacitor as close to the VM pin as possible with a thick trace or ground plane  
connection to the device GND pin.  
10.2 Layout Example  
I1N61  
I1N52  
nSLEEP  
OUT1  
MOD1E4/SDA  
G1N3D  
ISEN12  
4
OUT2  
V1M2  
5
OUT4  
TRQ1/1SCL  
IN104  
6
SEN34  
7
OUT3  
IN3  
8
nFAULT  
66. Layout Recommendation of 16-Pin TSSOP Package for Single-Layer Board  
I1N61  
I1N52  
nSLEEP  
OUT1  
MO14DE  
G1N3D  
V1M2  
ISEN12  
4
OUT2  
5
OUT4  
T1R1Q  
IN104  
6
SEN34  
7
OUT3  
IN3  
8
nFAULT  
67. Layout Recommendation of 16-Pin HTSSOP Package for Double-Layer Board  
版权 © 2018–2019, Texas Instruments Incorporated  
61  
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
Layout Example (接下页)  
MODE  
ISEN12  
GND  
VM  
OUT2  
OUT4  
TRQ  
ISEN34  
68. Layout Recommendation of 16-Pin QFN Package for Double-Layer Board  
62  
版权 © 2018–2019, Texas Instruments Incorporated  
DRV8847  
www.ti.com.cn  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
10.3 Thermal Considerations  
10.3.1 Maximum Output Current  
In actual operation, the maximum output current that is achievable with a motor driver is a function of the die  
temperature. This die temperature is greatly affected by ambient temperature and PCB design. Essentially, the  
maximum motor current is the amount of current that results in a power dissipation level that, along with the  
thermal resistance of the package and PCB, keeps the die at a low enough temperature to avoid thermal  
shutdown.  
The dissipation ratings given in the data sheet can be used as a guide to calculate the approximate maximum  
power dissipation that can be expected without putting the device in thermal shutdown for several different PCB  
constructions. However, for accurate data, the actual PCB design must be analyzed through measurement or  
thermal simulation.  
10.3.2 Thermal Protection  
The DRV8847 device has thermal shutdown (TSD) as described in the Maximum Output Current section. If the  
die temperature exceeds approximately 150°C, the device is disabled until the temperature decreases 40°C.  
Any tendency of the device to enter TSD is an indication of either excessive power dissipation, insufficient heat-  
sinking, or too high an ambient temperature.  
10.4 Power Dissipation  
Power dissipation in the DRV8847 device is dominated by the DC power dissipated in the output FET resistance  
(RDS(ON)_HS and RDS(ON)_LS). Additional power is dissipated because of PWM switching losses. These losses are  
dependent on the PWM frequency, rise and fall times, and VM supply voltages. These switching losses are  
typically on the order of 10% to 30% of the DC power dissipation.  
Use 公式 33 to estimate the DC power dissipation of one H-bridge.  
2
PTOT = RDS(ON)_LS ì IOUT(RMS)2 +RDS(ON)_HS ì IOUT(rms)  
where  
PTOT is the total power dissipation  
IOUT(RMS) is the RMS output current being applied to motor  
RDS(ON)_HS and RDS(ON)_LS are the high-side and low-side on-state resistance of the FET  
(33)  
The value of RDS(ON)_HS and RDS(ON)_LS increases with temperature. Therefore, as the  
device heats, the power dissipation increases. This relationship must be considered when  
sizing the heat-sink.  
版权 © 2018–2019, Texas Instruments Incorporated  
63  
 
 
DRV8847  
ZHCSID2B JULY 2018REVISED SEPTEMBER 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)DRV8847EVM 用户指南》  
德州仪器 (TI)DRV8847EVM DRV8847SEVM 软件用户指南》  
德州仪器 (TI)《大型电器中的小型电机》TI 技术手册  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
64  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8847PWPR  
DRV8847PWR  
DRV8847RTER  
DRV8847RTET  
DRV8847SPWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HTSSOP  
TSSOP  
WQFN  
PWP  
PW  
16  
16  
16  
16  
16  
2000 RoHS & Green  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
8847PWP  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
8847PW  
8847  
RTE  
RTE  
PW  
WQFN  
250  
RoHS & Green  
8847  
TSSOP  
2000 RoHS & Green  
8847SPW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8847PWPR  
DRV8847PWR  
DRV8847RTER  
DRV8847RTET  
DRV8847SPWR  
HTSSOP PWP  
16  
16  
16  
16  
16  
2000  
2000  
3000  
250  
330.0  
330.0  
330.0  
180.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
6.9  
6.9  
3.3  
3.3  
6.9  
5.6  
5.6  
3.3  
3.3  
5.6  
1.6  
1.6  
1.1  
1.1  
1.6  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q2  
Q2  
Q1  
TSSOP  
WQFN  
WQFN  
TSSOP  
PW  
RTE  
RTE  
PW  
2000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV8847PWPR  
DRV8847PWR  
DRV8847RTER  
DRV8847RTET  
DRV8847SPWR  
HTSSOP  
TSSOP  
WQFN  
PWP  
PW  
16  
16  
16  
16  
16  
2000  
2000  
3000  
250  
356.0  
356.0  
367.0  
210.0  
356.0  
356.0  
356.0  
367.0  
185.0  
356.0  
35.0  
35.0  
35.0  
35.0  
35.0  
RTE  
RTE  
PW  
WQFN  
TSSOP  
2000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016C  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4219117/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219117/B 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219117/B 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
PWP0016C  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
6.6  
6.2  
C
TYP  
A
PIN 1 INDEX  
AREA  
0.1 C  
SEATING  
PLANE  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
B
0.19  
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 0.95 MAX  
NOTE 5  
4X (0.3)  
8
9
2X 0.23 MAX  
NOTE 5  
2.31  
1.75  
17  
0.25  
GAGE PLANE  
1.2 MAX  
0.15  
0.05  
0.75  
0.50  
0 -8  
16  
1
A
20  
DETAIL A  
TYPICAL  
THERMAL  
PAD  
2.46  
1.75  
4224559/B 01/2019  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0016C  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(2.46)  
16X (1.5)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
1
16X (0.45)  
16  
(1.2) TYP  
(2.31)  
(R0.05) TYP  
SYMM  
17  
(5)  
NOTE 9  
(0.6)  
14X (0.65)  
(
0.2) TYP  
VIA  
9
8
SOLDER MASK  
DEFINED PAD  
(1) TYP  
SEE DETAILS  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4224559/B 01/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0016C  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.46)  
BASED ON  
0.125 THICK  
STENCIL  
16X (1.5)  
METAL COVERED  
BY SOLDER MASK  
1
16  
16X (0.45)  
(R0.05) TYP  
SYMM  
(2.31)  
17  
BASED ON  
0.125 THICK  
STENCIL  
14X (0.65)  
9
8
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.75 X 2.58  
2.46 X 2.31 (SHOWN)  
2.25 X 2.11  
0.125  
0.15  
0.175  
2.08 X 1.95  
4224559/B 01/2019  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DRV8847PWPR

具有电流调节和独立半桥控制的 18V、2A 双路 H 桥电机驱动器 | PWP | 16 | -40 to 125
TI

DRV8847PWR

具有电流调节和独立半桥控制的 18V、2A 双路 H 桥电机驱动器 | PW | 16 | -40 to 125
TI

DRV8847RTER

具有电流调节和独立半桥控制的 18V、2A 双路 H 桥电机驱动器 | RTE | 16 | -40 to 125
TI

DRV8847RTET

具有电流调节和独立半桥控制的 18V、2A 双路 H 桥电机驱动器 | RTE | 16 | -40 to 125
TI

DRV8847SPWR

具有电流调节和独立半桥控制的 18V、2A 双路 H 桥电机驱动器 | PW | 16 | -40 to 125
TI

DRV8848

具有电流调节功能的 18V、2A、H 桥电机驱动器
TI

DRV8848PWP

具有电流调节功能的 18V、2A、H 桥电机驱动器 | PWP | 16 | -40 to 85
TI

DRV8848PWPR

具有电流调节功能的 18V、2A、H 桥电机驱动器 | PWP | 16 | -40 to 85
TI

DRV8849

35-V, 1.5-A quad H-bridge motor driver with smart tune and integrated current sensing
TI

DRV8849RHHR

35-V, 1.5-A quad H-bridge motor driver with smart tune and integrated current sensing | RHH | 36 | -40 to 125
TI

DRV8850

Low-Voltage H-Bridge IC With LDO Voltage Regulator
TI

DRV8850RGYR

Low-Voltage H-Bridge IC With LDO Voltage Regulator
TI